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Abstract: In this paper, a new methodology for identifying numerous elastic parameters of an orthotropic ground material 
from field measurements is presented.  For a better understanding, a simpler problem, which, however, is in the same 
concept, is adopted for describing the strategy, which is to identify an orthotropic material from a single structural test. At the 
heart of the methodology is the self-learning algorithm that is to extract various stress-strain relationships from a single 
structural test and train a neural network with the relationships in finite element framework.  The constitutive matrix 
resulting from the trained neural network based constitutive model (NNCM) is compared with the conventional constitutive 
matrix for an orthotropic material to determine the nine independent elastic constants. An example is given for better 
understanding of the methodology proposed. 
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1. Introduction 
 

The state of stresses in the monitored ground around an 
excavation site (ground material with non-uniform stress 
field) is admittedly complex and different points in it follow 
widely different stress paths.  However, it has recently been 
shown that data of displacements measured at several points 
on the excavated surface can be used to train a neural 
network embedded in a finite element code which replaces a 
conventional constitutive model.  The constitutive matrix 
resulting from the trained neural network is compared with 
the conventional constitutive matrix for an orthotropic 
ground material to determine the nine independent elastic 
constants.   

In this paper, the authors demonstrate a new 
methodology in which the orthotropic elastic parameters 
can be obtained by monitoring displacement induced by 
applying a load on the structure at a convenient location. 
This is a classical ‘inverse’ problem, which in the past has 
been solved by many researchers using conventional back 
analyses for the identification of elastic and strength 
parameters for isotropic materials [1-3].  However, it is not 
a simple extension of known procedures if parameters for 
an anisotropic or even an orthotropic material were to be 
identified.  There have been a number of applications of 
tools of artificial intelligence for the identification of 
material parameters from the case histories of monitored 
data for structures as well as tunnels using neural networks 
[4, 5].  However, the assumption of isotropy is inherent in 
these applications. 

In this paper, a new two-step methodology is proposed in 
which, in the first step, the monitored data of a structure are 
used to recursively train a neural network based constitutive 
model (NNCM) embedded in a finite element code and in 
the second step, the required material parameters are 
computed from the trained NNCM through ‘virtual’ tests on 

specimens having appropriate boundary and loading 
conditions.  Although the example given is that of linear 
orthotropic material, the procedure is generic and applicable 
to anisotropic nonlinear elastic materials as well. 

 
2. Methodology of identification of parameters from a 
trained NNCM 
 
2.1 Methodology of identification of parameters from a 
trained NNCM 
 

Numerous applications of tools of artificial intelligence 
to engineering problems are currently being reported by 
various researchers.  A neural network attempts to find a 
pattern between ‘causes’ and ‘effects’.   If we consider an 
application to material models in the context of finite 
element modelling, the components of strain become 
‘causes’ whilst resulting stresses are deemed as the 
‘effects’.  Strain and stress vectors, 
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are introduced as input nodes, oi and output nodes, ok of the 
NN, respectively.  Then, in the neural network 
nomenclature, stress-strain relation can be represented as  
 

( )k iNNσ ε= .                                   (2) 
 

The optimal architecture of the NN adopted is shown in 
Fig. 1.  It has 6 nodes each in input and output layers.  There 
are two hidden layers with 12 nodes in each of the layers.  
Thus, the neural network can be designated as 
NN(6-12-12-6).  The first derivative of the NN, DNNik 
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becomes the so called ‘tangential stiffness’ matrix for a 
material at a certain given strain state, εi.   It can be written 
as follows: 
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Figure 1. Optimal architecture of the NNCM. 

 
A formulation to compute accurately the first derivative 

of a NN has recently been developed by the authors [6,7].  
Eq. 3 can be applied in both linear and nonlinear range. 
NNCMs do not invoke a-priori any mathematical 
constitutive framework.  There is also no assumption of 
isotropy.  Therefore, once a NN has been trained for a 
material, stresses corresponding to any level of strains can 
be readily computed from Eq. 2.  Moreover, a derivative, 
DNN can be composed at the same level of strain using Eq. 3.  
The constitutive matrix resulting from the NNCM can then 
be directly incorporated in a conventional FE analysis code 
in place of the conventional mathematical theory based 
constitutive models.    Furthermore, with the NN based 
constitutive matrix it becomes possible to use a NNCM in 
incremental form of stresses for structural analysis although 
the NNCM may have initially been trained with the data in 
the form of total strains and corresponding stresses.   

