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Abstract : Increasing research and development in the area of construction
robotics and computer -aided -construction has resulted in a large number of
automated construction equipment applications . Full potential of such
construction equipment can be realized by providing the collision avoidance
motion planning capabilities . Models used in motion planning can be
categorized into two types : ( 1) planning with complete information and (2)
planning with incomplete information . State-of-the -art general algorithms
appropriate for the motion planning process are highlighted . Motion
planning with complete information are typically NP-complete and hence are
modeled by approximate approaches or by exploitation of special conditions.
Motion planning with incomplete information requires sensory feedback. An
algorithm for motion planning in an automated concrete placement operation
that exploits the special conditions provided by structural engineering floor
design theory is also provided.

1. INTRODUCTION

In the last five years, there has been an increasing trend in the
application of automation technology to the construction industry. A large
number of automated construction equipment applications have been
developed for field operations such as concrete placement, concrete finishing,
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wall inspection , slurry wall construction, and tunneling . A survey of

automation applications in the construction industry can be found in

Skibniewski and Russell [1].
A significant challenge in construction automation is the ill-structured

constantly changing environment of the construction site. In order to address

this challenge, automated machines must be equipped with sophisticated

collision avoidance motion planning capabilities. The collision avoidance

motion planning is formulated as a static problem. Only the path (i.e.,

position and orientation information) is being sought, with no consideration

for the dynamics along the path. There are two formulations of collision

avoidance motion planning problem : (1) path planning with complete

information describing the environment and (2 ) path planning with

incomplete information for an uncertain environment. With complete
information an optimal path can be obtained. With incomplete information,
the path is computed continuously or piece by piece, based on the incoming
information from sensors and hence an optimal solution cannot be found.

This paper describes the generic challenges associated with motion
planning of automated construction equipment. A review of the classical
formulation of the mover's problem is provided along with a discussion of its
complexity. State-of-the-art of planning algorithms for complete and
incomplete information are also described. A motion planning algorithm
with complete information for an automated machine in concrete placement

operation is also provided.

2. MOTION PLANNING WITH COMPLETE INFORMATION

In motion planning problems with complete information, the general
approach is to compute the configuration space in which the moving object
shrinks to a point, and obstacles are grown to compensate for the shrinking
object. Any path that lies within the complement of the grown obstacle is
feasible. General algorithms for motion planning with complete information

are summarized below.
Generalized Mover 's Problem . The classical formulation of mover's

problem in d-dimensional Euclidean space has been provided by Rief [2]:
Input-- (0, B, P, Pt) where 0 is a set of polyhedral obstacles fixed in

Euclidean space, and B is a rigid polyhedron with distinguished

positions Ps and Pt.
Problem-- Can B be moved by a sequence of translations and rotations in d-

space from positions PS to Pt without contacting any element in 0?
The mover's problem may be generalized to allow B, the object to be

moved to consist of multiple polyhedra freely linked together at various
distinguished vertices. The generalized mover's problem in 3-space is p-space
hard, by a direct log-space reduction from the acceptance problem for
polynomial space bounded by Turing machines. The generalized mover's

problem is one of few known p- space complete combinatorial problems. Reif

[2] has presented a polynomial time algorithm to the classical mover's
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problem by mapping the problem in lower dimension to a simpler problem in
higher dimension.

Piano Mover 's Problem . The general mover's problem has been
reformulated by Schwarz and Sharir [3] in abstract algebraic terms so as to
reduce it to the problem of decomposing certain algebraic varieties into. their
connected components. This reformulation has been referred to as the "Piano
Mover's" problem.

Algebraic formulation of the problem includes one or more hinged
bodies B. Each body B consist of a finite number of rigid compact subparts B1,
B2,........., each bounded by algebraic surfaces. These subparts may be
connected to each other by various types of attachments such as revolute and
sliding.

Body B is required to be moved from initial to the final position in empty
space bounded by a finite collection of walls, each of which is an arbitrary
algebraic surface. The rotational component of body B's motion is a smooth 3-
dimensional algebraic submanifold of 9-dimensional Euclidean space. If B is
a single rigid body, its position is described by a Euclidean motion T that takes
B from some standard position to its given position. This transformation Tx =
Rx + X0 is defined by a pair of [X0, RI consisting of a point X0 in 3-dimensional

Euclidean space E3 and of a 3x3 rotation matrix R. Hence T is a point in a
smooth 6-dimensional algebraic submanifold G of 12-dimensional Euclidean
space E12. Irrespective of the manner in which subparts of the body are
connected together, overall position of all its parts can always be defined by a
point belonging to smooth algebraic manifold G lying in a Euclidean space of
some appropriate dimension.

The theoretical existence of solutions to the "Piano Mover's" problem
was shown by Schwartz and Sharir [3]. The techniques to obtain the solution
were based on Tarski's algorithm for deciding statements in the theory of real
numbers and Collin's algebraic decomposition of Euclidean spaces. An
algorithm that solves the "Piano Mover's" problem by computing a

connectivity graph with complexity O((2n)3r+1 . mgr) was provided. In the
complexity equation, r relates to the number of degrees of freedom for all
subparts Bi of body B, n is the maximum degree of the polynomial defining a
single geometric constraint and in is the number of polynomials defining the
sets G and F; where, G is a smooth manifold in the Euclidean space Er in
which transformation T; are given and F is the manifold describing forbidden
configurations of body B due to non-collision requirement.

