
 147

Variable Priority in Maze-Solving Algorithms for Robot's Movement
(Specially useful for Low Quality Mechanic Robots)

Babak Hosseini Kazerouni, Mona Behnam Moradi and Pooya Hosseini Kazerouni

Students of Electrical and Computer Engineering Department, Shahid Beheshti University
P.O. Box 19976-63913 Tehran, Iran

bkazerouni@yahoo.com
mona_b_82@yahoo.com

ABSTRACT: Most existing Maze-Solving algorithms assume a constant priority for the robot's movement.
Thus, each moment, the robot will determine next movement only by the assumed constant priority. As turning
would take a lot of time the fastest path and the easiest to go through is the one that has less turns. Because of the
fastest path and in some projects the easiest one is preferred, and the constant priority might not lead the robot to
the one with less turns, a movement priority that considers non-turning paths engenders less solving-time. In
many projects the mechanic of the robot is not high quality so it should move through paths with less turns. In
this paper a "variable priority for robot's movement", is introduced. This variable priority besides causing less
solving-time is useful in projects that a robot with low quality mechanic is used, as it cause less turning. So, it
would increase the solving efficiency a lot. One more advantage is that this manner is general and not just for a
specific maze. It is important because in today's projects, most of the time, the environment around the robot is
not known.

KEYWORDS: Maze-Solving Algorithms, Open Path's Length, Less Turns, Variable Movement Priority.

1. INTRODUCTION

Today, it is tried to use robots in more project as
substitution for human. In the most of these
projects, robots should move or walk and find
their paths, for example robots that are used in
mines or robots that are sent to planets. Therefore,
nowadays, the ability of robots to consciously find
their way around the terrain plays a more
important role in the human life. At the present
time, a mazesolving robot, self-contained without
using an energy source, is more important than it
was in previous years. The speed of robot to find
its path, affected by the applied algorithm, acts the
main part in the present projects. In these cases,
the main purpose is to find the fastest path not the
shortest one. And in many projects the easiest path
is preferred as the robot might not having a high-
quality mechanic.
In this paper the suggested method is used to
increases the solving speed. These days, a lot of
maze-solving robotic competitions are held around
the world to achieve faster and superior robots [1],
[2], [3]. To test the new method, one of these
competitions is used, called "Micro Mouse" and
the method is tested in this kind of competition's
mazes. Flood Fill algorithm is one of the best
maze solving algorithms. So, the suggested

method is compared with this algorithm. After
overview the problem in section 2 of this paper,
the flood fill algorithm with an example is
introduced in section 3. Finally, in section 4 the
new method is presented and in section 5 the
results are stated.

2. PROBLEM OVERVIEW

There is a movement priority in path-finding
algorithms. When the algorithm permits more than
one way for the next movement, the next
movement direction is chosen by this movement
priority. This priority in the most of existing
algorithms is constant and is not changing during
the process. For instance, if the destination is on
the Northeast of the start point the priority shall be
North, East, South and then West; or something
like that. Priority is important for some reasons.
The most important reason is a bad selection could
throw the robot in a path with many turns. It could
cause wasting extra times to find the destination
and for the robots with low-quality mechanic it
may cause not finding destination. Less turning is
desired because turning would take time and it
needs highquality mechanic When robot avoids
undesired turning it has more time to go straight.
Therefore, it accelerates more and move faster.

 148

Considering this reason make the new method,
introduced in this paper, solve the maze faster.

3. FLOOD FILL ALGORITHM

In this section the "Flood Fill" algorithm is
introduced. Most of the information in this section
is taken from CSUN World Wide Web about
Micro Mouse [4].
The flood-fill algorithm involves assigning values
to each of the cells in the maze where these values
represent the distance from any cell on the maze to
the destination cell. The destination cell, therefore,
is assigned a value of 0. If the mouse is standing
in a cell with a value of 1, it is 1 cell away from
the goal. If the mouse is standing in a cell with a
value of 3, it is 3 cells away from the goal.
Assuming the robot cannot move diagonally, the
values for a 5X5 maze without walls would look
like this:

Figure 1. Flood Fill Algorithm Explanation

Of course for a full sized maze, you would have
16 rows by 16 columns = 256 cell values.
Therefore you would need 256 bytes to store the
distance values for a complete maze.
When it comes time to make a move, the robot
must examine all adjacent cells which are not
separated by walls and choose the one with the
lowest distance value. In our example above, the
mouse would ignore any cell to the West because
there is a wall, and it would look at the distance
values of the cells to the North, East and South
since those are not separated by walls. The cell to
the North has a value of 2, the cell to the East has
a value of 2 and the cell to the South has a value
of 4. The routine sorts the values to determine
which cell has the lowest distance value. It turns
out that both the North and East cells have a

distance value of 2. That means that the mouse
can go North or East and traverse the same
number of cells on its way to the destination cell.
As our movement priority, North, East, South then
West, the mouse will choose to go to the North
cell. Now the mouse has a way of getting to center
in a maze with no walls. But real mazes have
walls and these walls will affect the distance
values in the maze so we need to keep track of
them. Again, there are 256 cells in a real maze so
another 256 bytes will be more than sufficient to
keep track of the walls. There are 8 bits in the byte
for a cell. The first 4 bits can represent the walls
leaving you with another 4 bits for your own use.
A typical cell byte can look like this:

Bit No. 7 6 5 4 3 2 1 0
Wall W S E N

So now we have a way of keeping track of the
walls the mouse finds as it moves about the maze.
But as new walls are found, the distance values of
the cells are affected so we need a way of
updating those. Returning to our example, suppose
the mouse has found a wall.

Figure 2. Flood Fill Algorithm Explanation

We cannot go West and we cannot go East, we
can only travel North or South. But going North or
South means going up in distance values which
we do not want to do. So we need to update the
cell values as a result of finding this new wall. So
we add one to the minimum distance value of
possible cells. Now the present cell's distance
value is at least one more than the rounds so the
robot will move to that cell. In above example,
concern to movement priority, the robot moves to
the North.

 149

Sometimes the robot goes to a cell with walls all
around it. We call it "dead end". Now we "flood"
the maze with new values. As an example of
flooding the maze, let's say that our mouse has
wandered around and found a few more walls. The
routine would start by initializing the array
holding the distance values and assigning a value
of 0 to the destination cell.

Figure 3. Flood Fill Algorithm Explanation

The routine then takes any open neighbors and
assigns the next highest value, 1.

Figure 4. Flood Fill Algorithm Explanation

The routine again finds the open neighbors and
assigns the next highest value, 2.

Figure 5. Flood Fill Algorithm Explanation
A few more iterations:

Figure 6. Flood Fill Algorithm Explanation

This is repeated as many times as necessary until
all of the cells have a value. It is illustrated below.

Figure 7. Flood Fill Algorithm Explanation

 150

Notice how the values lead the mouse from the
start cell to the destination cell through
the shortest path.

In each cell the following steps are taken:
1. DETECT THE WALLS ROUND THE

ROBOT AND SAVE THEM.
2. IS THERE ANY DEAD END?
3. IF THERE IS NOT ANY DEAD_ENDS WE

SHOULD COMPARE THE CELL'S VALUE
WITH ITS NEIGHBOURS TO
DETERMINE WHETHER IT IS
NECESSERY TO MAKE THE CELL'S
VALUE PLUS ONE AND IF SO DO IT.

4. IF THERE IS DEAD_END WE SHOULD
UPDATE.

5. NOW WE DETERMINE WHICH
MOVEMENT SHOULD BE TAKEN.

4. THE PROPOSED METHOD

In the new method, in the part five of above
division when the next movement should be
determined, instead of constant priority we use a
variable priority.
To define the variable priority, we placed four
ultrasonic sensors around the robot; different
applications may use different kinds of sensor.
These sensors measure the length of the "open
paths" in each side of the robot. Length of open
path is the number of cells that exists in that
direction without any obstacles. Higher priority is
given to the direction with the longer open path.
Because, in the longest open path, the robot has
more time to move, accelerates more and spends
less time to stop the chassis.
At the end of the execution of the Flood Fill
algorithm in each cell of the maze, the final
priority is selected for the next movement. At first,
the Flood Fill algorithm shows which ways the
robot is allowed to go through. As explained in the
previous section, these ways are the ones that their
distance value is fewer than the current cell's
value. Each of these directions is given a digit.
This digit shows the number of open path's cells in
each direction. For example if the algorithm gives
digit 3 to the East direction, it means that in the
East direction there are three cells and then an
obstacle. Then the algorithm compares these
digits. So, the direction with the most open path's
cells, is selected by the algorithm for the robot's
next movement. This new method decrease
turning a lot. Thus, it increase solving efficiency
specially in such projects with the low-quality
mechanic robot.

