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ABSTRACT:  In this paper an approach for the throughput evaluation of the construction manufacturing 
systems is presented. The throughput is evaluated with a heap-based algorithm for the Petri nets model of the 
construction systems. The Petri nets model is a stochastic one, and the firing rate of the transitions are calculated 
with Markov chains models of the component subsystems of the manufacturing system. The advantages of this 
approach are: 
- constructing a system level Markov chain (a complex task) is not required; 
- it permits to evaluate transient and steady-state performance of alternative designs based on different 

availability of the system’s components; 
- the heap based throughput algorithm is simpler than the traditional timed event graph version; 
- it introduces the availability of the human factor in the theoretical model of a construction system. 
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1. INTRODUCTION 
 
Construction systems include a set of manual 
operations, and a set of automatic operations. A 
major consideration in designing a construction 
system is its performance. When a machine or 
other component of the system fails, the system 
reconfiguration is often less than perfect. The 
notion of imperfection is called imperfect 
coverage, and it is defined as probability c that the 
system successfully reconfigures, when 
components break down [1]. We assume that 
when the repair of the failed component is 
completed it is not as performance as a new one. 
In this paper a dependability model for evaluating 
the performance of a construction system is 
presented. The meaning of dependability is: 
- System availability; 
- Dependence of the performance of 

construction system on the performance of its 
subsystems and components; 

- Dependence of designing the stochastic Petri 
nets model, Markov chains, and special 
automata over the (max, +) semiring, which 
compute the height of heaps of pieces 
(respectively the throughput of the system). 

Stochastic Petri nets (SPN) were developed by 
associating transitions/places with exponentially 
distributed random time delays [2], [3]. These 
methods are based on results obtained from the 
underlying Markov chain for such systems. 
Extended SPN were developed to allow generally 

distributed transitions delays in the case of non-
concurrent transitions. For concurrent transitions, 
exponential distribution is required for exact 
solutions. The underlying models of these PN are 
semi-Markov processes. Heaps of pieces: In [4], 
Viennot observed that trace monoids are 
isomorphic to heap monoids, that is monoids in 
which the generators are pieces (solid rectangular 
shaped blocks), and where the concatenation 
consists of piling up one heap above another. This 
yields a very intuitive graphical representation of 
trace monoids. For us, a useful interpretation of a 
heap model consists of viewing pieces as tasks 
and slots as resources, where by slots we use the 
following model [5]. A piece is a solid block, 
occupying some of the slots, with staircase-shaped 
upper and lower contours. With an ordered 
sequence of pieces, we associate a heap by piling 
up the pieces, starting from a horizontal ground. A 
piece is only subject to vertical translations and 
occupies the lowest possible position, provided it 
is above the ground and the pieces previously 
piled up. 
 
2.  THE STOCHASTIC PETRI NETS 
MODEL OF A CONSTRUCTION SYSTEM 
  
A SPN is a six-tuple (P,T,I,O,m,F), where: 
P={p1, p2, …, pn}, n>0, is a finite set of places; 
T={t1, t2, …, ts}, s>0, is a finite set of transitions 
with P∪T≠0, P∧T=∅; I: P×T→N, is an input 
function where N={0,1,2,…}; O: P×T→N, is an 
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output function; m: P→N, is a marking whose i-th 
component is the number of tokens in the i-th 
place. An initial marking is denoted by m0; F: 
T→R, is a vector whose component is a firing 
time delay with an extended distribution function. 
By extended distribution functions, we mean that 
exponential distribution functions are allowed for 
concurrent transitions. Two transitions are said to 
be concurrent at marking m if and only if firing 
either does not disable the other. The firing rule 
for an SPN provides that when two or more 
transitions are enabled, the transitions whose 
associated time delay is statistically the minimum 
fires. According to the transition-firing rule in PN, 
when a transition tk has only one input place pi, 
and pi is marked with at least one token, tk is 
enabled. The enabled transition can fire. The firing 
of tk removes one token from the pi and then 
deposits one token into each output place pj. Let 
P(i,k) be a probability that transition tk can fire. 
The process from the enabling to the firing of tk 
requires a time delay, τk. This delay τk of a 
transition can be either a constant or an extended 
random variable in SPN. P(i,k) and M(s) depend 
on τk as well as the current marking and the time 
delays of other enabled transitions at that marking. 
M(s) denote the moment generating function, and 
is defined as follows: 
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Where s is an extended parameter, and f(t) is a 
probability density function of random variable t. 
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transfer function of a stochastic Petri net [4] is 
defined as the product P(i,k)⋅M(s), and is: 
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Transition tk characterized by P(i,k) and τk is 
expressed by a transition characterized by Wk(s). 
Three fundamental structures can be reduced into 
a single transition. The reduction rules can be used 
to simplify some classes of PN. With these 
reduction rules we transform PN into finite state 
machines (in a finite state machine each transition 
has only one input and output place, and there is 

one token in such a net). Fig.1, a,b,c depict these 
reduction rules.  
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Figure 1. Equivalent transfer functions for three 
basic structures of PN 

