Object-Oriented Programming for Project Management Software

Thomas M. Froese, Research Assistant
Boyd C. Paulson, Jr., Ohbayashi Professor of Engineering

Dept. of Civil Engineering, Stanford University
Stanford, CA, 94305-4020, U.S.A.

ABSTRACT

What does object-oriented programming have to offer project
management software systems? This question is examined by first seeking
out those development trends and directions that will be of importance for

and the conventions. Finally, the advantages that the basic object-oriented
characteristics and design approach offer for moving project management
systems (and architecture-engineering-construction management and
automation systems in general) towards the identified goals are presented.

1. INTRODUCTION

In the future, project management systems will be more flexible, will be highly
integrated, and will be significantly more intelligent. This paper argues that the principles
of object-oriented programming will make significant contributions to the advancement of
project management software in each of these directions. The paper will first analyze these

2. PROJECT MANAGEMENT SYSTEMS: CURRENT STATE AND
FUTURE DIRECTIONS

Prior to the advent of network techniques and “modern project management” (in the late
1950’s [Fondahl 87]), construction planning and scheduling was based solely on the
intuition and expertise of experienced site personnel. This “first generation” [Lichtenberg
74] of project planning was superseded by a second generation of network-based,
computer-assisted techniques. "As these computer systems grew larger and more
sophisticated, they also became more opaque and dictatorial, pushing the more competent
human planner out of the process. A general dissatisfaction with these inflexible computer
systems led to the birth of a third generation of project planning, most notably characterized
by the re-ascension of the human planner to the central role using highly interactive
methodologies. In the early 1970's, this third generation first appeared in research
institutions [Paulson 72, 73], [Lichtenberg 74]; in the late 1970’s it was implemented in
large-scale systems [Paulson 75]; and in the 1980’s it formed the foundation of an
explosion in micro-computer based project planning systems [Fersko-Weiss 89]. Although

- 513 -~



monumental advances have been made in personal computing hardware and graphical
interface software, most current project management systems have evolved little in terms of

basic approaches to planning, underlying algorithms, and levels of system integration over
the past 15 years.

With the exception of a limited number of features such as resource loading,
hardware compatibility, enhanced graphics, and the vendors’ perception of
“user friendliness,” the programs are functionally very much alike and have

not changed dramatically since the introduction of PERT/Cost ([Badger et al
871, p: 100}

published forecasts of project management systems to come [Ibbs 851, [Thisner et al 87],
[Hansen 87], [Levitt 87], [Logcher 87], [Badger et al 87], [Ibbs et al 87], [Teicholz 87].
These themes are summarized by flexibility, integration and intelligence.

2.1. Flexibility

constantly and rapidly. Project management is performed by individuals or small groups
who inject a high degree of personal style into the process. These working styles differ
dramatically from one team to another, and they change during the life of the project. As a

2.2. Integration

Project management involves many different areas of concern, each of which deals with
the same project and the same body of project-related information. To an increasing extent,
the software tools used to support these various tasks will become integrated into cohesive

greater data consistency, and simplifies programming by allowing all data to be treated in a
uniform manner. Finally, technological integration relates to the envelopmex}t of many
different software technologies within one overall system. The collaborative use of

- 514 -



traditional structured programming, databases, and knowledge-based processing
components is an example of technological integration

2.3. Intelligence and Information Management

2.4, Combined Directions

Our future systems will be far more integrated and deal in a common
manner with all types of project, environment, organizational and other

types of data, using knowledge to integrate and utilize the data ([Logcher
87], p.86).

It is interesting to note that these expectations of future systems are very similar to the
expectations which prompted the development of third generation systems in the 1970’s
[Paulson 72]. Much of the conceptual framework developed then is still valid today, but
the advances in computer technologies have given the manifestation of this framework a
whole new meaning. Within the current technological context, much work has already
been done in each of these three arcas, Commercial project management software packages

existing systems, file exchan ge capabilities between software packages, and the increasing
use of project-wide databases. The application of Al to project management technology has

perhaps been the most active area of computer-aided project management research for many
years.

To alarge extent, however, these efforts have taken place independently of each other.
An example of this phenomenon can be seen in recent efforts to apply Al to project
management systems. Worldwide research in this area has led to significant advances in
adding “intelligence” to systems. However, we believe that AT and expert systems will not
provide practical overall tools by themselves, but rather will provide key components of
larger hybrid systems. This integration of Al systems into general hybrid environments
has been excluded from the scope of the majority of Al research projects. In object-
oriented programming, we see not only the potential to support advances in each of the
three future trend areas described, but also the ability to provide a unifying framework for
work in these directions and for linkages between project management systems and other
fields such as construction automation and robotics.

3. CHARACTERISTICS OF OBJECT-ORIENTED PROGRAMMING

The preceding section has outlined a set of goals for future project management
systems. This paper suggests that an object-oriented approach will contribute to the
attainment of these goals. This section outlines the basic characteristics of object-oriented
paradigms that offer particular promise for supporting the stated system goals. Section 4
discusses the application of these principles to overall system development.

