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1. Introduction
Knowledge based expert systems (KBES) are computer programs, based on artificial intelligence (AI)
techniques, designed to reach the level of performance of a human expert in some specialized
problem solving domain. Expert systems have a great potential for practical use in ill-structured
problem solving domains where explicit algorithms do not exist or where traditional computer
programs provide only restricted problem solving capabilities.

The emerging area of construction robotics provides a unique opportunity for the application of

expert system. Potential expert systems are foreseen at three levels:

• as integral components of construction robots, providing components of the robot's sensing,
planning and control functions;

• as support functions to construction robots in the areas of interpretation of site conditions and
evaluation of completed tasks; and

• as part of an integrated design process which explicitly takes into account the capabilities and
constraints of construction robotj.

As the construction process and the construction site both increase in complexity, expert systems will

increasingly augment or replace conventional algorithmic programs in which all decisions have to be

anticipated and pre-programmed. Expert systems are applicable to a wide range of tasks, and many,

problems in the construction domain, such as estimating, scheduling, structure diagnosis and site

investigation are potential expert system applications. The development of construction robots

provides many new applications for expert systems including tasks such as sensor interpretation and

equipment diagnosis, operational planning and operational monitoring.

2. Expert Systems Versus Algorithmic Applications
In order to put expert systems into proper context, the nature and limitations of conventional com-
puter programs must first be examined. A computer program consists of a recipe of rules that
completely specifies the problem solving sequence and actions:
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IF condition, THEN action
IF condition2 THEN action2

IF condition THEN action

lF condi tion THEN action

Each rule contains a premise or condition which is evaluated. If the condition is true, the correspond-
ing action is performed and execution continues with the next rule. If the condition is false, the action
is skipped.

The basic model of any program is a pair. of rules

IF input is available THEN compute results
lF results are computed THEN output results

A process such as compute results is further subdivided into thousands of more detailed rules.
As illustrated, the rules are intertwined; the action result of one rule becomes the premise of another
rule. Traditional computer programs are developed by explicitly stating all applicable rules and their
precise sequence of execution. Such programs are called algorithmic.

Only a person knowledgeable in the domain of the program, a domain expert, can define the ap-
plicable conditions and corresponding actions. This is particularly true in any practical engineering
program, where a very large proportion of the rules are not necessarily based on the causality of
physical laws, but represent the heuristics (assumptions, limitations, rules of thumb or style) of the
expert or his organization. Developing a complete set of rules for any engineering application is a
major undertaking. The rules must satisfy the following criteria:

• Completeness. The set of rules must provide an action for every possible combination of con-
ditions. Often, many of the conditions are not explicitly stated. They may be "second nature"
to the programmer or user, or the combination of conditions represents a case which is un-
usual, and thus not expected to occur. However, failure to consider all possible cases results in
a program which will not perform in an acceptable manner over the complete range of potential
applications.

• Uniqueness. The set of rules must provide one and only one unique outcome for every possible
combination of conditions. As outlined above, this is difficult to achieve, and if not achieved it
results in a program-which is flawed.

• Correctness. The set of rules must provide a correct outcome for all possible conditions. In
addition, the sequence of rules must be correct. Misinterpretation problems occur when the
program (programmer) invokes the wrong action for a given condition. Either the action is
wrong, or the proper action is not associated with the proper premise. An incorrect sequence
applies rules at the wrong time.

The program developer has the responsibility to insure that the three criteria listed above are met.
Due to the complexity and size of any real program, this goal is almost impossible to attain, and this
makes conventional program development expensive. Additional costs are incurred when programs
are updated; the program developer must not only modify or add rules, he also must locate the
affected rules in the sequence and modify the sequence itself.
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Even if the completeness, correctness and uniqueness criteria are met, there are still some problems

with traditional programs:

• The program assumes all data has been input and is without error, while in many cases only
incomplete and uncertain data are available.

• The program functions as a black box with no mechanisms to explain how it arrives at the
computed results. The user must refer to external documentation, or the code listing itself, to
determine the problem solving approach.

• The program contains only limited mechanisms for controlling the problem solving approach. It
solves each problem in only one predefined and preprogrammed way -- an all or nothing situa-

tion.

Applications based on mathematical models and those requiring intense numerical computations may

be conveniently built as algorithmic programs. However many problem solving strategies, such as

interpretation or design, are ill-structured or ill-defined [Simon 811, and are not well suited to the rigid

algorithmic format. To date, such applications have not been successfully computerized. The use of

expert systems for such applications is discussed in the next two sections.

