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Abstract 

Object identification and tracking have become critical for automated on-site construction 
safety assessment. The primary objective of this paper is to present the development of a 
testbed to analyze the impact of object identification and tracking errors caused by data 
collection devices and algorithms used for safety assessment. The testbed models workspaces 
for earthmoving operations and simulates safety-related violations, including speed limit 
violations, access violations to dangerous areas, and close proximity violations between 
heavy machinery. Three different cases were analyzed based on actual earthmoving 
operations conducted at a limestone quarry. Using the testbed, the impacts of device and 
algorithm errors were investigated for safety planning purposes. 

KEYWORDS: object identification and tracking, construction safety, automated safety 
assessment, error impact analysis 

INTRODUCTION 

Safety is always first in construction projects. The United States Occupational Safety and 
Health Administration emphasizes that employers are responsible for providing workers with 
a safety working environment (Wilson and Koehn, 2000). To achieve a safe environment, 
effective on-site safety assessment is important. In general, site safety has mostly been 
monitored and assessed based on manual inspections; more specifically, worksite supervisors, 
such as project managers, superintendents, or safety managers investigate site hazards and 
report them to be either safe or unsafe using safety checklists. Although such efforts have 
contributed to improving construction safety, they have relied highly on the observer’s 
competency in recognizing and measuring the acceptability or unacceptability of safety 
conditions (Ahmad and Gibb, 2004). In addition, such human observations are time-
consuming, and it is almost impossible for observers to monitor site safety at all times; 
accidents are likely to arise suddenly. For these reasons, recent research studies have been 
conducted on automating the safety assessment process. 

Studies on the image-based object identification and tracking of on-site objects have become 
more crucial since they facilitate automating site monitoring processes by providing dynamic 
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information of construction resources and activities. Specifically for construction safety, the 
image-based object identification and tracking studies have employed the state-of-the-art 
technologies and customized methods and algorithms for real-time safety monitoring and 
assessment. For example, Chi et al. (2009) developed a methodology for object identification 
and tracking based on spatial modeling and image matching techniques. Using spatial data 
acquired by a high-frame-rate imaging camera, a work zone model was built, matched with 
objects from the database for identification, and tracked within an image sequence. Using the 
same device, Gonsalves and Teizer (2009) segmented construction workers from a video 
sequence and then modeled and tagged them to track their location. In addition, some 
researchers proposed the use of video cameras for monitoring and tracking objects. Abeid et 
al. (2003) developed a computer-aided monitoring system, PHOTO-NET II, for construction 
project management and site surveillance. Shih et al. (2006) monitored a remote renovation 
site using a set of panoramic cameras and recorded images and videos for tracking work 
progress and site resources. Teizer and Vela (2009) evaluated performances of different 
worker tracking algorithms using video cameras for surveillance purposes. Last, Navon and 
Kolton (2007) developed an AutoCAD-based automated model to monitor and control fall 
hazards. They identified safety hazards in terms of dangerous areas and activities and finally 
integrated them with the project’s schedule for preventive actions. 

Regardless of the benefits of these safety studies, safety planners still face challenges 
selecting applicable devices, methods, and algorithms for safety assessment. This is due to 
the fact that (1) construction operations and sites are unique and complex, (2) such devices, 
methods, and algorithms typically have measurement and processing errors and (3) the 
impact of the errors is different depending on workspaces. For these reasons, there is a need 
to develop methods to evaluate the impact of object identification and tracking errors caused 
by image-based devices and algorithms on the data collected and processed for safety 
assessment of specific construction operations. 

The primary purpose of this paper is to develop an error impact analysis method to model 
object identification and tracking errors caused by image-based devices and algorithms and to 
analyze the impact of the errors for safety assessment of earthmoving and surface mining 
activities. As specific research activities, the previous study conducted by the authors 
identified data needs supporting automated safety assessment (Chi and Caldas, 2009) and 
investigated image-based devices and algorithms for acquiring the identified data including 
moving speed, access to dangerous areas, stopping distances and proximity between site 
objects. On top of the previous research, this paper determined safety rules using safety risk 
identification data, and finally developed a testbed to model workspaces and to evaluate how 
the object identification and tracking errors impacted the performance of safety decision 
making. Computer simulations with various earthmoving scenarios were conducted for 
method validation. Finally, conclusions and recommendations were derived from the research 
results. 