- 515 -~



public, but the representation and implementation details are kept private. This data-type is
called an object, and its operations are called methods. Encapsulation strengthens the
concept of objects further by stating that an object’s data cannor be accessed directly: all
interaction must be at the object level through its methods.

This interaction with objects is performed by sending messages to objects that trigger
their methods. Messages can be used to provide data to an object, to request that an object
return data, or to instruct an object to perform some action. Typically the sender of the
message is only concerned with an object’s response and is neither aware nor interested in
the exact mechanisms triggered by the message. In fact, different objects can respond to
the same message in very different ways. This characteristic, called polymorphism, allows
diverse types of objects to all be treated in a very uniform manner.

Objects are normally organized into hierarchies such that each object represents a

subclass or “type of” another object. This allows objects to inherit capabilities from other
objects, a feature which provides many efficiencies.

Finally, object-oriented programming involves a different way of thinking for program
developers. The conceptualization of a program as object representations of domain

components, rather than as data structures and control flows, leads to many of the specific
advantages that will be discussed in section 5.

4. AN OBJECT-ORIENTED APPROACH

Although the concepts that define object-oriented programming are fairly well
established, their application to actual programs has been carried out to various extents in
many different forms. Examples of these diverse applications include the reimplementation

4.1. The Object-Oriented Model

The central step in the development of a large object-oriented system is to develop a
model that describes all the pieces of the system in terms of objects. Specifically, the
model identifies the name and purpose of each object in the system and defines the objects’
basic capabilities by describing their methods. In addition, the model should provide some

more points of view. The model should also describe the major interactions between
objects in the system (i.e., which objects send what types of messages to which other
objects). Finally, the model should deal with any relevant system-level—as opposed to
individual object-level—issues (examples of system-level issues are discussed in section

- 516 -~



4.3). Once constructed, this bbject-oriented model serves as the common Structure around
which all future development, implementation and maintenance is performed.

The creation of the model is not a routine matter. There are clearly many different ways

in Which a large system can be divided into individual objects, and while no one

components found in the domain, In some cases this will lead to objects that correspond to
specific physical components. Objects could be created, for example, to represent the
beams, columns, walls, and other physical pieces of a constructed facility. At other times,
however, aspects of a domain can be better divided into more abstract components or

processes. For example, in a project management system it may be useful to define objects
that symbolize a plan or that represent the estimating process.

responsibility for its creation, persistence, and destruction. Thus objects with similar
ownership can be organized into ownership groupings. Third, aggregation hierarchies
defining those objects that are parts of more general objects (such as a beam object being a
part of a structural frame object or an activity object being a part of a network object) can be
used to allow information to be summarized or refined to varying levels of granularity.

4.2. Mechanics

Whereas modelling deals with the mapping of object-oriented programming principles
to some problem domain, mechanics deals with the issue of how these principles of
encapsulation, messaging, and inheritance are actually implemented in a computer
environment. Fortunately, the many object-oriented programming languages and
environments which now exist (e.g., SmallTalk, C++, ob ject-oriented LISP languages like

knowledge-based reasoning components. The development of procedures for sending
messages between objects that are defined in different languages is an example of the
software mechanics issues that must be considered as part of the design of a large object-
oriented system.

4.3. Conventions

One of the objectives of object-oriented paradigms is that all objects can be treated in a
similar manner. It is also intended that a programmer can interact with an object while
having only minimal information about it. These objectives require a high degree of
uniformity in the specification of each object’s methods, yet there is nothing to enforce this
within the modelling process or the basic mechanisms. Rather, this uniformity must come
through design and programming conventions. As a simple example, Objective-C adopts
the convention that messages return their object’s identifier when no other specific return
value is warranted. This allows multiple messages sent to a single object to be nested, as

= 9 -



follows (where acnvity object is an object representing an activity in a CPM network and
setDuration:, update_network, and get _float are messages that it understands):

[[[activity_object setDuration: 5] update_network] get float];

Well-defined conventions also provide solutions to system-level problems within an
object-oriented application. For example, it may seem appropriate for an object

object be messaged to change its duration, since the change may be initiated by the user.
Each message seems appropriate by itself, but together they form an infinite loop. A
solution to this problem may be to propagate newly assigned values only if they differ from
previously stored values, or if the change was self-initiated. Of significance is that the
solution to this particular problem can lead to the solution of many similar problems if it is
imposed as a programming convention on all objects.

Finally, in order to allow programmers to efficiently utilize the objects that have been
developed, it is important to adopt conventions that standardize the documentation of each
object, as well as to document the conventions and standards,

3. CONTRIBUTIONS OF OBJECT-ORIENTED PROGRAMMING TO
FUTURE PROJECT MANAGEMENT SYSTEMS

We have discussed the basic characteristics of object-oriented programming and
outlined an approach to object-oriented design. Many benefits are traditionally attributed to
object-oriented programmin g, such as rapid prototyping and decreased development time, a
high degree of code reusability, and improved software maintenance. These benefits will
all apply to project management programs as well. In this section, however, we will
describe the benefits available to project management systems as they relate specifically to
the developmental objectives that were presented in section 2.

