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ABSTRACT 

 

This article reports on the current state of an ongoing research project which is aimed at 

implementing intelligent models for hardly predictable hazard scenarios identification in construction sites. 

As past evidences showed that no programmatic action can deal with the unpredictable nature of 

many risk dynamics, we tried to survey on how the current approach for safety management in the 

construction industry could be improved. In our previous research the use of Bayesian networks elicited 

from subjective knowledge were preliminarily tested. Those networks might be meant as a reliable 

knowledge map about accident dynamics and they showed that a relevant ratio of occurrences fall in 

“hardly predictable hazards” class, which cannot be warded off by programmatic safety measures. 

This paper reports the second outcome of our research project, which focused on the development 

of first elementary fragments, regarding the occurrence of a possible “hardly predictable scenario”.  Instead 

of experts’ contributions (who, over their carrier, seldom incurred in accidents), we used “legal cases” as 

an accurate source of information. They suggested which categories of “hidden hazard scenarios” are more 

likely to happen. We found that the most frequent hidden hazard scenarios are linked to operator’s 

negligence and abnormal behavior, e.g. irregular removal of scaffolding’s components, unprotected 

openings, improper use of PPE, etc. Every pattern determined by legal cases has been formalized by a 

fragment (i.e. elementary network) of the overall Bayesian network.   

Finally, all the elementary networks were integrated into a comprehensive intelligent tool for real-

time hardly predictable hazards prevention. The final setup, asked for interfacing these intelligent models 

to a low-level sensor network and used to feed them with inputs about the current state of the context, is 

discussed too.  
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INTRODUCTION 

 

This article reports the current progress of an ongoing research project, supported by Cagliari 

University and Polytechnic University of Marche – Ancona, both being Italian institutes. The project is 

aimed at implementing intelligent models for “hardly predictable hazard scenario” identification in 

construction sites. 

Nowadays, the standard approach to health and safety management in the construction industry 

usually starts off with the identification of task sequences at the design phase. Then, preventive or 

protective actions are defined and H&S Coordinator is appointed to supervise during the execution phase 

(Aulin & Capone, 2010). So far, great attention has been paid to prevention. In the USA the National 

Institute for Occupational Safety and Health (NIOSH) promoted the PtD strategy (Behm, 2010; Gambatese 

& Hinze, 1999), meaning that prescriptions shall be incorporated into the process of design and redesign of 

work premises, resources and processes. Every approach is generally based on the analysis of risk 

scenarios for each task and interfering activities (Gangolells et al., 2010). Indeed, they follow the Plan 

Check Do Act (PCDA) cycle (BS OHSAS 18001). The weakest aspect of this traditional approach lays in 

the high costs tied to monitoring and control, due to the required enduring presence on site of the H&S 

Coordinator. In addition, statistics clearly show that the present programmatic approach has determined no 

breakthrough. Construction sites are still among the most dangerous workplaces and the number of 

accidents reaches up to 10-11% of the overall manufacturing sectors. Although fatal accidents in EU is 

decreasing (less than 3 fatalities per 100,000 employees), the construction industry’s exceeds 10 fatal 

accidents per 100,000 employees, the most frequent cause being fall from height (Eurostat, 2011). 

Similarly was noted by US and Israeli surveys: on-site accidents represent one third out of the total and 

60%, respectively (Navon & Kolton, 2006).  

For that reason, a continuous control of work phases is needed, which would be not feasible by 

means of mere physical supervision. Hence the development of new methods allowing a cut-down in 

control costs through automatic monitoring systems is wished. The new systems must be able to warn in 

case of hazard occurrence, allowing for the adoption of corrective counteractions in real time. To this 



 
 

 

 

