
22nd International Symposium on Automation and Robotics in Construction
ISARC 2005 - September 11-14, 2005, Ferrara (Italy)

1

Evacuation in Buildings: Path-Finding for
Real-Time Evacuation Systems

Po-Han Chen1 and Feng Feng2

Abstract—Finding the shortest path between any two nodes in a

network is a classical problem in a number of research areas.
Although some general shortest path algorithms have already
been developed, such as Dijkstra’s shortest path algorithm, in
some situations, their computation complexity is too high to be of
any practical use.

In some real-time computation systems, computing the shortest
path in a short time is a basis on which the computation systems
could be applied to solve real world problems. The real world
problem specifies the requirements on the computation speed,
software and hardware limitations and the accuracy level for an
algorithm. As this research is to find the shortest path in a large
indoor area and the algorithm developed would be implemented
on a real-time emergency evacuation system, it is required that
the computing speed be fast enough even the network is large in
terms of the numbers of nodes and arcs.

To solve the above problem, some common inside-building
topologies have to be analyzed, followed by the development of
fast shortest path finding algorithms for the topologies, which
frequently appear in indoor areas like campus and commercial
buildings. This series of algorithms combined classical shortest
path algorithms in graph theory with interval routing techniques
in computer networks in order to get a high computation speed
especially for large scale networks.

The developed fast algorithms could serve as the main shortest
path finding tool in emergency evacuation systems for large
indoor areas, and extend traditional evacuation systems from
virtual simulation to real-time problem solving.

Index Terms—1-IRS, dynamic interval routing schemes, large
indoor area routing, shortest path finding.

I. INTRODUCTION
HE emergency evacuation system, for which we are
developing path finding algorithms, is a mobile and

wearable computing system. It supports location-aware
computing, and offers services that are relevant to the mobile
user’s current location [1]. Mobile user’s outdoor location can
be given by GPS. And by now, some commercial location
trackers have been able to give indoor location information
with a wireless network, like IEEE 802.11 Wi-Fi wireless
LAN. The average accuracy of this type of location tracker can

be up to 1 meter. When a building’s indoor area, especially
passageways and staircases, is abstracted to be a mini
transportation network in certain way, the shortest path from
the mobile user’s current location to any location in the network
can be given by certain algorithms in graph theory. Dijkstra’s
shortest path algorithm [2] is the classic one, which can be used
for the networks in any topologies. But for some special
topologies, other algorithms can be applied independently from
any Dijkstra’s thoughts. Interval routing schemes (IRS) in
computer network routing are in this category and is the main
topic of this paper.

1 Assistant Professor, School of Civil & Environmental Engineering, Nanyang

Technological University, Singapore 639798
2 Research Student, School of Civil & Environmental Engineering, Nanyang

Technological University, Singapore 639798

In part II, the network abstraction method of a building’s
indoor structure is introduced. On the basis of this abstraction,
some frequently appearing indoor topologies are taken out as
the major subject for the shortest path algorithms.
In part III, literatures on shortest path finding algorithms are
reviewed. Static IRS algorithms are introduced for above
frequently appearing indoor topologies.
In part IV, Dynamic IRS algorithms are given for the
topologies above.
In part V, Dynamic IRS algorithms are combined with
Dijkstra’s shortest path algorithms in order to give shortest
paths in networks with much more complext topologies.
In part VI, conclusions are given and possible future works are
discussed.

II. NETWORK ABSTRACTION AND FREQUENTLY APPEARING
TOPOLOGIES INSIDE BUILDINGS

A. Network Abstraction
Most large indoor areas consist of one or more than one

builds connected by some passageways or doors. A path
between any two points in the area should be within its free
space. The free space refers to all the areas within this large
indoor area, which allow people to walk through. All the
passageways, staircases and any empty space confined by
doors, internal and external walls of the building may be
deemed as free space. As for our path finding problem,
passageways and staircases are our concerns; and it is assumed
that our algorithms only deals with paths within passageway
and staircase areas.

In robot motion planning, path finding is a traditional
problem and this free space, denoted by Cfree, is called work
space or configuration space for the movement of a robot.

T

ISARC 2005 2

There are a number of ways to convert Cfree to be a network,
which is a convenient data structure for shortest path
calculation. These include some exact cell decomposition
methods, such as triangular and trapezoidal decomposition
[3-7]. Some road map methods, such as visibility graphs [8] and
Voronoi diagrams [9, 10], are also commonly used for the path
calculation in robot motion planning. For the same free space,
there are a number of methods to do the network conversion.
And the resulting networks for the same Cfree may be much
different due to the methods.

Exact cell decomposition and road map methods and
visibility graphs work when the location information and
motion control are very accurate. But in our case, the location
tracker can’t provide the accuracy of this high level and the
evacuation task’s property does not need so high accuracy
either. So a simplified version of accessibility graph [11] is
used for this research.

