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Abstract 

A difficult task in densely constructed urban areas is to proceed to new extensions or to unavoidable 
repairs without creating damages to existing buildings. The method so far is to isolate the worked zone by 
sheet piles to maintain constant earth pressure conditions against existing foundations. But even if they are 
much less harmful than classical hammering methods, the vibratory methods in use to drive the sheet piles 
into the ground are still producing oscillations which propagate into the ground and may endanger the 
neighbouring buildings especially if a resonance phenomenon do occur. A control method is analysed in the 
following to keep the vibration amplitude below a fixed safety level while the sheet itself is piled in minimum 
time into its pre-assigned position.  
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1.   Introduction 

Urban constructions are typically densely packed to accommodate high population density, and are very 
often located over relatively soft soils such alluvial ones, reminiscent of the early town origin close to water 
source. A consequence is that building renewing and/or repairing now requires to lay down very deep 
foundations to cast pillars in or to hit directly piles into the ground. This operation in turn creates serious 
difficulties as, even with vibratory units which are much less harmful for the environment than classical 
hammering methods, there is still generation of ground vibrations which propagates to neighbouring 
buildings and may seriously damage them especially if resonances are produced during the process, 
corresponding to critical speeds of the global pile-ground-building system [1]. Vibratory units in use are 
consisting of pair of shafts driven by electrical or fluid actuators to comply with the needed high power 
density, on which eccentric masses are mounted to excite a vertical harmonic force pushing the sheet or the 
pile into the ground. With a static driving force on top, the sheet penetrates with a speed depending on 
vibration amplitude and frequency, and the efficiency is increased by adding several shafts in parallel. With 
already two pairs, it is then possible to modulate the composition of individual shaft pair forces by adjusting 
both the phase angle between primary and secondary shafts and the rotation speed of the primary shaft.  
However, the interaction dynamics between the various sub-systems are becoming more complex, and in an 
industrial set-up, an automatic monitoring system has to be developed to assist the operator who cannot be 
left with full driving operation. Useful conditions are that the oscillation amplitudes produced by vibratory 
piling at fixed neighbouring locations are always below some pre-assigned threshold safety values, and also 
that the piling time is minimized for economic reasons. Because they are antagonistic, the previous 
conditions require first to set up the complete system dynamic equations. The corresponding optimum 
problem is analysed afterward, the properties of required controller are discussed and its analytic expression 
is given in specific case.    

2.   System Equations 

For a two-shaft line system shown on fig.1, the degrees of freedom are the vertical position z of the 
vibratory unit of mass m, the position Z of the upper frame of mass M, and the angular positions ϕj of mass 
eccentricity mj and inertia moments Ij (j=1,2). The dynamical equations then read in normalized form [2] 
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where here z → z/l , Z → Z/l , ωM2 = k/M , ωm2 = k/m , ωj2 = K/Ij , ωg2 = g/l , μj = (r/l).(mj/m) , fa = 
Fa/Ml  fs =Fs/ml, fp = Fp/ml are respectively the applied feeding force, the skin f riction and the point load of 
the piled object divided by the corresponding mass and the length l of piled object. F(x) is the dead zone 
function  
 

F(x) = x + π/2    if         x < −π/2 
F(x) =   0       if      −π/2 ≤ x ≤ π/2    (2) 

F(x) = x − π/2     if         x > π/2 
Furthermore the angular acceleration tj produced by the hydraulic actuators are given by tj = θ (pj+ − pj

−), 
with 
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ps , pt the normalized source and tank pressures and θ , λ two normalizing parameters. Previous numerical 
analysis of eqns(1,2,3) for realistic industrial equipment [3] has shown the adequacy of both the model and 
the very fashionable used software to represent system dynamics. In a next step, the present complement 
paper is intended to study analytically global guideline properties for optimal control of the system in order 
to ease its numerical resolution. Along this view, it is first interesting to note that, though the physical 
control parameters are the uj which are ultimately governing the inputs to the proportional control flow 
valves, the total system (1,2,3) could be split into the piled object dynamics from eqns(1,2) with inputs tj , 
and the realization of the required inputs from fluid power eqns(3). The only difficulty is in the fact that the 
intermediate controls tj satisfying the conditions may not be accessible from the set of possible physical 
controls uj , in which case only an approximate optimum will be reached. Then the problem would amount 
to determine the inputs fa and tj so that the piled object reaches its final position inside the ground in the 
vibratory shortest time while the produced vibration amplitudes at assigned places are during this time 
always bounded above by a fixed threshold value.  

