
ISARC 2005 1

Design and Control of the Quadruped Walking
Robot ALDURO

Daniel Germann, Manfred Hiller, Dieter Schramm

Abstract—Alduro is a four-legged walking robot. Its main
goal is to operate in rugged terrain, translating the cartesian
operator commands (joystick) into actuator space by coor-
dinating the legs according to the users wish. At the same
time static stability has to be guaranteed, obstacles have to
be avoided and the posture of the main body kept. This re-
quires an elaborate motion coordination and controller soft-
ware. One possible way to organise this is described here:
by isolating the physical robot from the motion generation
(hardware abstraction layer), by using concurrent behav-
iours for motion generation and by strict modularisation
of the software. The selected tools and realtime operating
system are described in the last sections.

Index Terms—Walking Robot, Quadruped, Modular Con-
troller Structure, Hardware Abstraction Layer, Free-Gait,
Realtime

I. Introduction

WALKING excavators have been around since the late
1960. Not only have they helped at many work sites

in rugged terrain, rivers and mountains, but they also in-
spired the project of designing and building an automated
four-legged robot described in this paper. Whereas in con-
ventional excavators each degree of freedom is operated
manually the goal of Alduro was to automate this task
and relieve the user of coordinating 12 to 16 actuators.

Fig. 1. CAD model of Alduro as a wheeled-legged vehicle.

But to replace the expert knowledge of an experienced
operator by a computer is a daunting task. A first step in

This work was funded by the German Research Council (DFG)
and supported by the Federal State of Northrhine-Westphalia.

Daniel Germann is with the Chair of Mechatronics, Department
of Mechanical Engineering, University of Duisburg-Essen, Germany.

Prof. Manfred Hiller is the former head of the Chair of Mechatron-
ics, Department of Mechanical Engineering, University of Duisburg-
Essen, Germany.

Prof. Dieter Schramm is head of the Chair of Mechatronics, De-
partment of Mechanical Engineering, University of Duisburg-Essen,
Germany.

that direction is taken with this project and an overview
given here. Starting with a design study of leg kinematics
and a virtual prototype seven years ago the project has
grown into the assembly of almost two tonnes of steel and
periphery and its coordination by a central computing unit.
An exemplary mechatronic task, involving mechanical and
electrical engineers, computer scientists, structural analy-
sis, and software design. This paper will focus on some of
the subtasks like virtual and real prototypes, isolating the
motion generation from the physical robot, modular soft-
ware design, motion generation of leg and body and lastly
realtime requirements of the controller and implementa-
tion.

II. ALDURO

This chapter gives an overview of the history and
the prototypes of the Anthropomorphically Legged and
Wheeled Duisburg Robot Alduro.

A. Genealogy

The most evident advantage of legged machines against
wheel driven vehicles is their ability to move in unstruc-
tured terrain. Possible areas of applications for legged
working platforms are outdoor tasks as e.g. forestry or
avalanche protection building. Smaller robots can be used
for inspections of inaccessible, hazardous or contaminated
areas.

In alpine regions many walking excavators (by different
manufacturers) can be seen. They offer a high flexibility
in operating terrain (slopes, quarries, forests, streams) and
functionality (excavator, jackhammer, forester). But they
need to be operated manually by an experienced driver.

 ��

Fig. 2. Design study roboTRAC

With this limitation in mind, in 1992 a design study
of the Swiss Federal Institute of Technology (ETHZ), the
University of Duisburg and Siltec in Zürich led to the ro-
boTRAC Fig. 2, a walking excavator with enhanced front
legs. The additional knee would allow for a walking motion
without use of the bucket.

2 ISARC 2005

Based on the theoretical works on roboTRAC on its
kinematics [6] a new research project was started in 1998.
Its main topics were

• better manoeuvrability by increasing the degrees of
freedom of the legs,

• additional sensors for ground/obstacle detection, and
• a central computing unit coordinating the movement

of the legs.