 
The moment generating functions for the state 
machine PN which models the construction 
systems represent the availability of the cells 
(subsystems) which form the PN, and are 
computed with Markov chains models of the 
subsystems as shown in the following capitol. 
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3. AVAILABILITY OF A CONSTRUCTION    
SYSTEM 
 
We defined above the notion of imperfect 
coverage, c. We will show the impact of imperfect 
coverage on the performance of the construction 
system. We will demonstrate that system 
availability will be seriously diminished even if 
this imperfect coverage constitutes a small 
percentage of the multiple possible flaws of the 
system. This aspect is generally ignored or 
overlooked in the current managerial practice. The 
availability of a system is one probability that 
should be operational when needed. This 
availability can be calculated as the sum of all 
probabilities of operational states of the system. 
To calculate the availability of a system we need 
to determine the acceptable levels of functioning 
degree of the system’s states. The availability of 
the system is considered acceptable when the 
production capacity of the system can be assured. 
Considering the big dimensions of a construction 
system, the multiple interactions among its 
elements as well as between the system and the 
environment, in order to simplify the graphs and 
reduce the amount of calculus we will divide the 
system into two subsystems. These two 
subsystems are the following: equipment 
subsystem (the machine factor) and the man 
subsystem (the human factor in construction 
activities). In its turn the equipment system is 
divided into cells. The Markov chain is built for 
each cell i, where i=1,2,…,n (n represents the 
number of cells into which the equipment and 
human systems are divided) to determine the 
probability for at least ki equipment to be 
operational at a certain moment t, where ki 
represents the minimum of well functioning 
equipment which preserves the cell i operational 
(for the equipment subsystem), respectively to 
determine the maximum allowed number of 
wrong actions of the workers (human subsystem). 
The availability of the system is given by the 
probability of the operator doing his duty between 
ki operational equipment in cell i and ki+1 
operational equipment in cell i+1, at moment t.  
 
Supposing the levels of the subsystems are 
statistically independent, the availability of the 
system is:   
 

( ) ( ) ( )( )∏
=

⋅=
n

i
ihim tAtAtA

1
  (3) 

 
Where: A(t) = the availability of the construction 
system (man-machine system); Aim(t) = the 
availability of the i cell in the equipment system at 
moment t; Aih(t) = the availability of the cell i in 
the human subsystem at moment t. 
 
3.1. The equipment system 
 
The expectation of an i cell of the equipment 
system which includes Ni equipment of the type ni 
is to ensure the functioning of at least ki of the 
equipment for the system to be operational. To 
determine the availability of the system including 
imperfect coverage and faulty repairs for each cell 
there has been introduced a state of 
malfunctioning caused either by imperfect 
coverage or by technical failure. To explain the 
effect of imperfect coverage of the system we will 
consider that operation O1 can be made with one 
of the equipment M1, respectively M2. 
 
 
 
 
 
 
 
 
 

 
Figure 2. Subsystem consisting of one operator 

and two machines 
 
If the coverage of the subsystem in Fig.2 is 
perfect, that is c=1, then operation O1 is fulfilled 
as long as at least one of the equipment is 
functional. If the coverage is imperfect operation 
O1 fails with the probability 1-c if one of the 
equipment M1 or M2 breaks down. In other words, 
if operation O1 has programmed on equipment M1 
which broke down then the system in Fig.2 fails 
with the probability 1-c. The Markov chain made 
for cell i in the equipment subsystem is given in 
Fig.3. The coverage factor is cm, the rate of 
breaking down of a piece of equipment is λm (and 
is exponential), the repairing rate of the equipment 
is µm (which is also exponential), the factor of 
successful repairing of a piece of equipment is rm. 
In state ki cell i only has ki operational equipment. 
The state of cell i change from working state ki 
into break down state Fki or to imperfect coverage 
(1-cm), either due to faulty repairing (1-rm). The 
solution of the Markov chain in Fig.3 is the 

 O1

M1 

 M2 
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probability that at least ki equipment should 
function in cell i at moment t.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Markov model for cell i in the equipment 

subsystem 
 
We can calculate this probability according to the 
following formula:  
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Where: Ai(t) = the availability of cell i at moment 
t; Pki(t) = probability that, at moment t, cell i 
should contain ki operational equipment; Ni =  
number of Mi equipment in cell i; ki = minimum 
number of operational equipment in cell i. 
 