3.   Discussion 

As just mentioned, the dynamic system (1,2,3) could naturally be split into the dynamic part of eqns(1,2) 
and the fluid power part of eqns(3). However another possible splitting is obtained by observing from the 
third equation in system (1) that the first two equations in system (1) are coupled to the set of the third of 
eqns(1) plus eqns(3) through the only term )cos( jj z ϕμ && , which can be a ‘’small’’ one . So it is advisable to use 
this system property and to split instead the complete system in the following way 
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where  
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are respectively the coupling term between the two sets (5) and (6,7), and the input to the first set of 

eqns(1). This display clearly shows the important role of the rotation frequency of the masses in vibratory 
units, both with their actual values and with their variations. So in eqns(1) for a fixed applied force fa the 
local input U plays the role of a control force which modulates the ground penetration of the piled object, 
especially when observing from experiments that the reaction force fp from the ground is generally 
depending on vibratory unit rotation frequency and typically decays monotonically above some threshold 
value Ωc .  

With these elements, a very simple optimum bang-bang type running operation would consist in turning 
the vibratory unit to its maximum rotation speed Ωmax to reduce fp while the frequency shift is driven to the 
largest vibratory amplitude by fixing the ϕj at the maximum of the source term U, then insuring the fastest 
penetration in the ground with smallest optimal vibration amplitude at stationary regime. From eqn(8), and 
writing ϕ1 = ϕ , ϕ2 = ϕ + Δϕ  for simplicity the maximum of U is obtained for Δϕ = 0 . This procedure 
would work as long as, during the piling operation, the resulting ground oscillation amplitude at specific 
sensitive location near by the piling place and propagated from it, is below a pre-determined threshold fixed 
by a risk of damage. This is not always guaranteed because one should ride over all frequencies in the interval 
[0, Ωmax] when departing the piling work from rest and one may cross some resonance or simply some 
sensitive frequency for which the ground response amplitude overpasses the threshold value. The problem is 
then to downgrade the previous optimum when approaching these frequencies in order to account for the 
imposed threshold constraint. Noting that U = 0 for Δϕ = π , and that U is monotonic in the interval [0,π], 
this is always possible by manipulating the phase shift between vibratory units. So a natural control strategy 
is to drive the phase shift so that, in accordance with predetermined amplitude condition all along the 
frequencies in the operation interval [0, Ωmax]  

AG(ω,Δϕ) ≤ Amax(ω)     for     ω ∈ [0, Ωmax]        (9) 
where AG(.,.) is the resulting ground amplitude at prescribed locations and Amax(ω) the local expression of 
the constraint for each frequency. 

4. Oscillatory Source Amplitude   

A first possibility to apply the strategy is to define by empirical observation a relationship between phase 
shift values and ground oscillation amplitude in interval [0, Ωmax] × [0,π] , ie to evaluate the function 
AG(ω,Δϕ) , and to construct a set of simple fuzzy rules of car-driving type guaranteeing the satisfaction of 
amplitude condition in eqn(9). The procedure may be tedious as it has to be set up each time, and it is more 
convenient to construct directly the function AG(ω,Δϕ). This in turn splits into two problems : to calculate 
the oscillatory source at the piled object from eqns(5), and to determine the transmitted amplitude at 
interesting location from resolution of oscillation ground propagation. This last problem has already been 
investigated elsewhere[4], and only the first one will be analysed in the sequel from eqns(5). As mentioned 
earlier, this implies solving these equations with U as a source term and to use eqns(6,7,8) to determine the 
real input control u(t) producing the source U. With  Δ = Z − z and letting Δs = Zs − zs given by 

