
 221

A Distributed Object Model for CSCW in the Construction Industry

Jos P. van Leeuwen and A. van der Zee

Eindhoven University of Technology, Design Systems Group
www.ds.arch.tue.nl

J.P.v.Leeuwen@bwk.tue.nl

ABSTRACT: Information about products for the construction industry is increasingly often provided to design-
ers in digital ways that enable them to apply the information directly in the design process. Digital product cata-
logues are provided using various media and formats and several initiatives are taken by the industry and by
CAD developers to integrate this kind of information into CAD systems. Generally, current practice is to distrib-
ute the information to designers, for example, by using CD-ROMs or a website where the information can be
downloaded. In our research we recognise that distributing information in this manner detaches it from the busi-
ness processes in the construction supply chain, which is a major disadvantage.
The project presented in this paper concerns the implementation in the Dutch construction industry of a method-
ology for sharing product information through a distributed object model. The methodology, which is called
Concept Modelling, forms a generic basis for the support of collaborative design, but is applied in this project to
the integration of information from the supply chain in the design process. Through the distributed object model,
design information and product information can be integrated while the actual data objects remain at their
source. This enables the supply chain to provide information of a high semantic level to designers while keeping
the control over the information and maintaining the relationship of the information with their business proc-
esses.
The advantages of this approach in which information is shared, rather than exchanged, are numerous. Redun-
dancy of information is minimised, consistency is improved, and updated information is available immediately.
Moreover, design and construction processes can benefit significantly from the dynamic aspects of accessing
information that is tied to business processes in the supply chain. For example, product selection during design
can be based on latest information on product details, prices, production methods, and variants of products. This
information can be provided to designers automatically and on demand.

KEYWORDS: Collaborative Design, Product Data Modelling, Concept Modelling, Distributed Ob-
ject Model, Semantic Web.

1. INTRODUCTION

The availability of adequate product information
is one of the aspects in building design that have a
large effect on quality and costs of the construc-
tion process and of the final building. Design
faults are often caused by incorrect or miscon-
ceived product information or by improper selec-
tion of products because of lacking information.
Such mistakes in the design stage can have dra-
matic consequences for the construction process,
when ad hoc solutions or replacements of products
in the least case obstruct the process and invaria-
bly are cost-intensive, time consuming, and likely
to have a negative effect on the eventual quality. If
such mistakes become evident only later, while
the building is already in use, the possibilities for
correction are often very limited and the costs
much higher. A survey by (Josephson and Ham-
marlund 1999) shows that 15-30% of all defect

costs during production are caused by design mis-
takes. After construction, during maintenance,
design mistakes are the cause of 40-55% of the
defect costs. The same study shows that over 60%
of the defect costs in construction that are caused
by design mistakes can be traced to a lack of
knowledge or information.

The quality and availability of product infor-
mation depends largely on the form and media
used to distribute this information. The following
aspects determine the value of product informa-
tion for design:
• Semantics (is the meaning of the information

sufficiently defined and understood?)
• Validity (is the most actual information avail-

able?)
• Format (can the information be accessed and

applied directly in the design context?)

 222

• Timeliness (is the information found and
available when needed?)

Current practice in the supply chain of the con-
struction industry is to distribute product informa-
tion, for example in the form of catalogues, either
in paper format or in a digital format that is like-
wise rigid, such as CD-ROMs or documents that
can be downloaded from a website. In the more
advanced cases, information is produced on de-
mand by web servers and can thus be tailored to
specific requests. However, once provided, the
information is no longer in control of the supplier
and the consumer of the information has no guar-
antee of its validity.

The usability of product information in design
processes also depends on how well the meaning
of the information is understood by the user. Ob-
viously, design support systems require a high
level of explicit semantics to be able to interpret
and process data.

The research project described in this paper is
named CoDesKs, for Collaborative Design
Knowledge services. The objective of this project
is to offer a paradigm for information modelling
and communication in design that on the one hand
enhances the explicit semantics of information and
on the other hand improves the validity and time-
liness of information in a collaborative design en-
vironment.

2. DISTRIBUTING PRODUCT
INFORMATION

The purpose of distributing product information is
generally twofold: to communicate about mer-
chandise and to provide details about the technical
application and organisational issues concerning
the product. There are many reasons why the in-
formation concerning a product can become out-
dated. For various reasons, such as commercial
ones, there is a strong urge to innovate, with new
models emerging, new materials being applied,
new features added, new options, applications,
technical solutions, etc. Another cause for the lim-
ited validity of product information is its relation
to a specific application, for example in a particu-
lar construction project. This relation may have an
organisational nature, such as contractual agree-
ments on prices and delivery, or a technical na-
ture, for example when the applicability of a prod-
uct depends on technical aspects of the project
design.

