22" International Symposium on Automation and Robotics in Construction

ISARC 2005 - September 11-14, 2005, Ferrara (Italy)

Nonlinear Control System Design For
Construction Robots: Estimation, Partial
Linearization By Feedback And State-Dependent-
Parameter Control

E. Shaban, K. Zied, C. J. Taylor and D. W. Seward *

Abstract— This work is concerned with the development
of State Dependent Parameter, Proportional-Integral-
Plus (SDP-PIP) control of a prototype robotic arm called
Starlifter. Although the PIP controller can be interpreted
as a logical extension of conventional PI/PID controllers,
it exploits the power of state variable feedback methods,
where the vagaries of manual tuning are replaced by pole
assignment or Linear Quadratic (LQ) design. In the
nonlinear case, the system is modelled using a quasi-
linear model structure in which the parameters vary as
functions of the state variables, yielding SDP-PIP control
systems in which the state feedback gains are themselves
state dependent. The paper illustrates a novel partial
linearization by feedback approach for handling the
‘input’ terms of the nonlinear model and evaluates the
robustness of the method in comparison with
conventional linear PIP designs.

Index Terms— PIP Control, Construction Robotics,
SDP-PIP control, Partial Linearization by feed back

I. INTRODUCTION

In recent years there has been a great interest in the
use of robots in many areas of the construction

industry, such as excavation and heavy tools
deployment. However, the practical implementation of
such robots is limited by various factors, including
both economic and technological problems. One of the
major obstacles is the difficulty of controlling heavy
robots in unstructured environments such as
construction sites.

In this regard, a persistent stumbling block for system
developers is the achievement of adequately fast and
smooth movement of hydraulically driven robot arms
under automatic control. The control problem is
generally made difficult by a range of factors that
include highly varying loads, speeds and geometries,
together with the issue of multiple hydraulic cylinders
being driven by a single pump. Furthermore, the
behaviour of hydraulically driven manipulators is
dominated by the highly nonlinear, lightly damped
dynamics of the actuators [1].
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Such nonlinear systems present the designer with a
difficult challenge, which researchers are addressing
using approaches such as feedback linearization [2];
fuzzy moving sliding mode control [3]; and impedance
control [4]. Although such methods show much
promise, the results from field tests published to date
have been mixed. For example, the success of a
feedback linearization approach is highly dependent on
the fidelity of the nonlinear model, and on whether the
model is feedback linearisable. In the face of
disturbances or parametric uncertainty, suitable
performance and robustness is far from guaranteed.

Previous work on construction robots at Lancaster has
focused on the Lancaster University Computerised
Intelligent Excavator (LUCIE; [5]) and a prototype
robotic arm called Starlifter [6]. However, control of
such devices was initially based on the ubiquitous
Proportional-Integral-Derivative (PID) type algorithm,
tuned on-line and implemented in a rather ad hoc
manner. As a result, the nonlinear joint dynamics
would sometimes yield an oscillatory response. In
order to maintain smooth control, therefore, previous
research typically utilised a relatively slow control
action. By contrast, recent research employs
Proportional-Integral-Plus (PIP) design to improve the
joint control and so provide smoother, more accurate
movement of the excavator or robot arm [7].

Here, Non-Minimal State Space (NMSS) models are
formulated, so that full state variable feedback control
can be implemented directly from the measured input
and output signals of the controlled process, without
resort to the design and implementation of a
deterministic state reconstructor (observer) or a
stochastic Kalman filter: see e.g. [8-9]. The PIP
controller that this approach yields can be interpreted
as a logical extension of conventional PI/PID
controllers. However, PIP design has numerous
advantages: in particular, its structure exploits the
power of state variable feedback methods, where the
vagaries of manual tuning are replaced by pole
assignment or Linear Quadratic (LQ) design.

It is clear from these examples, that a common strategy
for the control of nonlinear systems involves



attempting to bring the original system into a quasi-
linear domain, before subsequently designing an
appropriate linear control algorithm [10]. Indeed, for
many nonlinear systems, the essential small
perturbation behaviour about an operating point can be
very well approximated by simple linearised Transfer
Function (TF) models and, to date, this is the approach
most commonly employed in NMSS/PIP control
system design.

However, one novel research area currently being
investigated in order to improve PIP control in such
cases, is based on State Dependent Parameter (SDP)
system identification: see Young [11] and the
references therein. Here, the nonlinear system is
modelled using a quasi-linear model structure in which
the parameters vary as functions of the state variables.
In other words, SDP models are descriptions of true
nonlinear systems, where the parameters are
functionally dependent on other variables in the
system.