To achieve the desired higher flexibility the legs kinemat-
ics are modelled on the human leg (anthropomorphic). The
hip joint is realised as a ball joint, the knee joint as a revo-
lute joint. Three degrees of freedom (d.o.f.) are necessary
to place the foot, the remaining redundant fourth d.o.f. can
be used to minimise cylinder velocities and strain/stress in
the structure of the leg.

Instead of using the anthropomorphic legs only as front
legs all four legs are replaced by the new design. Thus we
use four identical legs, and have the option to operate the
rear legs with wheels as before (to increase velocity in less
rugged terrain), or replace them with feet and so get a pure
walking robot.

This led to the design of Alduro. This time not only a
case study was to be considered, but the goal was to build
a full scale working prototype.

B. Virtual Prototype

Instead of building several small-scale models of the ro-
bot before tackling the fully scaled prototype a virtual

model was used to development the robot and optimise
its design. The virtual model consists of a physical model
that covers the dynamics of hydraulics and mechanics.
With help of the multibody systems simulations library
M a a

a a

BILE [9] the equations of motion and pressure build-
up of the hydraulics are generated and integrated.

To validate the computer model a test stand for a single
leg was built and compared, with satisfying results [13].

This co-simulation then was used to determine

• the necessary pump flow of the hydraulic system,
• the geometrical parameters of the four-bar mecha-

nisms if the hip joint,
• the forces acting on the joints and actuators of the

legs,
• the boundary conditions (forces/torques) of the struc-

tural analysis of legs and central body, and
• to test different controller algorithms, like PID and

model-based ones.

Based on the results of simulation and FEM analysis a
lattice framework design was chosen for the central plat-
form and optimised for low weight.

C. Real Prototype

The prototype currently being built at our Institute
(height 3.5 m, weight approx. 1800 kg, see Fig. 3) is
equipped with four identical hydraulically actuated legs,
with four degrees of freedom each. Each of the 16 joints is
actuated by a hydraulic cylinder. To be independent of ex-
ternal power supply a combustion engine (a gasoline engine

Fig. 3. Alduro (with legs but no feet yet) sitting on the wheeled
assembly platform

of Mercedes smart car with 45 kW) was chosen for pow-
ering the hydraulic pump. The operating pressure of the
hydraulic system is 200 bar and the pump flow is 125 l/min.

As it would be near to impossible to coordinate all 16
hydraulic cylinders manually a more user-friendly way of
operation had to be found. Considering that also lorry
and car manufacturers are conducting tests with steer-by-
wire by means of joysticks it was apparent to use the same
technique for Alduro.

The task of step generation, coordination of the cylin-
ders, safety checks and controlling the cylinder positions
is done by an on-board computer. The necessary realtime
requirements are discussed in more detail in section IV.

III. Modular Controller Architecture

This chapter describes the modular structure of the con-
troller software. To make the problem of gait generation
more generic, a hardware abstraction layer between robot
and Motion Generator is introduced. The latter consists
of several parallel running non-interacting modules whose
merged output is the input of the controller.

A. Hardware Abstraction Layer

The task of generating leg movements of a quadruped ac-
cording to the user commands is complex. There were and
are many other research projects that had gait generation
as topic. In order to reuse their results and refine them –
where necessary and possible – it would be more efficient
to do that independently of the actual geometry, topology,
and size of the robot. Thus a Hardware Abstraction Layer

is inserted between Motion Generator and robot (Fig. 4).
The robot specific sensor data (e.g. cylinder lengths,

hydraulic pressures, currents, feet forces) is preprocessed
in the Hardware Abstraction Layer and mapped onto
“higher”, more abstract data, like

• feet positions and velocities,
• estimated central body height,
• which feet contact the ground, and

DESIGN AND CONTROL OF THE QUADRUPED WALKING ROBOT ALDURO 3

Motion Generator

Hardware

Abstraction

Layer 1

Hardware

Abstraction

Layer 2

Robot 1 Robot 2

Sensor Data Control Data

Fig. 4. The Hardware Abstraction Layer decouples the Motion Gen-
erator from the Robot.

• proximity of feet (or actuators) to the limit of their
workspace.