Distributing product information through cata-
logues, on paper or in digital format, does not
support the demand for up-to-date or project-
bound information. Using websites to download
product data only improves the timeliness of in-
formation; it does not improve its shelf life. More
advanced websites are able to produce customised
information, taking project or client specific data
into account, but again this does not improve the
validity of the information over time after it has
been provided.
The validity of information that a designer obtains
from partners in a project can only be guaranteed
by sharing of the information resources. This
means that, rather than providing a copy of the
information, the information is accessed at its
source where the provider of the information has
full control (and responsibility) over it.

To achieve such sharing of information, we
propose a change of the paradigm ‘distributed
product information’ from the supplier point of
view to the consumer point of view. ‘Distributed’
no longer means ‘sent to many clients’ but rather
‘accessed at many providers.’ Sharing distributed
information resources has the potential to improve
business processes in many ways:
• Avoiding unsolicited communication, the traf-

fic of information is reduced, even if there is
an increased amount of wanted traffic;

• It improves the validity of information, be-
cause it remains under control of the provider;

• It increases the quality of information, since it
can answer a specific request or even result
from a, possibly automated, dialogue;

• It helps to integrate business processes by
keeping the relationships between the proc-
esses and their output data active.

This paper first introduces the theoretical and
technical features of the so-called concept-
modelling paradigm that implements a distributed
object model for collaborative design. It then dis-
cusses the opportunities that this technology cre-
ates for a stronger participation of the supply
chain in design processes.

3. CONCEPT MODELLING

Concept Modelling is the name of a modelling
paradigm that was developed in the CoDesKs pro-
ject at Eindhoven University of Technology (van
Leeuwen 2003). The objectives of this modelling
paradigm (van Leeuwen and Fridqvist 2003) are:
(a) to give the end-user (designers or other actors
in the building process) authority over the schema

 223

of models that are used for the representation of
designs and products; and (b) to provide a consis-
tent information modelling environment that sup-
ports distribution of data sources and multi-user
access.

The first objective, user authority over the
modelling schema, is addressed by the dynamic
nature of the modelling paradigm. In principle,
this is an object-oriented paradigm, but there are
many features to it that increase its flexibility such
that end-users have a high level of control over the
exact definition (and thus semantics) of objects.

The second objective, consistent multi-user
access to distributed data, is achieved mainly by
the implementation of remote data access, using
Internet technology, in combination with an ob-
ject-level version control mechanism.

Both aspects of the modelling paradigm are
discussed in more detail in the next two sub-
sections.

3.1 User-access to modelling schemata

The concept-modelling paradigm uses the term
concept to denote logical notions on which reason-
ing in design is based. This includes notions of
construction elements, like floors and walls, but
also non-tangible notions, like spaces and routing.
Also, aspects such as colour, strength, tempera-
ture, etc., are notions that are represented by con-
cepts. In the definition of a concept, there is no
distinction between the representation of objects
and properties. This distinction only becomes ob-
vious in the application of the concept in a model-
ling context. The reason for this is that a concept
will be viewed upon as an object in one context,
but regarded a property in another. For example, a
concept that represents the notion of ‘usage func-
tion’ in the design of a building will be used as
object in early stages of reasoning about a design,
but will be assigned as a property to spaces during
later stages.

Concepts are defined in a formal manner, us-
ing the following five mechanisms:
• Value representation
• Interrelationships
• Prototypical versus individual concepts
• Multiple inheritance

Value representation and interrelationships
In its most basic form, a concept is a simple
named entity, e.g. ‘length,’ that can have a value,
e.g. the numeric value 5.4, and a unit for this
value, e.g. ‘m.’ More complex concepts are de-
fined through relationships to other concepts. For

example, a concept named ‘steel beam’ would
relate to concepts defining its profile, its material
properties, and the concept ‘length.’ The different
relationships that can exist between concepts are
categorised into: decomposition, association, and
specification. The latter type of relationship indi-
cates that a particular aspect or detail of a concept
is specified by another concept, like the length
specifies an aspect of the beam. Decomposition
relationships denote whole-part type of relation-
ships, e.g., a steel beam is decomposed of a body
and a flange. Associations indicate relationships
between concepts that are in principle independent
but in some way associated, for example the asso-
ciation between a wall and a space.

