SELF-LOCALIZATION SYSTEM FOR ROBOTSUSING RANDOM DOT FLOOR PATTERNS
*Yutaro Fukaséand Hiroshi Kanamotj Shinich Kimurd

Shimizu Corporation
3-4-17, Etchujima Koto-ku
Tokyo, Japan, 135-8530
(* Corresponding author: fukase@shimz.co.jp)

*Tokyo University of Science
2641 Yamazaki, Noda-shi
Chiba-ken, Japan, 278-8510



SELF-LOCALIZATION SYSTEM FOR ROBOTSUSING
RANDOM DOT FLOOR PATTERNS

ABSTRACT

Various types of service robots have recently béeveloped for guarding facilities, caring for the
elderly, carrying objects, and cleaning buildingss barrier-free facilities improve and their useands,
these robots have more space within which to mosilé buildings. Yet robots that move autonomously
rely on position-detection systems. Though impngvrapidly, these systems are far from perfect in
determining positions in certain situations, espiciwhen robots navigate large areas or crossouari
locations. Our group is working to solve this desb by developing a position-detection system using
random-dot patterns on a floor. First, we constaudloor with a random-dot pattern and registex th
positions of all of the dots into a database. e tobot moves across the floor, a camera on thetro
captures an image of the floor beneath it and ctiopslot pattern in the image. The cropped ddepats
matched to the dot patterns in the database tondieiethe position of the robot and the direction in whic
the robot is facing or moving. In this paper wepwmse a self-localization system and matching élyos
derived from a space technology and present thétsesf several experiments.
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INTRODUCTION

A service robot programmed to move autonomously building must be equipped with a self-
localization system to operate effectively. Seléypes of self-localization systems are therefoeing
pursued.

A number of strategies using electric devices Ifestanside buildings have been developed. One
system deploys a pseudo satellite (Sakamoto, Niténuma, Fujii, & Sugano, 2010); another detects
differences in radio field intensity among sevenréileless LAN access points (Umetani, Yamashita, &
Tamura, 2011); a third uses an ultrasonic 3D pmsisiensor (Nishida & Takeda, 2010). Yet in eadeca
non-uniformity of the electromagnetic or acoustiwieonment causes instability the detection positio

Other methods rely on ceilings or floors for pasitidetection. One, for example, uses arrayed
marks on ceilings (Nakazato, Kanbara, & Yokoya,@0While another tracks communications transmitted
LEDs on ceilings (Uchiyama, Haruyama, & Nagamot6p®. Both of these methods fail when the
ceilings in a room are tall. Kodaka, Niwa, and Sa&# (2009) developed a floor-based system by pdaci
a series of RFID tags on a floor and reading themetect positions. At about the same time, Nedtaz
Hiyama, Tanikawa, and Hirose (2009) printed posttoded patterns on a floor and read them with a
camera. These latter floor-based systems areycbstivever, as the first requires many RFID tags the
second requires the printing of code patterns @inc. Another floor-based system relies on craicka
floor as landmarks (Kelly, 2000). This method ifficult to adopt for floors with finishing mateiis,
though it is effective for factories or warehouséth solid concrete floors.

Our group is attempting to surmount these challerge devising a method using random dot
patterns on floors. Floors are often paved withylior coated with epoxy resin in structures sush a
hospitals, factories, or office buildings. To impeothe appearance and durability and to recyclemadd,
some floors are finished with dot patterns formgadnixing milled plastics into the flooring mateisaat
the manufacturing or construction phase. Thesegdtierns are random, hence one pattern at onéguosit



is statistically different from all of the othertperns. Our group has taken advantage of this ptppe
develop a practical self-localization system forhite robots with a focus on low cost and high didtec
stability.

THE PROPOSED SYSTEM
Outline

The basic configuration of the proposed systenhdsv® in Figure 1. After constructing a floor with
random dot pattern, we scan the floor and maket-gakition database. As the robot moves, a cawmera
the bottom captures images of the dot patternsdétermine the robot’s position and direction of/éda
the system matches the position and orientatidheotiot pattern in the captured image with the dathe
dot-position database of the entire floor.