 

purpose, tests on instruments to track in real time workers present on the site have been carried out. This 

was meant to reduce interferences between different teams (Swedberg, 2006). Other systems for reducing 

risks regarding workers being run over by site equipment have been experimented like, for example, UWB 

radar systems installed on dumpers used in caves (Zetik et al., 2007). Following another approach (Caldas 

et al., 2006), a 3D model was built from the data acquired by a LADAR (Laser Detection and Ranging) 

scanner so as to recreate the bulk of heavy objects present on the site and run collision avoidance 

procedures. A safety helmet for workers in construction sites was enhanced to accommodate miniature 

positioning and communication instruments (Abderrahim et al., 2005). A mobile sensing device for 

detecting the worker’s approach towards floor openings was proposed (Kim et al., 2009). Here the 

contribution given by ICT devices is critical to data gathering and their immediate elaboration, provided 

that tracking systems are low-intrusive and are able to gather information in real-time. An ultra-wideband 

(UWB) wireless and untethered network system for mobile asset tracking at a dynamic construction site 

was tested (Cho et al., 2010). Its performances were good, at the expense of a bit loss of accuracy, with 

respect to the basic tethered UWB system (Saidi et al., 2011). Combining non-invasive tracking systems 

with dedicated intelligent control logics, would make the automation of many important tasks for 

construction sites feasible (Lu et al., 2011). 

Another approach to safety is represented by the substitution of human labor with machines to 

perform dangerous tasks. One example is given by the specially designed light-weight robotic tool, for the 

application of advanced composite materials and epoxy resins during tunnel excavation (Victores et al., 

2011). Another one was proposed to prevent man-hook crane collisions (Tantisevi & Akinci, 2007).  

In this paper we present an intelligent probabilistic model, which is expected to be able to filter 

and translate sensor data into probabilistic inferences, in order to assess the likelihood of accident 

occurrence in real time. The model was developed in the form of Bayesian networks (Pearl, 1988). It 

follows some past research, which already led to a first relevant result: a Bayesian network for safety 

management in the “fall from height” hazard was worked out through an elicitation process from 

subjective knowledge (Argiolas et al., 2012). As a first outcome, it allowed the combination of several 

sources of knowledge into a comprehensive knowledge map. Moreover the several dynamics leading to the 

falls from height occurrence were homogeneously represented. As a second outcome, that network 

suggested that two main different types of hazardous events might reasonably occur in the case under 

analysis: on the one hand the predictable ones (i.e. “detectable hazard”), which can be assessed and 

mitigated at the planning phase; on the other hand, the “hidden” (i.e. “hardly predictable”) ones, which are 

so called because they can be identified through the models but whose accurate assessment is hampered by 

their variability with the context’s evolution and the degree of occurrence of several external factors or of 

weird interferences among different teams. 

Hence, further efforts turned out to be needed in order to manage those hidden and/or hardly 

predictable hazardous scenarios. In order to find out how those dynamics take place, we decided to analyze 

“legal cases” as our source of information: each pattern determined by legal cases was expected to suggest 

a class of “hidden hazard scenario”, then to be translated into a network fragment.   

In the rest of this paper, we will deeply analyze many legal cases, in order to work out new 

network fragments, one for each possible hidden scenario, then to be integrated into the overall network. 

Among the many hazards, we focused the fall from height scenario caused by unprotected openings. Our 

legal cases clearly show that these occurrences often lead to permanent disability or death. Then the way 

automatic supervision or compliance to the safety rules and regulations can be implemented in the 

execution phase was analyzed. Such scenarios were formalized as a set of Bayesian networks, in order to 

form the basis for the development of real time instruments for health and safety management. 

 

METHODS 

 

Data and information gathering  

 

Legal cases have been considered as the most reliable, complete, objective and accurate source of 

data and information. We have examined, in particular, legal cases of the Italian Court of Cassation (the 

Supreme Court in other countries). Basically, two reasons have led to the use of this source over other 

alternative ones. First, the experience of the domain experts modeled in our previous work (Argiolas et al., 



 
 

 

 

 

2012) was limited to a subjective estimation of frequencies of occurrence and detectability level of “falling 

from heights” hazard. But, in order to be applied to real cases, intelligent models must manage every 

specific occurrence of “falling from height” hazard (e.g. falling from unprotected openings); in this field, 

experts in their carrier have hardly incurred in a significant number of one specific kind of accident. 

Secondly, data and information from INAIL databases (i.e. the Italian National Institute for Insuring 

Hazards at Work) are not detailed enough to support analyses of accident dynamics. 

