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ABSTRACT

The operations of an excavator can be automated by making a digital computer control its motion so
that the system functions autonomously. In order to realize the automatic operations the nominal (desired)
trajectory for the motion of the excavator must be preplanned and stored in the computer. This trajectory
should specify the pose (the position and orientation) of the bucket as a function of time in a fixed (Carte-
sian) coordinate system. Since the pose of the bucket is determined by the configuration of the excavator,
the planned trajectory should then be converted into the joint space in order to obtain the nominal trajec-
tories for the joint variables corresponding to the Cartesian space trajectory. This conversion can be accom-
plished by solving the kinematic equations for the excavator in the backward direction.

The kinematic equations relate the pose of the bucket to the joint variables of the excavator. They can
conveniently be written if the local (moving) coordinate frames are first assigned to all links (joints) by fol-
lowing the Denavit-Hartenberg procedure which is a well-known method in robotics. Then after the struc-
tural (kinematic) parameters have been determined for the given excavator, the transformation matrices
relating any two adjacent coordinate frames can be written. The recursive equations are then utilized to
obtain the kinematic equations which relate the joint variable values to the bucket pose. These tri-
gonometric equations can then be solved for the joint variables in terms of the given pose of the bucket. We
will present these equations which represent the solution to the inverse kinematic problem for the excava-
tors. These relations are then used to plan the motion of the excavator bucket. The problem of removing
soil contained in a sector to a specified depth is then solved. The trajectory for the bucket is planned so that
this task will be accomplished.

1. INTRODUCTION

The semi-autonomous or automatic computer control is essential to improve the productivity and the
effective utilization of expensive construction machines [1,2]. Many tasks on construction sites can then be
performed even in hostile and/or unfavorable conditions, for example, in severe (cold or rainy) weather, or
in hazardous, unhealthy, and even poisonous environmental conditions. Moreover, the automatically
operated machines can often perform a task faster and with better precision than manually operated
machines. In order to automate the operations of these construction machines, the machine motions must
be carefully planned. The generation of the nominal trajectory for the bucket of an excavator and thus for
the joint variables of the excavator is presented here. The basic approach to be discussed can also be
applied to backhoes and various loaders commonly used to transfer ground material in various work areas
such as at construction sites, timbering and mining places.

The usual task of an excavator (backhoe) is to free and/or remove surface material (e.g., soil, coal)
from its original location and to transfer it to another location by pushing, pulling, and/or lifting it in a
bucket. The execution of this task is usually performed by a human operator who controls the motion of the
machine manually by using the visual feedback provided through his/her own eyes. In many current appli-
cations of excavators (backhoes, loaders), the semi-autonomous or even automatic operation of the machine
is desirable and sometimes even necessary; for example, in the transfer of mining products from under-
ground sites or in the removal of poisonous or radioactive wastes and/or explosives. In the semi-
autonomous operation, a human tele-operator may guide the motion of the machine over a certain time
period so as to make it perform parts of the task and then a computer may control the machine over the rest
of the duration of the motion to execute the other parts of the task automatically. In the automatic
computer-controlled motion, the bucket of the excavator follows a path specified by the position and the
digging angle, i.e., the pose of the bucket, which corresponds to specific values of the angular positions of
the joint shafts. The values of these joint variables, in turn, are determined by the lengths (positions) of the
hydraulic actuators. The mathematical relations between these variables are described by the kinematic
relations of the machines.

The previously reported studies on excavators are mainly qualitative. An entire system for the
automatic or semi-automatic operation of an excavator is described in [3]. It includes a hydraulically driven
excavator, teleoperation, computer control, which is supplemented with manual override capability, posi-
tion and force feedback control. Kinematic relations between three joint angles and the position of the



bucket in a fixed coordinate system are presented in [3]; specifically, the forward and backward kinematic
equations are described using the geometric configuration of the excavator arm in a fixed (world) coordinate
system. However, no other details on the system are given. The use of a position and sensor (force and
vision) feedback is also discussed qualitatively in [3] without presenting technical details. Similarly, a
vision feedback system for an excavator designed for rapid runway repairs is presented in [4] by qualita-
tively characterizing the system components. This system has successfully been tested in practice, but no
technical details are presented in [4]. Although the forces between the soil and a tool (bucket) during the
digging operations are studied in [5,6], the kinematic relations between the bucket pose, the joint variables,
and the lengths of the actuators are not described in [5,6].