The dot patterns in the image are matched withethiwghe dot-position database using an attitude-
detection technology applied for satellites. Inatellite, an on-board camera captures imageseo$kk
and the camera orientation is identified by matghtime stellar constellation in the captured imagth &
known star map. This technology, otherwise knoventlae Star sensor technology, is illustrated
schematically in Figure 2. Our detection methodrsh the following elements with the Star sensor
method.

1. Naturally occurring random pattern

Both the star constellation and floor dot patteerandom dot patterns.
2. Foreign dots and disappearing dots

Countless stars may appear in a satellite imagegehthe stars used for matching are limited toehos
above a preset threshold for brightness. Yet inbttightness range just above and below this thitdsho
non-target stars may inadvertently appear or tasges may disappear. The same principal appliesiin
system, as previously unregistered dots (heredfameign dots”) may inadvertently appear or datda
registered dots may disappear.

To cope with this problem we apply tiRolestar algorithm (Silani & Lovera, 2006), an attitude-
detection algorithm with a robust ability to hantie blending of non-target stars or the disappeaaf
target stars.
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Figure 1- Proposed system Figure 2 - Star sensor

Method

Basic Principle

In a random dot pattern, a combination of distarieetsveen a central dot and neighbouring dots
within a certain distance is statistically diffetefnom another combination with another central, dot



provided that the latter dot is sufficiently diféat. We refer to this
combination of distances as the “polestar charatiet of a dot.
The Polestar algorithm uses this polestar chaiatiteto match a
dot in the image with a dot in the database. Wmpare the
polestar characteristic of a dot in the image witle polestar
characteristic of each dot in the database andtabennumber of
same distances. The matching dot in the datalsages idot with
the highest number of same distances.

In Figure 3, for example, there are seven dotsiwh'pattern
radius” (PR) from a central dot, and the polestaaracteristic is
[5.0, 25.7, 26.5, 11.2, 23.7, 17.4, 33.1]. The R& to be

Figure 3- Polestar Characteristic

adequately specified here. For our method, we ddfia PR as the diagonal length of the capturedema

Polestar Database Matrix

The “polestar database matrix” is a matrix of tledeptar characteristics of all of the dot pattesns
the floor. As an example, Figure 4 presents thegs® used to calculate the polestar characteoistie i-
th dot. At this point, every distance between ittie dot and each outer dot is round up to the whol
number, “a distance index.” The PR is round upht whole number “PRidx.” We make a PRidx length
bit vector, “PSi”, in which each bit corresponditg the distance index becomes 1 and the other bit
becomes 0. Calculating the bit vectors associattdeach dot in the database and arraying thosens
we generate the polestar database méasdb). Even if more than one neighboring dot has thmes
distance index, the corresponding bit of the veberomes 1. This procedure is executed once bafore

actual matching process.

Database

Captured image

Distances between Cs and the other dots

Distances between i-th dot and the other dots
[31.2,214.7,101.3,125.1,197.4 ]
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Bit vector of the distances index
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Figure 4 - Polestar database matrix

Bit vector of the distances index
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Calculating bit vectors associated with each dot
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Figure 5 - Polestar image matrix
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Polestar Image Matrix

The first step in the actual matching process imake a “polestar image matrixP$img) by the same
method used to generate the pole star databasi.mkédure 5 presents a calculation process.

Polestar Matrix Multiplication

Figure 6 shows the multiplicationf PSdb with the transpose®Simg. The number given for each
matrix element of the calculated matrix is the nembf matched polestar distandastween each dot in
the database and each dot in the image. To fiaddndidate dot in the database matching the athind
the image, we only have to find the matrix elemeith the maximum number in the i-th column and the
row index of this element, which corresponds toiddex in the database. If the maximum number gxist
at more than one matrix element in the i-th columare than one candidate dots are selected.

