
 407

Criteria For Selection of Software Development Environment
For Construction Robotic Systems

Khaled Zied and Derek Seward

Engineering department, Lancaster University, Lancaster, LA1 4YR, UK
k.zied@lancaster.ac.uk & d.seward@lancaster.ac.uk

ABSTRACT: The selection process for a suitable programming environment for construction robotic systems
should satisfy a range of requirements identified from both a users and systems point of view. In the present work
two different object-oriented programming environments are chosen for comparison, namely MATLAB as an
example of text-based programming and LabVIEW as iconic-based programming. The selection of the appropriate
development environment is performed using the AHP process for decision-making. Several criteria and sub-
criteria are identified and used for the selection process. A complete hierarchy of the problem is constructed and
priority vectors are identified. Sensitivity analysis on the results is performed to identify the factors affecting the
final decision. For the entered values of the priority vectors, the obtained result shows a preference for LabVIEW
over MATLAB as a software development environment for construction robotic systems.

KEYWORDS: Robotics, Software, AHP, Decision-making

1. INTRODUCTION

The development of robotic systems in construction
advances very slowly owing to several challenges,
[Garas]. One of the obstacles is the development of the
required software components. This is a major
obstacle because of the requirement for highly trained
programmers and expert software engineers. Software
represents a substantial part of the overall complexity
of a robotic system. In most development systems,
software is the component on the critical path and is
usually blamed for system development problems,
[Stevens].

In a robotic system, software plays a vital role in many
sub-systems, including the controller, sensors and user
interfaces [Seward & Zied]. Hence a robotic system
can be considered as computer-based system CBS. A
CBS is a mixture of software, hardware and people but
the software is considered as the core of the system
and the key element for cost, added value and risk
[Thome]. The need to apply Systems Engineering
principles is clear because the design of software
needs decomposition, risk management, interface
control and integration, which are the elements of
Systems Engineering as described by [Stevens] and
[Martin].

The software development process requires a powerful
programming environment that can produce functional
and reliable software to satisfy the end user needs, as
well as the developers’ needs. The characteristics of a
robotic system oblige us to select a powerful software
development environment that enables modularity,
easy integration and reusability. For example, in the
present project, the Starlifter robot –See Figure (1)
[Zied 2001], the robot controller, ATC is working on

Windows 3.1 operating systems which uses 16-bit data
format, the operating software for the RotoScan, laser
scanner for range measurements [Seward 2002] is a
DOS based program etc. This illustrates one of the
difficulties involved in integrating these components
of software into one user interface The need for a
programming environment capable of dealing with
these problems is obvious. This environment must
allow modular design and easy interfacing with other
software written in different programming languages
etc. Another problem arises from the fact that these
systems are invariably one-offs or low volume
products, and so the resources that can be invested in
software are severely limited. Object oriented
programming environments fit the above
requirements; it is however difficult to start from
scratch in the software development process which
implies the need for ready-made components that
reduce the development time and cost.

Figure (1) The Starlifter robot

 408

In the present work two software development
environments are considered for comparison,
MATLAB which is a text-based programming
environment (TPE) and LabVIEW which is an iconic-
based programming environment or graphical
programming environment (GPE). Capabilities of both
environments are examined to reach a final decision as
to which one is appropriate for the development of
software for construction robots.

2. THE SELECTION PROCESS OF SOFTWARE

DEVELOPMENT ENVIRONMENT

Most researchers choose a software development
environment according to their personal preference
and the skills they already have in programming.
Current personal skills and the availability of the
development environment affect the decision of
whether or not to use a certain development
environment. For example people familiar with
MATLAB or VC++ tend to choose them in the first
place regardless of the capabilities of the environments
and the development time that these environments will
consume.

From the authors’ personal experience, firstly, it was
decided to use MATLAB as the software development
environment because of past experience in
programming. However, after spending some time
MATLAB programming it was found that excessive
programming resources would be required to complete
the system. VC++ was tried for creating user
interfaces but it was found difficult and time
consuming. Eventually it was decided to use
LabVIEW because of the availability of the hardware
that required interfacing with the robot.
In the following section, selection criteria are
presented to enable developers to choose the right
software development environment from different
points of view. The selection process is based on the
AHP process [Saaty].

The starting point of the selection process is to make a
hierarchy of the problem showing the goal of the
problem and the alternatives.