The scope of this paper is limited to off-site planning based on error impact analysis for 
safety assessment. In other words, most existing studies discussed in the previous sections 
mainly focused on actual device and algorithm analysis and system development for real-time 
implementation of risk identification on sites. However, this research mainly focuses on 
construction safety planning. In addition, this study only considered earthmoving and surface 
mining activities and image-based devices and algorithms. 
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DATA NEEDS IDENTIFICATION FOR SAFETY ASSESSMENT 

The research examined the possible causes of accidents for loading, hauling, and dumping 
operations and investigated potential safety risk factors contributing to accidents: excessive 
operation speed, dangerous access to prohibited areas, and inadequate clearance and limited 
visibility. These heavy-machinery-related accidents and their risk factors were reviewed from 
the Mine Safety and Health Administration’s and the National Institute for Occupation Safety 
and Health’s fatality investigation reports and operation safety handbooks (NIOSH, 2007; 
MSHA, 2009). For each of the risk factors, best practices in terms of safety regulations 
identified spatial data needs to support automated safety assessment. The data needs included 
moving speed, access to dangerous areas, stopping distances, and proximity to other on-site 
objects including workers and heavy machinery. 

DEVICES AND ALGORITHMS FOR DATA ACQUISITION 

Once the research identified spatial data needs for automated safety assessment, it was 
necessary to consider how to collect spatial data and transform the acquired raw data into the 
data needed for safety assessment. The research investigated and customized image-based 
object identification and tracking approaches for construction applications since they would 
support informative safety decision making for unique and complex construction operations. 
More specifically, “object tracking” was necessary because an object’s proximity and moving 
speed were able to be estimated using 3D information of object positions. “Object 
identification” was also required since safety rules were generally applied differently to 
different object types. The research evaluated image-based data collection devices such as 
LADARs, Flash LADARs, video cameras, and stereo vision cameras and explained the 
benefits of the stereo vision camera and how the stereo camera and the algorithms detected 
on-site moving objects, tracked their motion trajectory and finally classified object types by 
using object database and classifiers. 

SAFETY RULES FOR SAFETY DECISION MAKING 

Once the object identification and tracking acquired the identified data needs, safety rules 
using the collected data were determined for actual safety decision making. From the 
previous mentioned three data needs, violation types to be monitored for safety assessment 
were identified. They contained speed limit violations, access violations to dangerous areas, 
and a close proximity violations between objects. This section will provide in-depth 
explanation on how determined safety rules are able to detect such violations. 

Safety Rules to Detect Speed limit and Dangerous Access Violations 

The safety rule for speed limit violation detection was designed as “a speed limit violation 
occurs when moving speed of the tracked object exceeds its speed limit.” This 
straightforward rule keeps monitoring the movement of on-site workers and heavy equipment 
and monitors violations. Similarly, the safety rule for dangerous access violation detection 
was designed as “a dangerous access violation occurs when the tracked object enters pre-
determined prohibited areas.” The safety rule first marks dangerous or strategic areas and 
then monitors objects’ proximity to the areas. In earthmoving and surface mining activities, 
the dangerous areas include specified hazard areas, areas near highwalls, trenches, holes, 
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cracked ground, road edges for haulage trucks, dumping edges (berms) for dump trucks and 
unstable material piles. Besides the dangerous areas, a strategic area needs to be considered 
for more effective safety assessment. It contains a material stockpile in which an access is 
authorized only for a loader performing material scooping and a loading area in which close 
proximity is allowed when a loader approaches a truck for material loading. 

Safety Rules to Detect Close Proximity Violations 

In order to design a safety rule for close proximity violation detection, industrial standards for 
automobile crash avoidance system were reviewed. Many automobile manufacturers have 
designed on-board monitoring systems to help predict collision accidents, making it possible 
to reduce collision damage or take preventive action to avoid a collision (Toyota Motor 
Europe, 2008; Bogenrieder et al., 2009; Mobileye Technologies Limited, 2009). As operation 
principles, the system first monitors vehicle speed and steering angle, and detects the position, 
distance, and speed of any obstacle in front of the vehicle. The system then estimates a 
collision state with the vehicle or pedestrian ahead, taking into account the time to collision 
and the time to stop, which can be calculated by considering the inter-vehicular distance, the 
relative traveling speed, the motion vectors, and the braking system’s capability. 