B. Frequently Appearing Topologies inside Buildings
One topology appearing frequently in most flat buildings is

2D grid. Let look at a frequently appearing layouts in most flat
buildings first. In Figure 1 (a) and (b), the accessibility graphs
for two neighboring floors A and B are shown. The building
spatial maps are drawn after the formal graduate apartment at
Block 553, Upper Jurong, Singapore, which is a 10-floor flat
building.

Up Down Up Down Up Down

Staircase1 Staircase2 Staircase3

A1 A2 A3

Up Down Up Down Up Down

Staircase1 Staircase2 Staircase3

B1 B2 B3

(a) Accessibility Graph: Floor A

(b) Accessibility Graph: Floor B

Figure 1 Accessibility Graphs for a 2D Grid Structure
The dashed lines are the accessibility graphs for floors A and

B. A is one storey above B. Floors A and B are connected by
three staircases. Each staircase connects the all the floors of the
building. In the accessibility graph, the path between node A1
and B1 are a sequence of connected segments from A1 to
staircase 1 to B1. If we virtually straighten this segment
(convenient for path calculation) sequence to make it one arc
from A1 to B1, and do the same manipulations on the paths A2
to B2 and A3 to B3 on all other floors, the accessibility graphs
of the all floors can be simplified logically into one overall
accessibility graph which is looked as in Figure 2.

Each vertical segment in Figure 2 is actually a sequence of
connected segments, but this straightening manipulation
simplifies the path finding calculation significantly and does
not affect the accuracy of calculation result. When a path is

calculated and there are any this kind of vertical arcs included
in the path, only a simply conversion from the arcs’ logical
forms in the calculation process to its physical forms in reality
is needed in order to present the path found on virtual reality
display devices.

B1 B2
A1 A2

C1 C2

Entrance1 Entrance2

Figure 2 the Simplified Accessibility Graph for a 2D Grid

Some other structures can be found in the form of trees and

rings. One example of a tree structure is a typical unit of most of
blocks on Jurong West, Singapore. It is a unit in a 12-story
apartment building. All floors of the unit are connected by a
staircase. On each floor of the unit there are 4 apartments. The
simplified accessibility graph for one floor is in Figure 3 and
for the whole building in Figure 4.

Figure 3 Single Floor Layout for a Tree

Entrance

Figure 4 Tree Structure of a Unit in a Block

Rings also frequently appear in inside-building topologies.
Some on-campus residence halls of Nanyang Technological
University, Singapore, take this form.

2D grids, trees and rings are high regular topologies.

ISARC 2005 3

Therefore, some efficient algorithms can be developed in
consideration of the properties of these topologies. The Interval
routing schemes (IRS) are a series of routing techniques for
high regular topologies and the literatures on IRS are reviewed
in part III.

III. LITERATURE REVIEW
For high regular topologies, such as grids, trees and rings,

shortest path finding calculation may need no Dijkstra’s
algorithm involved. And alternative routing methods, usually
used in computer network routing can be used. The routing
method significantly decreases the real-time path computation
load on the system and makes it a good alternative for
Dijkstra’s algorithm, which takes no consideration of the
network topology.

Interval routing is a way of implementing routing schemes
on arbitrary networks. A routing scheme is a strategy that
assigns to every source-target pair the path that a message from
the source to the target should take. The concept of routing
scheme was originally developed for computer network. For
example, one possible routing scheme is to store a complete
routing table in each of the n vertices of the network, specifying
for each target the next edge in some shortest path over which
the message must be forwarded. But with the number of the
nodes increases, the size of the routing tables stored at each
node would increase as well.

Another way of implementing routing schemes, called
interval routing, has been discussed in a number of research
articles, which has been summarized by Gavoille [12]. Actually
interval routing scheme is based on representing the routing
table stored at each node in a compact manner. In this method,
each node is assigned a distinct label from the set {1, 2… n}.
Arcs are bi-directional and are labeled with one or several
subintervals of the interval [1…n] so that for any node v the
intervals associated with outgoing edges from v are pair-wise
disjoint and their union covers [1…n]. When a message with
destination v arrives at node u, the message is forwarded on the
unique outgoing edge labeled with an interval containing the
label of v.

In most cases, [1…n] is the cyclic interval, i.e., all
subintervals are understood to wrap around. Such a scheme is
the called a circular interval routing scheme (CIRS). Variants
of the scheme include linear interval routing schemes (LIRS),
in which [1…n] is viewed as a linear interval; k-interval routing
schemes, in which edges can be labeled with at most k intervals
(k-IRS). An interval routing scheme for which all messages are
routed along shortest paths is called an optimal scheme.

An example of circular interval routing scheme is showed in
Figure 5.