An attempt to systematically describe the kinematics of an excavator is presented in [7] by adopting
the procedures commonly used in robotics [8]. It outlines a general method for establishing the forward and
backward kinematic relations between the pose of the bucket and the angles of the joint shafts for an exca-
vator. However, no relations between the joint shaft angles and the positions (lengths) of the hydraulic
actuators are given. Thus, the kinematic relations presented in [7] do not completely describe the
configuration of the machine.

The work reported here presents the details of assigning the local and world coordinate systems for an
excavator by following the Denavit-Hartenberg (D-H) guidelines [8]. The assignment is systematic and dif-
ferent from that described in [7]. The homogeneous transformation matrices relating any two adjacent
coordinate frames in the system are given. The forward and backward kinematic equations between the
pose of the bucket, the angular positions of the joint shafts and the lengths of the hydraulic actuators are
presented. These relations are then used in the planning of the nominal path for the bucket motion.

2. COORDINATE FRAME ASSIGNMENTS

In order to analyze and plan the motion of the excavator (backhoe or loader) for performing a specific
task, it is necessary to define a world coordinate system to describe the pose of the bucket (the end-effector).
A fixed rectangular and right hand coordinate system XYµ,Z, is chosen and its origin is placed to an arbi-
trary point on the ground level in the workspace of the excavator. It is then convenient to define local coor-
dinate frames for all links (joints) by following the Denavit-Hartenberg (D-H) guidelines [8] which are
commonly used in robotics. The resulting coordinate frames are shown in Figure 1.

After the coordinate frames have been assigned, an arbitrary point on the excavator can be represented
in any of the chosen coordinate systems. In fact, if an arbitrary point in the ith coordinate frame is
Pi = [Pix Piy piz 1]T where one as the fourth component has been added, for convenience, as a scaling
factor, then the same point in the (i-1)st coordinate frame is pi-1. These two representations are related by
the homogeneous transformation matrix A;_I as follows

Pi-1 = Ai-1 pi

where i = 1,2,3,4. Matrix A;_1 is conveniently obtained for the chosen coordinate frames by using the
structural kinematic parameters of the machine. Their application to the excavator in Figure 1 gives the
values shown in Table 1.

1 0 a1 90
2 0 a2 0 e2
3 0 a3 0 03

4 0 a4 0 04

Table 1
Structural kinematic parameters

link (joint) di ai of eL

The homogeneous transformation matrix in equation (1) is in the general form as follows:



A ii 1 -

cos0i -cosoc; sin0i sinoc; sin0i a; cos0i 1I

sin0i cosai cos0i -sinoci cos0i ai sin0i

0 sinai cosai di

0 0 0 1

(2)

The substitution of the parameter values of Table 1 for i = 1,2,3,4 into equation (2) gives the homogeneous
transformation matrices Ao, Ai, A2 and A.

3. FORWARD KINEMATIC RELATIONS

For the automatic operation of an excavator, it is desirable to place the bucket to a specified location.
It can be accomplished by selecting the lengths of the hydraulic actuators (cylinder-piston), and thus the
shaft positions of the joints properly. The mathematical expressions that relate the position and orientation
of the bucket to the shaft (joint variable) positions and then to the lengths of the hydraulic actuators are
called the kinematic (position) equations. If the lengths of the actuators or the joint variable angles are
given, the position and orientation (pose) of the bucket are determined by the forward kinematic equations.
If the position and orientation of the bucket are specified, the joint variable angles corresponding to this
bucket pose and the lengths of the actuators are calculated from the backward (inverse) kinematic equa-
tions. The forward kinematic equations will next be developed for an excavator (backhoe).

