
Automation and HohoUCs in Construction XVI © 1999 by UC3M

TOWARD OPEN NETWORK DATA-EXCHANGE PROTOCOLS FOR
CONSTRUCTION METROLOGY AND AUTOMATION: LIVEVIEW

Lawrence E. Pfeffer , Ph.D. and DeWitt T. Latimer IV

Construction Metrology & Automation Group

National Institute of Standards and Technology

Gaithersburg , MD 20899-8611,USA

pfeffer@nist.gov dlatirner@nist.gov

Abstract: A significant problem in construction automation is the difficulty of interfacing
and integrating subsystems (e.g. sensors, databases, visualization systems) into a useful
whole. In this paper, we describe our past and present efforts toward the design and
implementation of network protocols to address this problem. Our current design effort
concentrates on communicating, "who, what, where, and when" data over internet-protocol
(IP) networks, and is based on the IEEE 1278 (distributed interactive simulation) protocol

family, with some extensions to meet the anticipated needs of construction automation

systems.

Keywords: Automation, Construction, Data-Exchange, Distributed, Metrology, Protocol.

1. INTRODUCTION

One of the significant problems facing
developers of construction metrology and
automation systems is the difficulty of interfacing
to a wide variety of subsystems and integrating
them into a useful whole . This is especially true,
since the subsystems are often numerous, and the
"best" for any task can change rapidly. This
problem has both hardware and software aspects.
Some of the hardware aspects were addressed in
[6]; this paper concentrates on the software aspects.

At present, there is no generally accepted
standard for software subsystems in a construction-
automation system to use for exchanging data with
one another. As a result, significant effort in
implementing such systems goes into creating
different software interfaces for each sensor,
actuator, GUI, database, etc. Since there is often
little prospect of interface-software reuse (because
there is so little standardization ), system developers
are often hesitant to change, upgrade or experiment
with new subsystems. They have been caught in an
interface straightjacket.

We assert that, if we are to avoid this
productivity sink in the future, we need some
standard, broadly accepted means to communicate
information between construction-automation
software subsystems. Ideally, this interface should

work whether the subsystems reside on the same

computer, or on different ones.

A completely general distributed data-exchange
system is probably too ambitious a goal. We
believe that an attractive approach is to base a data-
exchange system for construction- automation on an
existing protocol (namely IEEE 1278 [3]), with
some modifications and extensions relevant to
construction automation. Our immediate goal is to
design and implement a draft protocol (called
LiveView) that concentrates on communicating,
"who, what, where, and when" data in an efficient
manner among construction-automation

subsystems.

This paper starts with an overview of distributed
communications software, and then outlines our
earlier effort and some of the lessons learned. We
then give an overview of the IEEE-1278, the
distributed interactive simulation protocol -- the
basis for LiveView. Finally, we outline some of the
key features and design decisions of LiveView, and
illustrate with examples froru related work at
NIST's National construction-automation test-bed

(NCAT).

2. RELATED WORK

Since the field of communications in distributed
(computer) systems is a vast one, we will make do

117



with an overview. There are both general-purpose
approaches to distributed comm unications, e.g.,
DCOM (Microsoft) and CORBA [2], and there are

also tools more-or-less specialized for sensors [4],
robotics [5] and distributed simulations [3].
Among general-purpose distributed

communications , there are three common models of

information exchange: shared memory,
request/response, and publish/subscribe (see [5] for

a literature review and discussion.) There are also
several different approaches to the types and
flexibility of data communicated, ranging from pre-
defined messages to self-describing data . Finally,

there is a range of management approaches, ranging

from centrally managed to completely distributed.

In the shared-memory model, each subsystem

"sees" a global, shared memory that can be read or
written to by any of the sub-systems that
participate. This model is convenient, because it
permits individual subsystems to treat the problem
largely in a non-distributed fashion, and is basically
symmetric. (The symmetry encompasses one-to-

one, one-to-many, or many-to-many communi-
cations.) However, specialized hardware or

software techniques (e.g. MUTEXes) are needed to

ensure consistent replicatio m of the shared memory

among all users, and may not be sufficiently

efficient or predictable for use in real -time systems.