For both reasons, we tried to survey on legal cases, because they include a significant of the way 

such accidents take place. We have analyzed about 100 legal cases of the Italian Court of Cassation. In 

particular, we have gathered legal cases which, belonging to the field of safety in construction sites, focus 

on falling from height scenario. To the purpose of the research reported in this paper, we have identified 

accident dynamics relative to falling from “floor unprotected openings” category, which shows high 

frequency of occurrence. After their identification, we developed a standard form (Figure 1), which was 

aimed at highlighting relevant data and information about each picked legal case.  

 

 
 

Figure - 1 Data and information gathered for each legal case 

 

Development of the qualitative Bayesian network 

 

By means of the above form (Figure 1), legal cases relative to falling from floor unprotected 

openings have been collected and their triggers and dynamics noted down. Information gathered in this 

phase allowed us to state that as for 53% of the selected legal cases, accidents were due either to an 

irregular use of collective protective equipment (i.e. railing along the opening perimeter and sheets of 

timber to prevent falling inside) or to lack of personal protective equipment (sometimes because of the 

negligence of employers and some other times due to the abnormal behavior of operators who do not use 

PPE at all). In 43% of the analyzed legal cases, falling from floor unprotected openings were caused by 

lack of protective measures to mitigate and reduce risks (i.e. safety equipment). Finally, 4% of the 

accidents were caused by concurrent absence of collective safety measures and equipment and, at the same 

time, by wrong use of personal protective equipment (e.g. wearing safety belts not secured to anchors). 

Through the information gathered in this phase, the qualitative structure of the Bayesian Network  

shown in figure 2, was worked out. We have chosen the Bayesian causal models because of their potentials 

to integrate several sources of information and to perform estimations in real-time (Argiolas, 2012). This 

first structure of the network was intended as the kernel of any more advanced models, where new nodes 

shall be added, when further evidences will be collected. 

 



 
 

 

 

 

 
Figure - 2 Falling from floor unprotected openings: the qualitative BN structure 

 

Finalization of the Bayesian Network  

 

All the forms deriving from the analysis of legal cases, like in Figure 1, were rearranged into a 

new database, where each record referred to - at least - one occurrence of accident and contained the state 

of every variable (or node) of the Bayesian Network in Figure 2. Some accidents were suggested by more 

than just one legal case, which happened for those dynamics which are very likely. Figure 3 shows a 

database’s excerpt: the column headers represent all the BN’s variables. Each row defines the states of all 

the variables involved in each of the legal case analyzed.  

In order to  perform the learning phase of the network, the database’s structure has been extended 

with all the other combinations of variables, which are complementary to the legal cases analyzed and 

which describe the situations which did not lead to accidents, thus the database also expressed those 

combinations where safety was regularly managed. The final database contained 44 records. The learning 

process was based on the EM (Expectation Maximization) algorithm, which estimates the hyper-

parameters of Dirichlet distributions among the connected nodes (Heckerman, 1996).  

 

 
 

Figure 3 – An excerpt from the database 

 

RESULTS 

 

The network was implemented in the Hugin Expert
TM

 software program and preliminary tests 

were performed to assess its sensitivity to the relevant inputs for risk estimation. The first scenario in 

Figure 4 shows a safe condition, relative to a worker who is working near a large opening (diameter > 40 

cm) which is protected by a regular railing. The scenario in Figure 5-a shows a safe operational condition 

for a worker who is far from a large unprotected opening (diameter > 40 cm). The last scenario (Figure 5-

b) simulates the case of a highly unsafe working condition for a worker who is working near a large and 

unprotected opening (diameter > 40 cm), given that the worker does not regularly wear personal protective 

equipment (e.g. safety belts are not properly anchored). Hence the network was shown to be able to 

automatically discern those cases which could easily lead to accidents.  



 
 

 

 

 

 
 

Figure - 4. Safe scenario in case of large opening protected by regular railing. 

 

(a) (b) 

 

Figure - 5. Another safe scenario (a) and one unsafe scenario due to irregular use of PPE (b). 

