
 643

Intelligent Agent-based Subcontracting System in Construction

Pao H. Lin

Assistant Professor, Dept. of Civil Engineering
 Feng Chia University, Taichung, Taiwan, 407

E-mail: paolin@fcu.edu.tw

Will Y. Lin

Ph.D., National Taiwan University, Taipei, Taiwan
E-mail: willsland@hotmail.com

ABSTRACT: Practically, the effective management of subcontracting selection within a construction
project has been regarded as one of the critical factors for achieving project success. This study takes
advantage of IT initiatives of e-commerce to combine with the use of electronic information exchange
standards Java XML (extensible markup language) to propose a “push-strategic” and agent-based online
subcontract bidding and negotiation architecture. The design of agent will make it possible to
automatically sense the changes in its environment and react accordingly on behalf of the host. The
information agent deals with all manipulation of incoming and outgoing messages following the
pre-defined communication mechanism. Furthermore, it will communicate with other information agents
mounted on all other contract nodes, and also with its local decision support system through the mapping
rules. The ultimate goal of this study is to build an agent-based automatic subcontracting environment for
Multi-Agent System (MAS) to achieve the effective communication and optimization within the process
of subcontractor selection. A proto information system has been designed and implemented in the study.
The proposed agent-based subcontracting system, after being made into a widespread and workable
process in the future, could expectably become a new paradigm for the subcontracting procurement of
the construction industry.

KEYWORDS: E-Commerce, Intelligent Agent, Subcontract, XML

1. INTRODUCTION

Due to the specialized technological divisions of
labor in the construction industry, a large majority
of engineering functions and values of a project are
carried out by specialized engineering firms
coordinated and controlled by the master contractor.
Traditionally, the practice for selecting
subcontractors was to take the way of choosing
while working on the project, especially those who
were set to work together with or those with whom
one had already done business, which gave rise to
quasi-firm sub-structures. Nevertheless, because of
factors related to limitations on finance, manpower,
time, and information in traditional procurement,
there is often no way to effectively expend the
sample space to try out new clients, which can give
rise to inefficiency in subcontractor selection and
negotiation processes. However, in recent years,
the rise of the Internet and e-commerce has
thoroughly changed the traditional market’s

business rules and has brought a revolution in
transaction practices. The use of Internet-based
technology initiatives makes the exchange of
information simple, fast, omnipresent, and accurate,
and brings a new, pivotal opportunity and force to
the enhancement of the subcontracting supply
chain management. Starting from and looking
toward Internet, the subcontractor selection can be
categorized as B2B e-procurement in this age of
digital commerce. Meanwhile, the present
e-procurement is mainly focused on the “pulling
strategy.” That is, the master contractors who call
for subcontracting tenders may establish and
maintain a homepage within the specific
web-server to post the bidding information and
then passively wait for tendering. The pulling way
of e-procurement has certainly improved the past
flaws of selection from limited candidates, but
somehow it is apparently too passive to
customer-oriented in tendering process. Recently,
agent-based electronic commerce has become even

 644

more widespread as agent and Web technology
become more powerful and flexible. Therefore,
beyond considering the pull way of e-commerce,
the “push strategy” implemented by agent-based
subcontracting system is proposed to strengthen
the ability of customer-oriented e-procurement and
create an automatic mechanism of data acquisition.
The push-strategy agent will automatically and
precisely transfer tendering information to the
specific potential subcontractors, and thereafter
deal properly with all relevant responses from them
through the Internet. In this research, the overall
subcontracting supply chain of a construction
project is considered as a global procurement
system and an intelligent agent-based
subcontracting (ABS) system is developed to
obtain optimal combination of subcontractors
selection. ABS is programmed to make decisions
based on the decision-maker’s personal
preferences. Combined use of XML (extensible
markup language) and Java language allows ABS
and other automated processes to access and
interact with Web-based information more easily.
In the proto-model, ABS shows the ability to
facilitate communication, collaboration and
coordination, brings more analytical power to bear
in the development of solution, and reduces the
amount of human intervention in organizational
processes. As a matter of fact, the development of
ABS is a preliminary trial to take the
subcontracting and purchasing process into
intelligent re-engineering through omnipresent
Internet.