All relationships between concepts are identi-
fied using role names. These describe the particu-
lar role of the related concept in the context of the
concept that defines the relationship.

Prototypical versus individual concepts
We can reason about design and model a design in
two distinct modes. One mode is to think about
design in terms of typologies. We do this when we
talk about the generic properties of, for example, a
type of building element. For this kind of reason-
ing, we can model prototypical concepts (also
called prototype concepts, or simply prototypes).
On the other hand, when we reason about and
model a particular design case, we need to provide
specific information about the case, which is mod-
elled using individual concepts (or individuals).

While these two kinds of concepts share many
features, their meaning is slightly different1. For
example, the value of a prototype concept denotes
the default, or assumed, value of such a concept.
The value of an individual concept, however, de-
notes the particular value of that concept in the
context of the particular design case.

Individual concepts are always modelled on
the basis of prototype concepts; they instantiate
one or more prototypes and can implement all re-
lationships that are defined for those prototypes.
This way, building elements can be modelled that
integrate multiple design concepts, for example,
an element that integrates the functions of both
wall and furniture.

The difference between prototypes and indi-
viduals becomes particularly evident when look-
ing at the relationships. Relationships defined be-
tween prototypical concepts could be regarded as

1 While this approach addresses the class-instance di-
chotomy as discussed in (Fridqvist 2000), it does not
completely eliminate the dichotomy, the way Fridqvist
proposes.

 224

the variables of concepts, while the relationships
of an individual provide the actual data of those
variables. There are many features of the model-
ling paradigm that make it very flexible and allow,
for example, ad-hoc relationships between indi-
viduals that have no counterpart in the prototypes.

Multiple inheritance
The concept-modelling paradigm implements a
multiple-inheritance mechanism: a prototype con-
cept can inherit relationships from other prototype
concepts. This allows a structured and layered or-
ganisation of design concepts, which is an impor-
tant feature for standardisation and communica-
tion protocols. When a prototype inherits from
another prototype, all relationships of the ‘super-
prototype’ also apply to the ‘sub-prototype.’ Indi-
vidual concepts that are based on such a sub-
prototype can implement all relationships defined
for the sub-prototype and its super-prototypes.
Sub-prototypes can override relationships of su-
per-prototypes, in order to make them more spe-
cific.

Figure 1 shows a network of prototype and in-
dividual concepts. It demonstrates multiple inheri-
tance, as well as the prototyping mechanism.

3.2 Multi-user access to a distributed object
model

The above-described features of the concept-
modelling paradigm allow designers to formalise
design knowledge and to model design cases. In
practice, they would never do this in isolation:
design is always a process of collaboration. Even
when a particular task is not performed in direct

collaboration with other individuals, a designer
will always access or re-use information from ex-
ternal resources. There are many ways to bring
together information from multiple resources.
Currently the most popular approach is to use pro-
ject-webs. These are websites where all collabo-
rating partners in a project store their information,
making it accessible to all. The main advantages
are that such a project-web provides a central en-
try-point to the project information and allows
centralisation of the data-management, such as
security, backup maintenance, and document ver-
sion control.

One major disadvantage of using project web-
sites is that all partners need to be disciplined in
keeping the information updated at the server and
must refrain from sending information to each
other through other routes, e.g. using email. An-
other major problem with project webs is that they
are document-based and draw a strict line between
project-specific and project-independent informa-
tion. Because documents are moved away from
their source to the central storage location, infor-
mation that is in principle independent of projects,
such as information describing the products and
services of a company, automatically becomes
project-specific once it is entered into the project
website. As a consequence, this information is
disconnected from its source and from the under-
lying business processes. This implies a consider-
able risk of inconsistencies and the usage of out-
dated information.

Remote data access
The CoDesKs project has incorporated the con-
cept-modelling paradigm into an object model that

Office Wall

Material

height

2600 mmheight

Interior wall material

Wall Measure

Sound Abs.

real

coefficient

length

thickness

Media wallProjection Screen length 4800 mm

Prototype Concept

Individual Concept

role

specification

decomposition

association

inheritance

Space

bounded by

Figure 1. Example of a network of concepts. The prototype concept ‘Office Wall’ inherits from the ‘Interior Wall’
and the ‘Sound Absorbing Element’ concepts. It overrides the inherited ‘height’ relationship by fixing it to 2600
mm. The ‘Media Wall’ is an individual concept based on the prototype ‘Office Wall’ of which it uses the height; the
length is added to this individual. The ‘Media Wall’ also implements the prototype ‘Projection Screen’ (no further
details shown here).