3.1. Equations Relating Joint Shaft Angles to Bucket Pose

The location of the bucket of the excavator in Figures 1 and 2 can be specified by locating the rota-
tional axis of the bucket motion, i.e., by giving the coordinates of point 03 = D, the origin of the third coor-
dinate frame. To obtain the coordinates of point D in the base coordinate system, equation (1) can be
applied recursively for i = 1,2 and 3. It follows that the coordinates of point D in the base coordinate sys-
tem are

PD = (AoAiA2)P° = AOP3 (3)

where vector p3 = [0 0 0 1]T specifies point D in the third coordinate frame and matrix Ao = AJAIA2
can be calculated on the basis of the expressions given in equation (2). Specifically , equation (3) can be cal-
culated to obtain the coordinates of point D in the world coordinate system:

Po = [cl(at+a2c2+a3c23 ); st(at+a2c2+a3c23);a2s2+a3s23;1]T (4)

where c23 = cos(02 + 03) and s23 = sin(02 + 03). If the values of the joint variables 01, 02 and 03 are
known, the location of the point D in the base coordinate system can be determined by equation (4).

For a given digging task, a fixed world coordinate system XW YW ZW OW with origin at point OW is
chosen. After the excavator has been driven to a fixed location for executing a task, the origin 0o of the
base coordinate system XoYoWoOo attached to the excavator base structure can be located in the world
coordinate system. The position vector of point 00 in the world coordinate system is denoted as pw =
[Pob wp pob 1)T. Then the homogeneous transformation matrix A2, that relates the base coordinates to
the worldycoordinates is specified as

0 0 1 Po b

A oW -_
100py

010pw

000 1

(5)

The location of point D on the rotational axis of the bucket can now also be expressed in the fixed world
coordinate system as

pw = AWPo (6)



Thus, the position of point D in the world coordinate system can be calculated by combining equations
(3) through (6), if the joint variable values 01, 02 and 03 are known.

The coordinates of the center point N = 04 on the bucket edge can also be determined in the base coor-
dinate system by the successive application of equation ( 1). One obtains

p0 =A Op4 (7)

where p4 = [0 0 0 1] represents the origin (04) in the fourth X4Y4Z4O coordinate frame, ph is the
same point expressed in the base coordinate system of the excavator and A0 = A0A1 A 2A3 is the homo-
geneous transformation matrix that relates the vector of the fourth coordinate frame to a vector expressed in
the base coordinate system . Specifically , the A4-matrix can be calculated by using equation (2):

Ap =

e1e234 -c1s234 S1 el(a4e234 + a3e23 +a2e2 + al)

S1e234 -S1S234 -e1 S1(a4e234 + a3e23 + a2e2 + al)

5234

0

C234

0

0

0

a4 S234 + a3 S23 + a2 S2

I

(8)

where c234 = cos(02 + 03 + 04) and s234 = sin(02 + 03 + 04). It should be noticed by equation (7) that the
components of pp , the coordinates of point N in the base coordinate system are given by the fourth column
of matrix Ao in equation (8).

When the joint variable values 0i, i = 1,...,4 are known, the position and orientation of the center point
04 on the edge of the bucket in the base coordinate system can be calculated by equations (7) and (8).
These equations represent the first part of the forward kinematic equations for the excavator.

It should be noted that the joint variable 01 stays usually constant during the execution of a digging
task, i.e., the excavator arm moves on a vertical plane. Moreover, the orientation of the bucket can be
specified by the value of the joint variable 04 relative to the X3-axis or by the angle 02 + 03 + 04 relative to
the X1 -axis. The same information can also be conveyed by the unit vectors of the coordinate frame
X4Y4Z4O4 (corresponding to vectors n, s, a, commonly used in robotics), which are expressed in the base
coordinate frame.

3.2. Equations Relating Lengths of Hydraulic Actuators to Joint Shaft Angles

The actuators of an excavator (backhoe) consist of the hydraulic cylinders in which the pressures on
the pistons are controlled. The lengths of the actuators determine the angles of the joint shafts, and thus the
configuration of the excavator and the pose of the bucket. The length of a hydraulic actuator is specified by
the line segment between the attachment points; for example, length BE for actuator one (Figure 2). The
kinematic equations relating the lengths of the hydraulic actuators to the angles of the joint shafts are next
presented.