2. INTELLIGENT AGENT

There has been much discussion about whether a
certain system is an agent or merely a program.
This research does not intend to manifest the
historical problem of defining these terms in
artificial intelligence. However, intelligent agents
could be more easily distinguished from a program
due to three major features: autonomy, cooperation,
and learning. Nwana defines an agent in terms of
the three behavioral attributes, any two of which
must be possessed by an intelligent agent [1]. (1)
Autonomy: Intelligent agents can operate on their
own without the need for human guidance.
Therefore, they have individual internal states and
goals, and act to meet their goals on behalf of their
users. (2) Cooperation: Since agents are designed
to act on behalf of their hosts, they would cooperate
with other agents or humans. In order to cooperate,
agents need to possess a social ability, i.e. the
ability to interact with other agents and possibly

humans via some communication language. (3)
Learning: For agents to be truly regarded as
intelligent, they would have to learn as they interact
with their external environment since the learning
ability has almost been regarded as one element of
intelligence. This research adopts Nwana’s
suggestion to define an intelligent agents: “A
program is an intelligent agent if it possess any two
of behavioral attributes: autonomy, cooperation,
and learning”[1,2,3,4]. Intelligent
agent research grew out of Distributed Artificial
Intelligence (DAI). The aim of this area was to gain
the benefits of modularity when tackling large,
real-world problems. With the advent of the wide
usage of the Internet, new and somewhat more
manageable research areas started to open up, as
the Internet is essentially an ideal electronic
environment for agents. In the last few years, there
has been an explosion in the amount of information
available on a daily basis. This information may be
stored as passive stored databases and files or it
may be information we need to actively request in
order to make a decision. Much of this information
is stored remotely in a variety of formats and
sources; much of it badly labeled, and much of it
time-consuming to locate. This has led to a state of
affairs where traditional IT systems are
increasingly hard-pressed to meet many
information gathering challenges. Whereas,
previously, humans would take on the role of
sifting and coordinating gathered information in
order to take decisions, agent-based software
technology is rapidly evolving to perform all of
these functions. Agents are considered particularly
useful for tackling large-scale, real-world problems
involving multi -disciplinary perspectives. They
are currently applied to a variety of application
domains including workflow management,
telecommunications network management, air
traffic control, business process re-engineering,
information retrieval and management, electronic
commerce, personal digital assistants, e-mail
filtering, command and control, smart databases
and so on. [1,5,6,8].

3. APPROACH

Due to the potential for a high number of
subcontractors on the market, every business
usually employs a certain kind of software system
to manage and record documents and information.
The formats and standards of each system are
possibly different, and without format conversion,
it is not easy to share and exchange documents and
information. Because of this, an agent-based
communication environment for subcontracting is

 645

developed to achieve this goal to conquer the
difficulty of problems related to different
information system platforms and software
compatibility as well as problems related to
encryption of data heterogeneity.
Since there has long been a consensus in the
industry that a standard ontology is required for
efficient data exchange, in this research we follow
aecXML’s framework developed by World Wide
Web Consortium (W3C) for data schema, and
define all possible categories of subcontracting
information using its terminology, and developed
the data structure of XML Schema for Project
Subcontracting (SPS) by modifying the aecXML
framework. Meanwhile, the Data Acquisition
Language for Subcontracting (DALS) is also
developed using the syntax of eXtensible
Stylesheet Language Transformation (XSLT) as the
media for requesting standardized subcontracting
information as well as the associated responses.
Message Agent is endowed with SPS and DALS,
and thus able to autonomously deal with all
messaging tasks. Each potential subcontractor
equips a Message Agent as a unique information
window to automatically acquire external
information and also provide relevant responses.
While the master contractor receiving responses
from subcontractors, the selection process will
succeed to be run in the decision support system of
general contractor according to the
decision-making mechanism of optimal selection.
The complete mechanism is some complex to
discuss here, and details can be referred to Lin
(2001)[7].

