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ABSTRACT: Current methods for construction site modeling employ large, expensive laser range scanners that 
produce dense range point clouds of a scene from different perspectives. While useful for many purposes, this 
approach is not feasible for real-time applications, which would enable automated obstacle avoidance and semi-
automated equipment control, and could improve both safety and productivity significantly. This paper presents 
human-assisted rapid environmental modeling algorithms for construction, and focuses on cylindrical object 
fitting algorithms. The presented algorithms address construction site material of cylindrical shape. Experiments 
were conducted to determine: (1) the effect of the ratio of length to diameter of the cylinder to the accuracy of 
the results, (2) the effect of the angle of view to the accuracy of the results, (3) the minimum number of scanned 
points required to give adequate modeling accuracy for cylinders of various length to diameter ratios. The results 
indicate that the proposed algorithms can model geometric primitives used in a construction site rapidly and with 
sufficient accuracy for automated obstacle avoidance and equipment control functions.  
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1. INTRODUCTION 
 

Considerable effort has been devoted to the 
development of methods of extracting geometrical 
information from a scene, which is still a major 
concern for both computer vision and robot vision 
(Lebegue 1993, Tsukiyama 1996). Determining the 
dimensions, distance and orientations of planar and 
curved object surfaces such as wall, doors, pipes 
and other man-made objects is still a key issue and 
therefore modeling of the geometric features of a 
workspace typically demands a large amount of 
computation due to very large data sets (Tsukiyama 
1996). A new method to extract geometric 
information from a scene by taking advantage of 
human cognitive skills is under development at the 
University of Texas at Austin (Cho et al 2002, 
Kwon et al 2002). A significant advantage of this 
approach is the ability to extract models of real 
world objects in a construction workspace from 
only a limited number of scanned points (less than 
50 pts. per object),which are termed sparse point 
clouds here. 

Current methods for construction site modeling 
employ large, expensive laser range scanners that 
produce dense range point clouds of a scene from 
different perspectives. While useful for many 
purposes, this approach is not feasible for real-
time applications, which would enable 
automated obstacle avoidance and semi-
automated equipment control, and could 
improve both safety and productivity 
significantly (McLaughlin 2002). The dynamic 
nature of the construction environment requires that 
a real-time local area modeling system be capable 
of handling a rapidly changing and uncertain work 
environment. However, in practice, simple, and 
reasonably accurate geometric primitives can give a 
sufficient feedback to an operator, who is 
controlling an equipment to place objects in an 
unstructured construction site. For real-time 
obstacle avoidance, such volumes also facilitate 
computational tractability.  
 
With regard to the geometric objects most 
frequently encountered in a workspace, it appears 
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that a few types of primitives can be used to model 
a wide range of construction scenes. These are 
planar objects, cuboids, and cylindrical objects. 
Particularly, cylindrical objects can be used in plant 
construction to fit and match chemical pipes, 
ventilation pipes, and plumbing pipes. This paper 
presents algorithms that accurately fit and match 
objects of cylindrical shape, with regard to location 
and orientation, to sparse point clouds. Experiments 
were conducted to determine modeling accuracy of 
the algorithm at the Field Systems and Automation 
Laboratory of The University of Texas at Austin. 
 
2. THE FITTING METHOD FOR 

CYLINDRICAL OBJECTS  
 
A single-axis laser range finder, a pan/tilt unit 
(PTU), and a personal computer were used for the 
experimental set up. The single-axis laser range 
finder (DistoMemo) that is mounted on the PTU is 
designed not only for hand-held operation, but also 
for computer use through an interface. The 
measurements can be remotely taken and 
transferred directly into the computer.  
 
Recent research results indicate that graphical 
workspace modeling can improve construction 
equipment control and operations. Equipment 
operators can use graphical workspace models as an 
interactive visual feedback tool while controlling 
equipment (Kim and Haas 2000). For the rapid 
modeling of construction site objects from sparse 
point clouds three basic algorithms have been 
developed that address construction site objects. 
These are: (1) cuboid fitting algorithm, (2) cylinder 
fitting algorithm, (3) sphere algorithm, and (4) 
planar algorithm. This paper focuses on the 
cylinder fitting algorithm. 
 