Another undesirable characteristic is that this model

does not provide an easy, efficient means of being

notified when some data in the shared memory is

changed.

In request/response systems, information is
exchanged by issuing individual requests and
awaiting the responses. This model of information
exchange (also called client/server) is asymmetric,
and takes place between specific, individual sub-
systems. This model is probably the most widely
implemented, and has been used as the basis for file
systems, windowing systems, and distributed

databases , [5]. There are several limitations of this
structure. First, it requires two transactions per
update (the request and the response), and is not
well suited for disseminating data in a one-to-many
(or many-to-many) fashion. Secondly, since it is
basically a pull-oriented system, the information
flow is analogous to polling, with the requestor
controlling the timing, and the respondent unable to
send "alerts" that something has changed

until/unless the requestor makes the analogous

request.

In publish/subscribe systems, data providers

publish their willingness to provide specific data,

and subscribers register with-publishers, for the-dal-

they need. Once a subscription is arranged, the

subscriber receives data updates from a publisher
automatically. (This is analogous to web-based
"push" systems, where the publisher initiates the
update events.) This model is attractive for

information that needs to be distributed to many

receivers, and has been extended to many-to-many
systems, see [5]. It is also attractive for event-
driven systems, since the data-updates are events
that can be acted upon without the overhead of
polling. Closely related are broadcast/multicast
systems, in which publishers send out information
to every computer involved and do not keep track
of specific subscribers. This approach is low
overhead for broadcasters, but gives the receivers
the burden of sifting through the broadcast
messages for those of interest. The large-scale
feasibility of this variant depends on a low-
overhead multicast mechanism, such as UDP

multicast.

At the risk of drastic over simplification, there

are three basic strategies for message-based data

representation: Fixed message types, pre-described
data, and self-describing data. These strategies
trade off efficiency against flexibility.

Fixed message systems have a finite vocabulary

of message types, and are usually highly efficient,

but are fundamentally limited by their rigidity.

However, the rigid format facilitates simple,

efficient consistency checking. (Note, however that
if one of the "fixed" types is other/user-defined,
both the fixed nature and the efficiency are be

compromised.)

The pre-described data strategy is more flexible
than the fixed-message approach, as it lets users
pre-define their own data types at compilation time,
using a data-description language such as IDL [2].
However, with the flexibility of user-pre-defined
data comes both a loss of efficiency and a potential

for inconsistency. Since the data-descriptions must

be pre-defined (usually at compile time), there is a
potential for inconsistency between sub-systems,
e.g., if implemented by different groups. Run-time
consistency checking is possible, but is not
(generally speaking) automatic.

Finally, there is the self-describing data
approach, in which every piece of data carries with
it a self-description. This approach is extremely
flexible, but generally has the most overhead

associated with it.

3. EARLIER NIST WORK

118



Our initial foray into the distributed data-
exchange (called tetSock) was driven by an
application. We had a pre-existing robotic system
(a 6-degree-of-freedom robotic crane, known as
TETRA [1]) and we needed to create a 3-D
visualization of TETRA's operations at a remote
site [7]; see Figure 1. Since TETRA's controller
used a different O/S (Microsoft NT) than our
visualization platform (an SGI workstation), and
the two were in different buildings, a network-
based protocol was a clear choice.

Since our immediate need was relatively simple
(to update position and orientation of a single item),
the resulting "proto-protocol" was quite simple. It
was a strict request/response system, built on TCP
(streaming) sockets. It used a small set of fixed-
format messages (3 messages, all using ASCII data
representations.) Communications were strictly
host-to-host (as opposed to distributed), but could
be opened and closed at run-tithe. We
implemented tetSock in C, on three different
platforms: Microsoft Windows NT, UNIX (SUN
and SGT systems), and (later) on a real-time O/S,
VxWorks.

Fig. 1: 3-D visualization of a robotic crane during an
assembly operation with a steel I-beam . The inset video
image shows the correspondence between the model and
the real system . The real-time data driving the
visualization subsystem came from TETRA's real-time
controller, via the tetSock proto-protocol.