On the controller side, where commands are passed from
the Motion Generator to the robot a similar mapping is
done: from feet positions/velocities to actuator input val-
ues (e.g. currents, valve openings, forces).

The Motion Generator can rely on receiving identical in-
put data no matter whether the robot walks on four elec-
trically driven 3-d.o.f. legs or four hydraulically powered
4-d.o.f. legs. Its output, the feet motions, are translated to
“robot space” by the Hardware Abstraction Layer .

B. Modules

The Hardware Abstraction Layer has two tasks: process-
ing the robots sensor data and processing the control data
of Motion Generator . The sensor data preprocessing tasks
are grouped into the Extended Sensorics module, the rest
into the Controller module. This leaves us with the four
main modules, shown in Fig. 5. The description of the
data is listed in Table ??.

Data Description Ref.

s sensor data (measured joint values)
Ffeet measured feet forces foot
Ψ orientation of body ground
f position of feet body

ḃ velocity of body ground

ḟ velocities of feet ground

b̂ set-point position of body

Ψ̂ set-point orientation of body body

f̂ set-point position of feet body
̂̇
b set-point velocity of body ground
̂̇
f set-point velocities of feet ground
â actuator set-point values

TABLE I

Data exchanged between the four main modules. Where

necessary their reference system is indicated.

The interface between Motion Generator and the Ex-

tended Sensorics / Controller modules is fixed. Between
Extended Sensorics, Controller , and Robot the interface

Motion Generator

Extended

Sensorics
Controller

Robot

a)

b)

c)
d)

e)

Hardware

Abstraction

Layer

a) s, Ffeet, Ψ

b) b, f , ḃ, ḟ

c) ḃ, ḟ

d) b̂, f̂ , Ψ̂,
̂̇
b,

̂̇
f

e) â

Fig. 5. The four main modules of the controller software. See Table I
for the description of the transmitted information.

changes depending on the physics of the robot. For Al-

duro there are three implemented modules:

• an implementation of the interface to the input/output
cards, communicating with the real robot,

• a simulation model of the dynamics, with ground con-
tact elements, and

• a simplified kinematics-only simulation.

These modules have a common interface to Extended Sen-

sorics and Controller , which makes them easily inter-
changeable without even recompiling the program (Fig. 6).
Before trying Motion Generator or Controller on the real
prototype they can be tested on the simulation without
significantly changing to the software.

Motion Generator

Extended

Sensorics Controller

Real Prototype
Virtual Prototype

Fig. 6. Different robot modules for Alduro (real and virtual) with
identical interfaces

By further breaking down the tasks of the four main
modules into smaller units the modular concept is extended
to several layers. All modules can consist of other modules,
thus representing a group of modules. This rigid structure
(fixed interfaces, hierarchy) might interfere sometimes with
simple solutions of a programming problem but makes the
software more transparent. The abstraction through inter-
faces facilitates the substitution of modules with the same
function but different implementation. As e.g. foot trajec-
tory generator, that could base on a cycloid, a four-phase
finite-state-machine (see section E) or some energy opti-
mised trajectory (see Fig. 7). The choice which module
to load is made at the initialisation of the program and
remains constant until the program is stopped.

C. Concurrent Behaviours

To implement the complex task of co-ordinated motion
generation it is divided into sub-tasks (behaviors) that are

4 ISARC 2005

Motion Generator

Gait
Generator

Leg Trajectory

Cycloid 4 Phase
Trajectory

Optimised
Trajectory

Fig. 7. Different modules for foot trajectory generation

put into modules. There are two principal ways to organise
the modules: parallel and/or hierarchical. The well known
“subsumption architecture” is based on the latter [1]. The
modules are ordered vertically according to the priority
of their task and can influence or block inferior modules.
The advantages of this concept is a transparent and intu-
itively understandable layout of the dependencies among
the modules. This cross-linking among the modules has
the disadvantage that the modification, insertion or dele-
tion of modules always affects the neighbouring modules
and may cause a redesign of the whole architecture.