 225

offers remote access. Essentially, this offers the
possibility to build applications that can access
objects directly at remote resources. Rather than
having to exchange information in the form of
documents, such applications can share informa-
tion in the form of objects.

The technology applied in this approach is
standardised, HTTP and SOAP, through the im-
plementation provided by Microsoft .NET Re-
moting facilities.

There are a number of conditions that need to
be met before remote data access can be practi-
cally applied in a collaborative design context.
First of all, objects, and in our case these are con-
cepts, must be uniquely identifiable. For this pur-
pose, concepts are organised using the notion of
namespaces that are themselves identified through
URI’s (Uniform Resource Identifiers). This
mechanism provides the capability to uniquely
identify each concept and concept-relationship in
a consistent and persistent manner.

A second condition for a proper organisation
of remote data access is security. Obviously, data
must be protected from unauthorised access, while
authorised users must have sufficient rights to read
or write data. In the concept-modelling paradigm,
the system of access rights is more complicated
because there are several levels of access that en-
able users to read, copy, use, inherit, or modify
concepts. Access and ownership is controlled on
the basis of user groups.

A third feature required from remote data ac-
cess is a locking mechanism to prevent simultane-
ous modifications to objects by multiple users.
This is implemented by way of a checkout mecha-
nism. When a user accesses data for modification,
the data is temporarily inaccessible for modifica-
tion by other users. At all times, data remains ac-
cessible for operations other than modifications,
such as reference or inheritance operations. The
period of locking depends on the kind of modifi-
cation that the user’s application is performing;
real-time graphical operations will take longer
than non-graphical changes to data.

Finally, notification is a fourth requirement of
useful remote data access. When multiple users
access the same data resources, they probably like
to be informed of modifications to that data. A
subscription mechanism allows users to be sub-
scribed to notifications that are sent when data is
modified. Examples of such modifications are
changes to the design or the release of a new type
of a product to the market. To a certain extent,
these notifications can be handled by the system
automatically, for example to update the graphical

onscreen presentation. Other notifications may
require human reaction, for example to evaluate
the consequences of a change in the design or to
consider the application of a new product.

Object-level version control
Version control is necessary in a design system,
and particularly in a collaborative design system,
for a number of reasons (van Leeuwen and Frid-
qvist 2003). Firstly, version control is a way of
recording user actions. Such a record can be used
for many purposes, e.g., allowing the user to undo
certain actions or enabling the user to inspect and
replay the history of the design process.

Expanding on such a timeline of the design
process, the second reason to provide version con-
trol is that it can be used to administrate design
alternatives.

But in the context of collaborative design, ver-
sion control of objects is above all important to
maintain the consistency of an object model that is
accessed by multiple users. Changes to objects are
administered through the creation of new versions,
which ensures that the state of objects recorded in
previous versions will remain available. Refer-
ences between objects can make use of the version
information of objects, so that the data consistency
is not compromised when new versions are cre-
ated. Semantic consistency is, of course, not en-
sured by the implementation of object version
control.

In literature, version control at the object level
is described in (Cellary and Jomier 1990), who use
so-called ‘stamps’ to identify object versions in
multi-version databases; in (Bernstein 1997), pro-
posing basic operations on versions that are identi-
fied through a succeeds relationship; in (Kimber,
Newcomb, and Newcomb 1999) who describe
referent tracking documents as a means to control
version information through hyperlink manage-
ment.

Administering versions and revisions of ob-
jects provides a means to archive the changes to
objects. In combination with authenticated access,
it is possible to trace the changes of objects to the
users who made those changes. Having a record of
the history of each object also facilitates the
browsing and restoring of previous states of a de-
sign model. This also has potential for, e.g., the
narrative representation of designs and for com-
puter applications used in design education and
research.

In the concept-modelling paradigm, version
information for objects is organised into three lev-
els: major versions, minor versions, and revisions.

 226

These three levels relate to the kinds of modifica-
tions that can be made to objects. A modification
to an object is started by a checkout of the object,
which locks the object for modifications by other
users. It is concluded either by committing a new
revision or by submitting a new version. Revisions
are used to accumulate modifications until the user
concludes that a new version is ready to be cre-
ated. New versions are in principle minor ver-
sions, unless either the user or the system requires
the creation of a new major version. The system
will require a new major version when it cannot
automatically upgrade references by other objects
to the next version. This helps identify potential
consistency issues in the model that require atten-
tion by the user.