3. Expert Systems

3.1. Overview
Knowledge based expert systems are designed to overcome the shortcomings of algorithmic com-
puter applications. They may be based on the same type of premise-action rules as algorithmic
programs, but the sequence of selecting and applying the rules is not specified a priori. The rules are

treated as knowledge which is used by the knowledge processing component of the expert system.
This knowledge processor determines which rules are applicable in any situation and invokes the
corresponding actions. By design, the set of rules need not be complete or unique; the knowledge
processor knows how to deal with such circumstances. Expert systems have additional capabilities
for selecting rules based on incomplete or uncertain data, and explaining why rules are selected and

how they are used.

3.2. Background
Knowledge based expert systems have recently emerged from decades of research in artificial intel-

ligence. They are practical problem solving tools that can reach a level of performance comparable

to that of a human expert in some specialized problem solving domain. Rather than being a program

with general problem solving knowledge that can be applied to any task, an expert system contains a

large body of domain specific knowledge gathered from human experts. This knowledge is used to

perform problem solving tasks in a manner similar to experts.

Expert systems have been developed in a number of disciplines , including : medical consultation
(MYCIN) [Shortliffe 76], hypothesizing molecular structure from mass spectrograms (DENDRAL)

[Buchanan 69], computer configuration (Ri) [McDermott 80], mathematical formula manipulation
(MACSYMA ) [Moses 711 , oil well logging (Dipmeter Advisor) [Davis 81 , Smith 83] , and mineral explora-

tion (Prospector ) [Duda 79]. Numerous applications are moving from the research laboratory into
production [Duda 83] . Many civil engineering problem domains are candidates for expert system
formulation [Sriram 82], and several prototypes are under development.
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3.3. Architecture of an Expert System

The principal distinction between expert systems and algorithmic programs lies in the use of
knowledge. A traditional algorithmic application is organized into data and program. An expert
system separates the program into an explicit knowledge base describing the problem solving
strategy and a control program or inference machine which manipulates the knowledge base. The

data portion or context describes the problem being solved and the current state of the solution
process. Such an approach is denoted knowledge based [Nau 83].

A variety of expert system architectures exist . Various domain independent systems have different
inference procedures and different knowledge representation schemes, including : production sys-
tems [Forgy 81 ], semantic inference networks [Reboh 811, and frame representations [Fox 82]. More
complex blackboard systems, which are based on multiple experts operating at different levels of
abstraction, also have been built [Balzer 80, Erman 80, Nii 82]. In the production system formalism for
domain knowledge representation, the knowledge is represented directly in terms of IF-THEN rules
illustrated above. Other types of expert systems use different knowledge representation formalisms.
Some of the problem solving strategies incorporated in expert systems are discussed in Section 3.4.

A schematic of an expert system using the production system formalism (IF-THEN rules) is shown in
Figure 1. It is to be emphasized than only the knowledge base is domain specific. All the other
components are parts of a general purpose expert system building framework. The components of
the expert system are:

• Knowledge. Base. The knowledge base is the repository for all the knowledge and rules used by
the system in problem solving. This information can be divided into two classes: the factual or
causal knowledge of the application domain, and the empirical associations or rules. The
knowledge base may also contain long term historical information and facts. All the information
in the knowledge base is organized so that it may be effectively utilized by the other com-
ponents of the system.

• Context. The context is also denoted short term memory (STM). It contains all of the infor-
mation which describes the problem currently being solved. The context data may be divided
into facts provided by the user and those derived or inferred by the program. The use of an
expert system program begins with the user entering some known facts about the problem into
the context.

• Inference Machine. The inference machine or inference engine is the knowledge processor. It
operates on the context, utilizing the rules in the knowledge base to deduce new facts which
then can be used for subsequent inferences. The basic operation of a forward chaining in-
ference machine, discussed in Section 3.4, is an infinite loop performing three steps:

1. Examine the premises of rules in the knowledge base and determine which of these
currently evaluate to true , based on the current problem data maintained in the context.
This step, performed by the change monitor or pattern matcher, yields a set of candidate
rules.

2. Select one of the applicable rules. The rule is chosen by the scheduler or processor.

3. Invoke or fire the corresponding action, which will change some items in the context.
The context is updated by the knowledge modifier.

The objective of the inference machine is to arrive at a global conclusion (goal), and the
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Figure 1: Schematic View of an Expert System

process continues until the problem is solved and the context is transformed into the desired
goal state , or when there are no more rules remaining to be fired.

Many expert system inference machines can deal with imprecise or incomplete knowledge.
Associated with all data are certainty measures indicating a level of confidence in the data.
Rules conditionally fire based on the certainty of the premise. The inference mechanism can
then propagate certainty about the inferences along with results of the inferences.

• Explanation Module. The explanation module provides the expert system with the capability to
explain its reasoning and problem solving strategy to the user. At any point the user may
interrupt the system and inquire what it is doing and why it is pursuing the current line of
reasoning. In addition, the program can explain, in an a posteriori fashion, how any fact was
deduced and how knowledge was applied.