The approach chosen here is to organise the modules
on one single level. Each module has full access to all
(pre-processed) sensor data but not to any other module
[18]. It generates an output according to its task and a
corresponding weight. All outputs are weighted and fused
and used as input of the controller. The only way for
modules to communicate with each other is through the
“world”. The output produced by the modules influences
the robot, this is sensed and interpreted by the Extended

Sensorics and that data again is available to all.
Since the modules are formally independent of each other

the generation of each weight has to be co-ordinated, to
guarantee that e.g. the “stability” module is able to over-
rule other modules in case of a critical state. .

Gait
Generator

Static
Stability

Obstacle
Avoidance

Body
Posture

Preprocessed Sensor Data / User Commands

Fusion

w1 w2 w3 wn
̂̇
b1,

̂̇
f

1

̂̇
b2,

̂̇
f

2

̂̇
b3,

̂̇
f

3

̂̇
bn,

̂̇
fn

̂̇
b,

̂̇
f

Fig. 8. Concurrent behaviour modules with outputs ̂̇b, ̂̇f and merg-
ing weights w

To conform with the requirements of the Hardware Ab-

straction Layer (subsection A) the outputs have to be “ro-
bot independent”, i.e. feet and central body related. Possi-
ble candidates are positions, velocities, accelerations, and

forces. The latter three have in common that they are ap-
plied relative to the current position of the robot. Whereas
a set-point position is an absolute value, that must not be
too far away from the current position, or else the con-
troller is bound to produce a “jump”.

If we have only one motion generating module this could
be solved by having one internal set of set-point positions
that is constantly kept up-to-date with sensor values. But
walking is only one possible mode of operation (see subsec-
tion F). When switching between operational modes this
set-point values would have to be passed from one mod-
ule to the next. But this violates the idea of concurrent
operating modules without inter-modular communication.

Instead of using an internal representation of the robot
and its surrounding world (i.e. set-point positions) [2] and
[18] suggest to use the “real world” to represent itself. All
modules use the pre-processed sensor data as a snapshot
of the robots current state and act accordingly thereupon.
So all possible outputs are relative to the measured state.
Like velocities, accelerations or forces. The fusion of those
entities can be very simple: a weighted summation of vec-
tors. Doing the same with relative set-point positions is not
feasible, as the scaling (weighing) of the position vectors
would scale the absolute position, not only the (relative)
difference.

For the reasons above the output of a motion generating

module m are the velocities of the central body
̂̇
bm and

the four feet
̂̇
fm are chosen. The fusion consists of the

weighted (weight wm) summation of n velocity vectors (1).

[
̂̇
b

T

,
̂̇
f

T
]T

=
1

n

n∑

m=1

wm

[
̂̇
b

T

m ,
̂̇
f

T

m

]T

(1)

D. FreeGait

There do exist several concepts to control the statically
stable “walking” of machines. Basically there are two dif-
ferent perspectives to look at this problem. One is to focus
on the legs and to search for an optimal pattern that co-
ordinates the leg movements such that at the end the body
moves in the desired direction. The other perspective is to
focus on the body. The body is moved in the desired di-
rection and the legs follow “on their own”.

These two perspectives lead to two different concepts
for generating gait patterns. In the first case sets of pre-
calculated patterns for specific tasks, like “walk straight
ahead” or “turn left”, are optimised for some kind of cri-
teria, as there are speed, stability and/or energy consump-
tion [3]. The order in which the legs move is predefined
as well as the parametrised foot trajectories. These gait
patterns show a good performance on flat ground but are
flexible only to a certain degree.

The second perspective leads to the so called free gait

that represents an heuristic algorithm deciding after every
single step what movement to do next. Based on the opera-
tor input and the momentary position of body and feet, the
next set of movements is determined. This can be a step,
a body movement or a combination of both. For walking

DESIGN AND CONTROL OF THE QUADRUPED WALKING ROBOT ALDURO 5

machines intended to work in unstructured terrain and to
move in all directions this method is an ideal solution as
the algorithm works with no direction of preference and is
highly flexible.