Visibility Graph Approach. An algorithm presented by Lozano-Perez
and Wesley [4], for motion planning with complete information is closely
related to an optimization approach. The constraints on the position of an
arbitrary reference point on the moving object are computed. Polyhedral
obstacles in two or three dimensions give rise to sets of polyhedral forbidden
region. This transformation reduces the problem of finding a safe path for the
polyhedron to the simpler problem of finding a safe path for a point. The last
task is accomplished by finding a path through a graph called visibility graph
VG(N, L) defined as follows: the node set N is V u IS, T} where V is the set of
all vertices of obstacles and L is the set of all links (ni, nj) such that a straight
line connecting the ith element of N to the jth does not overlap any obstacle [4].
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Configuration Space Approach . Another widely accepted approach

presented by Lozano-Perez [5] is based on characterizing the position and
orientation of an object as a single point in a configuration space in which
each coordinate represents a degree of freedom in the p osition

the presence of
the object. The configuration forbidden to this object, due to

other objects, can then be characterized as regions in the configuration space

called configuration space
have
obstacles.

also been
Efficient

dev loped by Lozano-Perez
configuration space obstacles

3. MOTION PLANNING WITH INCOMPLETE INFORMATION

In motion planning with incomplete information, an element of
uncertainty is present and hence proof of convergence is essential. The

missing
data are typically provided by some source of local information

through sensory feedback such as ultrasound range finder or a vision module.

Hence, path planning becomes a continuous on-line computational operation.
A universal lower bound for path-planning in an uncertain environment has
been provided by Lumelsky and Stepanov [6]. The bound was formulated in
terms of the length of the path (P) generated by the automaton on its way from

the starting point (S) to target point (T). The bound is given by P >_ D + pi - S;

where D is the distance between S and T and pi refers to the perimeters of

obstacles intersecting the disc of radius D centered at T.
Considering the motion planning with incomplete information model,

Maze
when the environment can be modeled as a finite or infinite maze,
Searching Algorithms can be used to plan the path. Additional resources of
input information are assumed to be the following: (1) automaton has a
capability to mark corridors already traversed, (2) automaton knows direction
in which traversal took place, and (3) corridors that led to an intersection for

the first time.
Maze Searching Problem (MSP). Maze Searching Problem can be

formulated as follows: describe a general algorithm that constructs a closed
covering walk (W) in a connected graph G, such that in the course of
constructing W, the algorithm can handle only local information available at
any vertex reached by W [7]. There are many maze searching algorithms.

Select algorithms are provided below.
Tarry's Algorithm . This algorithm works with local information only.

The algorithm has the following hypothesis: At any vertex ve V(G) reached in

the course of the construction of walk W, the set E;. w c E„ of edges already
passed from v is known. Moreover, the edge ein(v) by which v has been
reached for the first time is known. For the initial vertex vo of W, the set

(ein(vo)) = 0. The algorithm can be formalized as follows [7, 81:

Step 1: Set i=0 and choose voEV(G). Set W=vo.
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Step 2 : Beginning at viE V(G) walk along an arbitrary

ei E Ev, := (Ev; u { ein(vi) {) . Set W = W, ei , vi+1 (ei E Evi.,).
Set i=i+1.

Step 3: Suppose W=vo, e0........ ei_l,vi has been constructed. If Evi = 0,
go to Step 2. Otherwise, go to Step 4.

Step 4: If {ein(vi)) c E°;, w go to Step 5. Otherwise, set ei=ein(vi),

W = W, ei, vi+i (ei E Ev;,, ), i=i+1; go to Step 3.

Step 5: W is a bidirectional double tracing in G.
Fraenkel 's Algorithm . This algorithm is an improvement over the

Tarry's algorithm. It has the following hypothesis in addition to the
.hypothesis mentioned in Tarry's algorithm: a bijection c: (W)->N u (0) is
given, where (W) denotes the set of walks produced algorithmically, such that
c(vo)=1, and for W and W'=W, ei, vi+i we have I c(W) - c(W') I = 1. The
algorithm can be formalized in the following steps [7, 9]:

Step 1: As long as c(W)>0 proceed as in Tarry's algorithm.
Step 2(a): If vi+l#vj 0<j<i, set c(W')=c(W')+l.

Step 2(b): If vi±1=vj for some j<i+1 and if IEv;+, - E(W)I ? 1, while

IEW'0I <_ 1 for the same vi+i, set c(W') = c(W)-1.