• Knowledge Acquisition Module. The information in the knowledge base is in a rigid format, and
the translation of knowledge obtained from experts to the required internal format may be
tedious. The knowledge acquisition module aids in this task. Although it is desired that the
human expert be able to. directly enter knowledge into the system, this goal is currently not
achieved.
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• User Interface . The user accesses the system through a friendly interface , often using a
problem oriented subset of English . The interface provides capabilities for the user to monitor
the performance of the system , volunteer information , request explanations , and redirect the
problem solving approach used by the expert system.

The basic concepts of a knowledge base, knowledge acquisition, explanation , context and inference
mechanisms are common to the different types of expert system architectures . Details of system
organization , knowledge and data representation , and inference method vary among the different
approaches.

3.4. Problem - Solving Strategies

Problem solving involves the search for a solution through a state space by the application of

operators , where the state space (the possible states in the problem solution) consists of an initial
state, a goal state and intermediate states. The solution path consists of all states that lead from the
initial state to the goal state. Domain independent problem solving strategies are commonly referred
to as weak methods and may lead to combinatorial explosions. Expert systems can be considered
strong problem solvers since they employ domain knowledge in the solution strategy. In this section
a number of problem solving strategies used in current expert systems are briefly presented. More
detailed descriptions of a number of problem solving strategies can be found in [Nilsson 80, Rich
83, Stefik 77].

• Forward Chaining. A system is said to exhibit forward chaining (bottom - up, data -driven,
antecedent -driven are all equivalent to forward chaining) if it works from an initial state of
known facts to a goal state . Here all facts are input to the system and the system deduces the
most appropriate hypothesis or goal state that fits the facts . The main drawback of this strategy
is that it is extremely wasteful to require as input data all the possible facts for all conditions; in
many circumstances all possible facts are not known or relevant . This strategy is useful in
situations where there are a large number of hypotheses and few input data . Sometimes the
problem solving mechanism is guided by the events occurring during the solution process; this
type of forward chain ing is called event -driven.

• Backward Chaining. A system is said to exhibit backward chaining (also referred to as

consequent -driven , top-down, goal-driven and hypothesis - driven) if it tries to support a goal

state or hypothesis by checking known facts in the context. If the facts in the context do not
support the hypothesis, then the preconditions that are needed for the hypothesis are set up as

sub-goals . Essentially , the process can be viewed as a search in the state space going from the
goal state to the initial state by the application of inverse operators and involves a depth first

search.

• Means -ends Analysis . In means - ends analysis the difference between the current state and the
goal state is determined and used to find an operator most relevant to reducing this difference.
If the operator is not directly applicable to the current situation then the problem state is
changed by setting up subgoals so that the operator can be applied . After an operator has
been applied , the current state corresponds to a modified state . Means-ends analysis utilizes
both the forward and backward chaining techniques . However, this strategy is only applicable
to those tasks where the measures of differences between the various states and the operators
to reduce these differences can be formulated a priori.

• Problem Reduction . Problem reduction involves factoring problems into smaller subproblems.
The problem is represented by means of an AND - OR graph . An AND node consists of arcs
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pointing to a number of successor nodes, all of which must be solved for the AND node to be
true. For the OR node, it is sufficient for one of the successor nodes be solved; an OR node
indicates that a number of alternate solutions exist for the problem. In many cases, backward
chaining is used to solve the AND-OR graph. A detailed description of an algorithm (AO) for
finding solutions in an AND-OR graph is given in [Rich 83]. This technique is very useful in
tackling large complex problems.

• Plan-Generate - Test. The generate - and-test strategy in its purest form generates all possible
solutions in the search space and tests each solution until it finds a solution that satisfies the
goal condition. The plan-generate-test sequence restricts the number of possible solutions
generated by an early pruning of inconsistent solutions. The pruning is achieved by the plan-
ning stage, where the data is interpreted and constraints are evaluated; these constraints
eliminate solutions that are inconsistent.

• Backtracking. The problem reduction approach is applicable to problems that can be sub-

divided into a tree of fixed subproblems. However, in a number of practical problems it may not

be possible to decompose problems into a fixed set of subproblems. A number of alternate

approaches may exist. In backtracking, the problem solver backs up to other nodes, at the

same level as the starting node, if no solution is found along the current path. Backtracking is

incorporated in many Al languages, such as PROLOG [Clocksin 81]. Backtracking, in its pure

form, poses a number of difficulties. To provide an efficient way of backtracking from wrong

guesses, Stallman and Sussman [Stallman 77] developed the concept of dependency-directed

backtracking (DDB). In DDB, a record of all deduced facts, their antecedent facts along with

their support justifications and the relevant rules are maintained; these records are known as

dependency records. Support justifications are justifications for any assumptions made during

the search. When the problem solver comes to a dead end, it retrieves the antecedents of the

contradiction. Those facts which give rise to the contradiction are removed from further con-

sideration. This strategy involves a lot of book-keeping. However, this additional book-keeping

helps in a number of ways. For example, explanation of the program behavior can be extracted

from the dependency records. This concept was further extended by Doyle [Doyle 78] for

systems that incorporate nonrnonotic reasoning.