The generic free gait algorithm can be described with
the steps:

1. The pattern generator selects a leg to perform the
next step.

2. The leg controller performs the step of the selected
leg.

3. The body controller moves the remaining legs to
achieve the desired body motion.

Free gait concepts differ in the criteria used to select the
next leg to move. One possible free gait concept, called
reflective walk, selects the leg that would increase the sta-
bility most when moved in walking direction [10]. [8], [4]
use weight-ratios, describing the distribution of the robots
weight on its feet, to plan the next move. Another criteria
– the one chosen here – is to select the leg with the small-
est geometrical margin, i.e. the next one likely to be in a
stretched position [17]. In case the leg cannot be lifted be-
cause the robot would become unstable a corrective move-
ment of the body (centre of gravity) is superimposed on
the desired motion to relieve the selected leg [14].

Fig. 9 shows the basic principle of the free gait imple-
mented for Alduro. The main criteria for choosing the
next leg is its proximity to its limit of workspace. As it is
too time consuming to compute the cartesian workspace of
a foot online the workspace of the actuators is used here.
Instead of a three dimensional space we get a four dimen-
sional space, the four cylinder lengths being the four coor-
dinates xi, i = 1..4. In Extended Sensorics the proximity
of each actuator to its end-of-travel (eot) is computed as

eoti = −ln(xmin,i − xi) − ln(xmax,i − xi) , (2)

with xmin,i and xmax,i as minimal and maximal length of
the ith cylinder.

To decide whether a leg will soon reach the end of its
workspace its not the distance only that is of interest. The
question is also how fast it is moving towards this limit.
This can be expressed as veot,i

δeot,i =
d

dxi

eoti =
1

xmin,i −xi

+
1

xmax,i −xi

(3)

veot,i =
d

dt
(eoti) =

d

dxi

(eoti)
dxi

dt
= δeot,i

dxi

dt

= δeot,ivx,i (4)

The value proximity used in Fig. 9 is the maximal value
of δeot,i ∗ sign(veot,i) of all four cylinders.

Simulations with a simplified two-dimensional model [5]
have shown that deadlocking of the algorithm is a problem
that has to be tackled. A first addition that showed good
results is to check whether the leg to move is the front one
of the two rear legs. If so it is not to be moved next.

E. Leg Trajectory Generation

To realise the generation of leg trajectories without pre-
cise kinematic knowledge of workspace, step length, and

Start

maxproximity := 0

leg := 0

FreeToLift(leg)

proximity := proximity(leg)

proximity > maxproximity

legmove := leg

maxproximity := proximity

leg := leg +1

leg > 4

legmove > 0

set step direction
set step length

slow down velocity proportional
to proximity

End

yes

yes

yes

yes

no

no

no

no

Fig. 9. free gait pattern generator

step height the modular concept is used here as well. The
stepping motion is divided into four phases: lift the foot,
swing it, lower it to the ground, and stance. Once the step
is triggered by the pattern generator the lift module reuses
the memorised step height to lift the leg off the ground
and to stop as soon as the height (or end of workspace) is
reached. Simultaneously the swing module starts as soon
as the sensors detect the foot’s take off, to slowly increase
the speed in the desired direction. The closer the leg gets to
its kinematic margin – or if the pattern generator stops the
step – the more it is decelerated. At this point the lower

phase starts and moves towards the assumed ground sur-
face (based on the memorised height from the last step).
The process is continued at a constant low speed until
ground contact is detected or the whole manoeuvre is can-
celled. When the ground is reached the stance phase gen-
erates a small but constant velocity pointing downwards to
keep the foot firmly on the ground. This would result in
a upward motion of the platform, were it not for the body

posture module that generates a corresponding downward
velocity for the central body, cancelling out the stance ve-
locities in the fusion module.

Parallel to the foot trajectory generator there is the mod-

6 ISARC 2005

ules for the obstacle avoidance reflex [12]. If a leg touches
an obstacle during its trajectory it has the option to cross
the obstacle or to retract the foot, depending on the height
of the obstacle and the position of the leg. The same ap-
plies to the situation that a foot is lowered without finding
ground contact. It has to be retracted.