In Figure 5, nodes are first labeled with numbers from 1 to 7.
Each arc is given an interval for each direction. If we are trying
to find the path from node 5 to node 2, first scan all intervals on
all arcs outward from node 5. We find that the number 2 exists
in the circular interval [6, 4], (the circular interval [6, 4]
includes {6, 7, 1, 2, 3, 4}) so arc from node 5 to node 4 is

chosen. With similar methods, the arc from node 4 to node 3 is
chosen. At node 3, there are 3 intervals, among which [1, 2]
includes number 2. Therefore the path is constructed as
5-4-3-2. At each node, the next arc to follow is determined by
whether the destination node’s label is bracketed by the interval
of that arc.

3 4 6

10

2

5

1

7

9

8
[2,10]

[1]

[1,9]

[10]

[1,2]

[3,10]

[4,9] [10,3] [6,9]

[5]

[6,4]

[10,5]

[7,9]

[10,6]

[8]

[9,7]

[9]

[10,8]

 Figure 5 An Example of 1-CIRS

Some highly regular networks, such as 2D grids (alias
meshes), admit optimal 1-LIRS [13]. Trees and rings admit
optimal 1-CIRS [14].

Interval routing techniques was originally introduced by
Santoro and Khatib [15]. This scheme was subsequently
generalized by Leeuwen and Tan to more than one interval per
edge [13]. The interval routing method has been implemented
in the INMOS C104 and RCube routers [16, 17]. A short
survey was presented by Leeuwen and Tan [18].

IV. DYNAMIC IRS ALGORITHMS

A. IRS for 2D Grids – Optimal 1-LIRS
With the labeling method described by Leeuwen and Tan,

any 2D grid allows an optimal 1-LIRS [13]. Each static node in
the grid is labeled with a number from 1 to n. n is the number of
static nodes in the grid. The labeling sequence is from top to the
bottom rows and from the left to the right in the same row [13].
Each segment connecting two adjacent nodes represents two
arcs in different directions. Each arc is labeled with a linear
interval.

If the source and target points are just two static nodes, given
the labeling information of these two points and follow the
interval information on the arcs, a shortest path can be found
very efficiently, because no useless nodes would be visited at
all. Suppose pathstatic(N1, N2) performs this simple static
1-IRS shortest path finding function. N1 is the source node and
N2 the target node of this path finding task. They are both static
nodes, which respectively contain a member variable named
label, i.e. N1.label is the node label of N1 and N2.label N2’s
label of 1-LIRS labeling scheme for this grid. We will use
pathstatic() directly in the following demonstration of our
dynamic 1-IRS algorithms.

In indoor shortest path findings, the source of the path may

ISARC 2005 4

not correspond to any static dummy node in the accessibility
graph. And in most of cases the source is located on a segment
and adjacent to two static nodes directly. And the target is the
same as the source. So we call this kind of nodes dynamic
nodes. We call the two static nodes directly adjacent to a
dynamic node gating nodes (GN for short) for a dynamic
location. If the source and the target nodes are not on the same
segment, the shortest path from or to the source node must pass
one of the gating nodes of the source node; and this path must
pass one of the gating nodes of the target node as well. We call
the static node, from or to which the dynamic node’s shortest
path pass, optimal gating node (OGN for short). Because
dynamic nodes like the source or target may be any points on
any segments of the network, they can’t be given routing
information priori as we have done to static dummy nodes. But
the information stored for GNs of two dynamic end nodes of
the shortest path may help to determine the OGNs very simply.
When the OGNs of the source and target nodes are determined,
the path between OGNs can be find with the above pathstatic()
function. Therefore the complete shortest path from the source
node S to the target node T can be constructed very efficiently
with the IRS information stored for the network.

There are three cases with dynamic nodes involved; they are
(1) S is dynamic, T is static;
(2) S is static, T is dynamic
(3) S and T are both dynamic
Case (1) and (2) can be treated in the same way as in case (3),

because any static node can be looked as a dynamic node very
close to this static node. If S and T are on the same segment,
there is no need to do further shortest path finding computing.
So we only discuss the situations, in which S and T are on
different segments here.

S1

S2

E

F
S

x
y

A

B

C D

G
H

Figure 6 Dynamic S and T in a 2D Grid

I

J

If S and T are both dynamic and on different segments, there

are two GNs for S and T respectively, the situation is a little
more complicated. Let’s illustrate it with a piece of a 2D grid in
Figure 6. x and y are the column and row location coordinates
of the static node in the grid. Let S be a dynamic location on a

vertical segment. Let S1 be the upper GN and S2 be the lower
GN (S1.y < S2.y and S1.x = S2.x). If T is on a vertical segment,
let T1 be the upper GN and T2 be the lower GN (T1.y < T2.y
and T1.x = T2.x). If T is on a horizontal segment, let T1 be the
left GN and T2 be the right GN (T1.x < T2.x and T1.y = T2.y).