 

DISCUSSION 
 

Thanks to this network, the possible chain of events which might potentially lead to falling from 

floor openings have been formalized. The model was developed in the form of a Bayesian Network and, 

provided it is inputted with real time data on the state of the context (i.e. distance between workers and 

openings, opening size, floor slope, protective equipment etc…), it can estimate the potential for hazards. 

In fact, it was meant as a substitute/support to on-site human control of compliance to safety regulations.   

In order to be intelligent and react in real-time, such model needs a sensor setup to monitor the 

state of context’s variables and gives them as input to the network. Sensors will update nodes’ beliefs in 

real-time; then the network will propagate that belief and estimate the probability of occurrence of falling 

from floor openings. So this is our first brick to produce a real-time monitoring system to identify 

unpredictable triggers which could determine risk of falling from heights. 

As the last step, those sensors needed to collect in real-time context’s information were assessed. 

According to the qualitative structure of the network, the first variable to be monitored is the presence of 

floor openings. Hence, during a site’s progress, dedicated sensors will be installed in the internal perimeter 

of each floor opening. The sensor is supposed to be able to measure the opening’s size, and determine 

whether it has a diameter higher than 0.40 m, that is the minimum through which a person can fall through. 

 Other sensors to be located on-site will be meant to: 

• estimate the distance between workers and floor openings (e.g. by means of tracking systems); 

• assess the proper use of collective protective equipment - CPE (such as railing and safety 

nets); 

• assess the correct use of personal protective equipment - PPE (e.g. safety belts). 

These inputs are needed by the Bayesian Network to make inferences and estimate the actual risk level in 

real-time. Of course some estimations are not so straightforward and must be adapted to specific situations: 

e.g. workers walking on sloped roofs must be kept farer from unprotected floor openings than those 

working on flat floors, due to risk increases by the possibility of sliding and rolling towards openings. 



 
 

 

 

 

Another set of sensors was meant to continuously check the compliance of CPE to safety 

measures. That’s needed because a wrong CPE installation (e.g. missing railings and under-sized timber 

sheets) may cause a risk. Also, to be identified those cases when an operator in charge of manually 

checking CPE compliance must be appointed: it is necessary every time some irregularities cannot be 

automatically discerned, e.g. weak railing and timber sheets not firmly installed.  

Finally, a third set of sensors should be installed in order to control the correct use of  PPE. As 

falling from floor unprotected openings scenario is often linked to an irregular use of PPE  (e.g. worn 

safety belts but not firmly secured), they are expected to check whether: 

• safety belts are correctly worn; 

• safety belts are correctly secured to their anchor points; 

• anchor points and/or anchor lines are regular. 

The availability of the sensor setup described above will allow to monitor in real-time operational 

conditions which could determine the occurrence of hazards. Those data would transfer such raw 

information to the yellow “root nodes” pictured in Figure 6. So the overall Bayesian Network was worked 

out, which not only includes inference models to estimate how likely hazard occurrence is, but also can 

accept data from sensors to perform such inference in real-time.  

 

 
Figure 6 – Input nodes of the net 

 

CONCLUSIONS 

 

Our approach rises from the need to develop intelligent models based on Bayesian Networks and 

capable of checking the occurrence of hardly predictable risks in real-time. The models we propose to 

identify those risks own two features:  

• firstly, they must be able to warn whether any hazard situations occurs in real-time;  

• secondly, they must make inferences automatically, hence they must run given inputs periodically 

sent by sensors. 

In particular, in this paper a first intelligent model, in the form of Bayesian network, estimating 

the “fall from unprotected openings” risk scenario, was developed. It was also successfully validated 

through preliminary tests. Data were retrieved from the analysis of legal cases, which helped identify those 

dangerous scenarios which could reasonably lead towards the occurrence of accidents. Those data were 

translated into a list of records, which were used to perform the network’s learning. All the root nodes were 



 
 

 

 

 

set as inputs provided by a set of sensors, which will make the network autonomous in the task of 

supervision of the context evolution, potentially leading to accidents. Hence, the intelligent model is ready 

for further integration with the suggested sensor network, capable of tracking abnormal behavior and 

operator’s negligence (i.e. “near miss accident” – according to OHSAS 18000).  
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