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Abstract—Finding the shortest path between any two nodes in a 

network is a classical problem in a number of research areas. 
Although some general shortest path algorithms have already 
been developed, such as Dijkstra’s shortest path algorithm, in 
some situations, their computation complexity is too high to be of 
any practical use.  

In some real-time computation systems, computing the shortest 
path in a short time is a basis on which the computation systems 
could be applied to solve real world problems. The real world 
problem specifies the requirements on the computation speed, 
software and hardware limitations and the accuracy level for an 
algorithm. As this research is to find the shortest path in a large 
indoor area and the algorithm developed would be implemented 
on a real-time emergency evacuation system, it is required that 
the computing speed be fast enough even the network is large in 
terms of the numbers of nodes and arcs. 

To solve the above problem, some common inside-building 
topologies have to be analyzed, followed by the development of 
fast shortest path finding algorithms for the topologies, which 
frequently appear in indoor areas like campus and commercial 
buildings. This series of algorithms combined classical shortest 
path algorithms in graph theory with interval routing techniques 
in computer networks in order to get a high computation speed 
especially for large scale networks.  

The developed fast algorithms could serve as the main shortest 
path finding tool in emergency evacuation systems for large 
indoor areas, and extend traditional evacuation systems from 
virtual simulation to real-time problem solving. 
 

Index Terms—1-IRS, dynamic interval routing schemes, large 
indoor area routing, shortest path finding. 

I. INTRODUCTION 
HE emergency evacuation system, for which we are 
developing path finding algorithms, is a mobile and 

wearable computing system. It supports location-aware 
computing, and offers services that are relevant to the mobile 
user’s current location [1]. Mobile user’s outdoor location can 
be given by GPS. And by now, some commercial location 
trackers have been able to give indoor location information 
with a wireless network, like IEEE 802.11 Wi-Fi wireless 
LAN. The average accuracy of this type of location tracker can 

be up to 1 meter. When a building’s indoor area, especially 
passageways and staircases, is abstracted to be a mini 
transportation network in certain way, the shortest path from 
the mobile user’s current location to any location in the network 
can be given by certain algorithms in graph theory. Dijkstra’s 
shortest path algorithm [2] is the classic one, which can be used 
for the networks in any topologies. But for some special 
topologies, other algorithms can be applied independently from 
any Dijkstra’s thoughts. Interval routing schemes (IRS) in 
computer network routing are in this category and is the main 
topic of this paper. 
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In part II, the network abstraction method of a building’s 
indoor structure is introduced. On the basis of this abstraction, 
some frequently appearing indoor topologies are taken out as 
the major subject for the shortest path algorithms. 
In part III, literatures on shortest path finding algorithms are 
reviewed. Static IRS algorithms are introduced for above 
frequently appearing indoor topologies.  
In part IV, Dynamic IRS algorithms are given for the 
topologies above. 
In part V, Dynamic IRS algorithms are combined with 
Dijkstra’s shortest path algorithms in order to give shortest 
paths in networks with much more complext topologies. 
In part VI, conclusions are given and possible future works are 
discussed. 

 

II. NETWORK ABSTRACTION AND FREQUENTLY APPEARING 
TOPOLOGIES INSIDE BUILDINGS 

A. Network Abstraction 
Most large indoor areas consist of one or more than one 

builds connected by some passageways or doors. A path 
between any two points in the area should be within its free 
space. The free space refers to all the areas within this large 
indoor area, which allow people to walk through. All the 
passageways, staircases and any empty space confined by 
doors, internal and external walls of the building may be 
deemed as free space. As for our path finding problem, 
passageways and staircases are our concerns; and it is assumed 
that our algorithms only deals with paths within passageway 
and staircase areas. 

In robot motion planning, path finding is a traditional 
problem and this free space, denoted by Cfree, is called work 
space or configuration space for the movement of a robot. 

T 
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There are a number of ways to convert Cfree to be a network, 
which is a convenient data structure for shortest path 
calculation. These include some exact cell decomposition 
methods, such as triangular and trapezoidal decomposition 
[3-7]. Some road map methods, such as visibility graphs [8] and 
Voronoi diagrams [9, 10], are also commonly used for the path 
calculation in robot motion planning. For the same free space, 
there are a number of methods to do the network conversion. 
And the resulting networks for the same Cfree may be much 
different due to the methods. 

Exact cell decomposition and road map methods and 
visibility graphs work when the location information and 
motion control are very accurate. But in our case, the location 
tracker can’t provide the accuracy of this high level and the 
evacuation task’s property does not need so high accuracy 
either. So a simplified version of accessibility graph [11] is 
used for this research. 

B. Frequently Appearing Topologies inside Buildings 
One topology appearing frequently in most flat buildings is 

2D grid. Let look at a frequently appearing layouts in most flat 
buildings first. In Figure 1 (a) and (b), the accessibility graphs 
for two neighboring floors A and B are shown. The building 
spatial maps are drawn after the formal graduate apartment at 
Block 553, Upper Jurong, Singapore, which is a 10-floor flat 
building.  

 
 

Up Down Up Down Up Down

Staircase1 Staircase2 Staircase3

A1 A2 A3 

Up Down Up Down Up Down

Staircase1 Staircase2 Staircase3

B1 B2 B3 

(a) Accessibility Graph: Floor A 

(b) Accessibility Graph: Floor B 

Figure 1 Accessibility Graphs for a 2D Grid Structure  
The dashed lines are the accessibility graphs for floors A and 

B. A is one storey above B. Floors A and B are connected by 
three staircases. Each staircase connects the all the floors of the 
building. In the accessibility graph, the path between node A1 
and B1 are a sequence of connected segments from A1 to 
staircase 1 to B1. If we virtually straighten this segment 
(convenient for path calculation) sequence to make it one arc 
from A1 to B1, and do the same manipulations on the paths A2 
to B2 and A3 to B3 on all other floors, the accessibility graphs 
of the all floors can be simplified logically into one overall 
accessibility graph which is looked as in Figure 2.  

Each vertical segment in Figure 2 is actually a sequence of 
connected segments, but this straightening manipulation 
simplifies the path finding calculation significantly and does 
not affect the accuracy of calculation result. When a path is 

calculated and there are any this kind of vertical arcs included 
in the path, only a simply conversion from the arcs’ logical 
forms in the calculation process to its physical forms in reality 
is needed in order to present the path found on virtual reality 
display devices. 

 
 

B1 B2 
A1 A2 

C1 C2 

Entrance1 Entrance2

Figure 2 the Simplified Accessibility Graph for a 2D Grid 

 
Some other structures can be found in the form of trees and 

rings. One example of a tree structure is a typical unit of most of 
blocks on Jurong West, Singapore. It is a unit in a 12-story 
apartment building. All floors of the unit are connected by a 
staircase. On each floor of the unit there are 4 apartments. The 
simplified accessibility graph for one floor is in Figure 3 and 
for the whole building in Figure 4. 

 
 

Figure 3 Single Floor Layout for a Tree 
 

 

Entrance 

Figure 4 Tree Structure of a Unit in a Block 
 

Rings also frequently appear in inside-building topologies. 
Some on-campus residence halls of Nanyang Technological 
University, Singapore, take this form.  

2D grids, trees and rings are high regular topologies. 
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Therefore, some efficient algorithms can be developed in 
consideration of the properties of these topologies. The Interval 
routing schemes (IRS) are a series of routing techniques for 
high regular topologies and the literatures on IRS are reviewed 
in part III. 

III. LITERATURE REVIEW 
For high regular topologies, such as grids, trees and rings, 

shortest path finding calculation may need no Dijkstra’s 
algorithm involved. And alternative routing methods, usually 
used in computer network routing can be used. The routing 
method significantly decreases the real-time path computation 
load on the system and makes it a good alternative for 
Dijkstra’s algorithm, which takes no consideration of the 
network topology. 

Interval routing is a way of implementing routing schemes 
on arbitrary networks. A routing scheme is a strategy that 
assigns to every source-target pair the path that a message from 
the source to the target should take. The concept of routing 
scheme was originally developed for computer network. For 
example, one possible routing scheme is to store a complete 
routing table in each of the n vertices of the network, specifying 
for each target the next edge in some shortest path over which 
the message must be forwarded. But with the number of the 
nodes increases, the size of the routing tables stored at each 
node would increase as well.  

Another way of implementing routing schemes, called 
interval routing, has been discussed in a number of research 
articles, which has been summarized by Gavoille [12]. Actually 
interval routing scheme is based on representing the routing 
table stored at each node in a compact manner. In this method, 
each node is assigned a distinct label from the set {1, 2… n}. 
Arcs are bi-directional and are labeled with one or several 
subintervals of the interval [1…n] so that for any node v the 
intervals associated with outgoing edges from v are pair-wise 
disjoint and their union covers [1…n]. When a message with 
destination v arrives at node u, the message is forwarded on the 
unique outgoing edge labeled with an interval containing the 
label of v.  

In most cases, [1…n] is the cyclic interval, i.e., all 
subintervals are understood to wrap around. Such a scheme is 
the called a circular interval routing scheme (CIRS). Variants 
of the scheme include linear interval routing schemes (LIRS), 
in which [1…n] is viewed as a linear interval; k-interval routing 
schemes, in which edges can be labeled with at most k intervals 
(k-IRS). An interval routing scheme for which all messages are 
routed along shortest paths is called an optimal scheme. 

An example of circular interval routing scheme is showed in 
Figure 5. 

In Figure 5, nodes are first labeled with numbers from 1 to 7. 
Each arc is given an interval for each direction. If we are trying 
to find the path from node 5 to node 2, first scan all intervals on 
all arcs outward from node 5. We find that the number 2 exists 
in the circular interval [6, 4], (the circular interval [6, 4] 
includes {6, 7, 1, 2, 3, 4}) so arc from node 5 to node 4 is 

chosen. With similar methods, the arc from node 4 to node 3 is 
chosen. At node 3, there are 3 intervals, among which [1, 2] 
includes number 2. Therefore the path is constructed as 
5-4-3-2. At each node, the next arc to follow is determined by 
whether the destination node’s label is bracketed by the interval 
of that arc.  
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 Figure 5 An Example of 1-CIRS 
 

Some highly regular networks, such as 2D grids (alias 
meshes), admit optimal 1-LIRS [13]. Trees and rings admit 
optimal 1-CIRS [14]. 

Interval routing techniques was originally introduced by 
Santoro and Khatib [15]. This scheme was subsequently 
generalized by Leeuwen and Tan to more than one interval per 
edge [13]. The interval routing method has been implemented 
in the INMOS C104 and RCube routers [16, 17]. A short 
survey was presented by Leeuwen and Tan [18].  

IV. DYNAMIC IRS ALGORITHMS  

A. IRS for 2D Grids – Optimal 1-LIRS 
With the labeling method described by Leeuwen and Tan, 

any 2D grid allows an optimal 1-LIRS [13]. Each static node in 
the grid is labeled with a number from 1 to n. n is the number of 
static nodes in the grid. The labeling sequence is from top to the 
bottom rows and from the left to the right in the same row [13]. 
Each segment connecting two adjacent nodes represents two 
arcs in different directions. Each arc is labeled with a linear 
interval. 

If the source and target points are just two static nodes, given 
the labeling information of these two points and follow the 
interval information on the arcs, a shortest path can be found 
very efficiently, because no useless nodes would be visited at 
all. Suppose pathstatic(N1, N2) performs this simple static 
1-IRS shortest path finding function. N1 is the source node and 
N2 the target node of this path finding task. They are both static 
nodes, which respectively contain a member variable named 
label, i.e. N1.label is the node label of N1 and N2.label N2’s 
label of 1-LIRS labeling scheme for this grid. We will use 
pathstatic() directly in the following demonstration of our 
dynamic 1-IRS algorithms. 

In indoor shortest path findings, the source of the path may 
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not correspond to any static dummy node in the accessibility 
graph. And in most of cases the source is located on a segment 
and adjacent to two static nodes directly. And the target is the 
same as the source. So we call this kind of nodes dynamic 
nodes. We call the two static nodes directly adjacent to a 
dynamic node gating nodes (GN for short) for a dynamic 
location. If the source and the target nodes are not on the same 
segment, the shortest path from or to the source node must pass 
one of the gating nodes of the source node; and this path must 
pass one of the gating nodes of the target node as well. We call 
the static node, from or to which the dynamic node’s shortest 
path pass, optimal gating node (OGN for short).  Because 
dynamic nodes like the source or target may be any points on 
any segments of the network, they can’t be given routing 
information priori as we have done to static dummy nodes. But 
the information stored for GNs of two dynamic end nodes of 
the shortest path may help to determine the OGNs very simply. 
When the OGNs of the source and target nodes are determined, 
the path between OGNs can be find with the above pathstatic() 
function. Therefore the complete shortest path from the source 
node S to the target node T can be constructed very efficiently 
with the IRS information stored for the network.  

There are three cases with dynamic nodes involved; they are 
(1) S is dynamic, T is static; 
(2) S is static, T is dynamic 
(3) S and T are both dynamic 
Case (1) and (2) can be treated in the same way as in case (3), 

because any static node can be looked as a dynamic node very 
close to this static node. If S and T are on the same segment, 
there is no need to do further shortest path finding computing. 
So we only discuss the situations, in which S and T are on 
different segments here. 
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Figure 6 Dynamic S and T in a 2D Grid 
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If S and T are both dynamic and on different segments, there 

are two GNs for S and T respectively, the situation is a little 
more complicated. Let’s illustrate it with a piece of a 2D grid in 
Figure 6. x and y are the column and row location coordinates 
of the static node in the grid. Let S be a dynamic location on a 

vertical segment. Let S1 be the upper GN and S2 be the lower 
GN (S1.y < S2.y and S1.x = S2.x). If T is on a vertical segment, 
let T1 be the upper GN and T2 be the lower GN (T1.y < T2.y 
and T1.x = T2.x). If T is on a horizontal segment, let T1 be the 
left GN and T2 be the right GN (T1.x < T2.x and T1.y = T2.y).  

Cut the grid into two parts along a horizontal line passing S. 
If both of T1 and T2 are in the upper part like AB or CD, S1 is 
the OGN of S. If T1 and T2 are both in the lower part like GH 
and IJ, S2 is the OGN of S. If T1 is in the upper part and T2 is in 
the lower part like EF, then we have to compare |SS1|+|ET| with 
|SS2|+|TF|. If |SS1|+|ET| is smaller, then the OGN of S is S1 
and the OGN of T is E; otherwise, the OGN of S is S2, and the 
OGN of T is F.  

This method can also be used to choose OGNs when S1S2 is 
horizontal (S1.x < S2.x and S1.y = S2.y). In this case the 
cutting is vertical, and the similar procedures to find OGNs can 
be used.  

The procedure can be described with the following 
pseudo-code in Appendix. In findpath2d(), pathstatic() runs for 
only one time, so the worst case time complexity of the 
program findpath2d() is O(r+c). r is the number of rows of the 
static nodes in the grid; c is the number of the columns of the 
static nodes in the grid. 

B. IRS for Trees – Optimal 1-CIRS 
A tree has three important properties:  
(1) it has no cycles and  
(2) when a tree is cut into two parts at any segment, each 

part is a new tree 
(3) there is only one single path between any two nodes on a 

tree, no matter if the nodes are dynamic or static. (A single 
node is a trivial tree.) 

Based on these properties, it has been proved that a tree 
allows optimal 1-CIRS [46]. The 1-CIRS node labeling follows 
the depth first procedure. Arcs’ interval labeling is based on 
property 2 and 3. For trees we only discuss the situation, in 
which S and T are both dynamic nodes and on different 
segment. 

We see that we only need to observe the intervals of the arcs 
between GNs in order to determine the OGNs for S and T. 
These arcs are S1-S2, S2-S1, T1-T2 and T2-T1. If S1-S2’s 
interval includes T1 and T2, i.e. S2 is the node S must pass in 
order to reach T. So S2 is the OGN for S; otherwise, S1 is the 
OGN for S. Similarly, if T1-T2’s interval includes S1 and S2, 
T2 is the OGN for T; otherwise, T1 is the OGN for T. The 
algorithm is described by the treedynamic() function in 
Appendix. It’s worst case time complexity is O( Φ ). Φ  is the 
diameter of the tree. 

C. IRS for Rings – Optimal 1-CIRS 
Many indoor structures are in circular form, which in 

calculation is often treated like a ring. A ring consists of a series 
of straight segments. Each node in the ring is adjacent to two 
segments; therefore, each node has two arcs starting from itself. 
The node and arc interval labeling method is based on “hops”, 
which is a concept used only in computer networks [13]. The 
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distance from one node to another is measured with hops, not 
with Euclidean length. In our case, we don’t concern about the 
hop numbers between nodes. Euclidean length is our concern. 
So we have to develop new node and arc interval labeling 
method based on IRS concepts and Euclidean distance in stead 
of hop numbers. Each static node in the ring is adjacent to two 
segments; therefore, each static node has two arcs starting from 
itself. A ring may appear as in Figure 7. Dashed curves 
represent all segments not shown in the Figure.  

 
 

Figure 7 Nodes and Arcs Labeling for Rings  
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The labeling of nodes is simple. Start from any arbitrary 

node and choose an arbitrary direction (clockwise or 
counter-clockwise along the ring).Label all the nodes one by 
one from 1 to n. n is the total number of the nodes in the ring. 
As for arc interval labeling is little more complicated because 
Euclidean distance is used instead of hops. 

Choose an arbitrary node E to start labeling for the ring in 
Figure 7. Draw a dot line passing E, which cuts the ring into 
two halves. Another intersection point of the dot line and the 
ring is Q on segment MN. Make sure that the half {EG…PNQ} 
is equal to {EF…OMQ} in terms of Euclidean length. Then the 
shortest paths from E to any nodes in {EG…PNQ} all take the 
clockwise direction; and the shortest paths from E to any nodes 
in {EF…OMQ} all take the counter-clockwise direction. So the 
interval of the clockwise arc EG should include the labels of all 
nodes in {EG…PNQ}; and the interval of the 
counter-clockwise arc E-F should include the labels of all 
nodes in {EF…OMQ}. Because the characteristics of the ring 
topology and our node labeling method, no matter how to 
choose E, the labels of all nodes on one of its two halves of the 
ring can be bracketed with only one circular interval. That 
means, for each of its two arcs to different directions, only a 
circular interval is needed. Accordingly, 1-LIRS can be applied 
not only to abstract rings in computer networks, but also to 
physical Euclidean rings. 

 
When a ring is labeled in above way, the following dynamic 

algorithm can be applied. As in 2D grids and trees, we only 
discussed the situation, in which S and T are both dynamic 

nodes and on different segements. 
 
In the ring in Figure 8, S1 is the counter-clockwise GN of S; 

and S2 is the clockwise GN of S. T is the clockwise GN of T; 
and T2 is the counter-clockwise GN of T. For our convenience 
to illustrate the algorithm, draw a line passing S1 and T1; and 
draw another line passing through S2 and T2. If the interval of 
arc S1-S2 includes all of S2, T2 and T1, it means the length of 
the ring below the line S1-T1 is shorter than that above the line. 
So the clockwise path from S1 to T1 is shorter than the 
counter-clockwise path. In this case, S to T’s shortest path 
should be clockwise; and therefore, S2 and T2 are OGNs for S 
and T respectively.  
 
 

T1 

S1 

S2 
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T2 

T 

Figure 8 Dynamic S and T in a Tree 

 
If the interval of arc S2-S1 includes all of S1, T1 and T2, it 

means the length of the ring above the line S2-T2 is shorter than 
that below the line. So the counter-clockwise path from S2 to 
T2 is shorter than the clockwise path. In this case, S to T’s 
shortest path should be counter-clockwise; and therefore, S1 
and T1 are OGNs for S and T respectively. 

If none of the intervals of arc S1-S2 or S2-S1 includes all of 
S1, T1 and T2, the Euclidean length of the path from S to T in 
counter-clockwise direction must be compared with that in 
clockwise direction. The smaller one is the direction of the 
shortest path from S to T. The dynamic program can be 
described with the pseudo code of the function ringdynamic() 
in Appendix. The time complexity of this program is O(n). n is 
the number of static nodes in the ring. 

V. DYNAMIC SHORTEST PATH ALGORITHM FOR COMPLEX 
NETWORKS FIGURES AND TABLES 

A. Element Classes and Non-Classified Segments 
With the algorithms developed for the 1-IRS structures 

including grids, trees and rings, we can apply the IRS 
techniques in static computer networks to dynamic Euclidean 
networks. We have analyzed common inside-building 
structures and find that most of structures of single buildings 
can be modeled into the basic structures like grids, trees and 
rings. We call them Element Classes (EC for short). And one 
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single node can be treated as a trivial EC here.  
Sometimes the path finding source S and T may exists in 

different buildings, and the shortest path may pass through arcs 
and nodes belonging to multiple ECs. In emergency 
evacuation, this does not happen very often. Usually the users 
of our system are supposed to be rescue team members. They 
often have been in the emergency building before they are 
equipped and issue shortest path finding command to the 
system. But we still need to consider more complicated 
structures than ECs. 

Some buildings have more complicated topologies than any 
1-IRC EC. In this case we can treat this building as a collection 
of ECs connected by some special segments. These special 
segments don’t belong to any EC; therefore they are called 
Non-Classified Segments (NCS for short). All segments 
included in each EC are called Classified Segments (CS for 
short). 

A more complicated network structure is shown in Figure 9. 
EC0 is a trivial EC. Five ECs are connected by a collection of 
NCS as shown. CSs are not shown because we don’t need them 
for the global Dijkstra’s algorithm.  

 

Figure 9 A Complex Structure 

EC EC

EC EC
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Any node of an EC, which is one end of any NCS, is called 

Boundary Node (BN) of this EC or the boundary node to the EC 
at the other end of the NCS. For Example, A is a BN of EC1, 
and a BN to EC2. B is a BN of EC2, and a BN to EC1. 

B. General Procedure Description 
When an Element Class ECa is input to the global Dijkstra’s 

algorithm, it may take two forms. Because the source location S 
and target location T are not in the same location, when S is in 
ECa, the global Dijkstra’s algorithm only cares about the length 
of the path from S to each BN of ECa. So we can draw ECa in a 
star shape as shown in Figure 10.  

All spokes of the star, SA, SB, SC, and SD are virtual 
segments. They are constructed with the fast dynamic IRS 
algorithms illustrated before. And the length of each virtual 
segment is the length of the real shortest path between the two 
end nodes of the virtual segment. Similarly, if T but not S is in 
ECa, the global Dijkstra’s algorithm only cares about the length 
of the path from each BN of ECa to T. So in this case, ECa still 
takes the star form to join the global Dijkstra’s algorithm. 

Another form ECa may take to join the global Dijkstra’s 
algorithm is an n-partite. n is the number of ECs directly 
connected to ECa by some NCS. This happens when neither S 
nor T is located in EC. In Figure 11, ECa is in a bi-partite form, 
when A and D are BNs to the same EC, and B and C are BNs to 
another EC. AB, AC, DB and DC are all virtual segments; and 
the length of each virtual segment is the length of the real 
shortest path between the two end nodes of the virtual segment. 
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Figure 10 Star Form of an EC
 

 

Figure 11 2-Partite Form of an EC 
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As S and T are assigned in real time, the star form of an EC 

must be constructed in real time. The n-partite form of an EC 
can be constructed in advance in order to save run-time 
computing resources. Before S and T are assigned, EC of the 
network constructed in advance all take the form of n-partite. In 
this stage, the global network consists of n-partite form ECs 
connected with NCSs. We call the graph of the global network 
in this stage Primary Complete Connectivity Graph (PCCG).  

 
When S and T are assigned two different ECs, EC1 and EC2, 

these two ECs are transferred into star form through real time 
path calculations. We call the graph of the global network in 
this stage Complete Connectivity Graph (CCG). With CCG, 
Dijstra’s algorithm can be applied and a path p from S to T can 
be found. p is a sequence of arcs. Some arcs represent virtual 
segments, so each of these virtual arcs should be converted to 
real sub-path. Then the virtual path p is transferred to be the real 
path P. The general procedure of this method is described in the 
flow chart in Figure 12.  

C. Performance Considerations 
To evaluate the performance of the algorithm, we compare 

its computing process with that of pure Dijkstra’s algorithm 
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applied to the whole real network. 
In our algorithm, IRS dynamic algorithm is very fast. So 

Dijkstra’s algorithm part is supposed to be the most time 
consuming part. So comparing the performance of this part to 
the pure Dijkstra’s algorithm applied to the whole real network 
is meaningful for us. An algorithm’s computing time is roughly 
proportional to the input size, which for a network algorithm is 
segment and node numbers.  

 
 

Figure 12 The Flowchart for Multi-EC Algorithm 
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Suppose we have an network with x ECs; they are ECi 

(i=1,2…x). In ECi, the node number is Ni and the segment 
number is Ai. The number of NCSs is a constant K. If we input 
the whole real network to pure Dijkstra’s algorithm, the total 
node number N and total segment number is A; they are: 
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In CCG of a network, most of ECs take n-partite form except 
the ECs where S or T stays. So node and segment numbers of 
PCCG can represent those of CCG’s. For ECi, CNi is the node 
number of its n-partite form and CAi is the segment number of 
its n-partite form. When we input the CCG to Dijkstra’s 
algorithm, the total node number is CN and total segment 
number is CA; they are: 
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So to allow our algorithm to have better performance, at least 
it is required that CN<=N and/or CA<=A. If it is forced that 
CNi <= Ni and CAi <= Ai (it is called boundary requirements) 
for each i, the requirements is met. If an EC’s CCG doesn’t 
meet the boundary requirements, all real nodes and segments in 
the EC should join the Dijkstra’s algorithm directly without any 
virtual form like star or n-partite. That means, in this case, this 
EC should be ungrouped and is not treated as an EC in the 
following Dijkstra’s algorithm. 

When all ECs’ CCG meet the boundary requirements, it can 
not make it assure that the algorithm with ECs involved 
performed better than pure Dijkstra’s algorithm. Because in 
order to implement EC involved algorithm, the data structure 
needed is unavoidably bigger than that of pure Dijkstra’s 
algorithm. The space complexity of the EC involved algorithm 
is higher than that of pure Dijkstra’s algorithm. Data structure 
size affects the speed of data transiting between computing 
resources on the computer. When the data structure is too big, it 
will significantly affect a program’s running speed. 

The performance of the algorithm with EC involved will be 
much better than pure Dijkstra’s algorithm when the nodes 
and/or segments in the network can be significantly reduced by 
constructing CCG with virtual forms of the ECs. If it is not the 
case, its performance should be tested for arbitrary network. 

VI. CONCLUSIONS AND FUTURE RESEARCH 
In this research, common inside-building topologies are 

discussed first with their simplified accessibility graphs. 
According to their characteristics, IRS techniques in static 
computer networks are extended to the dynamic Euclidean 
networks. The dynamic algorithms for some frequent appearing 
structures, such as 2D grids, 3D grids, trees and rings are 
discussed and described by pseudo codes in Appendix. These 
codes can be converted to other object-oriented language 
codes.  

Complicated structures can be treated as a collection of 
connected ECs. Each EC can be a grid, a tree or a ring. In this 
view, dynamic 1-IRS and Dijkstra’s shortest path algorithm are 
integrated into a multi-EC algorithm. Its performance is 
compared with pure Dijkstra’s algorithm, which is the classic 
algorithm in calculating Euclidean shortest paths.  

Computer networks and buildings internal structures often 
take similar high regular structures. The reason may be that 
they are both artificial products of human beings, who prefer 
orderliness, standardization and easiness of republication 
especially for engineers. Frequent appearances of high regular 
topologies in network designs of a variety of engineering fields 
may reflect this preference broadly existing in engineering 
area. Due to the characteristics of computer networks, a variety 
of routing techniques have been applied very early. This 
research is attempting to explore the possibility and potential of 
the usage of certain routing techniques on inside building 
topologies with the presence of location trackers with 
affordable accuracy level.  

The implementation of IRS on inside building topologies 



ISARC 2005 8

may provide other functions than finding the shortest path. 
With the small routing table stored for all dummy nodes, 
routing information can be given for all directions from any 
point in real-time in the network. This implies that some Virtual 
Reality tools, like automatic road guide or real-time route 
suggest, can be implemented with the help of IRS.   

In this article, only 1-IRS techniques are discussed for indoor 
networks. Other routing techniques like k-IRS may also be 
explored in future research. 

APPENDIX 

A. 2D grid code: 
Class Gridnode {Arc [] arclist; int nodelb; int x; int y} 
/* Arclist is an array of the arcs starting from the node. 

Nodelb is the 1-LIRS label for the node. x and y are the 
coordinates of the node in the grid*/ 

Class Gridarc {Gridnode stnode, ennode; float arclength; 
int sint, eint;} 

/* stnode and ennode are the start and end nodes of the arc. 
arclength is the Euclidean length of the arc; sint and eint are 
respectively the first and second number of the linear interval 
label. */ 

 
Program pathstatic (node s, node t) 
{ Gridarc arc; Arc [] result; Gridnode ndtemp; ndtemp=s; 
While (ndtemp.nodelb <> .nodelbt) do 
{for each arc in ndtemp.arclist 
  if (t.nodelb >= arc.sint and t.nodelb <= arc.eint) then  
  {result.add(arc); ndtemp=arc.ennode; break;} } 
return result [];} // result[] is the arc array of the final path 
 
Program findpath2d (S, T, G)  
/*S, T are the source and G is the network consisting of 

nodes and arcs. S and T are on different segments. S1 is the 
upper or left GN of S, S2 is the lower or right GN of S.T1 is the 
upper or left GN of T, T2 is the lower or right GN of T.*/ 

 
{ Arc [] result; Gridnode ndtemp;  
// S and T are on different horizontal segments 
if (S1.y = S2.y and T1.y = T2.y and T2.x<=S1.x) then 

result=pathstatic(S1,T2); endif; 
if (S1.y = S2.y and T1.y = T2.y and T1.x>=S2.x) then 

result=pathstatic(S2,T1); endif; 
 if (S1.y = S2.y and T1.y = T2.y and T1.x=S1.x and 

T1.y<>S1.y) then 
{if ((|SS1|+|TT1|) <= (|SS2|+|TT2|)) then 

result=pathstatic(S1, T1); 
else result= pathstatic(S2, T2); }  
// S and T are on different vertical segments 
if (S1.x = S2.x and T1.x = T2.x and T2.y<=S1.y) then 

result=pathstatic(S1,T2); endif; 
if (S1.x = S2.x and T1.x = T2.x and T1.y>=S2.y) then 

result=pathstatic(S2,T1); endif; 
 if (S1.x = S2.x and T1.x = T2.x and T1.y=S1.y and 

T1.x<>S1.x) then 
{if ((|SS1|+|TT1|) <= (|SS2|+|TT2|)) then 

result=pathstatic(S1, T1); 
else result= pathstatic(S2, T2);} 
// S on vertical segment and T on horizontal segment 
if (S1.x = S2.x and T1.y = T2.y and T1.y<=S1.y and 

T2.x<=S1.x) then result=pathstatic(S1,T2);  
if (S1.x = S2.x and T1.y = T2.y and T1.y<=S1.y and 

T1.x>=S1.x) then result=pathstatic(S1,T1); 
if (S1.x = S2.x and T1.y = T2.y and T1.y>=S1.y and 

T2.x<=S1.x) then result=pathstatic(S2,T2); 
if (S1.x = S2.x and T1.y = T2.y and T1.y<=S1.y and 

T1.x>=S1.x) then result=pathstatic(S1,T1); 
// S on horizontal segment and T on vertical segment 
if (S1.y = S2.y and T1.x = T2.x and T1.x<=S1.x and 

T2.y<=S1.y) then result=pathstatic(S1,T2);  
if (S1.y = S2.y and T1.x = T2.x and T1.x<=S1.x and 

T1.y>=S1.y) then result=pathstatic(S1,T1); 
if (S1.y = S2.y and T1.x = T2.x and T1.x>=S1.x and 

T2.y<=S1.y) then result=pathstatic(S2,T2); 
if (S1.y = S2.y and T1.x = T2.x and T1.x>=S1.x and 

T1.y>=S1.y) then result=pathstatic(S1,T1); 
return result[];}  // end of the program findpath2d() 

B. Tree code: 
Program treedynamic(S,T,G)  
// S, T are dynamic nodes on two different arcs. S1, S2 are 

GNs of S. T1, T2 are GNs of T. 
{  Arc [] result; 
{if (interval of arc S1-S2 includes labels of T1 and T2) 
then (S2 is the OGN) else (S1 is the OGN); //Find OGN of S 
if (interval of arc T1-T2 includes labels of S1 and S2) 
then (T2 is the OGN) else (T1 is the OGN); //Find OGN of S 
result=pathstatic(OGN of S, OGN of T); 
return result[];}  // end of the program treedynamic() 

C. Ring code: 
Program ringdynamic (S, T, G) 
/* S, T are dynamic nodes on two different arcs. S2is the 

clockwise GN of S, S1 is the counterclockwise GN of S. T1is the 
clockwise GN of T, T2 is the counterclockwise GN of T.*/ 

{Arc [] result; 
if (the interval of arc S1-S2 includes labels of T1 and T2) 

then 
{ result=pathstatic(S2,T2);return result[]; } 
if (the interval of arc S2-S1 includes labels of T1 and T2) 

then 
{ result=pathstatic(S1,T1);return result[]; } 
if (SS1+S1T1+T1T<=SS2+S2T2+T2T) then 
{ result=pathstatic(S1,T1);return result[];} 
else { result=pathstatic(S2,T2);return result[]; } 
} //end of the program ringdynamic() 
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