Cut the grid into two parts along a horizontal line passing S.
If both of T1 and T2 are in the upper part like AB or CD, S1 is
the OGN of S. If T1 and T2 are both in the lower part like GH
and IJ, S2 is the OGN of S. If T1 is in the upper part and T2 is in
the lower part like EF, then we have to compare |SS1|+|ET| with
|SS2|+|TF|. If |SS1|+|ET| is smaller, then the OGN of S is S1
and the OGN of T is E; otherwise, the OGN of S is S2, and the
OGN of T is F.

This method can also be used to choose OGNs when S1S2 is
horizontal (S1.x < S2.x and S1.y = S2.y). In this case the
cutting is vertical, and the similar procedures to find OGNs can
be used.

The procedure can be described with the following
pseudo-code in Appendix. In findpath2d(), pathstatic() runs for
only one time, so the worst case time complexity of the
program findpath2d() is O(r+c). r is the number of rows of the
static nodes in the grid; c is the number of the columns of the
static nodes in the grid.

B. IRS for Trees – Optimal 1-CIRS
A tree has three important properties:
(1) it has no cycles and
(2) when a tree is cut into two parts at any segment, each

part is a new tree
(3) there is only one single path between any two nodes on a

tree, no matter if the nodes are dynamic or static. (A single
node is a trivial tree.)

Based on these properties, it has been proved that a tree
allows optimal 1-CIRS [46]. The 1-CIRS node labeling follows
the depth first procedure. Arcs’ interval labeling is based on
property 2 and 3. For trees we only discuss the situation, in
which S and T are both dynamic nodes and on different
segment.

We see that we only need to observe the intervals of the arcs
between GNs in order to determine the OGNs for S and T.
These arcs are S1-S2, S2-S1, T1-T2 and T2-T1. If S1-S2’s
interval includes T1 and T2, i.e. S2 is the node S must pass in
order to reach T. So S2 is the OGN for S; otherwise, S1 is the
OGN for S. Similarly, if T1-T2’s interval includes S1 and S2,
T2 is the OGN for T; otherwise, T1 is the OGN for T. The
algorithm is described by the treedynamic() function in
Appendix. It’s worst case time complexity is O(Φ). Φ is the
diameter of the tree.

C. IRS for Rings – Optimal 1-CIRS
Many indoor structures are in circular form, which in

calculation is often treated like a ring. A ring consists of a series
of straight segments. Each node in the ring is adjacent to two
segments; therefore, each node has two arcs starting from itself.
The node and arc interval labeling method is based on “hops”,
which is a concept used only in computer networks [13]. The

ISARC 2005 5

distance from one node to another is measured with hops, not
with Euclidean length. In our case, we don’t concern about the
hop numbers between nodes. Euclidean length is our concern.
So we have to develop new node and arc interval labeling
method based on IRS concepts and Euclidean distance in stead
of hop numbers. Each static node in the ring is adjacent to two
segments; therefore, each static node has two arcs starting from
itself. A ring may appear as in Figure 7. Dashed curves
represent all segments not shown in the Figure.

Figure 7 Nodes and Arcs Labeling for Rings

E

M

N

F

G

P

O

Q

The labeling of nodes is simple. Start from any arbitrary

node and choose an arbitrary direction (clockwise or
counter-clockwise along the ring).Label all the nodes one by
one from 1 to n. n is the total number of the nodes in the ring.
As for arc interval labeling is little more complicated because
Euclidean distance is used instead of hops.

Choose an arbitrary node E to start labeling for the ring in
Figure 7. Draw a dot line passing E, which cuts the ring into
two halves. Another intersection point of the dot line and the
ring is Q on segment MN. Make sure that the half {EG…PNQ}
is equal to {EF…OMQ} in terms of Euclidean length. Then the
shortest paths from E to any nodes in {EG…PNQ} all take the
clockwise direction; and the shortest paths from E to any nodes
in {EF…OMQ} all take the counter-clockwise direction. So the
interval of the clockwise arc EG should include the labels of all
nodes in {EG…PNQ}; and the interval of the
counter-clockwise arc E-F should include the labels of all
nodes in {EF…OMQ}. Because the characteristics of the ring
topology and our node labeling method, no matter how to
choose E, the labels of all nodes on one of its two halves of the
ring can be bracketed with only one circular interval. That
means, for each of its two arcs to different directions, only a
circular interval is needed. Accordingly, 1-LIRS can be applied
not only to abstract rings in computer networks, but also to
physical Euclidean rings.

When a ring is labeled in above way, the following dynamic

algorithm can be applied. As in 2D grids and trees, we only
discussed the situation, in which S and T are both dynamic

nodes and on different segements.