3.2. The human factor subsystem 
 
The expectation from the human factor subsystem 
is that it should ensure the exploitation of 
equipment with maximum efficiency and safety. 
To determine the availability of the operator to be 
capable of performing his duty at moment t, we 
build this Markov chain (Fig.4) which models the 
behavior of the cell i of the human subsystem. In 
Fig.4, we have:  
λh = the rate of wrong actions of the operator; µh = 
the rate of correct actions of the operator in case 
of break down; ch = the covering factor of 
problems caused by wrong actions or by 
unexpected events occurred in the system; rh = the 
factor of correcting wrong actions of operators. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 4. Markov model of cell i corresponding to 

the human factor subsystem 
 
In Fig.4 the human operator can be in one of the 
following states of performing his job: state Ni = 
normal working state in which actions are 
performed by all Ni operators of cell i; state ki = 
working state where actions are performed by ki 
operators (ki<Ni); state F(ki+u) = working state 
allowing incorrect actions which can cause 
technological malfunctioning with no serious 
consequences on the safety of traffic, where u = 
0,...,Ni-ki; state Fk = state of working incapacity 
due to wrong actions with serious consequences 
on traffic safety.  
The availability of the human factor due to 
perform his duties under normal circumstances is:        
 
 

n,...,,i,)t(P
m
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Where: Pxi(t) = the probability that the operator is 
in working state x at moment t, in cell i;  
m = total number of working states allowed in the 
system; j = minimum allowed number of working 
states.  
Attributing supplementary working states to the 
human factor considerably increases the 
complexity of the calculus, and furthermore, 
although the entire system continues to work, 
certain technological norms are disregarded which 
leads to low throughput in the construction 
system. 
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4. PERFORMANCE EVALUATION OF A 
CONSTRUCTION SYSTEM 
 
A construction system is specified by the 
following properties: 1) A finite set R of resources 
(machines and operators); 2) A finite set T of 
elementary tasks; 3) For each task d∈T, a duration 
τ(d) and a single machine cell i, R(d)∈R on which 
d is to be executed; 4) A finite set B∈T of 
production sequences or jobs. Each job 
J=a1a2…ak∈∈B is composed of a finite number of 
tasks a1, a2, …, ak to be executed in this order. A 
job is produced each time the sequence J is 
completed. This model is equivalent to the one 
given in [5], where the following algorithm for the 
performance evaluation of safe jobs (the 
assumption of safe job is equivalent to state 
machine Petri net as defined above). The 
algorithm has the following steps: Input: a job-
shop, a pattern of transitions v; 1) Build the heap 
model, and its associated matrices [5] M(d), d∈T; 
2) Compute the product of matrices M(v); 3) 
Compute the (max, +) value of M(v), ρ(M(v)), 
using Karp algorithm, where ρ(M(v)) is the (max, 
+)value of M(v). In [5] it is shown that this 
algorithm has the complexity 
O(|v|(|B|+|R|+(|B|+|R|)3). We notice that this 
algorithm, in comparison with other algorithms for 
performance evaluation in discrete event systems, 
do not need a new time event graph to be build for 
each new schedule. This is of great advantage for 
us, because we give to the random variables 
different values in order to build different 
scenarios for the construction system optima 
schedule.   
 
5.  CONCLUSIONS 
 
Our work develop heuristics and performance 
bounds for scheduling, based on heap and 
automata representation. The performance of a 
construction system is evaluated, in many 
scenarios, with a SPN in which a transition can be 
associated with either a constant or random firing 
time delay with an exponential distribution, 
computed with a Markov model which 
incorporates the notion of imperfect coverage, and 
imperfect repair factors. An advantage of the 
Markov model is that the construction of large 
Markov chains is not required. Another advantage 
is that it allows performing sensitivity analysis of 
an entire construction system, as well as of its 
components. The novelty of this approach is that it  

 
incorporates the availability of the human factor. 
We can generalize the proposed approach, when 
instead of decomposing the global system in two 
major subsystems, one can decompose the system 
into three, four, … subsystems, according to the 
specific application. We may notice that a large 
number of subsystems determine an embarrassing 
growth of the calculus complexity. In this paper 
we assumed that the failure and repair times were 
exponential random variables. In real construction 
systems, the time distributions are arbitrary, which 
can be handled semi-Markov processes. A state 
transition may not occur at any time, and the 
failure/repair time can follow an arbitrary 
distribution. When a failure/repair event occur, the 
Markov process representation applies, and the 
probability of burning a transition to a new state 
depends only on the current value of state. 
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