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STATISTICAL PATTERN RECOGNITION AND LEARNING FOR
CONSTRUCTION ROBOTS

Kingsley Harrop-Williams1

INTRODUCTION

The ability to recognize , remember and classify patterns is the primary function of the brain. These

aye done so readily by humans that there is a tendency to take them for granted . However , this ability

is the basic definition of intelligence . An "intelligent" construction robot would seem unearthly if it

does not possess this ability. In this paper a decision function and learning algontnm is outlined tor

construction robots to recognize, classify and remember basic features of objects within there work

environment.

Construction robots are foreseen in building construction , agriculture , mining , undersea , space,

etc. Hence , unlike manufacturing robots , they must work with unstructured tasks in unstructured

environments . As with the environment in which the construction robot must work , its data, be it

visual , audio , chemical or radar , is random . In dealing with this type of data the recognition principle

to use must be based on statistical decision theory . This allows the distinction between objects based

on the mean value and scatter of their respective sensor values and treats any deterministic

phenomenon (zero scatter) as a special case.

The method adopted is to reduce a large n - dimensional random vector obtained from sensor data to

a much smaller m-dimensional transformed vector which retains all the statistical information of the

data . Using this transformed vector (or the orginial vector) a statistical decision is made that optimally

distinguishes between different objects . The accuracy of the parameters of the decision function is

sharpened recursively by a Bayesian learning procedure such that even in an unknown environment

the robot can gradually learn the objects around it.

PROBABILISTIC PATTERNS IN SENSOR INFORMATION

Construction robots gather information atout their surroundings by means of sensors . In order to

distinguish one object from another one generally compare the magnitude of the sensor data

obtained from the two objects . As a simple example , consider the metal detector . Here the

magnitude of the data from metalic objects are much larger than their surroundings.
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If one discretize the sensor information as shown in figure 1, then the sensed value x can be used to

identify the object from which it was taken. However, if the frequency of Xis plotted

s

Object 1 Object 2

Figure 1 Discretized Sensor Information

against the magnitude of x one obtains the patterns shown in figure 2. Basically , the sensor values of

object 1 forms a cluster around its mean value Mi, and those object 2 around M2. The spread of the

frequency distributions around the mean values is the result of the randomness of nature. Well-

defined objects produce little spread , while ill-defined objects produce spreads around the mean

values that may overlap.
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Figure 2 Frequency of sensor data

Selecting two values x , and x2 at a time , rather than one from figure 1 a two-dimensional frequency

plot can be constructed . This is illustrated in figure 3 , with the frequency axis perpendicular to the

paper . This again indicates clusters around Mi for object 1 and around M2 for object 2, with some

overlap of the spread around the mean values.

Cluster 1 Cluster 2

Figure 3 Frequency for two values

J

265



I

For a speedy analysis, the selection of one or two values at a time from the sensor data is

inappropriate. The selection of some large number (n) of values must be made. The' result is n-

dimensional frequency distributions representing each object. These distributions invariably overlap

and decision boundaries, as shown in figure 2, must be developed to separate the region governed by

each object.

DECISION BOUNDARY BETWEEN OBJECTS

Then values x1,xz,._.,x l selected at a time from the sensor data can be represented by a vector X.

As part of its function the robot must be able to identify what object the vector X represents. If wi

represents the ith of R objects, then one can define a loss function as

L(`°e `°; =1 to otherwise
(1)

That is, a unit loss when a wrong decision is made and zero loss if the decision is correct. The

average loss as determined from equation (1) is

L(W.)=Z L( W I wi )P(mj X)

=1- P(w.I X) (2)

where P(i,IX) is the posterior probability that the object is w, given the vector X. Equation (2) can

further be rewritten, through the application of Bayes ' theorem, as

f(X ( u,,)P(m.)

AX)

where f( ) represents the probability density function.

(3)

From equation (3) one sees that the average loss is minimum if the numerator ol' the second term on

the right hand side is maximum. As is done conventionally, the decision function can be taken as the

logarithm of this term, or
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d.(X) = In f(X I W + In P(wi) (4)

If a construction robot has within its memory the frequencies f(X1wi) and probabilities P(wi) of R

objects expected to be encountered in its working environment, then a sampled vector X of the

measured sensor data is identified as belonging to the object with the largest df(X). The error

associated with this identification is the sum of the error of omitting wi and the error of including wi, or

F P(wJXE ^) + P(witXEwi) for all j i (5)

In the decision function identified above, the robot memory consists of the frequency function f(XI

wi) for each object wi. This frequency function can be predetermined in the laboratory. If the

identified function can be approximated by the normal distribution it can be written as

T (X-M,)}f(X ^ m,)=
t2 r 1n12

t
IC I 112

ex
2

p^-2(X-M )C^'
(6)

where M. and Ci are the mean vector and covariance matrix of object wi. In this case the decision

function becomes

n
d (X1/nP(w }- /n(2rr )-^1n C. -^[(X-M)TC-'(X-M.))