agsM f−−=Δ 22 ωω , eqns(5) reduces to  

Δ−=

+Δ−+=Δ+Δ
2

2 )()sgn(

M

s

Z

tUZfH

ω

ω
&&

&&&&
  (10) 

with  2/122 )( mM ωωω += , sΔ−Δ=Δ ,  
H = [1 + (ωm/ωM)2]ωg2 + (ωm/ωM)2fa − fp           (11) 

and (formal) solution 
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where  sΔ−Δ=Δ 00 , 00 Δ=Δ && , Δ1(t) = cos ω t , Δ2(t) = ( sin ω t )/ ω . One then gets  
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The expression of Z(t) contains two different parts, the parabolic time varying one P± (t), depending on 
the sign, and the oscillatory one )(~ tZ . To improve the penetration into the ground, the sign of the 
coefficient of  t2 should be always negative and as large as possible in absolute value. This means from 
eqn(11) that the applied force fa should be above a critical value       
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easier to reach as the ground reaction fp is smaller, ie as vibratory unit frequency is larger. Then the 
trajectory goes monotonically downward along either of the two parabolas P±(t) defined in eqn(13), and goes 
up and down if  +− << critaacrita fff ,, . 

The other term )(~ tZ  fixes the amplitude and the frequencies of ground vibration oscillations, and 
depends itself on two terms, the mechanical mass oscillation with frequency ω  and the source term from 
input U(t) which combines its own frequencies with ω . Its amplitude is typically given by  

[ ] 2/122
0

2
0)(~ UtZ +Δ+Δ= &            (16) 

5.   Determination of Source Term From Control Input 

As indicated earlier, there remains to determine the apparent input to mechanical part U(t) from its real 
input control source u(t). This would rest upon solving the remaining system of eqns(6,7,8), but what is only 
needed is to reconstitute the input u(t) which delivers the output U(t) from eqns(6,7,8). A classical weaker 
form in control theory is to determine u(t) in state space representation so that the output U(t) asymptotically 
tracks a pre-assigned function Ud(t) dictated by the research of smooth, monotonic and fast enough time 
response of the angular variables of the vibratory units[5]. Here elimination of the pressure variables pj+ and 
pj

− from the subsystem with fixed j leads to the final general equation 
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where λθωω /22
jj = , j = 1,2 and Γ(x) = 1 for x>0 and 0 for x<0. Eqn(17) determines directly the 

control input uj(t) which produces the output ϕj(t). So choosing ϕj(t) in previous class, it is possible to verify 
that the corresponding uj(t) is doable. As an example one could first consider stationary situation where both 
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angular variables are rotating with same frequency Ω0 and have a constant phase difference Δϕ0 . If 
furthermore βj << Min[2, jp ], Aj and Bj simplify to Aj = 2Ω0 and Bj = jp t so that eqns(17) decouple and 
now become  
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with Yj =  4λΩ02Xj , τ = 2Ω0t. Its explicit solution is given by  
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from which the input control is uj,st = 2λΩ0 (λ/π)1/2χj(τ) with χ0j  ≤ 1/2 and χj(τ) = Φ−1(τ/ jp ) from 

eqn(20). It represents a monotonically growing curve from χ0j to 1/2 when the time runs from 0 to ∞. So it 
is possible to maintain single frequency oscillation Ω0 of vibrating unit for long time with this smooth 
control input provided the final (highest) value is reachable. It should be noticed that exactly the same 
equation (17) is found with now Yj = λ 2

jϕ& Xj and τ = ϕj(t) in the more general case where ϕj(t) are arbitrary 

but satisfy the inequality jj ϕϕ &&&& / << λθ and the condition ϕ1(t) − ϕ2(t)  ∈ [−π/2,π/2]. To move the phase 