2.1 The Problem Hierarchy

Whitley and Blackwell [Whitley] presented a
comprehensive survey-based study on visual
programming versus textual programming. In this
study they compared two types of languages, textual
and iconic.. This comparison is based on surveys
between programmers who use these two types of
languages. It is important to identify that they used the
term visual programming to represent iconic

programming, which in the present study is referred to
as Graphical Programming. The results of these
surveys showed that there is a great difference in
opinion between academics and professionals
regarding the capabilities of programming languages
in general. “Researchers have ambitious theories
regarding the influence that new programming
languages can exert on mental processes of the
programmers” Professional programmers are mainly
concerned with productivity, which is represented by
reusability, and they prefer their existing tools.

Graphical Programming users admitted that the visual
representation of functions is more advantageous than
re-usability in LabVIEW.
[Whitely] presented several criteria, to compare textual
and graphical programming. These criteria are
regrouped in the present work into four main criteria.
These criteria in addition to other criteria related to
personal experience are used to select a software
development environment. The main criteria are:

1. General criteria
2. Technical (Beginners) criteria
3. Technical (Advanced) criteria
4. Practical criteria

Figure (2) shows the hierarchy of the problem, the first
level is the objective or the goal, which is the selection
of a software development environment. The second
level is the selection criteria and the third level is the
alternatives, which in the present study are, LabVIEW
and MATLAB.

2.2 Priorities Setting

The AHP process consists of two main steps; the first
step is the pairwise comparison between criteria at the
same level i.e. comparing the relative importance
between the main criteria in the A-level and between
the sub-criteria in each main criteria. The second step
is comparing the preference of one alternative over the
other relative to the individual sub-criterion.

In the present work all of the data supplied to the
process are based on the authors personal judgement
and past experience. The process analysis is performed
using Expert Choice 2000 software (EC2000). EC2000
is based on the principles of the AHP process
developed by [Saaty]. The data obtained is verified
manually to confirm the correctness of the output data.
The following section illustrates examples of the
output from the AHP process:

 409

Figure (2) The selection problem hierarchy

Figure (3) Percentage contribution of sub-criteria for MATLAB (M) and LabVIEW (LV) at different levels of the

hierarchy in the decision process

Selection of Software Development
Environment

First Impact

Learnability

Productivity

Technical Beginners

Readability

Documentation

Syntax Reduction

Modularity

Text Retention

Power

Technical Advanced

Software inclusion

Remote Access

Hardware & Instru.

Real time operation

Large Software Dev.

Practical

Integration

Stand Alone Exec.

Portability

Reusability

LabVIEW MATLAB

Goal

A-Level
Main

B-Level
Sub-Criteria

General

G

1A 2A 3A

M (32.2)
LV (67.8)

M (3.8)
LV (4.0)

M (7.6)
LV (14.3)

M (7.2)
LV (31.3)

M (13.6)
LV (18.2)

M (0.1)
LV (0.4) 1.2B

2.2B

3.2B

4.2B

5.2B

6.2B

1.3B

2.3B

3.3B

4.3B

5.3B

1.4B

1.1B

3.4B

4.4B

M (1.9)
LV (0.4)

M (0.9)
LV (4.3)

M (2.2)
LV (0.6)

M (0.2)
LV (1.2)

M (1.2)
LV (2.4)

M (1.5)
LV (3.0)

M (1.0)
LV (7.0)

M (1.7)
LV (11.6)

M (3.9)
LV (7.8)

M (2.5)
LV (7.6)

M (0.7)
LV (0.7)

M (6.0)
LV (1.2)

1.1B

2.1B

3.1B

M (3.4)
LV (3.4)

M(1.9)
LV (0.6)

M (0.6)
LV (0.6)

M (1.7)
LV (8.5)

 410

2.2.1 Level A: Main criteria
Compare the relative importance between the main
criteria

Inconsistency 0.08

2.2.2 Level B: Sub-criteria
Compare the importance between the sub criteria
relative to A1 = General criteria

 1.1B 2.1B 3.1B PV WV

(B1)
Impact 1.1B 1 1/5 1/5 0.065 006
Learnability 2.1B 5 1 1/2 0.361 .032
Productivity 3.1B 5 2 1 0.574 .045

WV Weight vector and PV Priority Vector

2.2.3 Level C: Alternatives

Analysis with respect to B1.1= Impact
Weight of B1.1=0.0057, refer to weight vector B1

2.2.4 The aggregate vectors

Calculation for the alternatives relative to the A1 =
General

2.2.5 The aggregate matrix

 C1 C2
1A 0.143 0.074865

2A 0.31473 0.0718

3A 0.18128 0.1353

4A 0.039777 0.038925
Sum 0.679 0.321

2.2.6 The final priority vector

This vector shows the preference of LabVIEW
(67.9%) over MATLAB (32.1%)