Algorithm development and revisions were based 
on lab experiments. By using these algorithms we 
achieve: (1) accurate and reliable methods to save 
computational cost and time, (2) improved fitting 
algorithms to attain real-time execution, and (3) 
increased modeling accuracy with operator’s 
assistance. Figure 1 shows the entire fitting process.  
 
2.1 Solid cylinder fitting algorithm 
 
Four parameters are necessary to define a bounded 
cylinder: a scalar radius r; an axis vector, a; a 
center point to place the axis vector, c = (Xc, Yc, 
Zc); and a length of cylinder that defines the 
boundary of the cylinder. This algorithm uses the 
nearest neighbor algorithm to define the normal 

vector. Four scanned points are used to compute the 
planar surface of the cylinder. By projecting the 
points on the curved surface onto the computed 
planar surface, parameters r and c can be estimated. 
The radius of the circle is defined as the distance 
from the center of the circle to any point on the 
optimized curve. A primary estimation of the 
radius, ř, is found by ř = mean (|ĉ - k'|) (k' = {the 
projected points on the optimized curve of planar 
surface}). Consequently the final values of a, c, r 
are found by the least squares method using data d.  
 
2.2 Hollow cylinder fitting algorithm 
 
In the hollow cylinder fitting algorithm, Principal 
Components Analysis (PCA) was used to determine 
the primary axis of cylinder. Excluding the steps for 
computing the primary axis, the other steps of the 
algorithm follow the same sequence as the solid 
cylinder algorithm.   
 
PCA is a distribution-based ordination method in 
which the distance between sites in an ordination 
diagram is correlated with multi dimensional 
distribution (Duda et al, 2001). PCA assumes that 
all vectors in a set of n dimensional samples a1 … 
an can be explained by a single vector a0. The 
vector a0 is derived using the least squares method, 
in which the sum of the squared distances between 
a0 and the various ak are minimized. We define the 
square-error criterion function F0(a0) by 
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Projecting the sample data onto a line through the 
sample mean, one-dimensional representation can 
be computed. If we let e be a unit vector of the line 
direction, the line equation is  

 
depa +=                                                (4) 

 
Scalar d is the distance between the sample data 
and the sample mean p.  We can find the 
coefficients dk by minimizing the squared criterion 
function. 
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The best direction e of the line can be found by 
solving scatter matrix U, which is defined by 
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LaGrange multipliers can be used to maximize the 
etUe, which is subject to the constraint ||e||=1. Let 
φ be an undetermined multiplier. We can do the 
differentiation of  

 
)1( −−= eeUeev tt φ                                   (9) 

 
with regard to e getting  
 

eUe
e
u φ22 −=
∂
∂

.                                       (10) 
 

By setting the gradient vector equal to zero, we see 
that e should be an eigenvector of the scatter 
matrix. The eigenvector will be the primary axis of 
the cylinder that can be obtained by reducing the 
dimensionality of the feature space and by 
restricting attention to the directions along the 
scatter of the cloud (Vemuri et al.1986, Vemuri and 
Aggarwal 1987, Schweikert 1966). It will be the 
primary axis of the cylinder. 

 
eUe φ=                                                   (11) 

 
After finding the primary axis of a cylinder, the 
estimated planar surfaces can be generated on the 
top and bottom of a hollow cylinder.  By projecting 
the points of the curved surface onto the planar 
surfaces, the radius and center point of the hollow 
cylinder can be estimated. The radius of the circle 
is found using the same method used in the solid 
cylinder algorithm. Consequently the final values of 
the radius, length, center point, and primary axis are 
found by this fitting algorithm using scanned data. 
Figure 2 shows the scanned points and the 
computed primary axis of the cylinder. Figure 3 
illustrates scanned points and projected points onto 
planar surface of the cylinder. Figure 4 shows the 
points projected from the curved surface onto the 
planar surface of the cylinder. Figure 5 shows 
modeled cylinders computed by the scanned points 
from actual objects.  

 
3. EXPERIMENTAL RESULTS  

 
Experiments were conducted to determine: (1) the 
effect of the ratio of radius to length (L/D) of the 
cylinder to the accuracy of the results, (2) the effect 
of the angle of view to the accuracy of the results, 
(3) the minimum number of scanned points 
required to give adequate modeling accuracy for 
cylinders of various length to diameter ratios.  
 
Experiments were performed for cylinders with 3-
inch through 5-inch radii. For each size of cylinder, 
several measurements have been conducted. 
Specifically, measurements based on 10, 20, 30 and 
40 scanned points, were conducted for each tested 
cylindrical object. To increase the accuracy of the 
experiments, each test has been repeated 30 times. 
Thus, 120 tests per factor were conducted for the 
evaluation of the performance of the algorithm in 
respect to each one of factors (radius, length, and 
axis). The following results were obtained (Table 1, 
Figures 6 and 7):  

• The relationship between radius and length 
of the visible section of a cylinder affects 
the accuracy of the cylinder fitting 
algorithm 

• The most accurate results in radius, length, 
and axis were obtained for a 90 degree 
angle of view. 

 
Results of tests using fixed radius (3 to 5-inch), 
various lengths (range from 10 to 25–inch), and 
various angles (30, 60, 90 degrees) show that: 

• Ten scanned data points give adequately 
accurate estimates of radius, length, and 
axis for all tested cylinders.  

• Minimal improvement in accuracy is 
achieved by scanning more than 10 points. 

 
With respect to the accuracy of the estimates of 
length, both the number of data points and the way 
scanned data points are distributed on the surface of 
the cylindrical object play a significant role. In 
other words, it is of prime importance to select well 
distributed points on the visible surface of cylinder. 
Restriction of points only on a small area of the 
cylinder’s surface results in lower correlations and 
poorer parameter estimates. In addition, the 
distance from the object to the laser scanner affects 
modeling accuracy, precision error, and accuracy 
error. 
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4. CONCLUSION 
 

The proposed algorithms for fitting cylindrical 
objects are computationally efficient and suitable 
for use in equipment control and obstacle avoidance 
for safety applications. They are also acceptable for 
generating construction as-builts, however for long 
pipe sections they would have to be corrected with 
pipe end points. These algorithms should be 
broadly applicable. 
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Figure 1 .Object Fitting Method 

    
 
 
 
 
 
 
 
 
 
 
 
 

      
Figure 2. Scanned Points Computed Primary Axis          

 

         
              Figure 3. Result of Fitting (1) 

 

     
Figure 4. Result of Fitting (2)             

 

      
     Figure 5. Modeled Cylinders 
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Table 1. Summary of Experimental Results of Analysis 

10 pts. 20 pts 30 pts 40 pts 

Percentage of Error 
(%) 

Percentage of Error 
(%) 

Percentage of Error 
(%) 

Percentage of Error 
(%) 

 

Radius Length Devi. 
of Axis Radius Length Devi. 

of Axis Radius Length Devi. 
of Axis Radius Length Devi. 

of Axis 

L/D ≈ 

1.0 
11.50 11.00 14.19 14.50 14.40 15.68 15.50 12.20 20.89 21.50 16.80 24.43 

L/D ≈ 

1.5 
4.75 8.67 2.66 3.75 5.33 2.58 3.50 5.13 2.51 3.50 4.87 2.41 

L/D ≈ 

2.0 
4.50 5.35 2.58 4.00 5.30 2.54 3.50 4.40 2.52 3.50 3.85 2.52 

L/D ≈ 

2.5 
3.00 2.88 1.94 3.00 2.84 1.80 2.75 2.84 1.78 2.00 2.24 1.49 

 

Percentage of error for radius of cylinder
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Figure 6. Percentage of Error for Radius of Cylinder 

 
Percentage of error for axis deviation of cylinder
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Figure 7. Percentage of Error for Axis Deviation of Cylinder   


