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Abstract

This paper presents two localization fusion

techniques for civil-engineering machines. The first one

concerns 2D localization and the second one is intended

to 6 dof position and attitude determination. The system

uses an optical instrument called SIREM which provides

azimuth and elevation angles of known landmarks. The

approach is based on dead-reckoning techniques updated

by the exteroceptive measurements of SIREM using the

Kalman filter formalism. As the dynamics and

accelerations of the vehicles we consider are small

enough, the use of inclinometers is attractive since they

directly provide attitude angles. In such a context, we
propose a new 3D dead reckoning method which
integrates data from two inclinometers and an odometer.

A large section of the paper is devoted to real
experiments. These are performed with an outdoor tire-

type robot moving on a 30x40 square meters non planar
lawn. The results show that the precision of our system,

although difficult to assert with the current experimental

setup, is in the order of centimeters.

1. Introduction

Real-time positioning of civil-engineering mobile

equipment such as dozers, motor graders, compactors,
pavers, etc., can be of great interest for improving the
global efficiency of the worksites. The huge technical gap
existing between the high computerized design and the
still archaic site works can be reduced by using in real-
time the reference geometrical data for the control of the

mobile equipment. Significant improvements in terms of
quality and saving of time and materials can be expected.

To solve this problem, several technologies can be
addressed. The new Differential Global Positioning
System seems to be a very promising solution fitting most
of the earth-moving tasks. For the spreading tasks, the
most demanding in terms of accuracy, optical technologies
remain the most accurate.

Many researches have already been performed in
order to design well adapted devices, in terms of accuracy,
range, reliability, easiness of use and cost. Since 1990, the
LCPC and the IRCyN have been developing a positioning
prototype (SIREM), using standard light sources and a
rotating linear CCD camera. SIREM measures the azimuth
and elevation angles of known beacons.

This system has proved to be basically accurate
enough but suffers from some structural drawbacks. One

of these is the low rotation speed (imposed by the CCD
technology and the required accuracy) which leads to a
low updating rate.

Moreover, due to this low acquisition frequency, the
sensor does not lend itself to the use of the so-called
"quasi-static" methods, in which several measures are
supposed to have been acquired at the same position.

The paper is organized as follows. We first describe
the principle of SIREM and present the experimental
setup. The vehicle is an outdoor mobile robot with rubber
tires, moving on a slightly irregular terrain (a lawn).

Section 3 is dedicated to a 2D fusion of SIREM and
odometry. The Extended Kalman Filter (EKF) approach is

described and real experiments show that our system
reaches a precision of a few centimeters in x and y, and
0.5 degrees in heading.
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In the context of some tasks, the elevation and the

attitude angles are required. Therefore in section 4,
another fusion is being studied, using two inclinometers

added to the above-mentioned sensors. These

inclinometers provide accurate information in relation with

the third dimension, since the dynamics of the vehicle are

sufficiently low. In order to exhibit the inclinometer
measurements, we propose a non-usual attitude

representation based on the use of the gradient and cross-
slope angles. We then propose a new 3D dead-reckoning
technique on which an EKF is based. Very encouraging

simulation show that the precision of the elevation
estimation can reach one centimeter. Finally, the first

outdoor experiments, carried out on a special test-track,

are reported and analyzed in comparison with a

Differential GPS RTK.

2. Sensors and experimental setup

2.1 SIREM: the exteroceptive sensor

Placing easy-to-recognize beacons in the environment
of the robot is an effective way of avoiding many of the

problems associated with recognizing natural landmarks.
The artificial beacons we use are battery-powered twin

light sources. A beacon is automatically switched on using

an HF link, just before the rotational sensor is going to

detect it. Once the reading is done, the light is switched off
in order to decrease energy consumption.

optical axis

optical axis

heading of
the robot

figure 1 : side and top views of SIREM

SIREM is a linear CCD camera which rotates with a
constant speed (=1 rad/s) around an axis fixed to the

vehicle. Hence. the landmarks are detected one at a time

and intermittently.
The rotation axis passes through the optical center

(figure 1). The azimuth angles (denoted 2) are measured
with respect to the heading by an optical encoder. The

accuracy of this measurement depends on the scanning

frequency of the camera and on the rotation speed. The
low speed we have chosen provides accurate angles (the

standard deviation of an azimuth angle is 2.2 10-3 rad).
The sensor is also able to measure simultaneously the

angle between the camera optic axis and the line that

passes through the optical center and the beacon. This

angle is called "elevation angle".
A particular problem of this kind of sensors is that it

provides asynchronous measurements. Asynchronous
means that the time of the detection of a beacon cannot be
known beforehand. since, for a given position of the
beacons, the angular interval between two beacons
depends on the position and movement of the mobile.

