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Abstract— In the last few years, automation of slewing cranes 
is gaining more and more importance in transport and 
handling processes. However, each operation of crane with 
rope-suspended loads provokes swaying movements of load. 
Neutralization of these swaying movements represents a key 
problem when high handling speeds, operational reliability, 
accurate traveling trajectories and positioning are required. 
Parameter variations and force interactions between rotary 
and translation movements in slewing cranes call for a special 
approach when designing the control scheme. The presented 
paper deals with optimal control of slewing cranes. It will 
show that optimal control strategy copes very well with the 
mentioned problems.     
 
 

Index Terms—slewing crane, modeling, anti-sway, optimal 
control  
 

I. INTRODUCTION 
OMMON  drive control systems are usually designed in 
cascade structure and optimized using linear standard 
criteria (Betragsoptimum, symmetrical optimum) with PI-

controller. Current limitation is realized by current reference 
value limitation.  This structure becomes accepted in practice 
because of its easy implementing.  Specific technological 
tasks can be taken into consideration by overlaid control loops 
that provide the appropriate reference values for the drive 
system. This structure can be maintained in the proposed 
robust control scheme of slewing cranes. However, robust and 
optimal control theory starts from the state space description 
of the plant and optimal controller parameters are given in 
state space notation as well. However, for practical 
applications the obtained control structure can be easily 
transformed into cascade structure, so the presented 
optimalcontrol structure does not lose its generality. 

Mathematical description of slewing cranes movement differs 
considerably from gantry cranes and overhead traveling 
cranes. Crane movement is characterized by the appearance of 
Coriolis and centrifugal forces. Consequently, the system of 
governing equations is becoming significantly non-linear and 

the application of linear control theory methods may lead to 
problems. Practical and simulation investigations prove that 
both components may considerably influence the movement 
of slewing cranes and that they must by taken into account 
when designing and optimizing the controller system. To 
solve this problem, three different approaches can be utilized:  
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• Consideration of parameter variations and non-
linear force interactions via control parameter 
adaptation, 

• Linearization of the plant via appropriate 
compensating loops and linearization of plant 
parameters and 

• Application of robust control strategies able  to 
guaranty satisfactory system behavior in the whole 
range of real working points even if plant 
parameters are changing and Coriolis and 
centrifugal forces are appearing. 

It is obvious that the first mentioned two methods starts from 
the supposition of a well known and defined plant model, the 
parameter finding of which, however, in practice may cause 
problems. Moreover, it can be assumed that handling tasks for 
slewing cranes do not require extremely high position nor 
travel trajectory accuracy. On that condition it seems to be 
interesting to utilize a control strategy that features robustness 
in the whole range of possible parameter variations as well as 
Coriolis and centrifugal forces too which, in addition, 
guaranties necessary motion quality. To this aim in the last 
few years several sophisticated control methods have been 
developed. Although their mathematical description in control 
theory books is sometimes confusing they can be easily 
realized in practice. In the following the implementation of a 
LQ-controller for slewing crane movement control shall be 
considered. 
 

II. OPTIMAL AND ROBUST CONTROL 

Optimal control systems meet a criterion that depends on the 
control task.  LQC (linear quadratic controller) are of 
particular practical interest. Here the weighed quadratic 
medium value of the state variables (e.g. error) and control 
variable are minimized. 
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This controller design represents a compromise between the 
maximum obtainable dynamics and the maximum value of the 
control variable. It is obvious that an increasing weight of the 
control variable u goes along with a deterioration of dynamics. 
Determination of the feedback parameters leads to the well 
known Ricatti equation that can be solved off-line and does 
not represent problems when using appropriate software. It is 
known that LQC is characterized by good robustness against 
parameter variations [1] and is consequently suitable for 
system control with uncertain or varying parameters. 

In control theory norms are utilized for performance 
assessment (performance index) [2], [3]. So the -norm of 
a signal u 
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can be interpreted as medium power of the signal whereas the 
-norm  ∞H
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gives the signal maximum value in the interval [ ]∞∞− , . In 
control theory the -norm of a transfer function F(s) is 
determined by the maximum amplitude in the bode plot or 
rather by the farthest distance from the origin in the Nyquist 
plot, i. e.  
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Figure 1: Cinematic equivalent scheme with concentrated masses  

It can be shown that there is a direct 
correlation between system sensitivity 
against parameter variations and the   

-norm: The larger the -norm 
the more sensitive the system is against 
parameter variations. Then the problem 
of controller design consists in 
choosing the state variable feed backs 
in a way not to exceed a maximum 
allowable value   

∞H ∞H

γ  for the -norm 
of the state variables. The influence of 
the norms of respective state variables 
on the final solution is determined, 
similar to the LQC, via weight factors. 
However, here the weights are chosen 
depending on frequency, so definite 
frequency spectrums can be suppressed 
or taken into particular consideration. 
Thus in addition to robustness against 
parameter variations insensitivity to 
perturbations in a definite frequency range can be obtained. 
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III. GOVERNING EQUATIONS OF SLEWING CRANES 
 

To describe axis movement of the slewing crane, the 
equivalent cinematic scheme with concentrated masses 
represented in figure 1 is utilized. The crane has 5 
independent degrees of freedom (DOF): trolley movement (x 
coordinate), slewing gear rotation (ϕ  coordinate), hoisting 
gear movement (coordinate l) and the two orthogonal sway 
angles in trolley movement direction and perpendicular to it 
( xϕ  and respectively). The task consists in load 

positioning along a desired trajectory with given accuracy 
using a position controlled drive system for the trolley, 
slewing and  hoisting gear. Using the Lagrange formalism the 
system of governing equations can be obtained in the 
following general form 
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Figure 2 depicts equation (5) with 

M – motor torque, 
q – generalized coordinates, 
J – Jacobi matrix, 
B – matrix of  vicious friction, 
C – coupling matrix to calculate Coriolis and centrifugal 
effects, 
G - Gravitation matrix 
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Fig.: 2 General scheme of slewing crane movement 
 
This notation is a general description of coupled movements 
that is widely used in robotics.  If we start from the 
supposition that trolley, slewing and hoisting gears are 
equipped with position controlled drive systems; their 
coordinates can be given by the respective reference 
trajectory, and all force actions of the load on the trolley can 
be neglected. Thereby the overall scheme of the sway 
movement can be simplified as shown in figure 3.   The 
controller system will be designed for a simplified linear sway 
model without respect of the coupling forces and taking into 
account a medium rope length. However, the controller shall 
provide satisfactory system behavior both when  rope length is 
changing and when Coriolis and centrifugal forces are acting 
during crane movement. 

 
 
Fig.: 3 Principle scheme of slewing crane motion 
 
The influence of Coriolis and centrifugal forces of the 
uncontrolled system can be assessed from the pictures 4 and 5. 
Here the reference trajectories are optimized for the linear 
model with constant rope length. For the slewing crane model 
trolley, slewing and hoisting gear are working simultaneously  
and Coriolis and centrifugal accelerations are represented 
separately when. Trolley gear is moving from 15 m to 23 m at 
maximum speed 1,26 m/s, slewing gear is rotating from 0 to  
 
 

 

 
Fig.: 4: Centifugal and Coriolis acceleration in trolley direction 
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Fig.: 5 Centrifugal and Coriolis acceleration in slewing direction 
 
0,8 rad at maximum speed 0,126 rad/s and rope length is 
increasing from 36 m to 52 m at maximum speed 2,5 m/s.  
Figure 6 pictures the bird’s eye view of the cargo movement 
for the linear model and the slewing crane with respect of the 
mentioned force interactions and rope length variation. It is 
obvious that the nonlinear effects causes considerable load 
swaying whereas the linear model is reproducing the optimal 
trajectory without swaying.  
 

 
 
Fig. 6: Bird’s eye view of cargo movement 
 
 

IV.    DRIVE  STRUCTURE 

 
When choosing the drive structure we start from the 
supposition that a desired load movement trajectory is given to 
the reference trajectory generator. This trajectory is calculated 
for the linear sway model and shall be reproduced by the 
actual crane. It is obvious that changing rope length, 
perturbations, and the mentioned force interactions cause 
deformations of the real crane motion.  Superposed control 
loops are calculating correction positions driving the actual 

load trajectory to the reference trajectory and compensate the 
influence of all perturbations. This control mechanism has to 
guaranty required motion quality in the whole working area, 
i.e. it must be robust against all mentioned perturbations.  
Figure 7 illustrates the chosen drive structure for the trolley 
gear.  Here the reference trajectory generator out put is 
applied both to the real plant and the linear sway model. The 
latter, consequently, generates the load reference trajectory 
that must be reproduced by the actual crane. This movement is 
compared with the actual crane movement and the difference 
between the two movements is compensated by the state 
controller. 

 

Fig. 7: Principle scheme of slewing crane motion with controlled drive system  

V.    RESULTS 

To verify the theoretical results of investigation, the whole 
system of governing equation is simulated in 
MATLAB/Simulinik and a LQC in accordance with [2] is 
designed.   Figures 8 and 9 show the load movement when the 
trolley and slewing gears are activated simultaneously for 
varying rope length (from 36 to 52 meters). The controller 
was designed for the maximum rope length.  Figure 10 
illustrates the load movement from bird’s eye view.  Here 
must be pointed out that choosing the weight factors of the 
error value and control value system behavior can be 
influenced in a wide range.  

 
 
Fig. 8: Cargo position angle in polar coordinates  
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Fig. 9: Radial cargo position in polar coordinates 
 

 
 
Fig. 10: Bird’s eye view of cargo movement 
 
Drive specific limitations (e. g. current limitation) are 
indirectly taken into account by evaluating the maximum 
control signal via its weight factor.  
  

VI.    CONCLUSION 
 
 
Slewing crane motion is characterized by changing parameters 
and force interactions by centrifugal and Coriolis forces. 
These effects call for the application of robust control 
strategies. LQ controller are able to cope with these 
challenges. The presented results for slewing crane control 
prove good robustness and performance.  
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