Even this minimal protocol has helped with
subsystem reuse. Using tetSock, we were able to
adapt our visualization system from TETRA (crane
updates from an NT system) to a vehicle tracking
system (all-terrain-vehicle updates from a VxWorks
system) very easily. With a more-carefully-
designed protocol,.: leverage from re-use should
become very powerful.
3.1 Lei Leaned from tetSock

• Even a very limited networked protocol (like
tetSock) helps with system integration.

• Ad-hoc protocols are limiting; use/adapt
existing protocols if possible.

• Careful, explicit definitions are essential (e.g.,
which way does X point, is it fixed in world
coordinates?)

• Pre-defined messages are somewhat limiting,
but (designed correctly) are a workable choice.

• We can achieve significant functionality with a
relatively small number of messages: i.e., who,
what, where, when.

• Individual host-to-host connections is a poor
topology; a central server would be better; a
true distributed system, better yet.

• Cross-platform solutions (e.g. not tied to
specific O/S or language) are important.

• Temporal issues matter.
• Quality of data will matter.
• Security will matter.

4.0 OVERVIEW OF IEEE 1278

IEEE Standard 1278.la-1998 is a well
specified, post ballot IEEE specification of network
data formats and standard practices for distributed
interactive simulations (DIS). Originally developed
in cooperation with the Department of Defense to
support battlefield simulation, the standard has
gained support in the general simulation
community. The standards covers form and content
of messages (termed network protocol data units,
PDUs) and the interactions between applications
running in the simulation. Fixed data format PDUs
are broadcast to participating applications.
Management is dynamic and fully distributed (no
master controlling application).

In IEEE 1278, entities provide the basic unit of
operation. An example of an entity would be a
tank. Tanks move, shoot, emit radio waves, are
struck by ordinance, and other actions that may
require interaction with other entities. Entities
represent physical objects in a simulation; at any
one time, only one participating application has
control of an entity. Applications can control more
than one entity. Simulation management functions
allow control of entities to be passed between
applications.

The PDUs covered in IEEE 1278 are divided
into several domains; of specific interest to
construction-automation are the domains dealing
with entity information/interaction, simulation and
management, synthetic environments, and live
entity information/interaction. To support
interoperability, the format of each type of PW is,
fixed, and general notices are sent via multicast

I19



UDP packets. Specific PDUs provide the means to
communicate answers to the basic questions of who
(unique ID), what (event type), where (coordinates
in a common frame), and when (time stamp keyed
to a common, coordinated clock.) Specific
attention was paid to the development of physical
state of an entity. Entity state in IEEE 1278
includes position (translation from the origin),
orientation (rotation about axes), articulation (of
appendages, where appropriate), and rates of

change of these quantities.

IEEE 1278 provides a means of communicating
terrain (termed synthetic environment in IEEE
1278) between participating computers, and the
ability to modify the synthetic environment on the
fly during a simulation. For construction
applications, this maps well to earth moving.

The live entity support in IEEE 1278 provides a
mechanism where, for example, a real tank could
participate in a hybrid live/simulated exercise. The
primary purpose of the live entity protocols is to
conserve bandwidth to and from these live entities.

Additionally, IEEE 1278 provides a full suite of
management functions to provide simulation level
management. Examples of such management
include mechanisms for running more than one
simultaneous exercise and determination for when a
delinquent entity is to be removed from a
simulation. Simulation management is distributed
to all participating applications, with no central
server or boss applications. The standard is rich in
functions to manage the exchange of information
about and between entities. For example, when
entities collide, the standard provides a well-
developed mechanism for dealing with that
collision. Extensions to the set of PDUs are handled
robustly by the IEEE 1278 to enable extensions of
functional behavior. We plan to take advantage of

this feature in LiveView.

4.1 Related implementations

The DIS-Java-VRML Working Group of the
VRML Web 3D consortium [81 is working on the
conjunction of IEEE 1278 (DIS), with Java
language and the VRML 3-D graphics file format.
The focus of this working group is to complete a
freely available reference Java implementation of
the DIS protocol (in contrast to the current
proprietary implementations.) Another goal is to
produce a set of recommended practices for
mapping between DIS and VRML worlds. The
focus of this group is still simulation oriented.