Figure 1. Architecture of Message Agent

This research assumes that all the
subcontracting suppliers are equipped with a
Message Agent developed by Java language.
Figure 1 shows the Message Agent is composed of

four major processors: Requester, Responser,
Interpreter, and Dispatcher. Requester and
Responser check the message Queue regularly, and
retrieve the requests and responses, respectively,
which are then further processed. Interpreter
identifies the request and decides the procedure of
request manipulation. Dispatcher dispatches the
requests from Interpreter or Requester and the
responses from Responser to the next destination.
While generating or altering the messages, all
processors either check the syntax and data
structure of the incoming messages or follow the
data schema according to ontology base. Figure 2 is
an illustration and the schematic representation of
the operation of this ABS system. The general
contractor pushes specific tendering information
constituted by pre-defined XML formats to the
potential subcontractors (A, B, C,….., X). Each
project member in this project equips a Message
Agent that continuously and regularly monitors its
Message Queue and performs proper message
manipulation.

4. SYSTEM IMPLEMENTATION

The developing environment of the
implementation of the present system is a visual
programming tool for Java called Jbuilder 6.0
Personal, Borland Software Corporation. With an
integrated, extensible source code editor, graphical
debugger, compiler, visual designers, timesaving
wizards, sample applications, tutorials, multimedia
training, and support for Java standards, JBuilder
Personal 6 makes learning and using Java easy.
Table 1 and 2 show the details. Message Agent was
implemented using Java 2 and tested in IBM PC
with Windows 2000 OS. Figure 3 shows the
configuration board upon booting Message Agent.
The configuration such as folders, Host Name, and
Host URL, is set up here at the first time of running.
By clicking the button “Save” on the board, the
configuration is saved for the following use by
Message Agent. The content of XML document is
cited an instance as Figure 4.
The linkages between the Message Agent and local
DALS-speaking DSSs are DALS and the file
folders where the DSSs put their requests in and the
Message Agent accesses these requests and
dispatches them. Figure 5 (a) and (b) illustrates the
relationship between them. In Figure 5 (a),
DALS-speaking DSSs generate DALS-based
requests and deposit them in “Outbox Request
Queue”, which is regularly checked and dispatched
by the Message Agent. The corresponding

 Ontology
Base

Open D ata
Repository

Message Agent

Dispatcher

Interpreter

Request
Processor

Response
Processor

Regular check

Regular check

Interpret

Query

Match

request

M essage
Queue

response

Deliver

Deliver

Match

Other MAs on
Internet

Dispatch

Dispatch

Deliver

Deliver
Deliver

Ontology
Base

Open D ata
Repository

Message Agent

DispatcherDispatcher

InterpreterInterpreter

Request
Processor
Request
Processor

Response
Processor
Response
Processor

Regular check

Regular check

Interpret

Query

Match

request

M essage
Queue

response

Deliver

Deliver

Match

Other MAs on
Internet

Dispatch

Dispatch

Deliver

Deliver
Deliver

 646

responses to original requests are then received by
the Message Agent for a certain while later, and are
deposited in “Inbox Response Queue”, which is
checked and accessed by DALS-speaking DSSs.
On the other hand, as shown in Figure 5 (b), the
Message Agent passes the incoming requests from
other MAs and deposits these request in “Inbox
Request Queue”, which is regularly checked and
processed by specific DALS-speaking DSSs.
Responses corresponding to those requests are then
generated and deposited in “Outbox Response
Queue” by DSSs, which is regularly checked and
dispatched by the Message Agent. This cycle of
interoperation between Message Agent and
DALS-speaking DSSs is beyond the scope of this
paper due to the high complexity degree of
communication between two software applications.
A complete functionality of an automatic
communication system should include this cycle.

Table 1. System implementation and developing
tools

Language Java

Developing
Tools

Jbuilder

Operating
System

Win 2000 or compatible

XML Parser Xerces 2

XSL
Processor

Xalan 2.0

Table 2. Contents of Java packages adopted by
this study

Java Package Content

org.w3c.dom DOM Level 2 classes and
interfaces

org.xml.sax SAX 2.0 classes and
interfaces

javax.xml.parser

javax.xml.transf
orm

JAXP interfaces

SAXParserFact
ory

SAXParser

Used in all SAX
applications to obtain a
SAXParser object

DocumentBuild
er-

Factory

DocumentBuild
er

Used in all DOM
applications to obtain a
Document object (DOM tree)

TansformerFact
ory

Transform

Used in all XSLT
applications to obtain a
Transformer object

org.apach.crims
on

Reference implementation
classes for the XML parser

Org.apach.xerce
s

Reference implementation
classes for the XML parser
(adopted in this research)

5. PROGRAMMING FEATURES

Instead of description of details of the design
of objects formulated by Message Agent, several
programming features are addressed here, which
are multi-thread processing, parsing with a
validating mode using XML Schema, and the use
of Remote Method Invocation (RMI).