The linear-like, affine structure of the SDP model
means that, at each sampling instant, it can be
considered as a ‘frozen’ linear system. This
formulation is then used to design a PIP control law
using linear system design strategies such as pole
assignment or suboptimal LQ design. This yields SDP-
PIP control systems in which the state feedback gains
are themselves state dependent [13].

However, not all feasible SDP model structures are
controllable using this basic approach. In this regard,
recent research has considered a novel partial
linearization by feedback method that returns the
closed-loop system to a controllable state [14].

The present paper focuses on these latest developments
in SDP-PIP control, with particular reference to
Starlifter [6]. As the world’s first tool deployment
robot designed for use in construction, its features
include: a 200 kg lift capacity; lightweight mobile
construction; hydraulic power provided by umbilical
hoses to the tool-head; interchangeable tools; and
operation in any orientation (e.g. at the end of a
hydraulic crane boom).

For such heavy dynamic systems, it can be difficult to
design appropriate open-loop experiments for data
collection and subsequent model estimation. For
example, system constraints limit the applicability of
straightforward ‘step’ experiments. To help identify the
SDP model for a wide range of operating conditions,
the present paper combines the results from several
open-loop experiments, as discussed in Section 2
below. Here, an optimisation technique is utilised to
find the best ‘global’ model parameters.

Section 3 of the paper briefly reviews linear PIP
control system design. This is followed in Section 4 by
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discussion of the partial linearization approach to
SDP-PIP control and Section 5 by its application to
Starlifter. Finally, the conclusions are presented in
Section 6.

Since the focus of the present paper is the new
methodological developments, only one joint of the
Starlifter system will be considered for the analysis that
follows, i.e. 1 degree-of-freedom. However, there is no
coupling between the various joints, hence the same
approach could be straightforwardly utilised for the
remaining joints in the future.

II. IDENTIFICATION AND ESTIMATION

For a given dynamic system, an appropriate model
structure needs to be identified, i.e. the most
appropriate values for the triad [n,m,d] which defines
the following TF model,
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for which y, and u, are the output (slew joint angle)
and plant input (normalised applied voltage),
respectively. The two main statistical measures
employed to help determine these values are the
coefficient of determination R% , based on the response
error, which is a simple measure of the model fit; and
the more sophisticated Young Identification Criterion
(YIC), which provides a combined measure of fit and
parametric efficiency, with large negative values
indicating a model which sufficiently explains the data
without over-parameterisation. In each case, the TF
model is estimated using the Simplified Refined
Instrumental Variable (SRIV) algorithm [15-16].

These statistical tools and their associated estimation
algorithms have been assembled as the CAPTAIN
toolbox within the MATLAB®© software environment
(www.es.lancs.ac.uk/cres/captain). The third author
can be contacted for further details about this toolbox.

A. LINEAR MODELS

For the present analysis, four data files were collected
each with a different input excitation format. In each
case, a first order TF with one numerator and one
sample time delay best describes the dynamic
behaviour of the system, i.e.,

~ bz
Pe =y )
1+az
where z~! is the backward shift operator, i.e.

z7'y(k) = y(k —i) . Here, ¥, represents the estimated
response of the TF model. This estimated output is
related to the actual response of the system as follows,
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where e, is the noise that arises from stochastic effects
such as measurement noise and the effect of other input
variables that are not taken into consideration. In other
words, these errors are caused by the fact that the
model is an approximation to reality.

One well known approach for estimating the
parameters a; and b, is to minimize the following
cost function,
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where £ is the current sample index and N is the total
number of samples collected. In the case of several
open-loop experiments, Eq.(4) may be adjusted to take
the following form,

J=3'3 ¢ (5)

where M represents the number of data files. The
selection of the initial values of the TF parameters is
important, since the minimisation technique may
otherwise identify the local minima rather than the
desired global minima.

This problem is be overcome by application of the
SRIV algorithm to one of the data sets. The estimated
parameters are subsequently used as initial values for
the minimisation procedure. As shown in Figure (1),
the analysis suggests that estimating the parameters by
optimisation averages the dynamic behaviour of the
system for all the data files. The TF parameters are
determined as follows: a; =-1 and b, =0.021418
overall, with b, =0.3677, 0.8816, 0.8752 and 0.4968,
for the 1%, 2™, 3™ and 4™ data files respectively. The
overall coefficient of determination R% =0.789 for
the four data files altogether.