2.2 The complete system

A good way for overcoming this drawback is data

fusion between low-frequency optical measurements and

high rate dead-reckoning or inertial measurements. We

propose to study how some low-cost sensors can improve

both updating frequency and global reliability , together

with the accuracy.
Odometric techniques can be realized using optical

encoders mounted directly on two wheels of the vehicle

and two inclinometers . We suppose in this article that the

outdoor vehicle has tire wheels , but our algorithm can be

applied to caterpillar machines.
In order to measure the gradient and the cross-fall

(denoted respectively "dc" and "dv"), pendulous

inclinometers can be of great interest and the precision can
be better than 0.1 degrees.

inclinometers

beacon

Odometer

figure 2: the complete experimental setup on the
vehicle
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The recent advances in Differential GPS seem to
provide enough accuracy for a significant number of

applications. In order to compare the behavior of a
Differential GPS RTK (Real Time Kinematic) and
SIREM, we have installed a TRIMBLE 4000 GPS
receiver on the experimental robot.

Finally, the disposition of the sensors on a two-
wheeled mobile robot is shown on figure 2.

3. 2D fusion of SIREM and odometry

We first addressed 2D positioning; The basis of the

solution was to correct odometric estimates using the

azimuth angle measurements of SIREM. The improvement

of the 2D parameters, x, y and direction angle (0) is
significant.

3.1 State-space description and Kalman filtering

The posture (position and orientation ) of the vehicle
at time instant i , can represented in a two -dimensional

space by the vector Xi= [xi yi ©i It

Odometric equations provide a kinematic evolution
model (see [3] ). The odometer measures the vector

Ui _ [Ai , wi ]t which is the elementary translation and

rotation applied to the vehicle.

Xi+i=F(X1, UJ (1)

The observations are the azimuth angles 2 of the
landmarks Bk, the coordinates of which are denoted

(xBk , yBk) . The observation equation is scalar , but non-

stationary since it depends on the coordinates of the
landmark sensed.

Suppose this measurement occurs at time instant j;
figure 1 yields:

)j =atan2(yBk -yj,xBk -xj)-oj=gk(Xj) (2)

Equations (1) and (2) are actually corrupted by noises
which are supposed to be zero-mean, white and Gaussian.
The system obtained is non-linear and has the following
state-space description:

Xi+t = F(Xi,Ui)+ai

k(Xj)+Pj
(3)

or; is the model noise which represents the effect of

slippage or skid on the ground plus the effects of errors on

the robot parameters such as the radii or the wheel base. Pi
is a white noise due to measurement errors on the azimuth.

One can notice that the state-space description has
two time indexes i and j. The last one indicates that the
goniometric sensing are done asynchronously and
intermittently.

Because of the non-linearity, we use an EKF to

estimate the state X. The linearized state description uses
Jacobian matrices.

IF
Xi+,] •Xj+

dF
ao Ui +ai

x quo

Xi .Xj+/3j
(4)

Classical EKF computations are applied on system
(4). The algorithm works in two steps: prediction and
filtering.

Between two absolute readings, a "high" frequency
(20 Hz, as compared to the frequency of the absolute
readings = 0.5 Hz) state and error prediction phase occurs.
In this step a predicted state and its estimated error
covariance matrix are computed.

When a beacon is detected, the posture is corrected:
this is the filtering phase. Equation (5) shows that the
prediction state is corrected proportionally to the
difference between the measured azimuth angle k and the

expected azimuth angle AiA. Thanks to the Kalman gain

vector KK a scalar term is able to correct the three-
dimensional vector X.

Xj+t/ j+l = X j+t/j + K j • (;'j - .li ) (5)

In the following , we will denote by "EKF_2D" the
localization system based on EKF using SIREM and
odometry.

3.2 Comments on the number of beacons

Although three beacons are necessary to localize a
motionless vehicle, our system is able to work when the
vehicle detects only two beacons while moving, except on
some degenerate trajectories which have been determined
thanks to observability analysis [4]. In practice, this is an
interesting feature of our solution since, for instance,
another vehicle can hide accidentally a landmark.
Moreover, it helps reducing the number of beacons and
hence the cost of the infrastructure.

3.3 Experimental results

In this section, we report the results of real-time
experiments carried out with a 486-based PC system.

Thanks to a real-time executive, periodic readings of the

encoders, computation of the asynchronous azimuth angles
from the CCD camera, lighting and extinction of the

beacons, and all the computations of the estimation
process, are done in real time.

The experiments have been run on an outdoor test-
track marked out with three beacons (see figure 3), with a
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three -wheeled, non-holonomic vehicle (figure 4)
Reference points have been located by surveyors, in a
local frame . White strings can be stretched out on the
grass to materialize straight lines or circles of known
equations.

120

110

y (m)

100

B3
beacon

9L I'll,8i Bxz
0 70 80 x (m) 90 100 110

figure 3 : experimental path
The principle of our experiments is to make the robot

track those reference paths using a CCD camera (see the
picture of figure 4), and to compare the EKF estimation
results with reality. The camera, at the front of the robot,
extracts the deviation between it's optical axis and the
white line to be tracked . The global accuracy of the
tracking process can be estimated around +/-1 cm, at a
speed of 10 cm/s.

0.1

0.05

(m)

0

-0.05
75

differential
GPS RTK

80 85 90 95 100
estimated x (m)

figure 5 : Signed lateral errors

One should keep in mind that the accuracy of the
reference marks and beacons positioning is about one
centimeter. Moreover, it's difficult to guarantee that the
string is perfectly stretched out and the robot, when
following the line, oscillates a little.

The results of figure 5 prove that the EKF_2D and
the GPS provide very good position measurements, in the
same range of accuracy. One can notice that the
estimations of EKF_2D are less noisy.

Nevertheless, the lateral errors don't have zero means

and are not random signals due to measurement noises

only. Most probably, it is largely due to the terrain
generating the same roll angle at each test. Indeed, the
sensor is located about 1.9 in above the ground (see
figure 6). Hence, one degree of cross-fall generates a
three-centimeter lateral error (our test-track is a lawn and
not perfectly planar). Repeatability tests (cf. [3]) confirm
this phenomenon.

cross-fall
angle

figure 4: the experimental robot

In the experiments, we also store the location data
provided by the Differential GPS RTK. Since we have
calibrated the relatives positions of the sensors, we can
compare the locations computed by each system (the
locations of the GPS are converted in the local frame).

In the reported test (figure 5), the robot tracks a

straight line (speed = 6 cm/s) of known equation, so we
can compute the lateral errors. One can notice that we

compute this error while the vehicle is moving. Before the
robot moves, the filter is initialized using a deterministic
iterative method presented in [9].

lateral error
figure 6: effect of a non modeled cross -fall angle

Since one of the two inclinometers directly measures
the cross-fall angle, we can verify this explanation. Indeed,
as shown on figure 7, the shape of the signal perfectly
corresponds to the lateral error of figure 5.
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75 80 85 90 95 100
estimated x

figure 7 : output signal of the cross-fall
inclinometer

The current experimental setup does not allow to

assert the precision of our system. A special test track is
necessary for precision tests. Such a facility called
"SESSYL" is available by the LCPC. SESSYL is a
robotized head with three degrees of freedom mounted on

a carriage that moves along a calibrated rail.

4. 3D fusion of SIREM, odometry and
inclinometers

4.1 Choice of the state vector

In general, six independent variables are required to

describe the posture (position and attitude) of a solid.
Usually, position is given by the Cartesian coordinates, but
as regards the attitude many representations can be used.
For instance, rotation matrices are given by roll-pitch-yaw

angles [8, 11, 12] or Euler angles [1]. These

transformations have singularities but need only three
parameters. On the other hand, quaternions [10] provide

non-singular representations, but with four parameters.
We propose to use a geometrical parametrization

which is defined by the direction angle yr, the gradient (dc)

and the cross-fall (dv) (see figure 8) which are directly
measured by the inclinometers. The attitude matrix °As is a

function of yr, dc and dv. Its expression is given in [5].
If we compare with the "yaw-pitch-roll" rotation

matrix (in this order), we have `Y = yaw, dc = pitch and:

tan(dv) = tan(roll)/cos(pitch) (6)

One can notice that the gradient and the cross-fall are

not defined for ±it/2. These situations never occur in

realistic situations.

As we use the Cartesian position, the state vector we
propose to estimate is:

X=[x y z W dc dv]t (7)

robot frame
R,

horizontal plane

figure 8 : choice of the six independent
parameters

This state vector perfectly defines the robot frame
denoted Rs (figure 8).