Whereas in pre-computed patterns stability is already
considered (and even maximised) the free gait described
above so far ignores it. As static stability solely is a ques-
tion of keeping the centre of gravity inside the supporting
polygon it can be delegated to the independent module
static stability that superimposes a velocity on the body
to keep the stability margin above a set minimum.

F. Operational Modes

Walking is only one mode (Operate) of a walking robot,
albeit the main one. But before starting to walk, the robot
has to prepare itself. In the case of Alduro this means
getting up from the mobile assembly and parking vehicle
(mode Straighten). After standing on its own legs and the
parking vehicle is moved away the robot is ready to oper-
ate. Before parking again the four legs have to be spaced
evenly and the central body levelled and lifted to a pre-
defined height (mode PrepareToPark). When the parking
vehicle is safely under the robot, it can lower itself onto the
vehicle and retract the legs from the ground (mode Park).

It is the human operator that initiates the switches be-
tween those four modes. But it also needs the controller
software to check the validity of the operator commands.
When parked, a Straighten has to be completed before the
robot is allowed to start to Operate. For all modes there
are conditions to be satisfied before switching to them. An
natural approach to this problem is using a finite state
machine. The four modes above correspond to four states.
The state transitions are in response to input changes, i.e.
operator commands and sensor inputs. The output events
are associated with states, which makes it a Moore Ma-
chine [11].

For each state (except Operate) there is a corresponding
“finished” state, that is reached automatically when the
sensor inputs tell a state that it has reached its goal. For
Straighten this means that after all four feet have touched
ground, and the central body has been lifted by a defined
height the state Straightened is reached.

Fig. 10 shows the states and the state transitions. Con-
nections with arrowheads depict externally triggered state
changes, i.e. user commands. The connections ending with
a circle are reached “automatically”, depending on the sen-
sor inputs, i.e. usually when a state has finished its task.

As Alduro is an experimental system the operator
should at any moment be able to pause the operation of
whatever the robot is doing. Therefore, for each of the four
main states an additional “pause” state is added. At the
pausing command of the operator the current state is set
to its “paused” version, and back, see Fig. 11.

Park

Straighten

Operate

Prepare

To

Park

done

done

done

park

park

park

park

straighten
straighten

operate

operate

operate

Fig. 10. Operational modes as states of a finite state machine

Product Soft Hard License

RTLinux x GPL/comm.
RTAI Linux x GPL
ElinOs (using RTAI) x free/comm.
vxWorks x commercial
QNX x commercial
LynxOS x commercial
Windows CE x commercial
Embedded Linux x GPL
manually trimmed
Linux

x GPL

TABLE II

A list of realtime operating systems

IV. Implementation

The problem of realtime requirements is discussed and
the software framework MCA introduced.

A. Realtime requirements

There are several definitions for “realtime”, “hard real-
time” and “soft realtime”. Most of them are contradic-
tory. The definition from IEEE [7] is: Realtime in oper-

ating systems: the ability of the operating system to pro-

vide a required level of service in a bounded response time.

The distinction between “soft” and “hard” seen from a
task perspective is that the missing of a guaranteed re-
sponse time in a “hard realtime” task is catastrophic (air-
plane), whereas in a “soft realtime” task only unpleasant
(video/audio applications). Some possible corresponding
operating systems (RTOS) are listed in Table II

As Alduro is able to harm humans during operation,
being in close contact to them, timing delays in the con-
troller are dangerous and therefore not acceptable. The en-
visaged control cycle is 1 ms, with a scatter of ±5%. This
requires one of the “hard” RTOS in Table II. Whether
the chosen cycle time and the computer are fast enough

DESIGN AND CONTROL OF THE QUADRUPED WALKING ROBOT ALDURO 7

3a

Park

Straighten

Operate

Prepare

To

Park

pause

pause

pause

done

done

done

pause

pause

pausepause

pause

pause

cont.cont.

cont.

cont.

park

park

park

park park

park

straighten

straighten

straighten

operate

operate

operate

operate

Fig. 11. Operational states with pausing

preliminary tests will have to show.