Since the second term is the same for all wi it can be neglected and equation (7) is rewritten as

[(X-M.)TC.^1(X-M ))d.(X)=b.-2

where

b.=/nP(wj /n I C

(7)

(8)
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Equation (8) shows that the decision function is a guadratic in X. For two objects it is as illustrated

in figure 3.

STATISTICAL LEARNING

The pattern recognition problem can be viewed as that of generating the decision boundaries which

separates the R objects on the basis of the measured sensor data. The robot memory consists of the

frequency distributions representative of each object. For the normal distribution and most common

distributions, this consists of only two terms, the mean vector M. and covariance matrix C.. The

general situation is that the true values of Mi and C1 are never available and the memory is first

designed based on a small labelled set of samples. However, as exploration progresses and the robot

identifies objects these parameters can be made to approach optimum or satisfactory forms.

To illustrate the technique of statistical learning, let 8 m [Ml, Cil be the parameter vector. The

distribution of X can be written in terms of 0 as

f(X^B1 = f(X m

Also, our knowledge about is from a set of K independent sample vectors

X k=CX,,X2_X k)

(9)

(10)

with frequency distribution f(g j XkYeasily determined from sample statistics. If another sample vector

Xk+1 is obtained then, from Bayes' theorem

f(® I Ak.1) = f(Xk
*1

( 6)f(9) / SfXk+1 I B ) f(B)d0

From independence of samples
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f(Xk*I (9) f(Xh 1 e)=f(Xk+1 1 B)f(Xk 10)
h•1 '

which substituted into (11) gives the Bayes' learning algorithm

f(B I Xkyl ) = f(Xk+1 B)f(B I Xk)/ Sf(X B)f(B Xk)d®

(12)

(13)

J

Equation (13) shows that the new memory of the robot f(6 (Xk+1) is a modification of the old memory f(6

X k ) by the information contained in the newly sampled vector Xk+ 1. This updated parameter vector 6

updates Mi and C1 which in turn sharpen the decision boundary d,(X).

FEATURE SELECTION

The number of values n selected from the sensor data is arbitrary. However, for speed of

processing the information collected by-the sensors it may be necessary that this number be quite

large. This results in large and cumbersome frequency distributions. Since most of those values

contain the same information, it may be advantageous to select only those with dominant features and

construct the decision function based on the features alone. The idea is illustrated in figure 4.

X1- yi

Feature Information

Selection ym on R objects Decision

(m < n)

Figure 4. Recognition scheme

One way to identify features contained in the random vector X is by means of the Karhunen-Loeve

expansion (Fukunaga, 1972). Here X is transformed into a new random vector 'y with 'elements (i = 1

...n)
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Yi =4,TX (14)

where 4)i is the ith eigenvector of the covariance matrix of X. Each component of Y `is a feature that

contributes to X.

• The features yi are mutually uncorrelated and their variances are given by the corresponding

eigenvalue X.. A measure of the information contained in feature Y.t is its variance X.. Hence

dominant features have larger variances. If a feature is neglected it can be shown (Fukunaga, 1972)

that the mean-square error introduced is the variance of that feature. It follows that if the eigenvalues

are indexed such as Xt > X2 > ... > X , then the n-dimensional problem x1.x2,_,xn can be reduced

to one in m dimensions (n > m) yi, .. Y m with a mean-square error of

SUMMARY AND DISCUSSION

(15)

The procedure described above-for robot recognition and learning can be outlined by the following

steps.

• For the R objects expected in the robot's working environment preprogram the robot's
memory as to each object's frequency distribution and parameter vector.

• Equation (4) allows the robot to decide to which object a newly sampled vector X belong;
or, based on the probability of misclassification e, if a new object is identified.

• If a sampled vector X is identified with an acceptable probability of misclassification, as
belonging to a certain object, Equation (13) allows the robot to sharpen its memory about
that object.

For large amount of sensor information, working with the originial data may be slow and

cumbersome. in this case a feature selection technique is outlined that allows an n-dimensional

problem to be reduced to a m-dimensional one (m<n). From this point the steps outlined above can

be followed using the m-dimensional feature vector. Other methods of feature selection can be found

in MacQueen (1967) and Fukunaga and Koontz (1970).

J
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The decision function described here is Bayesian , and provides optimum separation of the objects.

However, the probability density function and probability concerning the objects are needed as input.

Although sufficent laboratory investigation can establish these quantities , other decision functions

like best - fit linear , piece -wise- linear or polynomial can be-developed (Tou and Gonzalez, 1974).
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