Actuator one (may not be hydraulic) rotates the base. It determines directly in the base coordinate sys-
tem the vertical plane (01 = constant) on which the operation of the excavator (or backhoe) takes place.

The hydraulic actuator two (Figure 2) causes the rotational motion about joint two. Its length LBE, i.e.,
the length of segment BE, is related to the joint variable 02 by the following expression:

(9)
LBE = [LAB sin(02 + R) + LAH]2 + [LAB cos(02 + I) - LHE] 2

where 13 is the constant angle between line segments BA and AC. The subscripts attached to length L refer
to endpoints of the line segment whose length is being indicated. LAB, LAH and L11E have specific constant
values for a given excavator (backhoe, loader).

If the length LBE of actuator two is known, equation (9) can then be used to determine the joint vari-
able 02. Indeed, the trigonometric equation (9) can be solved for 02 by the standard method to obtain:

2 2 2
02=-13-tan-t(LAH/LHE)+ tan' [hi/[4LAB(LAH+LHE)-hi]1/2} (10)

where h j = L2 2+ LAH + LHE - LBE. It is noted that the tan'-function is used to avoid possible numerical



problems which may occur with sin1- and cos-1 -functions. Thus, equation (10) specifies angle 02 when
the length LBE of actuator two is given.

Actuator three moves the shaft of joint three. To relate the length LFI of this actuator to the angular
position of joint three, one observes in Figure 2 that the angles /ACI and /FCD are constants determined by
the structure of the machine. By denoting /ACI = Y1 and /FCD = Y2, it follows that /ICF = 27t - (03 - 7t) -
Yl - -y2. Then the cos-theorem for triangle FIC gives

LF1 = LFc + LC1 - 2LFCI cICOS(3n - 63 -71 - Y2) (I 1)

where again the subscripts attached to the length L refer to the endpoints of the line segment. Lengths LFC
and LCI are constants which do not change with the configuration of the excavator (backhoe).

Equation (11) can now be solved for the joint variable 03 when the length LFI of actuator three is
2 2 2known. By denoting h2 = LFC + LC1 - LF1, one can write

03 = 37t - Yl - Y2 - tan 1 {h2/[4LF
2 2CLCi - h2]la) (12)

Actuator four causes the bucket to rotate about the axis of joint four. The length of this actuator can be
related to the joint variables 04 by expressing the cos-theorem for triangle JKL (Figure 2) as follows:

LJK = LL + LKL - 2LJLLKLCOS(Vl - e1) (13)

where v1 = JLD is a constant for a given excavator (backhoe), and E1 = /KLD is to be determined. Equa-
tion ( 13) can be solved for £ 1 to obtain

Ll =v1 -tan'[h3/(4L LLKL-h3)l/2] (14)

where h3 = LL + LKL - L K. The next step is to relate angle £ 1 to the joint variable 04.

Since the sum of the angles about the axis of joint four in Figure 2 is 27t, it follows that
/LDG = /LDJ + /JDG = 27t - (04 - 71) - v2 - v3 where v2 = /CDL and v3 = /GDN are constants for a given

excavator . By denoting /KGD = E2 and /LKG = e3, the sum of the angles in the quadrangle KLDG gives:

E1 +E2=271-[27t-(04-7t)-V2-V3)-£3 (15)

where E2 and 04 are still is to be determined. The cos-theorem applied to triangles KLD and KDG gives

LKG + LGD - 2LKGLGDCOS(E2) = LKL + LLD - 2LKLLLDCOS(C1) (16)

Equation (16) can be solved for angle E2. If e3 is known, it then follows by equation (15) that

04=7t-V2-V3+E1+E2+E3 (17)

Thus, equations (10), (12) and (14), (16), (17) relate the lengths of the actuators to the joint variables
02, 03 and 04. They together with equations (7) and (8) represent the forward kinematic equations.

4. BACKWARD (INVERSE) KINEMATIC RELATIONS

The inverse kinematic problem in an excavator (backhoe, loader) is to determine the joint variable
values (the first part) and the lengths of the actuators (the second part) which correspond to the specified
position and orientation of the bucket given in the base coordinate system. It is solved for the case that the
coordinates of point 03 = D are given in the base coordinate system, i.e., po = [PD po PD 1]T is
known, and the corresponding joint variable values 01, 02 and 03 and the lengths LBE, LFI and LJK of the
actuators are to be found.

The solution is provided by the backward kinematic equations which are developed next.



4.1. Equations Relating Bucket Pose to joint Shaft Angles

The first part of the inverse kinematic problem is to determine 01, 02 and 03 that satisfy the kinematic
equations, i.e., to find the joint variable values that place point D on the rotational axis of the bucket to the
given point. It is assumed that the digging task is performed on the vertical plane containing the line seg-
ment 0100 joining the origins of the first and zeroth (base) coordinate frames.

In this specific problem it is convenient to first express po in the first coordinate frame X1 Y1 Z101 as a
vector p1D. It is obtained directly from equation (3) as

pD = A°po = A2A3pD = A3PD (18)

where D are the coordinates of point D in the third coordinate frame, i.e., PD = [0 0 0 1]T, A^ = (A0) 1

and A 1 = A i A3. It follows that

P D =

c1 s1 0 -a1

0 0 1 0

s1 -c1 0 0

0 0 0 1

Po

PD

PD

I

Equation (18) can be solved for 01 and 02 to obtain

01 = tan /pD

D
02 = tan -1 paZ + tan 1

1

212)112
2 oz 0Z 2

(PD)2+d2+a2-a30Z 2

(20)

(21)

Having determined 01 and 02, the third unknown 03 is determined by dividing the second equation in
(19) by the first one in the same vector equation. It gives

03 = tan-1

D
C2Poz - std

DS2PoZ + c2d - a2
(22)

Equations c20), (21) and (22) determine the joint variable values 01, 02 and 03 of the excavator when the
position po of point D = 03 is known. The joint angle 04 of the bucket relative to the positive x3-axis is
specified when the orientation of the bucket is given.

When the coordinates of point N = 04 on the center of the edge of the bucket and the orientation angle
0234 = 02 + 03 + 04 of the bucket relative to the X,,-axis (or equivalently the X1-axis) are known, the fol-
lowing expressions are substituted for po : PD = Po - a4c234Poy = Po + a4s234, POz = POZ where the
bucket orientation 0234 is given and po specifies the location of point N = 04 in the base coordinate system.

4.2. Equations Relating Joint Shaft Angles to Lengths of Actuators

This part of the inverse kinematic problem is to determine the lengths of the hydraulic actuators, i.e.,
the line segments between the attachment points of the actuators when the values of the joint angles are

given.

The length LEE of actuator two is determined by equation (9), when the joint angle 02 and the struc-

tural parameters are known.

Similarly, the length of LF1 of actuator three can be calculated by equation (11).

The length L>K of actuator four can be calculated by equation (13) if angle e1 can first be obtained. By
substituting 62 from equation (15) into equation (16), the resulting trigonometric equation can be solved for

D D
C1 Pox + S1Poy - al

pD

D D
SlPox -c1Poy



e1 using the standard method. If E4 = 04 - it + V2 + V3 - E3, then the solution can be written as

E1 = tan1 (LKGLGDsin (E4)/[LKGLGDCOS(E4) - LKLLLDI)

- tan 1 ([4LKGL2 sin2 (E4) + 4(LKGLGDCOS (E4) - LKLLLD )2 - h4)112T4 } (23)

2 2 2 2
G + LGD - LKL - LLD is a constant. Equation (23) specifies el in terms of C4 and thus thewhere h4 = LK

joint shaft angle 04, known constants and angle c3 = /LKG which is assumed to be available from the meas-
urements . Then , the length LJK of actuator four can be calculated by equation (13).

When the joint shaft angles are known, the lengths LBE, LF1, LJK of the hydraulic actuators can be
determined by equations (9), (11), (23 ) and (13 ). Thus, the backward (inverse ) kinematic equations relating
the joint angles to the lengths of the actuators have been established.

The total inverse kinematic relations of the excavator (backhoe, loader ) are furnished by equations
(20), (21), (22) and (9), (11), (23) and (13).

5. PLANNING OF EXCAVATOR MOTION

In the manual control of an excavator, the operator makes the bucket move so as to execute a specific
task. For an automatic operation, a computer controls the motion of the bucket, which requires that the
motion of the excavator is planned in advance. The planning can be performed by specifying in the world
coordinate system the points in time through which the center point of the excavator bucket is to move. The
coordinates of these points are then converted to the values of the joint variables using the inverse kinematic
equations. A controller will guide the actuator so as to make the joint variables assume the specified
(desired) values at the pre-determined times. As the consequence, the bucket will assume the desired pose
(position and orientation) at the specific times.

The preplanning of the trajectory points for the joint variables is straightforward when the bucket
moves freely (without touching anything) in a known environment. However, when the excavator is per-
forming a task such as digging, the bucket is subject to environmental effects. For example, the finite
volume of the bucket poses a constraint on the digging operation. In fact, the maximum volume of the
bucket should be taken into account in the planning when the depth and the length of the soil cut are
planned for the automatic excavator operation.

In the following, an excavator is assumed to be at the digging site. It is to perform a digging task
whereby soil is removed in a sector to a specified depth. Its workspace contains the soil volume which is to
be removed (Figure 3). A world coordinate system, a base coordinate system, and the local coordinate
frames have been assigned so that the task to be performed can be specified precisely. The movements of
the excavator which are needed for the execution of the entire task may be decomposed into the following
stages:

1. Starting from resting position (the initial orientation of the bucket is in a vertical position) the
bucket is raised one meter from the ground level.

2. By moving 01, the arm is rotated to a position above the place where the digging starts on the
Xw,Y,-plane (swinging).

3. The bucket is moved to the ground level, i.e., to the plane ZW = 0.
4. The bucket is moved into the ground at the given digging angle and rotated (approximately

5°) to prepare for digging.
5. The bucket is moved so as to perform the digging of a soil cut (sweeping).

6. At the end of the digging motion, the bucket is rotated to keep the soil in the bucket (scoop-
ing).

7. The bucket is raised vertically to the height of one meter (raising).

8. The arm is rotated horizontally to the dumping position by changing only 01. The bucket will
then be approximately one meter over the dumping area (swinging).

9. The bucket soil is dumped by changing the orientation of the bucket (dump).

10. The bucket is rotated to the original pose.



11. The arm is rotated to the next starting position by varying only 01. This completes one full
digging cycle.

12. Repeat from 4 on until the task is finished.

The stages 2, 5, 6, 7 and 8 correspond to the motions described in [61, which are indicated above by the
terms in the parentheses. A side view of the excavator motion is displayed in Figure 4. It is noted that vari-
able 01 remains constant during the digging cycle except in stages 2, 8, and 11. Thus, the excavator
operates on a plane during the sweeping mode by moving links 2, 3 and 4 (the bucket).

During the stages 4 to 7, the bucket is being filled with soil. When the digging operation is executed,
the volume V 1 of uncompressed soil in the bucket in the first cycle (01 = 0) is

V 1 = bz(R1 - r), R2 <_ r < R1 (24)

where b is the width of the bucket, R1 and R2 are the maximum and minimum radius of the sector in which
the soil is being removed, and r is an arbitrary radius specifying the position of the center point on the
bucket cutting edge. When the bucket is full of soil, then the bucket volume VB is equal to V 1, i.e.,

b(O.5 + 0.257c)(a4/2)2 = bz(R1 - r) (25)

Equation (25) can be used to specify the depth z of the soil cut and radius r that determines the length

(R1 - r) of the strip.

It will be assumed in the following that depth z is selected so that the soil in an entire strip will fit in
the bucket, i.e., the value of z is determined when r = R2.

The second digging cycle is assumed to start by placing the center point (N) of the bucket edge to
point A2 in Figure 3. It is at distance R1 from the center point of the sector and at angle A01 measured from
the centerline of the first strip where A01 = b/R1. During the execution of the digging cycle, this angle stays
constant. Therefore, the width of the strip of land that is to be cut during the motion of the bucket in this
cycle is less than the bucket width and varies with radius p (see Figure 4). The soil volume of the cut in the

second cycle is next determined.

The volume VS of uncompressed soil being collected into the bucket during the second digging cycle

is by Figure 3
r R,

VS = J z(PAOi)(-dp) = b J zPdP (26)
R R1 r

where the width we of the cut soil slice is we = pAO1 and radius p specifies the bucket position from the
center (0) of the circle whose arches limit the sector. If the depth z of the digging operation is constant,

then equation (26) gives

VS = bz(Ri - r2)/(2R1) = 0.5bz(Ri - r)(1 + r/R1) (27)

Equation (27) can also be obtained directly by approximating the area in which the soil is being
removed as a trapezoid with hei^ht (R1 - r) and the lengths of the parallel sides being b and rAO1. Again,

the volume of the bucket Vb > VS or

0.5bz(R1 - r)(1 + r/R1) s b(0.5 + 0.25n)(a4/2) (28)

Equation (28) can be used in the planning to specify the depth of the bucket (cutting) edge during digging
and the length of (R1 - r) of the second strip of soil.

The next strip of soil will be removed by repeating the procedure described.

It is convenient for the planning of the excavator motion to specify a sequence of discrete points in the
ground through which the center point (N) of the cutting edge of the bucket should move when the execu-
tion of the digging operation starts from the outer arc at distance R1 from point 0. These points can be
specified along the center line (AmBm) of a strip in as (r;,z;,0;), where in = 1,2,...,M, i = 0,1,...,N with ro =



R1 and 0i = i00i. These points are then connected by line segments to form a polygonal path. The digging
depth along each line segment is held constant.

Equation (26) determines the volume of soil in the bucket gathered during the cutting of a strip after
the first one. Let Vs' be the volume of soil that is filling the excavator bucket on the mth strip, m = 2,...,M,
where the first strip is excluded. The integral in equation (26) may now be evaluated along each segmented
strip to obtain after the nth segment has been cut:

b "_
Vm(n) _ - zi-t(r t - r^)/2 (29)

R
1 i=1

where n = 1,...,N, r,, = R1 and Vm(n) is the volume of soil in the bucket collected over n segmental
volumes in the mth strip . Equation (29) may be rewritten as

VS (n) = V m (n - 1) + 0.5bzr,-1(rn-1 - rn)/R1 (30)

where Vm(0) = 0. It is noted that the digging depth in each segment is constant but it can vary from one
segment to another . Equation (30) represents a recursive relation for calculating the volume of soil col-
lected in the bucket . It is expressed in a computationally efficient form.

The condition that Vm(n) < Vb can then be used to calculate the length of the soil strip if the depth of
the cut is specified . For example , this condition with equation ( 30) leads to equation (28), which can be
solved for r = r1 when z=1 0 :

r1 <- [Ri - 2VbR1/(bzo)]1/^ (31)

The equality in (31) expresses the maximum length of the strip of uncompressed soil cut at depth z, that
will fill the bucket.

6. CONCLUSIONS

For the automatic operation of an excavator, the nominal trajectory (path) for the bucket is specified so
that the soil in a sector to a specified depth will be removed. The kinematic equations of the excavator are
presented and used to convert the nominal motion of the bucket to the nominal motions of the joint vari-
ables. It can also be expressed as the nominal motions of the hydraulic actuators. The volume of the bucket
determines the depth for the digging and the length of the strip for the bucket motion. The trajectories thus
determined can then be utilized by a controller which can be implemented on a digital computer. It will
then automatically operate the excavator to perform the specified task.
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