Selecting an Adequate Combination

In the previous process, several dots in an imageespond to more than one candidate dots in the
database. For example, in Figure3,ddrresponds to £and G”, and D also corresponds tosGand G.
If every dot in the image adequately matches thardthe database, a distance between the eacHdtso
in the image and the distance between the two spporeded dots in the database are of the same length
Using this relation, we can select a matched coatlzin of dots in database. In Figure7, the lengtthe
red lines between each dot in the image and thoteeidatabase are equal. And then with the pasitd
the selected dots in the database, we calculatga$iton and orientation of the image on the floor

Matching Rate

In advance we virtually divide the floor into gridgth a cell whose resolution roughly sets to the
averages of the dot dimensions. And if a dot existhe cell, the cell becomes “Existed Cell,” ahdot, it
becomes “Empty Cell.” Corresponding to the positmnl orientation calculated in the previous procedu
every dot in the image is translated into a flomorcdinate system and is assigned to the ExisteldoCéie
Empty Cell. The number of dots in the Existed G@lided by the number of all dots in the imagehis t



“matching rate.” We describe the procedure in Feg8r This matching rate is useful for evaluatihg t
reliability of the matching and eliminating posit®detected erroneously due to low matching rates.
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Figure 8 - Calculating matching rate

PERFORMANCE VALIDATION

To examine the effects of newly appearing, foredgis (dots not previously detected or stored in the
database) and disappearing dots (vice versa) wducted an experiment with actual flooring and a
computer simulation experiment with a dot datalmsbe actual floor.

Experimental Configuration

The flooring material was a resin embedded witkclolplastic chips with diameters ranging from
around 2 to 3 mm. 91,582 black dots were on 1800xn@%50 mm. The distribution density of the black
plastic chips could not be strictly controlled, e number of chips added could be adjusted tota®®
to 40 chips per field of view (FOV: 90 mm x 90 mmAj camera captured an image of the floor under
white LED illumination. Then we conduct binarizindenoising, and labelling, and calculate positiohs
the black dots in the image. Finally, the positiarese corrected to compensate for lens distortion.

[..

Image sensor: monochrome CMOS
Resolution: 235 pixels x 235 pixels
Stand-off from floor: 130 mm
Flooring colour and material : Beige vinyl with black dots FOV: 90 mm x 90 mm

Number of dots: 91,582 dots in 1,800 mm x 94,500 mm CPU: AMD E-450APU 1.65 GHz

Figure 9 - Experimental configuration
Actual Experiment

After adding several foreign dots or removing sal/dots on the floor, we detected the positiorhef t
captured image. Figure 10 shows five cases conducte

Both added dots and naturally generated dots wegptuied in the image. Tiny foreign particles and
long and tiny hairs were eliminated by image-preg&s and several small dots in the database tetaded
disappear. On the other hand, the database obddtse floor was prepared in a clean environmerthen
assumption that no dots would be added. As a rasléitively small dots were used as reference dots



the floor and the tiny dots in the database weraesimes unrecognizable as dots in the image. Thble
indicates the percentage of added dots, the pagerdf removed dots, and the detection resultHer t
respective cases. Detection was still successfidnw61.0% of the dots were added (Case 1) or when
76.2% of the dots were removed (Case 3). The @rpet confirmed a robust detection performance.

Casel Case2 Case3 Case4 Caseb
Adding 23 dots  Adding 33 dots Erasing 28 dots  Erasing 30 dots Erasing dots

with white line

Figure 10 - Experimental cases

Table 1 - Experimental results

Case: Case. Case. Case: Case!
Adding Rate(% 61.1 90.2 9.5 9.5 7.8
Erasing Rate(¥ 10 14.€ 76.2 81 78.4
Detectior CD ND CD ND CD

CD, Correctly detected; ND, Not detected
Simulation Experiment

Sampling Dots from the Database

Next, we executed a series of simulation experigéat statistical consideration with many more
sample cases. The conditions of the simulatiorfarared to the actual experiment. We simulated the
capture of 1,209 images at 112.5 mm intervals enaittual floor. The dots captured at each poinewer
taken from the database. To approximate the ohtenal error, every dot was given a random pasitio
error within 1 pixel.