shift from initial value Δϕ0j to final one Δϕfj at time T in this case, one should just program the control inputs 
uj(t) so that they follow the same curve Φ −1(ϕj(t)) from eqn(20) but with a different timing fixed by ϕj(t). For 
instance one possible choice is to take  

tt 01 )( Ω=ϕ  ; ϕ2(t) = ϕ1(t)+ Δϕ(t)          (21) 
where Δϕ(t) is a smooth monotonic S-type function such that Δϕ(0) =Δϕ0 and Δϕ(T) = Δϕf where Δϕ0, 

Δϕf ∈ [−π/2,π/2]. To properly scale the input, it will only be necessary to verify that its final required power 
level from normalising expression above is effectively available. With this type of functions it is possible to 
monitor the phase shift between the angular variables of vibratory units and to ultimately control the 
amplitude of the produced oscillation from eqn(16) with the use of eqn(8). One then gets with eqns(21) 
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from which it is possible to satisfy eqn(9) by proper programming of Δϕ(t) in operation time interval. 
Finally, to satisfy the smoothness requirement jj ϕϕ &&&& /  << λθ  for which the analysis applies (here 0 << λθ 

), one possible way is to raise the rotation of  eccentric masses up to high enough value with Δϕ(t) = π  
before starting to pile, and to monitor after the phases as in eqns(21). 

6.   Conclusions 

To determine the level of ground oscillation generated by vibrating piling units used in urban earth and 
building works, the dynamics of the complete system are needed in order to account for all elements of the 
chain from power source to observation point. So the equations describing these dynamics which include 
both the motion of eccentric masses generating the vibrations and the motion of piled object with all their 
interactions have been set first. They can be split into two subsystem concerning the piled object dynamics 
with a fictitious input created by the vibrating unit, and the vibrating unit dynamics themselves from which it 
should be verified that the fictitious input is realisable with input from real power source. It has been 
possible to solve these two subsystems in such a way that useful properties can be obtained. From the first 
one, the piled object trajectory is obtained as the sum of a smooth monotonic parabolic time depending 
motion and an oscillatory one with combination of mass and vibrating unit base frequencies. The first 
motion is possible if the constant pressing force is larger than an explicit threshold value expressed in terms 
of system parameters. The amplitude of the second oscillatory motion is also evaluated in terms of the 
fictitious input source, so that there remains from the second subsystem to calculate it in terms of the real 
control input. This has been explicitly done when assuming that the normalised mass ratio between the piled 
object and the eccentric vibrating unit is small enough, in which case the time dependence of the control 
input is expressed in term of the phase angle of eccentric rotating mass. For regular and smooth enough time 
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functions, the behaviour of control input is itself a regular bounded and self-similar one in the sense that it is 
the same function of the phase angle, so it can be pre-programmed once for all.   

Appendix 

The analytic solution of eqns(5,6,7,8) is also obtained in the (realistic) case where the vibratory units 
frequency Ω1, Ω2 are very large compared to mechanical characteristic frequencies ωm , ωM , ωg  associated to 
mass displacements. In this case one can write U = U(t/ε) and use appropriate formalism for resolution. 
With ),,,( zzZZX &&= , eqns(5) take the form 

⎟
⎠
⎞

⎜
⎝
⎛=

ε
ttXF

dt
dX ,,                         (A1) 

with   

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+−−−

−−−
=

)/()sgn()(

,,)(,

4
2

31
2

4
2

13
2

2

εωω

ωω

tUXfXX

XfXXX
colF

sgM

agM  

Splitting now in its slow and fast component X = [X] + {X}, and observing that integral on fast time 
writes < F > = ∫ F(.,.,t/ε) dt = ε ∫ F(.,.,u) du, it is possible to develop eqn(10) order by order in ε . One then 
gets to first order 
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and to second one 
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which gives explicit expression for the solution Z, z when reporting F(X,t,t/ε). 
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