This approach of storing all modifications as
revisions or versions of objects helps to increase
the consistency and integrity of the objects and the
relationships between objects from various re-
sources. At the same time it requires smart ways
of identifying objects when making references to
versions and resolving and updating these refer-
ences. The object versioning mechanism imple-
mented in the concept-modelling paradigm utilises
timeline management for this purpose. The time-
line of an object administrates the beginning and
ending of each revision and version. Through this
mechanism it is possible to identify the relevant
relationships for a given concept and the concepts
that form its context. An example of the timeline

of concepts and relationships between concepts is
shown in figure 2, which also illustrates the three
levels of references required for this versioning
system. Details of the implementation and impli-
cations of the object version control mechanism
and the timeline management can be found in (van
Leeuwen and Fridqvist 2003).

3.3 Related developments

The information modelling approach proposed in
the concept-modelling paradigm bears much re-
semblance with technologies such as XML (W3C
2003a) and RDF (W3C 2003b) and with the de-
velopment of the Semantic Web (W3C 2003c).
While a thorough comparison is outside the scope
of this paper, it is relevant to mention here that the
concept-modelling paradigm could be regarded as
a more specific form of semantic web. Where the
W3C Semantic Web effort aims to standardise a
very generic way of expressing semantics for the
context of the world-wide web, the concept-
modelling paradigm goes somewhat further in its
classification of relationships between objects
(comparable to the predicates in RDF). In com-
parison with the semantic web, the structure of
prototype and individual concepts is also more
restrictive. The reason for these restrictions is that
we believe that the ability to make more detailed
assumptions on the structure of information offers
us better opportunities to develop more intelligent

1.1a

1.1b

1.2a

2.1a

2.1b

logical object

major version

minor version

revision

a

b

c

C2
a

C1
1.1

1.2

1.3

1.1

1.2

1.1
t2

t3

t4

t5

t6

t7

t1

a

C3

2.1

b

1.1

1.1

1.2

C4
1.1 t8

t9

now

t10

t11
1.2

time

Figure 1. Left: example of a timeline of concept versions. At moment t5, the relationship a from concept C1 to concept
C2 is changed into a relationship to concept C3. Although this does not lead to a new version of concept C1, this
change can be traced through the concept’s timeline.

The figure on the right shows the three levels of references related to the three levels of version information. Reference
type a refers to the logical object, while reference type c refers to the minor version. References to revisions are irrele-
vant (van Leeuwen and Fridqvist 2003).

 227

support, for example in the form of case-based
reasoning tools and agent technology.

4. OPPORTUNITIES FOR THE SUPPLY
CHAIN

The capabilities of defining and sharing active
information and its semantics were developed in
this project to support an expressive, yet formal,
way of modelling designs and to support collabo-
ration between designers. At the same time, these
capabilities allow other partners in construction
projects, including the supply chain, to become
more actively involved in the process of collabora-
tive design. As set out in the introduction of this
paper, the availability of product information in
the design process has a major influence on the
quality and costs of the final design. Therefore,
ability to increase their role as active participants
in design processes is an exciting opportunity for
product suppliers. Besides offering competitive
products, the challenge is now to offer high qual-
ity information about products and information
services relating these products to design projects.

The new technology to share information con-
tents, the semantics of information, and the access
to our business processes, opens up almost limit-
less opportunities in e-commerce. First of all, se-
mantically well-defined information improves the
process of product selection and offers a chance to
better inform designers about the qualities and
features of products. But the implications of this
new technology go far beyond this point in im-
proving the relationship between supplier and de-
signer:
• Information objects from the supplier become

active objects in the context of the design pro-
ject. They will update themselves, or notify
the designer when updated information is
available.

• When enhanced with knowledge about the
application of a product, information objects
can react to the development of the design, for
example by adjusting the features of the prod-
uct in accordance with its context. This behav-
iour of the information object does not need to
be incorporated into the design application,
which is the approach followed in the devel-
opment of today’s CAD systems. In the dis-
tributed object model, design objects and
product objects from multiple resources form
an integration of knowledge from various dis-
ciplines.

• Taking this one step further, the supplier’s
information objects can be tied to business

processes such as sales, production, and deliv-
ery. On the one hand, this allows designers
and project developers to take this type of in-
formation into consideration already during
design. On the other hand, it facilitates and
promotes the re-usage of information models
from design stages into construction or even
facility management stages.