Adding Dots

We randomly added several dots to the sampling mhetstioned above. Table 2 shows the result of
the detection position in the case with added dotsrect positions were detected at every posititih a
rate of dot addition of 30 % or less. With a rafes0 % added dots, 9 out of 1,209 were undeteoted
erroneously detected. Therefore, the positionatiete performance appears to be robust to added dot

Removing Dots

We simulated the disappearance of dots by remgwirigts from the sampling dots mentioned above.
Table 3 shows the result. Even in the case of %5@te of dot removal, over 95 % of the positiorese
correctly detected. The position-detection perfamoe is also robust to dot removal.

Adding and Removing Dots

Dots can naturally be expected to appear and désappimultaneously on an actual floor. By
analyzing captured images in various positions,feumnd that the rate of dot disappearance in an énag
was 25 % at most. Hence, we added dots at theadedifferent rates and detected positions in raage
with 25 % of the dots removed. As in Table 4, ab@t% of the positions were correctly detectedrn a
image with dots added at a rate of 50 %.



Eliminating Erroneous Detections

Erroneous detection can lead to dangerous malfumgin mobile robots. A lower value is set to the
matching rate to avoid erroneous detection. Imxamination of the matching rates in Tables 2 tod,
found the lowest matching rate for the correct c@e position and the highest matching rate fa th
erroneous detection position in Table 4. Tablehdws the matching rates in Table 4. The lowest
matching rate for correct detection was 38.9% d&edhighest matching rate for erroneous detection wa
23.5%. Hence, when the standard matching ratetibetween 23.5 and 38.9 %, the erroneous detection
can be eliminated with no sacrifice of correct détm in every case. In addition, since the datstee
floor were around 3 mm in diameter, we set theltiem for existing dots to 2.8 mm.

CD, Correctly detected; WD, Wrongly detected; Nt Metected

Table 2 - Adding dots Table 3 - Removing dots
Adding(%) 10 20 30 40 50 Erasing(% 10 20 30 40 50
CD(%) 10C 100 10C 99.5¢ 99.2¢ CD(%) 10C 99.9z 99.5¢ 99.E 950t
WD(%) 0 0 0 0.3Z 0.6€ WD(%) 0 0 0.17 0.0 0.91
ND(%) 0 0 0 0.08 0.08 ND(%) 0 008 02¢ 04 3.14

Table 5 - Matching Rate
Adding(%; 10 20 30 40 50

Min.matching ¢, 565 515 389 429

Table 4 - 25 % dot removal and
dot addition oiseveral %
Adding(%) 10 20 30 40 50

CD(%) 99.57 98.7¢ 97.3t 9557 89.6¢ Rateof CD(%)

WD(%) 0.06 05 141 33¢ 7.44 Max. matching 161 235 189 214

ND(%) 0332 074 1.24 207 2.9 Rate of NG(%) L2
SUMMARY

We proposed a method to detect positions with randot patterns, conducted an experiment and

simulation on actual vinyl flooring, and confirm#uk following:
1. The method is robust to the addition of dots #a@ removal of dots.
2. Misdetection can be avoided by appropriatehfigorring a standard matching rate.

The floor tested in the actual and simulation eixpents covered an area of 1800 mm x 9450 mm.
With other simulation, however, we succeeded teatgbositions on a virtual floor database coveang
area ten or more times larger with pseudorandors. dotthat case, it takes 30 to 40 seconds to tdatec
position, so we have been trying to speed up thegss with GPU.

In this paper we show an important part of our-getélization system for detecting initial position
Once initial position is detected, the searchirgparan focus on the small area around the detpogdtion
and amount of time for calculation of detecting theasition can be decreased dynamically. And efen i
the detecting position fails, with detecting the wvament of the dots between two successive captured
images, we can calculate the position continuowtgsently we are applying this self-localizatigatem
to control a mobile robot.
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