Step 3: Suppose c(W)=0, If EW,o ^ 0 at vj, proceed as in Tarry's

algorithm. Otherwise, set ei = ein(vj) if vi #vo .
The outcome of Fraenkel's Algorithm is the final W, a closed covering walk

such that ?w(e) <_ 2 for every eE E(G).
Pledge's Algorithm. In addition to the assumptions made in the earlier

algorithms for motion planning with incomplete information, Pledge's
algorithm assumes that the automaton is equipped with a compass that
allows a specific direction, say north, to be maintained. The automaton is
equipped with a counter that is activated when it encounters an obstacle and
begins integrating the turning angles. The algorithm is given by the following
steps [10]:

Step 1: Walk straight toward the north until an obstacle is encountered
or target (T) is reached.

Step 2: Turn left leaving obstacle on the right.
Step 3: Follow obstacle boundary until the value of the counter is zero.

Go to step 1.
The outcome of the Pledge's algorithm guarantees eventual escape from any
finite maze, but its path length performance is not bounded.

Bug1 . In addition to the assumptions mentioned in the earlier
algorithms, the Bugl algorithm developed by Lumelsky and Stepanov [6]
assumes that the mobile automaton (MA) knows its own coordinates and
those of the target at all times. The goal of the algorithm is to generate a path
from Start (S) to Target M. When meeting an ith obstacle, MA defines a hit
point Hi for i = 1,2,....... When leaving the ith obstacle, to continue its travel
toward the target, MA defines a leave point Li; initially, i=1 and Lo=S. The



412

procedure uses three 1 egisters R1, R2, and R3 to store intermediate

information . All three are reset to zero when a new hit point Hi is defined. R1

is used to store the coordinates of the current point, Qm , of the minimum

distance between the obstacle boundary and
the length of the obstacle

obstacle boundary starting at Hi, and R3 integrates

boundary starting at Qm. The algorithm
consists of following steps:

Step 1: From point Li-1, move toward Target (T) along
a straight line

until one of the following occurs:
( a) T is reached and the procedure stops.

(b) An obstacle is encountered and a hit point Hi is defined.

In this case, go to Step 2.
thenStep 2: Turn left and follow obstacle boundary. If T is reached,

stop. After having traversed whole boundary and having
Step 3.returned to H;, define a new leave point Li=Qm, and go to p

Step 3: Based on contents of registers R2 and R3, determine shorter way
along boundary to L; . After having defined a point L on an
obstacle, if MA discovers that the straight line segment (L,

Target) crosses the obstacle at point L, then target is not

reachable.
Bugl tends to be overcautious and never covers less than full perimeter of the
obstacle. Another algorithm Bug2, takes advantage of simple situations, but

may become inefficient in more difficult cases. provided two
Vision with Motion Planning . Lumelsky and Skewis [11] p

motion planning algorithms labelled VisBug-21 and VisBug-22 that
incorporate vision information. Due to space limitations, a brief overview of

^, *^ of the Main Body
only VisBug-21 algorithm is presented. VisBug-21 consist '-s
that does the proper motion planning along the path, and a procedure called

ComputeTi-21, that performs the test for target reachability and produces the

next intermediate target T; for the given current position C of the automaton.
The main body consists of two steps. The first step S1 consists of moving

towards Ti, while executing ComputeTi-21 and performing the following tests:

step SZ
reachable,retargetached. reachable/not(1) target reached/not reached,

reached/not
(2)

execdut d
intermediate target is

only in those cases when the automaton is moving along a (locally) convex

boundary an obstacle and
consists of moving along the obstacle boundary

intermediate target. Step S2

while executing ComputeTi-21 and performing similar tests to step S1 [11].

4. PATH PLANNING ALGORITHM FOR AUTOMATED CONCRETE

PLACEMENT

An algorithm to plan the path of a concrete placement pipe in a
computer-controlled concrete placement system has been developed by
Kunigahalli et al. [12]. Apart from providing an efficient placement pipe path,
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the algorithm integrates design data with the construction operation by
obtaining input from a 2-D wire-frame CAD model. Wire-frame data
corresponding to a line diagram of the floor plan is processed by employing
computational geometry techniques. Processed data are then stored in a
hypergraph G=(V, E, H ), similar to the face adjacency graph structure
normally used in Boundary Representation (B_Rep) schemes. Thus, the
information stored in the hypergraph is more complete in terms of adjacency
relation among beams and rectangular slabs of the given orthogonal
polygonal floor.

The algorithm obtains information on beams above, below, to the left,
and to the right of any given beam at any given beam to beam intersection.
Based on this information, obstructing columns along the beams are
identified. The algorithm then performs a rectangular partitioning of the
orthogonal polygonal floor excluding obstacles such as elevator shafts. The
information regarding obstructing columns combined with partitioned
rectangular adjacency information is stored in a hypergraph G = (V, E, H).
An efficient traversal of the hypergraph along with direction parallel path
within each node of the graph can provide a detailed path plan for the
automated concrete placement pipe.

5. CONCLUSION

Motion planning issues with complete and incomplete information have
been discussed. The computational complexity of algebraically formulated
mover's problem is double exponential in degrees of freedom of the moving
body. Hence, approximate algorithms or exploitation of special condition and
circumstances are required to solve the motion planning problem with
complete information. Proof of convergence and sensory feedback for local
information are essential for motion planning with incomplete information.
A path planning algorithm with complete information for an automated
concrete placement system has been described.
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