In the ring in Figure 8, S1 is the counter-clockwise GN of S;

and S2 is the clockwise GN of S. T is the clockwise GN of T;
and T2 is the counter-clockwise GN of T. For our convenience
to illustrate the algorithm, draw a line passing S1 and T1; and
draw another line passing through S2 and T2. If the interval of
arc S1-S2 includes all of S2, T2 and T1, it means the length of
the ring below the line S1-T1 is shorter than that above the line.
So the clockwise path from S1 to T1 is shorter than the
counter-clockwise path. In this case, S to T’s shortest path
should be clockwise; and therefore, S2 and T2 are OGNs for S
and T respectively.

T1

S1

S2

S

T2

T

Figure 8 Dynamic S and T in a Tree

If the interval of arc S2-S1 includes all of S1, T1 and T2, it

means the length of the ring above the line S2-T2 is shorter than
that below the line. So the counter-clockwise path from S2 to
T2 is shorter than the clockwise path. In this case, S to T’s
shortest path should be counter-clockwise; and therefore, S1
and T1 are OGNs for S and T respectively.

If none of the intervals of arc S1-S2 or S2-S1 includes all of
S1, T1 and T2, the Euclidean length of the path from S to T in
counter-clockwise direction must be compared with that in
clockwise direction. The smaller one is the direction of the
shortest path from S to T. The dynamic program can be
described with the pseudo code of the function ringdynamic()
in Appendix. The time complexity of this program is O(n). n is
the number of static nodes in the ring.

V. DYNAMIC SHORTEST PATH ALGORITHM FOR COMPLEX
NETWORKS FIGURES AND TABLES

A. Element Classes and Non-Classified Segments
With the algorithms developed for the 1-IRS structures

including grids, trees and rings, we can apply the IRS
techniques in static computer networks to dynamic Euclidean
networks. We have analyzed common inside-building
structures and find that most of structures of single buildings
can be modeled into the basic structures like grids, trees and
rings. We call them Element Classes (EC for short). And one

ISARC 2005 6

single node can be treated as a trivial EC here.
Sometimes the path finding source S and T may exists in

different buildings, and the shortest path may pass through arcs
and nodes belonging to multiple ECs. In emergency
evacuation, this does not happen very often. Usually the users
of our system are supposed to be rescue team members. They
often have been in the emergency building before they are
equipped and issue shortest path finding command to the
system. But we still need to consider more complicated
structures than ECs.

Some buildings have more complicated topologies than any
1-IRC EC. In this case we can treat this building as a collection
of ECs connected by some special segments. These special
segments don’t belong to any EC; therefore they are called
Non-Classified Segments (NCS for short). All segments
included in each EC are called Classified Segments (CS for
short).

A more complicated network structure is shown in Figure 9.
EC0 is a trivial EC. Five ECs are connected by a collection of
NCS as shown. CSs are not shown because we don’t need them
for the global Dijkstra’s algorithm.

Figure 9 A Complex Structure

EC EC

EC EC

A B

EC

Any node of an EC, which is one end of any NCS, is called

Boundary Node (BN) of this EC or the boundary node to the EC
at the other end of the NCS. For Example, A is a BN of EC1,
and a BN to EC2. B is a BN of EC2, and a BN to EC1.

B. General Procedure Description
When an Element Class ECa is input to the global Dijkstra’s

algorithm, it may take two forms. Because the source location S
and target location T are not in the same location, when S is in
ECa, the global Dijkstra’s algorithm only cares about the length
of the path from S to each BN of ECa. So we can draw ECa in a
star shape as shown in Figure 10.

All spokes of the star, SA, SB, SC, and SD are virtual
segments. They are constructed with the fast dynamic IRS
algorithms illustrated before. And the length of each virtual
segment is the length of the real shortest path between the two
end nodes of the virtual segment. Similarly, if T but not S is in
ECa, the global Dijkstra’s algorithm only cares about the length
of the path from each BN of ECa to T. So in this case, ECa still
takes the star form to join the global Dijkstra’s algorithm.

Another form ECa may take to join the global Dijkstra’s
algorithm is an n-partite. n is the number of ECs directly
connected to ECa by some NCS. This happens when neither S
nor T is located in EC. In Figure 11, ECa is in a bi-partite form,
when A and D are BNs to the same EC, and B and C are BNs to
another EC. AB, AC, DB and DC are all virtual segments; and
the length of each virtual segment is the length of the real
shortest path between the two end nodes of the virtual segment.

ECa

S

A

D

B

C

Figure 10 Star Form of an EC

Figure 11 2-Partite Form of an EC

ECa

A

D

B

C

As S and T are assigned in real time, the star form of an EC

must be constructed in real time. The n-partite form of an EC
can be constructed in advance in order to save run-time
computing resources. Before S and T are assigned, EC of the
network constructed in advance all take the form of n-partite. In
this stage, the global network consists of n-partite form ECs
connected with NCSs. We call the graph of the global network
in this stage Primary Complete Connectivity Graph (PCCG).