4.2 Beyond Simulation

An essential activity in construction automation
is the collection of measurements from field agents
(machines, people, or man-machine teams at
construction sites.) Although IEEE 1278 provides
a mechanism for communicating some information
about field agents (live entity protocol), it does not
provide a way to communicate the data resulting
from the use of sensors that observe the state of the
world, as opposed to the state of the entity itself.
Also, within IEEE 1278 there is not currently a way
to make use of that observed data to update the
model of the world in the simulation (e.g. sending
an updated terrain model to all participating
applications). The purpose of LiveView is to
establish a set of standard practices and message
protocols to incorporate observed data into a DIS.
This is a proposed extension to IEEE 1278.

Both IEEE 1278 and the DIS-Java-VRML
working group are focusing on simulation. To
these applications, an active sensor is only modeled
in terms of whether it can be detected by other
entities already simulated in the exercise (and then
attacked). However, in construction metrology, a
field entity may discover a new entity. Results of
sensors that observe the external world, active or
passive, are not supported by IEEE 1278. What is
needed is a way to report these observations, and
potentially. offload expensive sensory data analysis
from a field observer to a more powerful system.

In line with the rest of IEEE 1278, the
LiveView extensions need to be independent of
language or operating system. In the future, it is
envisioned that vendors would develop products
that communicated using this specification. To
enable the greatest forward flexibility, this
specification should not limit options in realizing

implementations.

5.0 OVERVIEW OF LIVEVIEW

LiveView was inspired by the process by which

the oil industry provides oil and gasoline to its

consumers . A data factory (oil producing
company) collects data. Then transmits this mostly
unprocessed data (oil tankers transporting crude) to

a data interpreter (oil refinery). The interpreter

analyses the data to produce IEEE 1278 PDUs

(gasoline) to be transmitted to the visualization

system (your car.)

120



5.1 A Simple Example

In a simple case, the data factory is capable of
all the necessary sensor processing to create PDUs.
Consider a field agent that provides a state update
(who/what/where/when) for a static object
encountered, for example, reading the bar code
from a girder on a construction site; see Figure 2.

Fig. 2: In this simple case, the field agent can interpret
the data from the sensor observing the object to generate
PDUs to describe the girder to the simulation.

After the field agent has identified the object
and determined the object's position, it is necessary
to broadcast any updates to the data consumers. In
this case, the facilities for entity creation and
managing entity information, provided in IEEE
1278, provide a common data exchange to enable
communication between the field agent and the
data consumers.

5.2 Complex Case

In some cases, observed data may need
significant processing to yield information about
entities in the simulation. For example, an entity
may need to be recognized by its shape - a
significant computation. Another example is the
generation of a terrain from a large number of laser
range measurements over a field of view (a LIDAR
raster scan of the ground); see Figure 3.

A data factory in this model may be a fix-
mounted scanning LIDAR station or a mobile one.
The purpose of these factories is to produce raw
data in some form, potentially in a proprietary
format. In some cases , some local processing or
fusion of sensory data may be possible, such as
combining GPS data with the range to a target
object to provide the global position of the object.
In the general case however, the data set may be
too large, or the algorithms too expensive for a
local system to perform. In such a case, the data set

ATV
Field Agent

Distributed
Simulation

Terrain
Maker

Fig. 3: In this more complex case, an external application

is needed to interpret the raster scans and generate the

resulting PDUs.

must be packaged and sent to an application that
will perform a more detailed analysis of the data set
and create the PDUs necessary to update the model
of the world.

The data-interpreter application serves as a
black box that receives data from one or more
factories and produces IEEE 1278 compliant PDUs.
Following our example, the location of multiple
scanners combined with their respective scans of a
construction site provides the input necessary to
generate a terrain map of the construction site. In
this case, the data interpreter(s) provide scan
registration and perform the actual meshing of the
data into terrain PDUs.

This proposed structure provides a mechanism
for accommodating vendor specific solutions. If a
vendor uses a customized reader/sensor, then the
vendor could provide an interpreter to provide a
mapping between the vendor's proprietary system
and this modified DIS standard.