Figure (2) shows a comparison between the model fit
using the fourth data file only and the optimisation
technique based on all four data files. The comparison
confirms that optimisation using the entire set of data,
yields TF model parameters that most appropriately
describe the dynamic behaviour, regardless of the input
excitation used in the open-loop experiments.

B NONLINEAR MODELS

It is assumed that the SDP model takes the same basic
structure as Eq.(2), but with time varying parameters.
In fact, the parameters are functionally dependent on a
certain state, i.e. a;; = f(x; )z~ and biy=f(x;)-In
this manner, the nonlinear SDP dynamic model takes
the following difference equation form,
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Analysis of experimental data from Starlifter suggests
that the parameter a,, is always constant (a; =—1).
This implies that the slew joint of the robot is working
as an integrator. By contrast, the parameter associated
with the input is a function of the lagged input variable
itself, i.e. b, = f(u;_;). In a similar manner to the
linear modelling, Figure (3) suggests that optimisation
best averages the nonlinear dynamic behaviour of the
system, when the analysis is simultaneously based on
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Fig. 1 Comparison of R% between the four TF models
estimated using individual data files and using the
optimization all over the data files.
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Fig. 2 Open-loop Starlifter data (dots), estimated TF
model response based on estimation from the 4™ data
file only (dashed) and all four data sets (solid).
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Fig. 3 Comparison of R% between the four SDP
models estimated using individual data files and using
the optimization all over the data files.

In this regard, Figure (4) compares the model fit using
the fourth data file only, with that obtained using the
full optimisation method. The latter approach yields an
optimised b, =0.0917x10u7 , +0.01913.  This
model yields the coefficient of determination, R% of
0.338, 0.8603, 0.8574 and 0.4896 for the 1%, 2™, 3"
and 4" data files respectively.
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Fig. 4 Open-loop Starlifter data (dots), estimated SDP
model response based on estimation from the 4™ data
file only (dashed) and all four data sets (solid).

III.  NMSS/PIP DESIGN

The plant model considered in this work takes either
the linear TF model form given by Eq.(2), or the
nonlinear SDP form Eq.(6). Here, a; =—-1 for both
cases, while b, =0.021418 in case of the linear model
and b, =0.0917x10u} | +0.01913  for the
nonlinear case.

It is easy to show that both models can be represented
by the following Non-Minimal State Space (NMSS)
form,
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where F, g, d and h are defined by [8-9]. In the linear
case, F,g are time invariant, while in the nonlinear
case, they may be time varying and detonated F,,g, .
The n+m dimensional non-minimal state vector X,
consists of the present and past sampled values of the
output and the past sampled values of the input
variables, i.e.,

X :[Vk Vi1 7" Vienat U 70 Up_ppy Zk]T (8)
Here, z, =z, +(r, —y;) is the integral of error
between the reference and the sampled output. Inherent
type 1 servomechanism performance is introduced by
means of this state, z,. The control law associated
with the NMSS model, Eq.(7) takes the usual State
Variable Feedback (SVF) form,

Up =-VXy )
where Vz[fu SHio fua & &ma _kl]
is the SVF control gain vector (time invariant case).
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Fig. 5 PIP control block diagram.

In more conventional block diagram terms, the SVF
controller, Eq.(9), can be implemented as shown in
Figure (5), where it is clear that it can be considered as
one particular extension of PI controller, where the PI
action is, in general, enhanced by the higher order
forward path and feedback compensators, M(z™") and
L(z™"), where,

L= fo+ fiz bt a2 (10)
M(Z_l):glz_l +'“+gm IZ_”H-1
Note that, for the particular example given by Eq. (2),
the forward path polynomial M(z™')=0. For the
present research, the controller is obtained by
optimisation in terms of a LQ cost function of the
form,

o0

J:%Z{XITQX[+R14[2} (11)

i=0

where Q is a diagonal state weighting matrix and R is
an additional scalar weight on the input. The resulting



SVF gains are obtained recursively from the well
known Algebraic Riccati Equation (ARE).