When S and T are assigned two different ECs, EC1 and EC2,

these two ECs are transferred into star form through real time
path calculations. We call the graph of the global network in
this stage Complete Connectivity Graph (CCG). With CCG,
Dijstra’s algorithm can be applied and a path p from S to T can
be found. p is a sequence of arcs. Some arcs represent virtual
segments, so each of these virtual arcs should be converted to
real sub-path. Then the virtual path p is transferred to be the real
path P. The general procedure of this method is described in the
flow chart in Figure 12.

C. Performance Considerations
To evaluate the performance of the algorithm, we compare

its computing process with that of pure Dijkstra’s algorithm

ISARC 2005 7

applied to the whole real network.
In our algorithm, IRS dynamic algorithm is very fast. So

Dijkstra’s algorithm part is supposed to be the most time
consuming part. So comparing the performance of this part to
the pure Dijkstra’s algorithm applied to the whole real network
is meaningful for us. An algorithm’s computing time is roughly
proportional to the input size, which for a network algorithm is
segment and node numbers.

Figure 12 The Flowchart for Multi-EC Algorithm

PCCG of the Network
(Constructed in advance)

S and T Assigned

CCG of the Network
(Constructed dynamically)

Dijkstra’s Algorithm

Virtual Path p Found

IRS Dynamic Algorithm

Real Path P Constructed

Suppose we have an network with x ECs; they are ECi

(i=1,2…x). In ECi, the node number is Ni and the segment
number is Ai. The number of NCSs is a constant K. If we input
the whole real network to pure Dijkstra’s algorithm, the total
node number N and total segment number is A; they are:

∑
=

=
x

i
NiN

1

∑
=

+=
x

i
AiKA

1

In CCG of a network, most of ECs take n-partite form except
the ECs where S or T stays. So node and segment numbers of
PCCG can represent those of CCG’s. For ECi, CNi is the node
number of its n-partite form and CAi is the segment number of
its n-partite form. When we input the CCG to Dijkstra’s
algorithm, the total node number is CN and total segment
number is CA; they are:

∑
=

=
x

i
CNiCN

1

∑
=

+=
x

i

CAiKCA
1

So to allow our algorithm to have better performance, at least
it is required that CN<=N and/or CA<=A. If it is forced that
CNi <= Ni and CAi <= Ai (it is called boundary requirements)
for each i, the requirements is met. If an EC’s CCG doesn’t
meet the boundary requirements, all real nodes and segments in
the EC should join the Dijkstra’s algorithm directly without any
virtual form like star or n-partite. That means, in this case, this
EC should be ungrouped and is not treated as an EC in the
following Dijkstra’s algorithm.

When all ECs’ CCG meet the boundary requirements, it can
not make it assure that the algorithm with ECs involved
performed better than pure Dijkstra’s algorithm. Because in
order to implement EC involved algorithm, the data structure
needed is unavoidably bigger than that of pure Dijkstra’s
algorithm. The space complexity of the EC involved algorithm
is higher than that of pure Dijkstra’s algorithm. Data structure
size affects the speed of data transiting between computing
resources on the computer. When the data structure is too big, it
will significantly affect a program’s running speed.

The performance of the algorithm with EC involved will be
much better than pure Dijkstra’s algorithm when the nodes
and/or segments in the network can be significantly reduced by
constructing CCG with virtual forms of the ECs. If it is not the
case, its performance should be tested for arbitrary network.

VI. CONCLUSIONS AND FUTURE RESEARCH
In this research, common inside-building topologies are

discussed first with their simplified accessibility graphs.
According to their characteristics, IRS techniques in static
computer networks are extended to the dynamic Euclidean
networks. The dynamic algorithms for some frequent appearing
structures, such as 2D grids, 3D grids, trees and rings are
discussed and described by pseudo codes in Appendix. These
codes can be converted to other object-oriented language
codes.

Complicated structures can be treated as a collection of
connected ECs. Each EC can be a grid, a tree or a ring. In this
view, dynamic 1-IRS and Dijkstra’s shortest path algorithm are
integrated into a multi-EC algorithm. Its performance is
compared with pure Dijkstra’s algorithm, which is the classic
algorithm in calculating Euclidean shortest paths.

Computer networks and buildings internal structures often
take similar high regular structures. The reason may be that
they are both artificial products of human beings, who prefer
orderliness, standardization and easiness of republication
especially for engineers. Frequent appearances of high regular
topologies in network designs of a variety of engineering fields
may reflect this preference broadly existing in engineering
area. Due to the characteristics of computer networks, a variety
of routing techniques have been applied very early. This
research is attempting to explore the possibility and potential of
the usage of certain routing techniques on inside building
topologies with the presence of location trackers with
affordable accuracy level.