5.1. Flexibility

Object-oriented programming lends itself well to flexible systems. Configurablility and
customization is supported by the high degree of modularity and the interface/
implementation dichotomy. Objects can be altered drastically, yet if they conform to the

5.2. Integration

The object-oriented approach offers several distinct advantag;s fqr developing
integrated software Systems. Among these are global orientation, public object interfaces,
private object implementations, and implementation ﬂex1b111ty.

- 518 -



graceful growth of large systems. Encapsulation also allows tight data management by
ensuring, for example, that inquirers have permission to access the data, that data is entered
or modified in a consistent manner, and that other System components are notified of
changes as required.

More significantly, perhaps, object-oriented approaches support the development of
hybnia Ay, database, and traditiona] project management systems. This support comes
from the ability to combine multiple implementation technologies (technological integration,
discussed in section 5.1) and through the uniform domain modelling approach. The
implications of Incorporating AT include the need to support mechanisms for symbolic data
types and processing.

6. CONCLUSION

Having become familiar with object-oriented techniques and having used them in
several Al applications for construction robotics and management, we were left with the
feeling that they offered many advantages for our planned future software development
efforts. In this paper, we have attempted to explore this intuition and to Justify or refute its
validity. We have found that there are indeed many specific reasons why object-oriented
programming is well suited to the types of project management software that we believe

- 519 -



will be developed in the near future, We can also report that these advantages have, by and
large, been borne out in our application development efforts to date, We intend to continue
to work in this area, which we believe will lead to issues of what the fundamental pieces or
building blocks of the construction effort are, and of how these pieces interact. We see

these issues as being central to much other work in construction management and
automation.

BIBLIOGRAPHY

Badger, A A., Reinschmidt, K. A. and Gandt, AR, “Project Control System Integration,”
Project Controls: Needs and Solutions, Ibbs, C. William, Jr. and Ashley, David B. Eds.
New York: American Society for Civil Engineers, 1987, pp. 88-100.

Fersko-Weiss, Henry, “One Project, 3,000 Tasks: High-end Project Managers Make the
Plans,” PC Magazine, Vol. 8, No. 9, May 1989. pp. 155-195, 1987.

Fondahl, John W., “The History of Modern Project Management, Precedence Diagraming
Methods: Origins and Early Development.” Project Management Journal, Vol, 18, No. 2.
June 1987. pp. 33-36. :

Hansen, Soren, "Hardware & Software Implications on: PM and the Computer: The Year
2001, Project Management Journal, Vol.18, No. 3, August 1987. pp. 47-48.

Ibbs, C. William, Jr., Proceedings of a Workshop for the Development of New Research
Directions in Computerized Applications to Construction Engineering and Management
Studies, Urbana: University of Illinois at Urbana-Champaign, Dept. of Civil Eng., 1985,

Ibbs, C. William, Jr., Ashley, David B, Neil, James M. and Feiler, Frank W., “An
Implementation Strategy for Improving Project Control Systems” Project Controls: Needs
and Solutions, Ibbs, C. William, Jr. and Ashley, David B. Eds. New York: American
Society for Civil Engineers, 1987, pp. 101-112.

Levitt, Raymond E., “Expert Systems in Construction: State of the Art,” in Expert systems

Jor Civil Engineers: Technology and Application, Maher, Mary L. ed., New York: The
American Society for Civil Engineers, 1987, pp. 85-112.

Lichtenberg, Steen, Project Planning - a Third Generation Approach, Polyteknisk
Forlag:Copenhagen 1974,

Logcher, Robert D., “Addin g Knowledge Based Systems Technology to Project Control
Systems,” Project Controls: Needs and Solutions, Ibbs, C. William, Jr. and Ashley,
David B. Eds. New York: American Society for Civil Engineers, 1987, pp. 76-87.

Paulson, Boyd C., Jr., “Man-Computer Concepts for Planning and Scheduling,” Journal
of the Construction Division, ASCE, Vol. 98, No. CO2, September, 1972, pp. 275-286.

Paulson, Boyd C,, Jr., “Project Planning and Scheduling: Unified Approach,” Journal of
the Construction Division, ASCE, Vol. 99, No. CO1, July 1973, pp. 45-58.

Paulson, Boyd C., Jr., Continuing research in the Development of Interactive Man-
computer Systems for Engineering-construction Projects, Technical Report No. 200, The
Construction Institute, Department of Civil Engineering, Stanford University, CA,
September 1975,

Teicholz, Paul M., “Current Needs for Cost Control Systems,” Project Controls: Needs
and Solutions, Ibbs, C. William, Jr. and Ashley, David B. Eds. New York: American
Society for Civil Engineers, 1987, pp. 47-57.

Thisner, Anders, Teicholz, Paul M. and Havas, George, "PM and the Computer: The Year
2001," Project Management Journal, Vol.18, No. 3, August 1987, pp. 39-45

- 520 -