6. FUTURE PLANS

The creation of a LiveView reference
implementation of the extensions is an immediate
goal of this work. The target platforms for this
reference are Microsoft Windows and POSIX
(UNIX). Windows is being developed as the
reference platform for site display. POSIX

121



platforms will be providing database and network
support . Additionally , the mobile sensor platforms
run VxWorks, a real-time, POSIX conformant
operating system.

Development of standard practice documents
for applying LiveView to construction automation
and metrology tasks is a related task . These formal
documents will provide system integrators with a
complete picture of how a working system is put
together . Additionally , such a document provides
vendors of specific systems a model to follow for
how their products could be used.

Another issue we seek to address is to be able to
provide "Quality of Data" estimates with measured
phenomena . Currently, due to the nature of
simulation , if an entity reports a position , there is
no reason to question the potential error in that
message. However, field methods for measuring
position have limited accuracy . The data quality
might be represented with a simple confidence-
band, or a more complex function . Issues in how to
present and transport information of this nature
needs to be investigated further.

Although LiveView covers reporting the results
of sensory activities between simulated and non-
simulated entities , remote control of live entities is
not presently being addressed.

Finally, the issue of security and access rights in
LiveView will have to be addressed. Current
research in security for distributed systems needs to
be evaluated and applied to the LiveView system.
This work will become critical before control of
live entities is transacted over the system

ACKNOWLEDGEMENTS & NOTICES

The authors wish to thank Fred Proctor for his
initial implementation of tetSock . Certain trade
names and company names are mentioned in this
paper; in no case does such identification imply
recommendation or endorsement by the National
Institute of Standards and Technology , nor does it
imply that the products are necessarily the best
available for the purposes discussed. ' All
trademarks , servicemarks , etc. are property of their
respective holders . This paper is a contribution of
the National Institute of Standards and Technology;
not subject to U.S. copyright.

REFERENCES

[11 Bostelman, R., Albus, J. Dagalakis, N. Jacoff,
A. "RoboCrane: An Advanced Concept for Large
Scale Manufacturing ," proceedings of the
Association for Unmanned Vehicle Systems
International Conference, July 1996, Orlando, FL.

[2] Hoque, R., CORBA 3, IDG Books Worldwide,
Inc., Foster City, CA, 1998.

[3] IEEE, "IEEE Std. 1278-la-1998 , Standard for
Distributed Interactive Simulations - Application
Protocols," IEEE Customer Service , Piscataway, NJ
0855, (800) 678-IEEE , http ://stdbbs . ieee.org/
(refers to 1995 ver.)

[4] Lee, K., Schneeman , R., "A Standardized
Approach for Transducer Interfacing:
Implementing IEEE-P1451 Smart Transducer
Interface Draft Standards", Proceedings of

SENSORS Conference '96, Philadelphia, PA,
Helmers Publishing, October 22-24, 1996, pp. 87-
100.

[5] Pardo-Castellote , G.. Experimental Integration
of Planning and Control for a Intelligent
Manufacturing Workcell . Ph.D. thesis , Stanford

University, Department of Electrical Engineering,
Stanford, CA 94305, June 1995, Chapter 4.
(available from university microfilms or via
download from
http://sun-valley .stanford.edulbib/arlpub.html)

[6] Pfeffer, Lawrence E., "Wireless Networking for
Integration of Real-Time Construction Metrology
Systems, " in the proceedings of the 14th
International Symposium on Automation and
Robotics in Construction (ISARC 14), Pittsburgh,
PA, June, 1997.

[7] Stone, W., Reed, K,. Chang, P., Pfeffer, L.,
Jacoff, A., "NIST Research toward Construction
Site Integration and Automation ," ASCE Journal of
Aerospace Engineering , Vol. 12, No. 2, April 1999,
pp. 50--57.

[8] Web3D consortium
http ://www.web3 d .org/WorkingGroups/vrtp/dis-
java-vrmlldis Java-vrml .html, mirrored at http://
www.stl .nps.navy .mil/dis-java-vrml/

122


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