4.2 Odometry on a non -planar surface with two
inclinometers

When moving on a non-planar surface, the posture of
a mobile changes in three dimensions.

Fuke and Krotkov [8] use encoders to calculate the
velocity. By EKF, they combine three gyros and three
accelerometer signals and determine the attitude. Then,
they incrementally update the position. The approach we
propose uses only four sensors: two encoders and two tilt

sensors.
Suppose Xi, the state vector at time i, is know. We

want to compute Xi,,, knowing U;+1=[Di+l>wi+l]l the

elementary translation and rotation measured by the

odometer between times i and i+1, and (a;+1,f31+1) the

measurements of the two inclinometers at time i+l.

zi+l

if.

wi+1

figure 9 : elementary motion in the plane defined
by the last estimated position and the

inclinometers
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We use an auxiliary frame. denoted R. such that

(Rs);=(RE)D. At time i, the origin S2 of R„ is equal to point
S, origin of R. Nevertheless, while the robot moves

between time indexes i and i+l, the frame R,, remains
motionless.

So, the problem is to determine the elementary

variation of the state sub-vector [x, y, z, V]'. The new

values of dc and dv are directly given by the inclinometer

measurements (a,(3).

xi+1 = xi

Y;+1 = Yi

in Ra Z;+l = Zi

W;+1 = W;
dci+l
d v;+1

= a i+1

_ 13i+1

(8)

The elementary variations Sx and Sy in Ro are

computed using classical odometric equations [3] but in
the rolling plane. To calculate the displacement, we

suppose that the robot first performs a translation AT of

length Di+1 and then rotates. Then, we project this equation
in Ra.

\0AT/i=(°AE)i .(ET ) ;
(9)

The first two components of (00T) give the variation on

x and y in R0

From the odometric measurements aA+1, we know the

expression of the rotation vector AR in the frame (R,,)i:

(1t
) =[0 0 0)i+1j2 (10)

Hence in R0: l l

(0 R)i_(0AE) ("AR),

The third component of (0AR) is the projection of AR

on the zo axis of Ro and is the variation of Ni , Syr. The
exact expressions of 6x, Sy and Syr can be found in [5].

Finally, we suppose that there is no offset, between
the gradient and cross-fall and their corresponding
measurements given by the inclinometers. This supposes a
good calibration of the system on the robot. Consequently,
the plant model for the elevation is given by:

8z(Xi,Ui+1) = 0;+1sin(dc;) (12)

4.3 Recursive 6 dof estimation

The recursive state estimator we use is based on an
Extended Kalman Filter (EKF) formulation.

The odometric measured speeds are seen as the
control input to the mobile and, therefore, appear in the

prediction phase. As presented in a 2D case [3], we
compute the prediction error using a linearized method.

A synchronized estimation phase is performed with

the inclinometer data. whereas a second intermittent

correction phase is done when the azimuth and elevation
angles of a beacon are available. In average, this

correction phase occurs every 40 prediction/estimation
phases.

Bem
Static localization (see [9] ) - filter initialization
Do

U = read odometric data
(X,P) = prediction phase (X,P,U)
I = read inclinometers data
(X,P) = estimation phase (X,P,I)

if (external measure A) do

I (X,P) = correction phase(X,P,A)
E dif.

End Loop at the frequency of 20 hz
End .

The plant model of the prediction phase is adapted
from equation (8), but the evolution model for dc and dv is
a constant. Evolution is is made possible by the model

,,NJ. If the variance of this noise becomesnoise [ad,
small, the overall effect of the EKF for dc and dv is similar
to a "low pass" filter applied to their measurements. This
can be of great use , in real situations, to filter the
vibrations induced by the engine.

x;+1 = xi +Sx (X;,U;+1) +a,

in Ra

Yi+1 = Yi

zi+1 = Zi

W;+1 = Vi

dci+l = dci

dvi+l = dvi

+Sy(Xi,Ui+l) +ay
+6z(XI,Ui+1) +az

+64f(Xi,U;+1) +a.
+ad,

+adv

(13)

{Xi+1=F(X;,U;+1)+ax (14)

As soon as the prediction phase is done, the
estimation phase is performed with the inclinometers. The

observation equation is given by:

ai 000010

P i ^=^0 0 0 0 0 1] Xi =cxi (15)

One can notice that the Kalman formulation is linear
in this step.