(1) Multi-thread processing: Multiple threads
mean that there are more than one single thread
running at the same time and performing different
tasks within a program. Not every programming
language supports the mechanism of multiple
threads. Java not only supports multiple threads but
also provides with many utilities including of
setting thread priority, synchronizing threads, and
grouping threads to manage all threads within a
program. Since carrying out various manipulations
of a message, the Message Agent is implemented
with multiple threads and thus different
manipulations of a message are able to proceed
independently and smoothly.

(2) Validating a XML document using XML
Schema: A DTD defines the data structure of an
XML document. It specifies the order in which tags
occur, what the tags are, and how many tags are
allowed. A DTD provides a uniform format for
defining the structure and markup of an XML
document. Unlike DTDs, however, XML Schemas
adhere to the XML specification and provide better
support for XML namespaces and more data types.
It is also a recommendation of the W3C. Schemas
provide a more flexible means for defining the

 647

structure, content, and semantics of XML than
DTDs. In many areas of application, DTD is
replaced with XML Schema nowadays although
DTDs had been widely adopted for years. Due to
the above-mentioned advantages of XML Schemas,
the Message Agent adopts a validating parser using
XML Schema.

(3) Use of Remote Method Invocation (RMI):
Since several major manipulations of a message are
involved in passing an XML-based message from a
local Message Agent to remote Message Agents,
an approach of file transferring from one host to
another is required by the Message Agent.
Although the protocol File Transfer Protocol is an
easy way to be applied to this end, the Message
Agent adopts a special remote access mechanism
provided by Java called Java Remote Method
Invocation (RMI). RMI mechanism is used by the
Message Agent to pass an XML-based message
from a local host to other remote hosts using
specified Uniform Resource Indicators (URIs).
RMI system allows an object running in one Java
Virtual Machine (VM) to invoke methods on an
object running in another Java VM. RMI provides
for remote communication between programs
written in the Java programming language.

Although the ABS system has so far not been
evaluated by the industry, yet there are simple
virtual scenarios tested by the authors to
validate the feasibility of the whole agent
system based on the push-strategy of
e-commerce. And ABS shows a performance
with positive results from those workable
tests..

6. CONCLUSIONS

Amidst rising trends of corporate specialization,
the ability to properly manage subcontracting
procurement is a key factor in maintaining
competitiveness. This research has demonstrated a
theoretically practical framework to select the
optimally combinatorial team of subcontractors,
and brings an all new vision to the development of
electronic procurement system in digital economy.
Following the macro viewpoint of systematization
and standardization, businesses can integrate with
their own Enterprise Resource Planning (ERP)
system to gain further benefits from their resources,
and take a step toward platform systematization for
different organizations and work units to meet their
ultimately long-term goals.

Accordingly, this research takes advantage of IT
initiatives of e-commerce to combine with the use
of electronic information exchange standards Java
XML to propose an agent-based online subcontract
bidding and negotiation architecture. The design of
software agent has made it possible to
automatically sense the changes in its environment
and react accordingly on behalf of the host. The
information agent deals with all manipulation of
incoming and outgoing messages following the
pre-defined communication mechanism. Further, it
will communicate with other information agents
mounted on all other contract nodes, and also with
its local decision support system through the
mapping rules. The proposed agent-based
subcontracting system based on the active
push-strategy of e-commerce, after being made
into a widespread and workable process in the
future, could expectably become a new paradigm
for the subcontracting e-procurement of the
construction industry.

7. ACKNOWLEDGEMENTS

The authors would like to acknowledge the
National Science Council, Taiwan, for financially
supporting this work under contract No. NSC-91-.

8. REFERENCES

1. R. Murch and T. Johnson, Intelligent Software

Agents, Prentice-Hall Inc., New Jersey, 1998.