=

321.0
679.0

2
1

C
C

2.3 Analysis of Results

Structuring the problem in the way the AHP process
required not only makes the problem formulation easy
but also makes it clear which criteria or sub-criteria
influence the final decision. The final decision, which
can be extracted from the final priority vector, shows
the preference for LabVIEW over MATLAB
according to the entered judgements at each level. The
judgements in the lowest level of the hierarchy
influence greatly the final decision however; the
relative importance between criteria in each level
increases or decreases the contribution of the initial
judgements in the lowest level. Figure (3) shows the
percentage contribution of each criterion in the final
decision. It is clear from this figure that the influence
of the technical advanced criteria has more effect than
the other criteria in which the percentage contribution
reaches about 47% of the total percentage of the
LabVIEW preference. The lowest contribution in the
final decision in the A level criteria is shown by the
general criteria for the LabVIEW preference which is
the same for the MATLAB preference. The practical
criteria contribution is the highest towards the
MATLAB preference.

2.4 Sensitivity Analysis

Because the judgements made here are based on
personal experience it is necessary to show how
sensitive the preference for LabVIEW over MATLAB
is to the change in the priority vector at each level.
Any change in the priority vector means a change in
the inherent judgements entered by the user.
Therefore, identifying the relative importance of the
entered values must follow any change in the priority
vector.

Figure (4) shows the gradient graphs of the priority
vectors of the main criteria and the effect of changes
have been made to the preference of MATLAB and
LabVIEW. It is obvious from this figure that there is
no break-even point which indicates that changes to
the individual priority vectors will not provide a
preference for MATLAB over LabVIEW. However
the general criterion gives a break-even point when it
is the only criterion at this level. This shows that it is
necessary to go to a lower level to change the priority
vector.

 1A 2A 3A 4A Weight
 Vector

General 1A 1 1/5 1/5 1/2 0.078
Technical
Beginners

2A 5 1 1/2 2 0.317

Technical
Advanced

3A 5 2 1 1 0.387

Practical 4A 2 1/2 1 1 0.218

 1C 2C Priority
Vector

Weighted
Vector

LabVIEW 1C 1 3 0.75 0.004257
MATLAB 2C 1/3 1 0.25 0.001425

Analysis with respect to:

Criteria A1
1.1B 2.1B 3.1B

Aggregate

Vector
LabVIEW
C1

0.004257 0.00564 0.02988 0.039777

MATLAB
C2

0.001425 0.02256 0.01494 0.038925

 411

Figure (5) shows example gradient graphs for B1
criteria, it is obvious that a break-even point can be
achieved for different sub-criteria, which implies the
possibility of changing the decision at this level. A
break-even point for certain criteria means an equal
priority of the two alternatives. The change in one of
the elements of the priority vector means proportional
changes in the other elements to keep the judgements
consistent. Analysis of the results shows that any
positive change in the priority vector for the B2
criteria increases the preference of MATLAB over
LabVIEW. Keeping the modularity sub-criteria
priority, increasing the weight for the power and
computability and reducing the weight for syntax
reduction can achieve the preference for MATLAB
over LabVIEW. This increase in MATLAB preference
is due to the original preference of MATLAB in the
sub-criteria B2.6 in which MATLAB is 5 times
preferred to LabVIEW. Sensitivity analysis is a good
tool for advising on the required change in priorities
for a proper selection of tradeoffs.

Figure (4) Gradient graphs of the A-level priority
vectors

3. NON-COMPARABLE FEATURES OF

MATLAB AND LABVIEW

As the above analysis is based on pairwise
comparisons it is necessary to identify other
advantages that exist in one environment and not in the
other. These advantages may support the use of one
environment over the other if it is essential for the
development.

Figure (5) Gradient graphs of the B1 level priority
vectors (B1.1)

3.1 MATLAB Advantages:

1. Specialist toolboxes - this feature enables the use of
specially designed functions and to implement them
directly in the program. For example, the robotic
toolbox [Corke], the system identification toolbox, and
the control toolbox contain powerful functions to
reduce programming time. LabVIEW contains
functions similar to some toolboxes such as signal
processing, data acquisition etc.

2. MATLAB C compiler, this feature enables the user
to convert MATLAB code into a C-code executable or
dynamic link library (DLL). This enables real time
operation for real time critical systems and facilitates
stand-alone applications.