IV. PARTIAL LINEARIZATION

Consider the system described by Eq.(6) as follows,
Vi = Vi +(0.0917x10uf | +0.01913)u,_, (12)

for which the time delay 6 =1. For a given nonlinear
system, it is possible to find a linear input term with the
same time delay, which could substitute for the input
term of the nonlinear model. Then, given Eq.(12), it is
possible to find a linear input term BU,_; such that

BU, , =(0.0917x10u? , +0.01913)u, , (13)

for which B is constant. Theoretically, the value of B
could be chosen as any number. However, for the sake
of robustness, the practical implementation suggests
the use of a nominal value of the nonlinear input
function, as shown below.

It is possible to select a constant B such that
minimizing the sum square of errors between the
nonlinear and linear input functions, i.e.,

(B U, —(0.0917x10u} | +0.01913)u,_, )2 =0
(14)

This selection of a constant B would help to improve
the robustness of the partially linearised system.

The second stage of the analysis is the construction of
the transformation matrix 7, which can be used for
coordinate mapping as follows,

X, =Tx, (15)

Finally the mapping described by Eq.(15) is combined
with the SVF control law Eq.(9), to yield the following
linearised control law,

Note that the feedback gain vector V, has a linear
input gain due to the partial linearization for the input
term. Also Eq.(13) can be used for transferring back
the partially linearised input U, to the actual input of
the system u, by solving a 3" order equation. The
special structure of this equation does not allow any
human intervention to choose from the three potential
solutions, since two of these will be imaginary, leaving
just one real solution. Finally, the steps described in
Eqgs.(14, 15 and 16) yield the control system illustrated
in figure (6).
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Fig.6 Linearised SDP-PIP control block diagram
V. APPLICATION TO STARLIFTER

Unfortunately the Starlifter robot was unavailable for
the required closed-loop tests during the preparation of
this paper. Therefore, to illustrate the new
methodological approach, the results below are based
on a simulation study.

The NMSS form for both the linear and nonlinear
systems take the same structure, because of the partial
linearization technique. The SDP linearised system is
based on B =0.02516386. In this case, the NMSS
form is constructed as follows,

- 0 B 0
Yist | _| T4 Vi + wp 4| e
Zpi1 a1z -B 1

et ol

Zk

Experimentation suggests that setting Q:diag[l 1]
and R =50 yields a suitably fast and robust PIP-LQ
algorithm, for which the linearised gains are,

f, =3.21828

ky =0.1356 (18)
The tracking test for the linearised model can be shown
in Figure (7). It is important to stress here that a
saturation filter was added to limit the normalised input
of the slew joint between =10, together with the
implementation of an appropriate incremental form to
avoid the problem of integral wind-up.

The robustness of the controller to model mismatch is
analysed using Monte Carlo Simulation. These results
suggest that partial linearization does not significantly
reduce the robustness in this case. A typical test,
comparing the linear and partially linearised gains is
illustrated in Figures (8 and 9). Here, the two
controllers are applied to the nonlinear model. When
using the linear gains, the system can sustain good
performance if the model parameters are varied in the
range 65% to 2900% of their optimised values. Using
the partial linearization approach, good performance is
maintained for the range 70% to 2400%.



Of course, the advantage of the nonlinear approach is
the applicability of the controller to a wider range of
operating conditions, once it is implemented in
practice.
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Fig. 7 Simulation response of the SLEW joint of the
STARLIFTER arm.
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Fig. 8 Monte Carlo Simulation showing the SLEW
response based on linear PIP control, using linear gains
from a probability distribution in the range 65% to
2900% of their nominal values.

Monte Carlo response for the SLEW joint [deg]

Fig. 9 Monte Carlo Simulation showing the SLEW
response based on nonlinear SDP-PIP control, using
linear gains from a probability distribution in the
range 70% to 2400% of their nominal values.
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VI. CONCLUSIONS

This paper presents some preliminary results in the
design of an automatic control system for the Starlifter
robot. Although it has not been possible to implement
the new controller in practice, because the robot
became unavailable for use during the project, the
paper has demonstrated the feasibility of the design
approach using simulation.

In particular, the paper has described a novel partial
linearization by feedback method for the development
of State Dependent Parameter, Proportional-Integral-
Plus (SDP-PIP) control systems. For the present low
order example, the approach yields a fixed gain control
algorithm with similar characteristics (in simulation) to
a conventional linear PIP algorithm. However, in the
more general case with higher order numerator terms,
the final control algorithm is based on state dependent
feedback gains. New examples that demonstrate the
advantages of the approach in practical applications are
presently being developed. These will be reported in
future publications [14].
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