At time j, when an asynchronous optical measure

occurs, the predicted sub-vector [x, y, z, yr]` is corrected:
this is the correction phase. Thanks to this step, estimation
errors on these parameters do not drift.
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In order to express the relations between the

measurement angles (7,,,6) and the state X, we first need to

determine the position of the beacon in the frame Rs of the

exteroceptive sensor.
In Ro, the known homogeneous position of the

beacon is defined by:

0PB=['XB OYB OZB 11t (16)

Let °Ts denote the homogeneous transformation
matrix of the sensor frame relative to R0:

oT
s

0A ,

0 0

t=> 0Ts = L
0 As 0Ps1

(17)

In Rs, equation (16) becomes: 1

sPB=sTO'OPB=[OAt soAlOPslOPB (18)

Finally, the two observation equations (see figure 2) are

given by:

Xi=atan2(syb,sxb)

tSi =arctan
SZb 1 G ('J=G,(Xj) (19)

xb+ yb
s 2 s 2

The subscript b of function Gb, means that these
equations depend on the landmark which has been
detected. Thus, the observation equation is, in this phase,

unstationary.

The extended Kalman filter formulation is more

detailed in [5]. In the following, we will denote by
' EKF_3D" the localization system based on EKF using
SIREM and 3D odometry.

4.4 Simulation results

Simulations have been performed with a specialized

simulator for road construction [2] based on Matlab and

Simulink. Gaussian random noises have been added to the
measurements. In particular, the variance of the errors of
the inclinometers has been multiplied by two, in order to
compensate for the effects of the vibrations and
accelerations of the machine. Noise variances for the
goniometric sensor and for the encoders are those of the
real sensors, already used in [3].

4.4.1 Real trajectory

The real trajectory corresponds to the curves of
figure 10, with a constant projected speed of 0.1 m/s, in

(O,xo,yo)•

120

110h

Y(m)
100

90

10.6

0
(deg

_2

3
(deg;

2

real dv

_0 100 200 t (s) 300 400 500
figure 10: real path

The projected path of figure 10 is made up of a
straight line, a semicircle and a straight line. The altitude,
dc and dv are functions of the curvilinear abscissa in
(O,xo,yo). During the first line, the elevation follows a
linear variation, whereas after the semicircle, the variation
is parabolic. Finally, the cross-section is horizontal, except
in the half circle.

B3
n

plane (o,X0,Y0)

.B1 .B2

80 90 100 110
x (m)

real do

100 200t(s)300 400 500
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The principle of the simulation is to have a modeled

robot which follows this 3D path. While moving,

inclinometer and odometric measurements are calculated.

The rotation of the camera is also modeled , therefore, the

asvnchronism of the azimuth and elevation angles is taken

into account.

4.4.2 State estimation analysis

Even if the EKF is initialized with significantly large

errors (50 cm error on xy, 15 cm on z, 2 degrees on 'Y and
1 degree on dc and dv), the transient phase is short, as

shown on figure 11.

altitude error +/- estimated standard deviation

signed x error ,lx3 cm2

-0.4

-0.5H i
0 100 200 t (s) 300 400

figure 11 : abscissa error of EKF_3D

The 2D behavior, i.e. the sub-vector [x, y, 1]t is close

to the one we have encountered with real data in section 3.
The distance error is in the order of a few centimeters and

the heading error standard deviation is equal to 0.4

degrees.
The global estimation process has a good behavior

since errors have zero means. Moreover, they are far lower

than one estimated standard deviation, as exemplified by
figure 12. This behavior indicates a good EKF process.

0.05

0.04

0.03

0.02

0.01

(m) 0

-0.01

-0.02

-0.03

-0.04

-0.050

figure 12:
100 200 t (s) 300 400

I

500

signed altitude error and estimated
standard deviation of EKF_3D

On figure 12, the zero mean elevation error remains
bounded by 1 cm. Its shape does not depend on the

longitudinal-section, or on the cross-section. This proves
that the 3D odometric evolution is good.

Simulations clearly indicate that the filtering of the
inclinometers is of particular importance since, in addition

to reducing errors on dc and dv, it also significantly
improves the elevation estimation. Indeed, oscillations and
peaks are filtered. This is an interesting aspect of our

filter: the integrated "low pass" filter on dc and dv, also

filters the z estimation.