2. M.J. Bradshaw, Software Agents, AAAI

Press/The MIT Press, Menlo Park, CA, 1997.

3. J. Bigus, Constructing Intelligent Agent with

Java, John Wiley & Sons, Inc., New York,
1997, 23-53.

4. Engeli, Maia, Kurmann and David, Spatial

objects and intelligent agents in a virtual
environment, Automation in Construction
Volume 5, Issue 3, September, 1996, pp.
141-150.

5. Lees Brian, Branki Cherif, and Aird Iain, A

framework for distributed agent-based
engineering design support, Automation in
Construction Volume 10, Issue 5, July, 2001,
pp. 631-637.

 648

6. Anumba C.J., Ugwu O.O., Newnham L., and
Thorpe, A Collaborative design of structures
using intelligent agents, Automation in
Construction Volume 11, Issue 1, January,
2002, pp. 89-103.

7. Lin P. H., An Accelerated Subcontracting and

Procuring Model for Construction Projects in
Digital Economy, Ph.D. Dissertation,
Department of Civil Engineering, National
Taiwan University, 2001.

8. Lin W. Y., Development of Electronic

Acquisition Model for Project Scheduling
Using Java-XML, Ph.D. Dissertation,
Department of Civil Engineering, National
Taiwan University, 2002.

 649

Figure 2. Schematic representation of the system Figure 3. The configuration board of Message

Agent

Figure 4. An XML instance for a response/request

 (a) (b)

Figure 5. Interoperation between Message Agent and DALS-speaking DSSs

Subcon. BSubcon. A

Web Browser

General
Contractor

Web Browser

W eb Browser

XML XML

Message
Agent

Message
Agent

Message
Agent

Platform: IBM PC
OS: W in 2000 Prof.
FTP server: IIS 5.0

Platform: IBM PC
OS: Linux
FTP server: W uFTP

Platform: IBM PC
OS: W indow 2000 Professional
FTP server: IIS 5.0

Subcon. X

XML

Message
Agent

Subcon. BSubcon. A

Web Browser

General
Contractor

Web Browser

W eb Browser

XML XML

Message
Agent

Message
Agent

Message
Agent

Message
Agent

Message
Agent

Message
Agent

Platform: IBM PC
OS: W in 2000 Prof.
FTP server: IIS 5.0

Platform: IBM PC
OS: Linux
FTP server: W uFTP

Platform: IBM PC
OS: W indow 2000 Professional
FTP server: IIS 5.0

Subcon. X

XML

Message
Agent

Message
Agent

Message
Agent

Inbox
Request-Queue

Outbox
Response

Queue

DALS-speaking
DSSs

Generate & deposit

Pass & deposit

Regularly Checked & dispatched by

DALS-based
Requests

Regularly checked & access by

XML-based
Responses

Message
Agent

Inbox
Request-Queue

Outbox
Response

Queue

DALS-speaking
DSSs

Generate & deposit

Pass & deposit

Regularly Checked & dispatched by

DALS-based
Requests

Regularly checked & access by

XML-based
Responses

<Header>
<Request requestId=”msg101010” date=“2001-01-01”>

<Sender role=”GC” url=”ftp://140.112.10.16/gc”>Continental Company</Sender>
<Receiver role=”SC” url=”ftp://140.112.10.78/sc1”>Smart Excavator</Receiver>

</Request>
<Response responseId=”msg101010” date=“2001-01-02”>

<Sender role=”SC” url=” ftp://140.112.10.78/sc1”>Smart Excavator</Sender>
<Receiver role=”GC” url=” ftp://140.112.10.16/gc”>Continental Company</Receiver>

</Response>
</Header>

Message Agent

Outbox
Request-Queue

Inbox
Response

Queue

DALS-
speaking
Decision
Support
Systems

Generate & deposit

Pass & deposit

Checked & accessed by

DALS-based
Requests

Regularly checked & dispatched by

XML-based
Responses

Message Agent

Outbox
Request-Queue

Inbox
Response

Queue

DALS-
speaking
Decision
Support
Systems

Generate & deposit

Pass & deposit

Checked & accessed by

DALS-based
Requests

Regularly checked & dispatched by

XML-based
Responses