5. IMPLEMENTATION AND CURRENT
DEVELOPMENTS

The concept-modelling paradigm is developed and
implemented in the CoDesKs project in the form
of an information-management module that takes
care of all storage, access, and modification ac-
tions on the concept databases. This core module
also manages the remote access, the object-based
version control, and the resolution of object refer-
ences. It provides an application-programming
interface that can be used to develop either client
applications or, e.g., web-interfaces. The concept
database is currently persisted in a relational data-
base, but interfaces on the basis of XML and RDF
are planned.

The results and experience from the CoDesKs
project are currently being input in the develop-
ment of an industrial standard for integrated soft-
ware for the Dutch architectural design market.
This standardisation effort, named Het Digitale
Huis (The Digital House) is a project initiated by
Dutch CAD vendors and aims to market new
software products based on this standard on a very
short term. The suite of products that these soft-
ware houses develop on the basis of this standard
range from CAD software to tools for specifica-
tion writing, project management, product selec-
tion, building codes checking, and facility man-
agement. Initial prototyping of the concept-
modelling paradigm in this context aims at im-
proving the module for product selection that is
used in the applications for architectural design
and specification writing.

In two other research projects at Eindhoven
University of Technology the usability of distrib-
uted object models is investigated.

The first project concerns the development of
a method for evolutionary development of design
alternatives subject to a set of performance con-
straints and user requirements. National and local
building codes are regarded primarily as con-
straints that a building design must satisfy (van
der Zee and de Vries 2002). These constraints are
derived from national standards, developed by
national standardisation institutes. They are often

 228

subject to chances. In the distributed object model
approach, the standardisation institutes would
maintain constraint-objects and provide remote
access to them. This way, conformance-checking
applications can always use the latest versions of
the building codes.

The goal of the second project is to develop an
application that checks if a building is designed
according to the local zoning plan. During the de-
sign process, the designer must have access to the
latest version of the zoning plan. Vice versa, the
local government needs to have access to the most
up-to-date state of the building design, also after
the construction of the building. For the latter pur-
pose, authorities would not want to rely on remote
access, but always have the latest data with respect
to buildings, infra structure, sewer system etc., in
their possession. Working with local copies that
remain a more or less active relationship with the
original data at its source, is one of the future de-
velopments planned in this ongoing research.

6. REFERENCES

Bernstein, P. A. 1997. "Repositories and Object-

Oriented Databases." In Dittrich, K. R. and Gep-
pert, A. Datenbanksysteme in Buro, Technik und
Wissenschaft (Proceedings of BTW Conference).,
pp.34-46. Berlin, Springer Verlag.

Cellary, W. and Jomier, G. 1990. "Consistency of Ver-
sions in Object-Oriented Databases." Proceedings
of the 16th VLDB Conference., pp.432-441. Bris-
ban, AUS.

Fridqvist, S. 28 Sept. 2000. Property-Oriented Infor-
mation Systems for Design, PhD thesis. Lund Uni-
versity, Sweden.

Josephson, P.-E. and Hammarlund, Y. 1999. "The
causes and costs of defects in construction – a
study of seven building projects." Automation in
Construction, vol.8, pp.681-687.

Kimber, W. E., Newcomb, S., and Newcomb, P. 1999.
"Version Management as Hypertext Application:
Referent Tracking Documents." In Usdin, B. T.
Proceedings of Markup Technologies '99., pp.185-
198. Philadelphia, PA, USA. 7 Dec. 1999.

van der Zee, A. and de Vries, B. 2002. "Computer
Aided Evolutionary Architectural Design." In
Soddu, C.(ed.). Proceedings of the 5th Interna-
tional Conference on Generative Art 2002., pp.9.1-
9.13. Milano, I.

van Leeuwen, J. P. 2003. "Computer Support for Col-
laborative Work in the Construction Industry."
Proceedings of the International Conference on
Concurrent Engineering. Funchal, PT. 26 July
2003.

van Leeuwen, J. P. and Fridqvist, S. 2003. "Object Ver-
sion Control for Collaborative Design - Character-
istics of the concept-modelling framework." E-
Activities and Intelligent Support in Design and the
Built Environment - 9th EuropIA International
Conference. Istanbul, TR. 8 Oct. 2003.

W3C. 2003a. "W3C Extensible Markup Language
(XML)." http://www.w3.org/XML/.

W3C. 2003b. "W3C Resource Description Framework
(RDF)." http://www.w3.org/RDF/.

W3C. 2003c. "W3C Semantic Web."
http://www.w3.org/2001/sw/.