4.5 First experimental results

Real experiments have been performed in a lawn,
with a special test-track. This equipment is an adjustable

bridge on which the robot moves. Its length is
approximately 7 m and the maximum elevation is 0.4 m.
The principle of the experiments is the same as the one of
section 3.3: the mobile robot still tracks the white line with
a constant speed of 6 cm/s. Nevertheless, in these tests,
sensor data are stored and the fusion process is performed

by post-processing.

y

104

103.5

(m)

EKF_3D
solid line

103
84 86 88 90 92 94 96

x (m)

figure 13: estimated paths in (o,Xo,Yo)

The initial error of EKF_3D is due to the iterative

deterministic method which initializes the algorithm: the
convergence toward the real position is then fast.

The GPS large error is more difficult to analyze since
we don't know if it is the result of a trouble with the radio
link with the fixed station or if it is a consequence of a

changing of satellites.
The same comments can be done for the elevation

initial errors on figure 14.
On figure 13, we can notice that both systems have a

precision better than 10 cm: the oscillations are more or

less the same.
Concerning the elevation estimation, it appears that

when moving, EKF_3D is very sensitive to the transient
phases caused by the short slopes (figure 14): elevation
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error can be up to 10 cm. On the contrary, the dynamics of

the vehicle seems to poorly affect the GPS behavior, as

predictable.

outputs of the inclinometers. Nevertheless, a too strong

low pass filtering generates a difference in phase which
induces oscillations in z during the transient phases. A

good compromise is shown on figure 16 and figure 17.

4

estimated
cross-fall

-2

86 88 90 92
x (m)

94 96

figure 14: estimated altitudes

When the robot is motionless, the precision of

EKF_3D seems to be in the order of few centimeters as

indicated by figure 15.

-3

-4

(deg)

-5
0 50 100

signal from the

inclinometer

150 200 250 300 350

t (s)

figure 16 : estimated cross-fall and raw signal of
the inclinometer

15

12.09 10

5

12.085

z (m)
0

12.08 -5

260 270 280 290 300 310 320
t (s)

figure 15 : estimated altitude by EKF_3D when the
robot is motion-less

These results have to be analyzed carefully since the

algorithm of EKF_3D does not take into account the

translation between the odometric center and the camera
of SIREM. Consequently, in this experiment the slopes

produce undesirable transient phases.
Moreover, as shown by the simulations of section 4.4,

the z estimation process is very sensitive to calibration

error between the frame of SIREM and the inclinometers.

For instance, an offset of 0.01 degrees induces 7 mm
oscillations on z, if the distance between the beacons and

the sensor is superior to 40 m.
A good dc and dv estimation is a second crucial

parameter. This involves to correctly filter the noisy

(deg)
estimated
gradient

signal from the
inclinometer

100 50 100 150 200 250 300 350
t (s)

figure 17 : estimated gradient and raw signal of
the inclinometer

The outputs of the inclinometers are sufficiently filter

since the oscillations on the estimations are less than 0.1

degrees. Moreover, the offset between SIREM and the
cross-fall inclinometer is clearly visible on figure 16.

5. Conclusion and future work

In this paper, we have presented two localization

systems based on the fusion of dead-reckoning and

exteroceptive goniometry.
Extensive outdoor tests have been performed in real

conditions. They indicate that the precision of the 2D

19



fusion method of SIREM and odometry is in the order of
centimeters.

Moreover, in order to extend this approach to the 3D

case, we have presented 3D-odometric equations. Our
formalism uses only four sensors: two inclinometers and
two encoders. The experimental results prove that the non
modelized accelerations deteriorate little or not the

inclinometer measurements, which validates our approach.

The update of this 3D dead-reckoning position

estimation is performed by an EKF which allows to take

into account each goniometric measurement individually
and asynchronously. The estimated state we have chosen

exhibits the tilt sensor measurements thanks to a non usual

attitude representation in robotics, based on the cross-fall
and gradient angles.

Simulations and real experiments indicate that the
elevation estimation is very sensitive to the noise of the
inclinometer. A good filtering of inclinometer data is of
great use for the elevation estimation.

Moreover, when the z evolution is slow, the altitude
accuracy is better than a few centimeters. Oscillations

appear when the altitude changes quickly, but an EKF
divergence has never been noted.

Finally, we have compared our fusion method with a
Differential GPS RTK. The precision seems to be in the
same order in the two cases. Our belief is that these two
systems are complementary. Indeed, the main drawback of
SIREM is that it requires precise positioning of the
beacons. On the other hand, GPS suffers from shadowing

which occurs under bridges for instance. Our system is an
alternative to GPS in such situations.

Future work involves a better calibration of the
system. Finally, as the 3D estimation process is twice
slower than the 2D filter, simplifications have to be
considered in order to implement the method in real time.
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