Therefore, in each cell, steps are as follows:
1. DETECT THE WALLS ROUND THE

ROBOT AND SAVE THEM.
2. IS THERE ANY DEAD END?
3. IF THERE IS NOT ANY DEAD_ENDS

WE SHOULD COMPARE THE CELL'S
VALUE WITH ITS NEIGHBOURS TO
DETERMINE WHETHER IT IS
NECESSERY TO MAKE THE CELL'S
VALUE PLUS ONE AND IF SO DO IT.

4. IF THERE IS DEAD_END WE
SHOULD UPDATE.

5. MEASURE THE EACH DIRECTION'S
OPEN PATH LENGTH.

6. COMPARE WITH THE OTHER DIGITS
7. NOW WE DETERMINE WHICH

MOVEMENT SHOULD BE TAKEN
(THAT IS THE ONE WITH MOST
OPEN PATHS CELL).

5. RESULTS

In producing the result given in this section, a
maze based on the APEC Micromouse
competition rules [5] is assumed. It is just because
a maze should be built for the test. But the features
discussed in this paper are not dependent on the
construction of the maze. Any environment in
industrial and other applications could be modeled
as a maze. The "Flood Fill Algorithm" with the
old main priority is used as old method to solve
the maze. And the flood fill algorithm beside the
new variable priority is used as the new method.
We assume that the robot goes from a cell to
another in 2 seconds and the time for turning is 0.5
second for 90 degrees turn. It is assumed that the
robot cannot accelerate. If the robot can accelerate
the solving time decreases a lot. Since in this new
method, the robot goes through ways with most
open path's length, acceleration can increase its
speed a lot. But because of variable acceleration
for variable robots and simplicity in calculations
we did not assume acceleration in this test.
We showed the results in two mazes. One of them
is the maze that has been used in 1996 IEE World
MicroMouse Championships, University of East
London, 6th July 1996 and the other one is the one
that has been used in the Micromouse
competition, London (Wembly) Final, July 1981.
Solving these mazes with the new method and old
method is illustrated below. Finally, the time
needed by the robot to solve the maze is calculated
by numbers of turns and movements. It is obvious
this new method would help the robot to solve
faster and goes through paths with less turns.

 151

Figure 8. 1996 IEE World MicroMouse
Championships solved by the old method

Solving time for this maze by the old method is
93*2 + 44*0.5= 208 sec

Figure 9. 1996 IEE World MicroMouse
Championships solved by the new method

Solving time for this maze by the new method is
33*2 + 14*0.5= 73 sec

Figure 10. Micromouse competition, London
(Wembly) Final solved by the old method

Solving time for this maze by the old method is
214*2 + 67*0.5= 461.5 sec

Figure 11. Micromouse competition, London
(Wembly) Final solved by the new method

Solving time for this maze by the new method is
109*2 + 31*0.5= 233.5 sec

 152

6. CONCLUSION

While there is no limitation to improve the
algorithm, there are some restrictions on
developing robot's mechanic or electronic.
Developing algorithm is usually cheaper than the
other parts. Therefore, Path-Finding algorithms,
called "Maze Solving Algorithms", are the most
important part in projects which a robot is used to
find its path. The proposed method could not be
good in some projects or could be very useful in
other some but in general the variable priority
would engender higher throughput and it is
certainly improve the efficiency of the robot with
low-quality mechanic.
Future works can be concentrated on considering
using variable sensors and variable methods to
determine some different strategies for "variable
priority for robot's movement".

7. REFERENCES

[1] IEEE Micromouse Competition, held since
1979.

[2] APEC Micromouse Contest, held each year in
United States of America.

[3] UK Micromouse contest, held each year in
United Kingdom

[4] MicroMouse, California State University at
Northridge, http://homepage.mac.com/SBenko
vic/MicroMouse/index.html

[5] APEC 2003 MicroMouse rules,
http://www.apecconf.org/APEC_MicroMouse_Co
ntest_Rules.html