The rules used in the academic studies by Riaz et al. (2006) and Oloufa et al. (2003) followed 
similar standards as the automobile industry’s standards. They considered motion vectors and 
the stopping distance for close proximity detection. This safety rule was applied to this 
research. This rule first estimates an approaching status by analyzing the motion vector. The 
rule predicts the post distance after 0.2 seconds between vehicles using their motion vectors 
and then compares this distance with the current proximity. If this distance is smaller than the 
proximity, we can say both vehicles are approaching each other. Second, the stopping 
distance determines the size of safety margin surrounding heavy equipment (Chi and Caldas, 
2009). More specifically, the faster heavy equipment move, the larger safety margins are 
assigned. By considering all of these information, the safety rule for proximity violation 
detection was designated as “a close proximity violation occurs when proximity between 
objects are smaller than their stopping distances.” 

AN ERROR IMPACT ANALYSIS METHOD 

Using the determined safety rules, a prototype simulation testbed was developed. The 
primary purpose of the testbed is to assist safety planners in understanding workspaces and to 
assess errors related to the use of different technologies for safety planning decision making. 
The testbed first models virtual workspaces for earthmoving and surface mining activities and 
then simulates operations and related safety violations, such as speed limit violations, access 
violations to dangerous areas, and close proximity violations between heavy machinery. The 
testbed also models different object identification and tracking errors caused by image-based 
algorithms and devices as well as safety rules to detect safety violations. This testbed 
investigates the impact of errors on the performance of safety decision making. This section 
will discuss the structure, the elements, and the functions of the testbed. 

Testbed Structure 

The overview of the testbed structure is illustrated in Figure 1. Using spatial information of 
actual sites, a user can input a site map, relevant safety features such as an access-prohibited 

423



27th International Symposium on Automation and Robotics in Construction (ISARC 2010) 

 

area or a safe material-loading area, heavy equipment types involved, trajectory information 
of moving equipment, strategic camera positions, speed limits, and gross operating weights of 
the equipment into the testbed for safety violation detection. The testbed applies different 
object identification and tracking errors and then executes a simulation several times for each 
error rate. Different error rates (e.g.: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, and 30%) are 
used for sensitivity analyses of both object tracking and identification accuracies. To apply 
different error rates to the original data, a random number generator is used. The simulation 
runs a user-specified number of times for each error rate, for analyzing the impact of either 
tracking or identification accuracy. The testbed then outputs summary images and movie files. 
The testbed also summarizes safety-related violations using safety rules identified and 
analyzes performance. 

 

Figure 1: Testbed Structure 

Data Input 

A user can first select a JPEG-format site map and then use two software tools: an area 
selection tool and a trajectory build tool. The area selection tool was designed to determine a 
dangerous access area, a discriminated access area such as a material stockpile, or a safe 
material-loading area. This tool first assists a user to plot a desired area using a computer 
mouse and input an area name, and the tool then generates a text file representing map 
specifications. The users can also determine strategic camera positions.  

The trajectory build tool was designed to simulate the trajectories of heavy machinery. A user 
first enters the name of heavy equipment tracked. The users then plot each vehicle’s moving 
trajectory on the map and the tool generates a text file with x and y values of the plotted 
trajectory in meters. In other words, whenever the user plots one pixel of the map, the pixel’s 
row and column values are transformed to the global x and y values (meters from the top left 
corner) based on the scale of the map. The center point of an object’s height, the z value, is 
predetermined based on the equipment type. Here, the x, y, and z values represent volume 
centroid of the equipment in meters.  

In addition, there are three more input variables. One is the speed limit of the site, which is 
used for monitoring speed limit violations. The others are gross operating weights of heavy 
equipment and site surface types, which determine a stopping distance for monitoring a close 
proximity violation. 
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Internal Processing 

Once safety-related area information and heavy machinery movement information construct 
simulation scenarios, the testbed runs a random error generator to modify original trajectory 
and classification information of heavy machinery with different tracking and identification 
errors. Again, the user can plot several sequential points to construct the trajectory of the 
heavy machinery involved. Each plotted point includes three different types of information: a 
heavy machinery type, the distance information of the point from the camera position, and the 
time information when the machinery locates at the point. As detailed explanation, a random 
tracking error generator first transforms the global x, y, and z values to the local coordinate 
using the designated camera position and the coordinate conversion matrix. The error 
generator then applies zero to 30% different tracking error rates to the local x, y, and z values 
and the revised values by the error are finally transformed back to the global frame. A 
random identification error generator similarly applies different identification error rates to 
heavy machinery information and modifies the original classification of the machinery. 