The size of DNN for three-dimensional analysis is the 
same as a normal constitutive matrix (i.e. 6×6).  The 
computed DNN is generally non-symmetric.  It is 
symmetrised by averaging the off diagonal terms. 
Comparison of each component of the general elasticity 
matrix with the computed DNN  is made to set up a system of 
simultaneous equations.  This leads to identification of 21 
anisotropic independent constants for the general case and 
nine constants (i.e. Ex, Ey, Ez, νxy, νyz, νxz, Gxy, Gyz, Gxz) for 
the orthotropic case. 
 
2.2 Training of a NNCM from monitored data of load 
versus displacement 
 

A NNCM can obviously be trained with the experimental 
data of stress versus strain.  It has been recently 
demonstrated by Ghaboussi et al. (1998) and Shin and 
Pande (2000) that NNCMs can also be trained through 
incremental load-displacement data monitored at   several 

points on the structure; many or all of these points may well 
be on the surface or the boundary for convenience.  Here, a 
NNCM is embedded in a finite element code and a 
nonlinear incremental analysis of the boundary value 
problem is carried out using a ‘pre-primed’ NNCM (an 
arbitrary linear tangential stiffness matrix, for example).  
This gives the computed displacement field from which a 
vector of displacements for the monitored points ( n

cδ ) can 
be assembled. This would obviously differ from the 
displacements observed since an arbitrary constitutive 
matrix was adopted to start the iterative process. In the 
following step, the same boundary value problem is 
re-solved in which discrepancy in measured and computed 
displacements is applied as prescribed displacements.  The 
stresses and strains at each Gauss point and at each 
increment constitute a set of data for training of the NNCM.  
The NNCM is recursively trained until the an indicator of 
discrepancy between predicted and monitored displacement 
fields, ξ, defined by  
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is less than a prescribed acceptable value.  In the above 
equation, l and k are the number of total load increments and 
monitoring points, respectively.  And i

mδ and i
cδ  are 

monitored and calculated displacements at ith monitoring 
points, respectively.  Thus, at the end of the iterative 
process, the constitutive model embedded in the FE code is 
such that it predicts the monitored displacements.  A flow 
diagram of the computational algorithm can be found in [6].  
The finite element code which has a NNCM embedded in it 
has been termed by the authors as a ‘self-learning’ code 
since it has the capability to update its constitutive model.  If 
there are sufficient number of strategically placed 
monitoring points, it can be assumed that the NNCM is 
sufficiently trained to predict stress-strain response under 
arbitrary stress paths.  A derivative of the trained NNCM, 
leads to the evaluation of linear or nonlinear elastic 
constants at any strain level. 
 
3. An illustrative example  
 

For heuristic purposes, a simple structure viz. a plane 
stress panel with a circular hole at its contre is chosen.  The 
panel which is assumed to be made of an orthotropic 
material with known principal material axes.  Fig. 2 shows 
the geometry, boundary and loading conditions.  It is well 
known that severe stress concentrations take place around 
the cavity.  A number of monitoring points at convenient 
locations have to be chosen.  It is obvious that larger the 
number of monitoring points more accurate stress-strain 
relation can be extracted from the NNCM.  Although, 
collecting data for a large number of monitoring points may 
lead to higher costs, it should be noted that modern 
instrumentation techniques with automatic data-loggers 
make such field measurements relatively easy to conduct. 
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The authors, at this stage, did not wish to divert their 
attention to a field measurement programme to obtain 
monitored displacement data.  It was therefore decided to 
carry out a conventional 3-D FE analysis of the panel 
configuration using assumed values of the nine independent 
orthotropic elastic constants as given in Table 1.  A 
three-dimensional analysis, instead of a two dimensional 
plane stress analysis, was intentionally carried out so as to 
prove that the methodology is generic and elastic 
parameters can be identified from displacement – load data 
of arbitrary shaped bodies.  A quarter symmetric model was 
discretised with 578 nodes and 70 isoparametric 20 noded 
brick elements. It is noted that the accuracy of the FE model 
adopted is not an issue here.  
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Figure 2. A panel with circular cavity at its centre. 
 