The implementation of IRS on inside building topologies

ISARC 2005 8

may provide other functions than finding the shortest path.
With the small routing table stored for all dummy nodes,
routing information can be given for all directions from any
point in real-time in the network. This implies that some Virtual
Reality tools, like automatic road guide or real-time route
suggest, can be implemented with the help of IRS.

In this article, only 1-IRS techniques are discussed for indoor
networks. Other routing techniques like k-IRS may also be
explored in future research.

APPENDIX

A. 2D grid code:
Class Gridnode {Arc [] arclist; int nodelb; int x; int y}
/* Arclist is an array of the arcs starting from the node.

Nodelb is the 1-LIRS label for the node. x and y are the
coordinates of the node in the grid*/

Class Gridarc {Gridnode stnode, ennode; float arclength;
int sint, eint;}

/* stnode and ennode are the start and end nodes of the arc.
arclength is the Euclidean length of the arc; sint and eint are
respectively the first and second number of the linear interval
label. */

Program pathstatic (node s, node t)
{ Gridarc arc; Arc [] result; Gridnode ndtemp; ndtemp=s;
While (ndtemp.nodelb <> .nodelbt) do
{for each arc in ndtemp.arclist
 if (t.nodelb >= arc.sint and t.nodelb <= arc.eint) then
 {result.add(arc); ndtemp=arc.ennode; break;} }
return result [];} // result[] is the arc array of the final path

Program findpath2d (S, T, G)
/*S, T are the source and G is the network consisting of

nodes and arcs. S and T are on different segments. S1 is the
upper or left GN of S, S2 is the lower or right GN of S.T1 is the
upper or left GN of T, T2 is the lower or right GN of T.*/

{ Arc [] result; Gridnode ndtemp;
// S and T are on different horizontal segments
if (S1.y = S2.y and T1.y = T2.y and T2.x<=S1.x) then

result=pathstatic(S1,T2); endif;
if (S1.y = S2.y and T1.y = T2.y and T1.x>=S2.x) then

result=pathstatic(S2,T1); endif;
 if (S1.y = S2.y and T1.y = T2.y and T1.x=S1.x and

T1.y<>S1.y) then
{if ((|SS1|+|TT1|) <= (|SS2|+|TT2|)) then

result=pathstatic(S1, T1);
else result= pathstatic(S2, T2); }
// S and T are on different vertical segments
if (S1.x = S2.x and T1.x = T2.x and T2.y<=S1.y) then

result=pathstatic(S1,T2); endif;
if (S1.x = S2.x and T1.x = T2.x and T1.y>=S2.y) then

result=pathstatic(S2,T1); endif;
 if (S1.x = S2.x and T1.x = T2.x and T1.y=S1.y and

T1.x<>S1.x) then
{if ((|SS1|+|TT1|) <= (|SS2|+|TT2|)) then

result=pathstatic(S1, T1);
else result= pathstatic(S2, T2);}
// S on vertical segment and T on horizontal segment
if (S1.x = S2.x and T1.y = T2.y and T1.y<=S1.y and

T2.x<=S1.x) then result=pathstatic(S1,T2);
if (S1.x = S2.x and T1.y = T2.y and T1.y<=S1.y and

T1.x>=S1.x) then result=pathstatic(S1,T1);
if (S1.x = S2.x and T1.y = T2.y and T1.y>=S1.y and

T2.x<=S1.x) then result=pathstatic(S2,T2);
if (S1.x = S2.x and T1.y = T2.y and T1.y<=S1.y and

T1.x>=S1.x) then result=pathstatic(S1,T1);
// S on horizontal segment and T on vertical segment
if (S1.y = S2.y and T1.x = T2.x and T1.x<=S1.x and

T2.y<=S1.y) then result=pathstatic(S1,T2);
if (S1.y = S2.y and T1.x = T2.x and T1.x<=S1.x and

T1.y>=S1.y) then result=pathstatic(S1,T1);
if (S1.y = S2.y and T1.x = T2.x and T1.x>=S1.x and

T2.y<=S1.y) then result=pathstatic(S2,T2);
if (S1.y = S2.y and T1.x = T2.x and T1.x>=S1.x and

T1.y>=S1.y) then result=pathstatic(S1,T1);
return result[];} // end of the program findpath2d()

B. Tree code:
Program treedynamic(S,T,G)
// S, T are dynamic nodes on two different arcs. S1, S2 are

GNs of S. T1, T2 are GNs of T.
{ Arc [] result;
{if (interval of arc S1-S2 includes labels of T1 and T2)
then (S2 is the OGN) else (S1 is the OGN); //Find OGN of S
if (interval of arc T1-T2 includes labels of S1 and S2)
then (T2 is the OGN) else (T1 is the OGN); //Find OGN of S
result=pathstatic(OGN of S, OGN of T);
return result[];} // end of the program treedynamic()