The testbed also applies previously determined safety rules on the revised trajectory and 
classification information to detect safety-related violations including speed limit, dangerous 
access, and proximity violations. The testbed, however, was flexibly designed to adapt and 
adjust different safety rules.  

Last, the testbed considers a different time tolerance for safety violation detection. The 
testbed applies nine different time intervals from zero seconds to five seconds (0, 0.5, 1.0, 1.5, 
2.0, 2.5, 3.0, 4.0, and 5.0 seconds) and evaluates how the number of false alarms decreases 
with different time tolerance. More specifically, the zero-second time interval means frame-
by-frame analysis. In order words, the testbed detects safety violations frame by frame. 
However, the five-second interval detects a violation if the violation has been continuously 
monitored during five seconds. Thus, such consideration would be expected to decrease the 
number of false alarms and increase the testbed efficiency by filtering noise out for practical 
testbed utilization. 

Testbed Output 

The testbed basically outputs the final trajectory image (Figure 2(a)) affected by different 
data errors (Figure 2(b)) and a movie file showing actual operations, movements of heavy 
machinery, and safety violations. The testbed also creates temperature-based frequency 
information of the tracked trajectory (Figure 2(c)). In Figure 2(c), a trajectory of heavy 
machinery was colored from blue to red based on visiting frequency. A highly-visited area 
such as a main haulage road and a loading area became close to red and a lowly-visited area 
became close to blue. This information helps a user identify congested (high density) areas 
and free spaces for safety planning. 

The testbed then estimates safety-related violations based on safety rules. The testbed counts 
the number of original speed limit, dangerous access, and close proximity violations with 
zero identification and tracking errors. Using these numbers, the testbed counts the number of 
false alarms and the number of missed original violations due to object identification and 
tracking errors. By considering the number of vehicles that appeared in the images and the 
number of encounters between vehicles on images, the testbed calculates the probability of 
false violation occurrence versus object identification and tracking errors. 

425



27th International Symposium on Automation and Robotics in Construction (ISARC 2010) 

 

 
(a)     (b)    (c) 

Figure 2: Testbed Outputs: (a) original trajectory of heavy machinery, (b) trajectory with 10% tracking 
error, (c) temperature-based frequency information of the trajectory 

Theoretically, the worse an object’s tracking accuracy is, the more speed violations are 
expected to occur. Object identification accuracy would increase the speed violations only 
when different speed limits are assigned for different equipment types. Second, when 
tracking errors become more prevalent, heavy machinery tends to break away from its 
original trajectory more; that is to say, if a large size of a dangerous area is designated near 
the original trajectory, the number of dangerous access violations is expected to increase. 
Object identification would affect the monitoring results only when different access 
authorities are assigned to different object types. For examples, a material stockpile is able to 
be allowed only for a loader to access, but not for a truck. Third, while the tracking accuracy 
is getting worse, the vehicle’s speed tends to increase and the stopping distance becomes 
larger. Thus, more proximity violations are expected. The object identification accuracy 
would affect proximity violations as well. If an actual loader is mistakenly identified as a 
heavy truck, the gross weight increases and the stopping distance increases as a result.  

Last, using the derived number of safety violations, the testbed finally estimates violation 
detection accuracy, false alarm rates, and missing detection rates of the testbed. With the 
number of simulated actual violations, if the testbed detects them as violations, then it is 
called a true positive (TP). However, if the testbed misses them, then it is called a false 
negative (FN), which represents missed violation detections. Similarly, if the testbed 
correctly rejects non-violated status, then it is called a true negative (TN). However, if the 
testbed detects them as violations, then it is called a false positive (FP), which represents false 
alarms. The violation detection accuracy, the false alarm rate, and the missing detection rate 
can be calculated by considering (1) TP and TN, (2) FP, and (3) FN, respectively. 