Displacements of 66 nodes on the surface of the model at 

5 load levels, resulting from the FE analysis were assumed 
as physically measured data from the field test, although a 
much smaller number of monitoring points would be 
adequate as shown by Shin and Pande (2000).  These are the 
only data needed for training the NNCM embedded in the 

self-learning FE code.  It is noted that although the material 
is linear with proportional load-displacement relationship, 
the NNCM cannot recognise this unless incremental data 
are given.  

As mentioned in the previous section, some initial data 
are required for ‘priming’ the NNCM.  In this example, the 
values of isotropic elastic constants, E = 1.0 GPa and ν = 0.2 
were arbitrarily adopted for priming. At the 3rd cycle of 
self-learning process, the overall discrepancy between 
predicted and monitored displacement field reduced from 
37.21% to 2.76%. 
 

Table 1. Arbitrarily chosen orthotropic elastic constants. 
Elastic constants Assumed values 

Ex (MPa) 650.4 
Ey (MPa) 967 
Ez (MPa) 1735.4 
Gxy (MPa) 582.2 
Gyz (MPa) 203.6 
Gxz (MPa) 694.5 

νxy 0.269 
νyz 0.139 
νxz 0.13 

 
3.1 Identification of orthotropic elastic constants 
 

At the beginning of each iteration of the self-learning FE 
analysis, constitutive matrices at all Gauss points are 
computed using Eq. 3.  These are compared to the form of 
the conventional orthotropic elasticity matrix as the material 
assumed for this example is an orthotropic material with 
material axis coinciding with the axis of the model.  The 
elastic constants are simply determined by forming a set of 
equations with elastic parameters as unknowns.  It is noted 
that NN based constitutive matrices do not invoke any 
symmetry and as many as 36 elastic constants can be 
evaluated.   

The elastic constants are evaluated at the middle of each 

 
Table 2. Prediction of orthotropic elastic constants after each self-learning process. 

Ratios Prediction after 1st 
self-learning 

Prediction after 2nd 
self-learning 

Prediction after 3rd 
self-learning 

Ex,p / Ex,a 103.4% 100.06% 100.24% 
Ey,p / Ey,a 75.67% 98.55% 99.02% 
Ez,p / Ez,a 65.39% 74.63% 103.46% 

Gxy,p / Gxy,a 42.82% 69.36% 101.53% 
Gyz,p / Gyz,a 108.4% 106.1% 99.95% 
Gxz,p / Gxz,a 64.78% 67.86% 102.95% 
νxy,p / νxy,a 72.86% 99.63% 101.49% 
νyz,p /νyz,a 25.9% 83.45% 99.28% 
νxz,p /νxz,a 111.54% 113.85% 96.15% 

ξ (%) 37.21% 13.93% 2.76% 
Denominators, ‘p’ and ‘a’ indicate ‘predicted’ and ‘assumed’ values, respectively. 
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load increments of each cycle of the self-learning 
procedure.  Table 2 shows the evolution of nine orthotropic 
elastic constants with the number of cycles of re-training of 
the NNCM embedded in the FE code.  At the 3rd cycle of 
self-learning process all the values of the orthotropic 
constants were less than 3.8% in error against the target 
values.  It is found from numerical experiments that in 
practical problems tested so far no more than five 
self-learning cycles are required. 

 
4. Summary and conclusions 
 

In this study, a methodology to identify anisotropic 
material parameters from a single structural test has been 
proposed.  First, a NNCM embedded in a FE code was 
trained from the load displacement data of a structural test.  
In the absence of real load displacement data, load 
displacement data from a FE analysis based on an assumed 
orthotropic elastic material model were used.  After the 3rd 
cycle of re-training of the NNCM the nine elastic 
parameters of the orthotropic material were computed with 
the maximum error in any parameter being less than 4%. 

The methodology of parameter identification for 
anisotropic elastic constants proposed here is valid for fully 
anisotropic materials having 36 constants although the 
example of an orthotropic material has been illustrated in 
this paper.  Although, a rather simple test configuration of 
plane stress panel with a central cavity was used for 
illustration, the methodology is generic and elastic 
constants can be identified from instrumented 
load-displacement data of three-dimensional bodies of 
arbitrary shape.  A procedure for identifying strength 
parameters as well as elastic constants from a single 
structural test is currently being investigated.  This may lead 
to a novel method of non-destructive testing. 
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