• Hierarchical Planning & Least Commitment Principle. The concept of hierarchical planning

involves developing a plan at successive levels of abstraction. For example, in design of com-

plex systems the design space is divided into a set of levels, where the higher levels are

abstractions of details at lower levels; the problem is hierarchically decomposed into loosely

coupled subsystems. A number of solutions may exist for each subsystem. However, enough

information may not be available to ascertain various variables of the subsystem. Further, the

solution to one subproblem may depend on the decisions (or variable bindings) made in the

solution of another subsystem. To minimize this dependency, it is important to defer binding

decisions as far as possible. This principle is called the least commitment principle because
variables are not instantiated (decisions are deferred) until more information about the problem

space is available.

• Constraint Handling. If the subgoals in hierarchical planning do not interact with each other,
they can be solved independently. However, in practice these subgoals do interact. The
interaction between subgoals can be handled by constraint satisfaction methods. Constraint
satisfaction methods involve the determination of problem states that satisfy a given set of
constraints. Essentially, constraint satisfaction methods utilize constraints to determine the
values of parameters in a completely specified problem. Stefik [Stefik 80] proposed an exten-
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sion to the classical constraint satisfaction method (see [Mackworth 77] for a review of con-
straint satisfaction methods) by integrating it into hierarchical planning. This method, known as

constraint posting, involves three stages.

1. Constraint formulation is the operation of adding new constraints representing restric-
tions on variable bindings. The constraints contain increasing detail as design

progresses.

2. Constraint propagation is the creation of new constraints from formulated constraints.
This operation handles interactions between subproblems through the reformulation of
constraints from different subproblems.

3. Constraint satisfaction is the operation of finding values for variables so that the con-
straints on these variables are satisfied.

• Agenda Control. When a human problem solver is required to perform a number of tasks at one
time, he gives a priority rating to these tasks. The task with the highest priority rating is
performed first. In other words, he prepares an agenda of tasks. A list of justifications and a
priority rating can be associated with each task. This type of control can be used for complex
tasks that require focusing attention on certain parts of the problem. Agendas can also be used
in systems that require several independent sources of expertise to communicate with each
other.

4. Development of Expert System Applications

4.1. Scope of Expert System Applications
Expert system applications are appearing in many disciplines. However, not all tasks are amenable to
expert system formulation. The following is a partial list of criteria for the evaluation of promising
potential applications:

• There are recognized experts in the field whose performance is better than that of novices.

• The factual component of domain knowledge is routinely taught to neophytes who become
experts by developing their own rules and empirical associations.

• Typical tasks are performed by an expert in a few minutes to several hours.

• Tasks are primarily cognitive, requiring reasoning at multiple levels of abstraction.

• Algorithmic solutions are either impractical or result in overly constrained or specialized
programs.

• There are substantial benefits in applying the expert knowledge to each occurrence of the task.

A resulting system will have several desirable characteristics:

• Usefulness. The expert system must be capable of performing useful functions. Usefulness
depends on the domain and task for which the expert system is developed.

• Performance. The expert-system must have a high level of performance, reliability and accuracy
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over a range of application cases. This requires that the program have the specialized
knowledge that separates human experts from novices.

• Transparency. A program is transparent if it can be understood by people using the program.
To have this characteristic, the expert system must be able to explain its actions and reasoning
to the user.

4.2. Range of Expert System Applications

The range of potential expert system applications covers a spectrum from derivation or interpretative

problems to formative or generative problems [Amarel 78]. In derivation problems, the problem con-

ditions and description are given as part of a solution description (goal). The expert system com-

pletes the solution description by applying the available knowledge and rules such that the initial data

and conditions are well integrated in the solution. As an example, in a derivation problem such as

theorem proving, a solution hypothesis is formulated which the expert system attempts to prove by

applying rules to the known data. Repeated application of rules transforms the problem statement

(what to prove) to the solution state. In formation problems, conditions (constraints) are given in the

form of properties that the solution as a whole must satisfy. Candidate solutions are generated and

tested against the specified constraints. Two subclasses exist: constraint satisfaction in which the

solution need only satisfy governing constraints, and optimization where an attempt is made to find

the optimal solution. The design of a plan, object, or system fits this paradigm. Most actual problems

are not pure formative or derivation problems, but lie somewhere between and require both tech-

niques be used in problem solving.

The following list of problem types covers the spectrum of expert system applications. Interpretation,
prediction, monitoring and diagnosis all lie at the derivation end of the spectrum while design, plan-
ning, and control lie at the formation end of the spectrum.

e Interpretation. An interpretation system takes observed data and explains its meaning by infer-
ring the problem state which corresponds to the observed data. Examples are Dipmeter
Advisor, a system for interpreting geophysical oil well log data [Davis 81, Smith 83], and
Prospector, a system for identifying geological ore-bearing formations [Duda 79].

• Prediction. Starting with given situations, a prediction system infers likely consequences.

• Diagnosis and Debugging . Diagnosis systems infer malfunctions or system state from observed
irregularities and interpretation of data . MYCIN, an infections disease diagnostician [Shortliffe
76], and several other medical diagnosis programs fall into'this category.

• Monitoring. A monitor observes system behavior and compares the observations to the planned
behavior to determine flaws in the plan or potential malfunctions of the system. An example is
Ventilation Manager, a program for monitoring a patient's ventilation therapy [Fagan 79].

• Design. Design is the process of developing a configuration for an object which satisfies all
applicable constraints. R1 is an example of a design system which is used to configure
VAX computers [McDermott 801.

• Planning . Planning is a design process that yields a set a actions intended to produce a desired
outcome . An example is MOLGEN , an expert system for planning experiments in molecular
genetics [Stefik 81 ].
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• Repair. Repair systems plan remedies for malfunctions found through diagnosis and debug-
ging.

• Control. A control system encompasses many of the characteristics of the other types of ap-
plications described above. It must interpret data, predict outcomes, formulate plans, execute
the plans, and monitor their execution.

4.3. Languages and Tools for Building Expert Systems

A number of languages and tools are currently available for building expert systems. These tools can
be grouped into three categories [Hayes-Roth 83].

• General Purpose Programming Languages. Al projects are usually implemented in a high-level

language. These high-level languages need some novel features, such as facilities for ex-

perimentation with large chunks of knowledge, tentative modifications, planning and reasoning

strategies. In addition, these languages need powerful abstraction mechanisms with which

other higher level constructs can be built so as to make programming flexible and easy. Cur-

rent expert system frameworks have been built using a number of languages, of which

LISP [Winston 81] and PROLOG [Clocksin 81] are very popular among Al researchers. Bobrow

[Bobrow 74] discusses some of the languages used in Al research.

• General Purpose Representation Languages. General purpose representation languages are
programming languages developed specifically for knowledge engineering. These languages
are not restricted to implementing any particular control strategy, but facilitate the implemen-
tation of a wide range of problems encompassing the derivation-formation spectrum. Some
general purpose languages are:- SRL [Wright 83], RLL [Greiner 80], KEE [Intelligenitics 841,
OPS5 (Forgy 811, ROSIE [Fain 81 ], LOOPS [Bobrow 83] and AGE [Nii 79].

• Domain Independent Expert System Frameworks. A domain independent expert system

framework provides the system builder with an inference mechanism, from which a number of

applications can be built by adding domain specific knowledge. Such systems also provide

knowledge-acquisition and explanation modules to simplify the construction of the expert sys-

tems. These frameworks normally have evolved out of domain specific KBES. Hence, their

control strategies are restricted to those provided in the original system. Systems under this

category include: EMYCIN [vanMelle 79], KAS [Reboh 81], HEARSAY-Ill [Balzer 80],

EXPERT [Weiss 79], and KMS [Reggia 82].

A number of widely used languages and tools are,listed in Table 1. A detailed description of these
tools is beyond the scope of this paper and the reader is referred to Part V of [Hayes-Roth 83].

4.4. Building Expert System Applications

The process of building a complete expert system consists of two distinct steps. The first step is the
selection of the appropriate language or framework (inference engine, knowledge base and context
structure) from among those listed in the previous section. The second step is denoted knowledge
engineering and consists of gathering expert knowledge and augmenting a domain independent
expert system framework with domain dependent knowledge to provide a fully functioning system.

Knowledge engineering is an incremental cooperative process commonly performed by two people.
The first is the domain expert who possesses the problem solving knowledge for the problem area
being addressed. The second is the knowledge engineer who gathers expertise from the domain
expert and translates this knowledge into the format required by the expert system. A knowledge
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Tool or Langauge Developer Knowledge
Representation

Implementation
Language

OPS5 Carnegie- Mellon Rules LISP and BLISS
University

EMYCIN Stanford University Rules INTERLISP

HEARSAY-111 USC-ISI Rules INTERLISP

EXPERT Rutgers University Rules FORTRAN

ROSIE Rand Corporation Rules INTERLISP

KS300 Tecknowledge Inc. Rules INTERLISP

AGE Stanford University Rules INTERLISP

KAS SRI International Rules and INTERLISP
Sematic Nets

KMS University of Maryland Rules and LISP
Frames

KEE IntelliGentics Inc. Rules and INTERLISP

Frames

RLL Stanford University Frames INTERLISP

PSRL Carnegie-Mellon Rules and FRANZLISP

University Frames

LOOPS Xerox PARC Rules and INTERLISP-D

Frames

KL-ONE Rand Corportation Semantic Nets INTERLISP

C-PROLOG Univeristy of Edinburgh Logic C

Table 1: Languages and Tools for Building Expert Systems

engineer who is also literate in the application domain is desired, as he can understand the issues
involved and the nomenclature used by the domain expert [Dym 84, Fenves 84a].

The knowledge engineering process of building an expert system application is outlined
below [Reboh 81, Hayes-Roth 83]. This process is similar in nature to building an algorithmic
program or producing the design of an object.
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• Problem Identification . The first step in building an expert system is to identify the problem to be
solved and the characteristics of the solution . Identification of resources, domain experts, and
computer facilities must be made and overall goals for the project must be set.

• System Design . The overall structure of the system must be selected . Based on processes used
by the expert , available data , strategies , information flow , etc., a preliminary model of problem
solving to be used by the system is developed . From this, a candidate domain independent
expert system framework is selected and key concepts are formalized . If the selected system
appears to have the correct formalisms for problem solving and knowledge representation, a
more detailed analysis is undertaken to produce a detailed design of the system.

• Knowledge Acquisition. Knowledge acquisition is the process of gathering the expert

knowledge from the domain expert . This process may be difficult. In some instances the
cognitive portions of the problem solving process used by the expert have never been verbal-
ized and are difficult to extract (the expert is not conscious of how he solves problems). In

other cases the expert may feel threatened by a computerized replacement and will be reluctant

to cooperate.

• Implementation . The knowledge engineer 's tasks is then implementation ; the expert's
knowledge is encoded in the format required by the expert system framework. This yields an
operational program.

• Testing . Once a prototype or partial system is developed , it is tested. The domain expert and
the program are given the same problem and their problem solving behavior is compared.
Flaws in the system are detected and corrected by adding or modifying the knowledge used by
the program. -

The process is not sequential, and a number of repetitions in the last three steps may be necessary to
correct and tune the system ' s behavior . Adding depth of knowledge , breadth of capabilities, and
improved interfaces and explanations to the prototype yields the final version of the system.

5. Potential Applications in Construction Robotics

5.1. Overview

A construction robot has to perform three functions:

1. Sense both the external environment and its internal state;

2. Alan an action based on the sensed state; and

3. Act according to the plan.

These three functions are supervised , coordinated and scheduled by an overall control function.
These functions are integral to all construction robots , whether they be fixed in position (e.g., an
automated concrete batch plant or prefabrication plant) or mobile (e.g., a tunnel boring machine
[TBM]). Most of the processing or "reasoning " takes place in the functions of sensing , planning and
control . The first generations of construction robots will undoubtedly implement these functions by
pre-programmed , algorithmic means.



The Japanese construction industry uses a modified classification scheme for construction robots
based on the type of planning or control:

M1 Manual Control
M2-A Fixed Sequence
M2-B Variable Sequence
M3-A Playback (Teach) Control
M3-B NC Control
M4 Intelligent Robots

Intelligent robots capable of autonomous decision-making in planning and overall control are not
foreseen by the Japanese until level M4, expected to be developed in the 1990's and deployed after
the year 2000.

Nevertheless, it is instructive to look ahead and attempt to identify expert system applications for
augmenting or replacing some of the algorithmic techniques for some robotic functions. In the
remainder of this section, some potential expert system applications that may be integral components
of construction robots and relevant prototypes are presented.

5.2. Interpretation
A robot must transform its raw sensor data in a variety of ways to properly interpret them, i.e., build a
reliable and usable world model of its environment. Many of the "low level" transformations, such as
signal conditioning, smoothing, imaging, feature extraction, etc., can be performed algorithmically
-- in fact, dedicated hardware or firmware is available for several of these steps. However, "high-
level" transformations which extract meaning from the transformed sensor data are more likely to be
implemented as expert systems.

In the robotic excavator (REX) under- development at CMU for the hazardous task of excavating

around leaky gas lines, it is anticipated that an array of sensors will be used. The data from the

various sensing modes will be separately transformed to some common, high level representation

(e.g., bounding planes of features "seen" by each sensor). It is anticipated that an expert system will

be needed to integrate the separate images to provide a composite world model. The expert system

will have to deal with issues such as:

• discrepancy between expected position taken from utility maps and sensed position -- an ob-
vious heuristic is:

/Fsensed diameter , material, etc. agree with expected
THEN accept sensed position;

• discrepancy or conflict between sensing modes;

• discrimination between valves, tees and other attachments;

• etc.
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5.3. Diagnosis and Monitoring

A robot, in addition to sensing and interpreting the external environment, must also keep track of its
internal condition by diagnosing and monitoring its own operating state. Here again, algorithmic
control functions may be augmented by diagnostic and monitoring expert systems. Such systems
can simulate the monitoring functions of an expert operator, who often takes automatic action based
on the sound of the equipment or the feel of the controls. Expert systems can also make
"connections" between spatially and temporarily dispersed signals and events, e.g., to distinguish
between transient and hard failures, and to revise their expectations based on previous history. A
critical aspect of diagnosis and monitoring will be to check the status of the robot's sensors them-
selves.

A prototype equipment diagnostician is MOVER [Fenves 83]. MOVER is designed to assist in the
diagnosis and operation of an automated transit system. MOVER takes information on system failures
reported to the central control computer and combines these with requested status information to
determine the fault and to suggest remedial procedures to maintain operations. A second version of
MOVER has been implemented as a prototype real-time monitor [Fenves 84b], using an event-driven
strategy (see Section 3.4) to respond to changes in the sensed information.

5.4. Planning and Control

Some of the first pieces of robotic construction equipment are being designed to operate in an
automated mode in hazardous environments such as mining and excavation. As outlined above,
expert systems have a role in the automated interpretation and sensing of the environment of the
machine. This environmental information is needed to plan the operational strategies of the machine
so it can realize its goal (excavating. a pipe, digging a tunnel, bolting a mine roof, etc.). An expert
system can augment and eventually replace the operator to provide such control strategies.

Such an application has been proposed for the strategic and tactical control of an automated
TBM [Sriram 83]. MOVER, described above , also is an example of a prototype operational planning
system . Once a fault has been determined , it makes suggestions to the operator to facilitate the
timely restoration of service . Fully autonomous construction robots , such as REX, will require such
operational planning expert systems.

In robotic construction equipment, the complete control system will require the integration of several
types of expert systems outlined above. As an example, an automated IBM requires an expert system
to interpret the sensor readings to infer the tunnel geologic conditions. Diagnosis of machine faults is
also made from machine sensor data. An additional expert system is required to monitor the machine
performance. This data is then used to drive a planning task to select a mining strategy and detailed
machine operation tactics. Such a combined control system is illustrated in Figure 2 [Sriram 83].

6. Potential Applications in Support of Construction Robots

6.1. Overview

The preceding section dealt with expert system components which may become integral parts of
construction robots. In this section, the potential applications are extended to those which can serve
in a support role to robotic construction.
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6.2. Pre - and Post - Interpretation

A robot cannot be dispatched to the construction site without prior knowledge of the external en-
vironment, i.e., with a blank world model. The initial state of the model has to be built up from the
interpretation of site conditions.

Much of the information which is the basis for substructure design of constructed facilities and for
field operations comes from site investigations. Information is obtained from field and lab tests, visual
and other inspection devices, and observations. The data is then presented to an expert geotechnical
engineer who interprets the data to characterize the site and makes recommendations concerning
possible actions and designs. Since such tasks rely almost wholly on human experts using their
empirical knowledge, they are excellent candidates for expert system formulation.

Such applications could be built to perform portions of the expert's post-facto data interpretation, or

could be built into intelligent, automated site investigation equipment. The most exciting possibility

offered by expert systems is to completely bypass certain exploratory or evaluation operations. For

example, with appropriate sensing, interpretation, theoretical correlation and empirical knowledge,

one should be able to infer as much geotechnical information from a production rock-drill as one

obtains today from geotechnical explorations.

An example of such a system for the interpretation of cone penetrometer data is being built [Mullarkey
83]. As the cone is pushed into the soil, electrical signals provide raw data about tip resistance,
friction, and pore pressure. This data is used by experts to infer the soil stratigraphy and more
detailed engineering parameters about each soil layer. The initial system will provide post-facto
analysis, but it has been proposed that such a system could be used to build an automated
microprocessor-based field penetrometer expert.

Similar pre-interpretation expert systems can be developed for other aspects of the external environ-
ment.

At the opposite end of the construction process, there are major uncertainties in the condition and
quality of the emplaced components.

A prototype expert system which uses magnetic imaging to determine the location and size of con-
crete reinforcement in structures such as bridge decks or nuclear reactor containment vessels is
being built [Motazed 84]. Similar to pre- interpretation, there is the exciting possibility of integrating
post-interpretation into the process itself. Thus, eventually one should get as much information about
the quality of a weld from an instrumented automated welder as one obtains from a post-facto weld
inspection.

6.3. Diagnosis and Repair

Construction equipment is becoming more complex and harder to maintain. Automated equipment
presents more complex diagnosis and repair problems. Expert system diagnosticians are a distinct
possibility. Such systems can act as expert mechanics or mechanic's assistants in suggesting pos-
sible fault causes and repair and preventive maintenance procedures based on operational behavior
and failure symptoms.



6.4. Planning and Design

The planning of robotic construction processes and the design of robotic equipment is itself an area
for expert system applications. Problem-solving strategies such as hierarchical planning and problem
reduction , discussed in Section 3.4, are directly applicable to the complex task of planning construc-
tion processes involving robotic equipment.

A significant component of planning will be the design of robotic equipment itself. Construction tasks
to which robotics can be applied exhibit a large variation in the types of sensors, actuators, locomo-
tion and control strategy that may be incorporated [Warszawski 84]. Therefore, construction robots
have to be configured from a variety of component types for specific tasks. Thus, the Shimizu
Construction Company fireproofing spray robot [Ueno 83] combines several levels of control from the
classification given in Section 5.1:

• it executes overall operations in a fixed sequence (level M2-A)

• it moves from bay to bay under numeric control (level M3-B)

• it adjusts its position within a bay using feedback from a position sensor (level M4)

• it selects the spray pattern in variable sequence (level M2-B)

• it performs the actual spraying by playback from a manually "taught" sequence (level M3-A).

Other construction robots will undoubtedly exhibit similar complexity, so that their proper configura-
tion and design will be a very challenging task.

Since there are very few experts in this area, an extremely useful and practical expert system would
be one which could recommend appropriate combinations of robotic components based on a
description of the environment, tasks and constraints.

7. Potentials in Long-Range Integration
The first generation of construction robots can be expected to duplicate the functions of present
construction equipment, but with notable extension of the range of the workspace and considerable
increase in safety and efficiency. The constructed facilities built with these robots will not look
significantly different than those built presently, nor will their design process be significantly affected.
Eventually, however, the existence of construction robotics will provide major influence on the form
and functions of the facilities, and will alter the design process itself in significant ways. In other
industries, this feedback is already evident; "design for manufacturability" has become a major con-
cern in manufacturing industries, reflecting the clear need to explicitly address manufacturing con-
cerns and constraints at the earliest, most abstract levels of conceptual design. The same trend can
be expected in civil engineering design, as the means of manufacturing, i.e., constructing, facilities
change drastically [Warszawski 84].

It is too early to speculate on the specific forms that this feedback from robotic construction to civil
engineering may take. What is clear, however, that the feedback will be largely heuristic: certain
forms, techniques, materials, etc., will be shown by experience to be more appropriate, efficient,
economic, etc., for robotic construction than others. Expert systems are the most appropriate com-
puter aids developed so far for representing and processing such heuristic knowledge. It is to be
expected, therefore, that computer-aided civil engineering will increasingly use knowledge based
systems to integrate knowledge about robotic construction into the design process.

a



s

8. Future Directions
Work in producing expert systems for engineering applications is progressing in parallel in two areas.

• Frameworks and Basic Capabilities . Research is underway in developing better expert system
frameworks . Such frameworks provide better knowledge representation schemes , alternative
inference techniques , and alternative mechanisms for dealing with uncertain or partial data.
Extensions to provide interfaces to algorithmic programs , database management systems,
graphical displays , and connections to sensors are also being developed . Better user inter-
faces and knowledge acquisition modules will improve the usability of expert systems and will
reduce application development cost and time.

• Applications in New Domains. Numerous prototype expert system applications are under

development in many civil engineering domains. This work leads to demands for better expert

system frameworks and results in better techniques for applying expert system technology.

This work also leads to a more fundamental understanding of the decision making process in

the application domains. More importantly, the prototype systems are moving out of the

laboratory and into practice.

Continued work will improve the technology and applications of knowledge based expert systems.

9. Summary
Knowledge based expert systems were introduced and presented as an alternative to traditional
algorithmic programs . The overall structure , use, and operation of expert systems was presented.

By capturing the knowledge used by experts in problem solving , expert systems are capable of
solving problems which , to date , have avoided computerization. There is a wide variety of potential
applications in civil engineering. The emergence of construction robots will create the need for many
further applications . Because of the wide range of robotic tasks and environments in construction,
expert systems will be needed to create " intelligent" robots , as well as to provide feedback from
robotic construction to design . Additional research and development of expert systems will
demonstrate how this powerful new computer based technology can aid in the civil engineering and
construction robotics domains.
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