3.2 LabVIEW Advantages

1. The code interface nodes CIN, this feature enables
the user to bring all the features of other programming
languages inside LabVIEW. For example, MATLAB,
HiQ and C interface nodes, which allow the
implementation of existing c code inside programmes
made with LabVIEW. The good thing in using this
feature is for example using the powerful MATLAB
toolboxes inside LabVIEW.

2. Another form of interface node is the dynamic link
library interface node, which allows the interface of
other software libraries. This in conjunction with the
MATLAB c-compiler can bring the real time
functionality of the MATLAB toolboxes inside
LabVIEW.

 412

3. Polymorphism is a feature in LabVIEW that allows
the automatic change of data types without conflict.

4. DISCUSSION
For software development, the concepts of SE provide
solutions to most of the interfacing and integration
problems however the tools to carryout these concepts
need to be identified. Two programming environments
allow the use of these concepts namely, MATLAB and
LabVIEW. The selection process for the most
appropriate environment can be carried out using the
AHP process, which requires the establishment of
selection criteria. Pairwise comparison of criteria with
respect to suggested alternatives provides a systematic
way of decision-making. Pairwise comparisons can be
obtained from users of the two environments or from
other supporting information. A sensitivity analysis is
needed to identify the change in the decision if any of
the priority vectors change. The output from the AHP
shows a preference for LabVIEW over MATLAB for
the values considered in this study. Practically,
Graphical Programming allows logical top-down
architectural design and the decomposition of the
software components. For ready-made components,
which require the use of a specific data format, it is
possible to use them directly thanks to the
polymorphism of the data types in LabVIEW. It is
possible to use top-down decomposition without the
worry of the interfacing or changing the logical top
down architecture. A crucial property available in
Graphical Programming is modularisation of the
software package components. Modular design
requires clear interfaces between the system modules;
the versatility of Graphical Programming provides
different interfaces, which allow easy integration of
the software package components. For example, in
case of the Starlifter controller software, the
MATLAB robotics toolbox is used for kinematics
calculations.

5. CONCLUSIONS
The AHP process provides a good systematic tool for
decision-making in case of multiple criteria problems
such as software development. A software
development environment should satisfy robotic
systems development principles, which are based on
systems engineering principles. Architectural design,
modularisation and prototyping are important concepts
that should be employed in the software development
process. Selecting an appropriate software
development environment involves many issues,

which depend mainly on experience. However using
the suggested criteria helps in the decision to select a
particular programming environment. Sensitivity
analysis on the priority vector provides a good tool for
supporting the final decision by examining the shift in
decision caused by the preference of one criterion over
others. The results obtained from the AHP process
reflect the practical situation in which it was found that
graphical programming provided powerful capabilities
to assist in the rapid development of software for
construction robots.

6. REFERENCES

[Corke] Corke, P.I., 1996, "A Robotics Toolbox for
MATLAB", IEEE Robotics and Automation Magazine, v
3(1), p 24-32.

[Garas] Garas, F., 1996,“Automation of the UK construction
Industry-Current status and key issues”. Proceedings of the
13th ISARC, p 43-50, June 11-13, Tokyo, Japan.

[Martine] Martine, James N., 1997, “Systems guidebook, a
process for developing systems and products”. Lucent
Technologies, Florida, USA, ISBN 0-8493-7837-0.

[Saaty], Saaty, 1980, The Analytic Hierarchy Process,
McGraw Hill, New York.

[Seward & Zied] Seward, D. W. and Zied, K., 2004,
“Graphical Programming and the Development of
Construction Robots, Computer-Aided Civil and
Infrastructure Engineering, 18.1,

[Seward 2002] Seward, D. Quayle, S., Zied, K. and Pace, C.,
2002, “Data interpretation from Leuze Rotoscan sensor for
robot localization and environment mapping”,19th ISARC,
Sept. 2002, p343-349, NIST Gaithersberg, USA.

[Stevens] Stevens, R., Brook, P. Jackson, K. and Arnold, S.,
1998, “Systems engineering, coping with complexity”.
Prentice Hall Europe, ISBN, 0-13-095085-8, London.

[Thome], Thome, B., 1991,”Systems engineering, principles
and practice of computer-based systems engineering”, Wiley
, Wiley series in software based systems.

[Whitley] Whitley, K.N. & Blackwell, A.F. 1997. Visual
programming: The outlook from academia and industry. In
S. Wiedenbeck & J. Scholtz (Eds.), Proceedings of the 7th
Workshop on Empirical Studies of Programmers, pp. 180-
208.

[Zied et al], 2000, “The development of a robotic system for
tool deployment in hazardous environment, ISARC 17,
Taipei, Taiwan, p179-184.