TESTING AND VALIDATION 

For testbed performance validation, various cases with different object identification and 
tracking accuracies were considered and the results were statistically analyzed. Three 
earthmoving cases were constructed based on the ground truth that was actually monitored 
from the M. E. Ruby, Jr., limestone quarry located in Cedar Park, Texas, where 1.5 million 
tons of materials are produced every year. The testbed codes were written using the C++ 
programming language in Microsoft Visual C++ 6.0. Intel Open Source Computer Vision 
Library (OpenCV) was employed for image and video processing. 

The first scenario was constructed to represent a loading operation (Figure 3(a)). Seven trucks 
and one loader were involved in the operation. Dangerous access areas were predetermined 
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near highwalls and unstable ground. A material pile and a safety loading area near the 
stockpile were also located. Three cameras were positioned for monitoring. The second 
scenario was built to represent another loading operation with seven trucks and two loaders 
involved (Figure 3(b)). Dangerous access areas near the material crusher and unstable ground, 
four material piles, a loading area, and six cameras were located. Six cameras were 
positioned for monitoring. The third scenario was constructed to represent a hauling 
operation with fourteen trucks involved (Figure 3(c)). Dangerous access areas were assigned 
near road edges, highwalls, and unstable ground. Six cameras were positioned for monitoring. 

 
                    (a)          (b)               (c) 

Figure 3: Three different scenarios: (a) Scenario 1, (b) Scenario 2, (c) Scenario 3 

Simulation Results 

Each scenario ran simulations 100 times to derive an analysis of the sensitivity of the testbed 
performance to different tracking error rates, ranging from 0% to 30%. In order to estimate 
accuracy, false alarm rates, and missing detection rates, each scenario originally had 
simulated violations. For statistical analysis, mean (%) and standard deviation (%) with 95% 
confidence interval for safety violation detection accuracy were discussed. Figure 4(a) 
illustrates how tracking errors impacted the performance of safety violation detection. The 
simulation results indicated that the violation detection accuracy was decreased by increasing 
tracking errors with the short range of standard deviations (Figure 4(b)).  

Table 1 explains how these results can be utilized for actual device and algorithm evaluation. 
Let us imagine a safety planner set 90% accuracy as acceptable tolerance and evaluated 
several combinations of devices (A, B, and C) and algorithms (1 and 2) with different 
tracking errors. As shown in the table, the safety planner can determine both device A and B 
are acceptable with algorithm 1 for the site. However, the safety planner still needs to 
consider other factors such as familiarity, cost, and easiness to select one from two device 
candidates. 

In addition to the results against tracking errors, the testbed evaluated the violation detection 
performance against identification errors. The simulation results showed that, however, the 
detection accuracy was not that affected by the identification errors. Regardless of different 
identification errors, the accuracy was higher than 99.5%. That was because the identification 
error did not change the original trajectory of heavy machinery, so no false speed limit 
violation occurred and just few false access and proximity violations were generated. 
However, the number of false access violations increased proportionally to the number of 
loader accesses to material stockpiles for material scooping and similarly the number of false 
proximity violations was increased by the number of close loader approaches to a truck for 
material loading. These numbers would help safety planners plan acceptable tolerance for 
safety assessment and false alarm generation. 
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(a)          (b) 

Figure 4: Results versus Tracking Errors: (a) Violation Detection Accuracy, (b) Standard Deviations 

Table 1: Utilization Example of the Simulation Results 

Device Algorithm Tracking 
Error 

Violation Detection Accuracy (%) 
Scenario 1 Scenario 2 Scenario 3 

A 1 6% 97.3 94.8 95.0 
B 1 8% 95.5 91.4 91.0 
C 1 10% 93.8 87.7 86.8 
A 2 12% 92.2 84.5 82.8 
B 2 14% 90.6 81.6 79.1 

CONCLUSIONS 

In summary, a testbed was developed and computer simulations with three earthmoving 
scenarios validated its performance for the error impact analyses. The safety rules detecting 
speed limit, dangerous access, and close proximity violations were first determined. The 
testbed then modeled several earthmoving operation scenarios, modeled different object 
identification and tracking errors, applied the previously determined safety rules for safety 
decision making and finally evaluated the impact of different object identification and 
tracking errors on the safety analyses. The paper also presented utilization examples of the 
testbed with the analyzed result of violation detection accuracy. The results of this research 
would be used for improving site safety assessment and planning by assisting safety planners 
to understand workspaces and to evaluate errors related to the use of different technologies 
for safety assessment. 
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