The commercial systems are stable, well tested and
supported, but expensive. Besides they bring their own
sets of development tools, which usually do not offer the
same level of comfort as standard Linux tools. RTAI and
RTLinux allow to work and develop on a standard Linux
system, without the necessity of getting acquainted with a
new operating system. A non negligible drawback of the
free Linux based RTOS is the lack of realtime supporting
drivers of most hardware (digital and analog I/O cards).
This has to be considered carefully when choosing RTOS
and hardware.

Next to the command input elements (joystick, switches,
etc.) the operator also needs feedback from the system.
Due to the complexity optical indicators only will not suf-
fice to transport enough information to the human user.
A display is necessary. In order to free the main con-
trolling computer of the sometimes time consuming task
of rendering graphics a second unit (laptop or additional
CPU-board) will be assigned to that task.

Fig. 12. The four main modules displayed with MCAbrowser.

B. MCA2

Summarising all requirements for the controller system
we get

• C++ based, to link the multibody systems library
• modularity
• realtime capability
• network transparency (to distribute on several CPU’s

if necessary)
• provides a graphical user interface
• GPL license (to reuse it on other, also external

projects)

The Modular Controller Architecture (MCA, [16]) meets
the requirements above. It provides a programming frame-
work in C++ that enforces modularity, offers network
transparency, and supports both RTAI and RTLinux (as
well as Windows and Linux). Graphical user interfaces
(MCAGUI) can be assembled from a library of widgets, such
as sliders, oscilloscopes, LEDs, 3D-graphic plugins and
more. For debugging purposes another tool (MCAbrowser)
shows the groups and modules, the inter-modular connec-
tions and the current values. To isolate and test single
modules or groups they can be deactivated or their inputs
or parameters changed.

MCA is based on a bidirectional data transportation
scheme. In a fist phase the sense data is passed from robot
up to the user. The second phase passes the control data
from the user down to the robot (see Fig. 12 and [15]).

When stepping into Motion Generator the modules
(light grey) and module groups (darker grey) and their con-
nections can be seen in Fig. 13. On the fourth level three
of the four operational modes can be seen Straighten, Park

and Operate.

For controlling the hardware and the operational states
the operator is provided with one or more graphical inter-
faces. Fig. 14 shows the interfaces developed so far.

The combination of Linux, RTAI, MCA and I/O hard-
ware with RTAI support have turned out to be a satisfying
compromise between comfort, support, stability, realtime
requirements, and cost for an academic project.

8 ISARC 2005

Fig. 13. The Motion Generator group displayed in MCAbrowser.

Fig. 14. User interfaces for normal operation (left) and control of
hardware (right).

V. Conclusion

This paper has illustrated how the need (desire) to au-
tomatise walking excavators has led to the design and re-
alisation of the four-legged walking robot Alduro. With
help of a virtual prototype the dimensions and specifica-
tions of the robot and its peripheral aggregates have been
calculated.

To isolate the physical robot from the motion generation
unit the concept of a hardware abstraction layer has been
adopted. This allows for the Motion Generator of stati-
cally stable walking quadrupeds to be developed indepen-
dently of the robots geometry, sensors and actuation type.
The Motion Generator itself is subdivided in different sep-
arate tasks that run in parallel modules, communicating
with each other through the real world only. To facilitate
this a modular software design has been decided upon.

Probably one of the main issues of the project of build-
ing a quadruped robot is the gait generation. Especially
when operating in rugged terrain and wanting to move in
all directions a flexible free gait algorithm is essential. To
choose the leg approaching fastest its limit of workspace as
next stepping leg was selected from several different meth-
ods.

The controlling of a robot requires realtime capabilities
of the operating system. Due to the broad spectrum of
tools and low costs the choice was a free realtime exten-
sion of standard Linux, RTLinux or RTAI. The software
framework MCA fulfills the requirements of modularity,
flexibility, graphical tools, realtime support, and network
transparency. Thus the controlling software of Alduro is
an assembly of a plethora of MCA modules and module
groups.

References

[1] R. A. Brooks, “A robust layered control system for a mobile
robot,” IEEE Journal of Robotics and Automation, vol. 2, no. 1,
March 1986.

[2] J. Connell, “A colony architecture for an artificial creature,”
Ph.D. dissertation, Massachusetts Institute of Technology, De-
partment of Electrical Engineering and Computer Science, 1989.

[3] M. Frik, A. Buschmann, M. Guddat, M. Karatas, and D. C.
Losch, “Generation, evaluation and visualisation of gait pat-
terns for walking machines,” in Proceedings of the 1st IFAC-
Conference on Mechatronic Systems, International Federation
of Automatic Control, Darmstadt, Germany, 2000, pp. 635–640.

[4] F. Hardarson, “Stability analysis and synthesis of statically bal-
anced walking for quadruped robots,” Ph.D. dissertation, The
Royal Institute of Technology of Sweden, Stockholm, 2002.

[5] C. Heckhoff, “Free-Gait: Gangmustergenerierung für den
ALDURO,” Projektarbeit, Universität Duisburg-Essen, 2005,
lehrstuhl für Mechatronik.

[6] M. Hiller and T. Schmitz, “Kinematics and dynamics of the
combined legged and wheeled vehicle ‘RoboTRAC’,” in Pro-
ceedings of the CSME Mech. Eng. Forum, Toronto, June 1990,
pp. 387–392.

[7] IEEE, “IEEE Std 1003.1 (POSIX-1),”
http://standards.ieee.org, 1999.

[8] J. Ingvast, C. Ridderström, F. Hardarson, and J. Wikander,
“Towards walking in rough terrain – control of walking,” in Pro-
ceedings of the 6th International Conference on Climbing and
Walking Robots, Catania, Italy, September 2003.

[9] A. Kecskeméthy, “Object-oriented modelling of mechanical sys-
tems,” in Kinematics and Dynamics of Multi-Body Systems,
ser. CISM Courses and Lectures, no. 360. Wien, New York:
Springer-Verlag, 1995, pp. 217–276.

[10] T. Miyashita, K. Hosoda, and M. Asada, “Reflective walk
based on lifted leg control and vision-cued swaying control,” in
Proceedings of the International Symposium on Climbing and
Walking Robots, 1998, pp. 349–354.

[11] E. F. Moore, “Gedanken experiments on sequential machines,”
Automata Studies, Princeton University Press, vol. 34, 1956.

[12] J. A. Morgado de Gois and M. Hiller, “Implementation of a
sensor system for obstacle avoidance at a four-legged robot,” in
Proceedings of the Eleventh International Symposium on Dy-
namic Problems of Mechanics, Ouro Preto, Brazil, February
28–March 4 2005.

[13] J. Müller, Entwicklung virtueller Prototypen des hydraulisch
angetriebenen Schreitfahrwerks ALDURO, ser. Fortschritt-Be-
richte VDI, Reihe 1, Nr. 356. Düsseldorf: VDI-Verlag, 2002.

[14] D. J. Pack and A. C. Kak, “A simplified forward gait control
for a guadruped walking robot,” in Proceedings of the 1994
IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 2, Munich, Germany, 1994, pp. 1011–1018.

[15] K.-U. Scholl, J. C. Albiez, and B. Gassmann, “MCA - An Ex-
pandable Modular Controller Architecture,” in 3rd Real-Time
Linux Workshop, Milano, Italy, 2001.

[16] K.-U. Scholl, “Modular Controller Architecture MCA2,”
http://mca2.sf.net, 2001, Forschungszentrum für Informatik, In-
teraktive Diagnose- und Servicesysteme.

[17] S.-M. Song and Y.-D. Chen, “A free gait algorithm for
quadrupedal walking machines,” Journal of Terramechanics,
vol. 28, no. 1, 1991.

[18] M. Zimmermann, “Concurrent behaviour control – a systems’s
thinking approach to intelligent behaviour,” Ph.D. dissertation,
Swiss Federal Institut of Technology, Zürich, 1993.