C. Ring code:
Program ringdynamic (S, T, G)
/* S, T are dynamic nodes on two different arcs. S2is the

clockwise GN of S, S1 is the counterclockwise GN of S. T1is the
clockwise GN of T, T2 is the counterclockwise GN of T.*/

{Arc [] result;
if (the interval of arc S1-S2 includes labels of T1 and T2)

then
{ result=pathstatic(S2,T2);return result[]; }
if (the interval of arc S2-S1 includes labels of T1 and T2)

then
{ result=pathstatic(S1,T1);return result[]; }
if (SS1+S1T1+T1T<=SS2+S2T2+T2T) then
{ result=pathstatic(S1,T1);return result[];}
else { result=pathstatic(S2,T2);return result[]; }
} //end of the program ringdynamic()

REFERENCES
[1] H. Beadle, B. Harper, G. Maguire Jr., and J. Judge. Location aware mobile

computing. In Proc. ICT ’97 (IEEE/IEE Int. Conf. on Telecomm.),
Melbourne, Australia, 1997.

ISARC 2005 9

[2] Dijkstra EW. A note on two problems in connection with graphs,
Numerische Mathematic 1959;1:269-71.

[3] M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan.
Triangulating a simple polygon. Inform. Process. Lett. 7: 175-179, 1978.

[4] D. T. Lee and F. P. Preparata. Location of a point in a planar subdivision
and its applications. SIAM J. Comput., 6: 594-606, 1977.

[5] D. Avis and G. T. Toussaint. An efficient algorithm for decomposing a
polygon into star-shaped polygons. Pattern Recogn., 13:395-398. 1981.

[6] B. Chazelle. A theorem on polygon cutting with applications. In Proc.
23rd Annu. IEEE Sympos. Found. Comput. Sci., pages 339-349, 1982.

[7] B. Chazelle. Approximation and Decomposition of Shapes. In
Algorithmic and Geometric Aspects of Robotics, Lawrence Erlbaum
Associaties, Hillsidale, NJ, 1987., page 145-185.

[8] N. J. Nilsson. A mobile automation: an application of artificial
intelligence techniques. Proceedings of the 1st International Joint
Conference on Artificial Intelligence, Washington D. C., 509-520, 1969.

[9] F. Aurenhammer. Voronoi diagrams: properties, algorithms and
applications. SIAM J. Comput.., 16:78-96, 1987.

[10] A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. John Wiley & Sons, Chichester, U.K.,
1992.

[11] T. Hollerrer, D. Hallaway, N. Tinna and S. Feiner. Steps toward
accommodating variable position tracking accuracy in a mobile
augmented reality system. AIMS’01: Second Int. Workshop on Artificial
Intelligent in Mobile Systems, Seatle, WA, Aug. 4, 2001, pp.31-37.

[12] C. Gavoille. A survey on interval routing. Theoret. Comput. Sci. 245
(2000) 217-253.

[13] J. Van Leeuwen, R.B. Tan. Interval routing. The Computer Journal, 30
(1987) 298-307.

[14] N. Santoro, R. Khatib. Labeling and implicit routing in networks. The
Computer Journal, 28 (1985) 5-8.

[15] N. Santoro, R. Khatib. Routing without routing tables. Technical Report
SCS-TR-6 School of Computer Science, Carleton University, Ottawa,
1982.

[16] D. May, P. Thompson. Transputers and Routers: Components for
concurrent machines, INMOS Ltd., 1990.

[17] B. Zerrouk, V. Reibaldi, F. Potter, A. Greiner, D. Anne. RCube, a gigabit
serial links low latency adaptive router, in the Records of the IEEE Hot
Interconnects IV, Palo Alto CA, U.S.A, August 1996.

[18] J. van Leeuwen, R.B. Tan. Compact routing methods: a survey, in: P.
Flocchini, B. Mans, N. Santoro (Eds.), 1st Internat. Coll. on Structural
Information & Communication Complexity (SIROCCO), Carleton
University Press, May 1994, pp. 99-110.

	INTRODUCTION
	Network Abstraction and Frequently Appearing Topologies insi
	Network Abstraction
	Frequently Appearing Topologies inside Buildings

	Literature Review
	Dynamic IRS Algorithms
	IRS for 2D Grids – Optimal 1-LIRS
	IRS for Trees – Optimal 1-CIRS
	IRS for Rings – Optimal 1-CIRS

	Dynamic Shortest Path Algorithm for Complex Networks Figures
	Element Classes and Non-Classified Segments
	General Procedure Description
	Performance Considerations

	Conclusions and Future Research
	2D grid code:
	Tree code:
	Ring code:

