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ABSTRACT 
 

Non-Intrusive Load Monitoring (NILM) is a method of extracting appliance-level power 
consumption information from aggregate circuit-level data with the goal of giving users feedback 
regarding their energy consumption so they can take control of their consumption habits. In this 
paper, we present a novel algorithm for classification of on and off states of appliances. We 
compare the performance of our algorithm in on state detection with a pervious paper that 
evaluated the same dataset and show that it performs up to 13% better. We also present the 
results of a case study where we collected data for different modes of a cooktop, microwave and 
dishwasher and used our algorithms to perform power estimation. The error on ten different 
setups in the test bed ranges from 1% to 32%. We discuss our results and lay out ideas for future 
work. 
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INTRODUCTION 

Non-Intrusive Load Monitoring (NILM) is a technique that aims to provide energy end 
users with feedback regarding their appliance-level energy consumption habits without having to 
monitor each appliance individually. This idea has been around since the early 1980s when 
George Hart and his colleagues filed it as a US patent (Hart, Kern, & Schweppe, 1989). They 
proposed to achieve this by monitoring the main circuit that feeds current and voltage into a 
house, and based on the changes in electrical power signatures there, establish an estimate of 
what and when each appliance goes on and off. Then the end user is given an energy report that 
details what appliance in the house consumed what portion of their total energy use. Research has 
shown that feedback can motivate energy savings of up to 20% (Darby, 2006). This is important 
because electricity, on its own, constitutes 41% of total annual energy consumption in the US, 
and 67% of that is produced from fossil fuels (United States Energy Information Administration, 
2009).  Hence, savings due to NILM based feedback methods, in terms of both monetary units 
and impact on environment, quickly add up to large amounts when nationwide or even global 
figures are considered- validating its importance and the need for its adoption. 

 
The idea of energy monitoring at the main circuit level has already penetrated the 

mainstream commercial market with devices like The Energy Detective1, Envi2, Efergy3 etc. 
Over the years, various improvements have been made to Hart’s original idea by integrating 
machine learning and signal processing techniques (Zeifman & Roth, 2011). Pattern recognition 
methods (Farinaccio & Zmeureanu, 1999), the use of higher order harmonics (Laughman et al., 
2003), and features from the raw current waveforms (Ito et al., 2004) are among the few 
techniques implemented with some level of success. Researchers have also used fundamental 
decomposition methods such as principal component analysis (PCA) on power signatures (Kao, 
Cho, Lee, Toyomura, & Yamazaki, 2009). Algorithms like support vector machines (SVM) (Kao 
et al., 2009) and neural networks (NN) (Prudenzi, 2002) have also been tried. Recently, 
unsupervised methods mostly based on graphical models such as Bayesian networks (Lin, Lee, 

                                                        
1 http://www.theenergydetective.com/ 
2 http://www.currentcost.net/ 
3 http://www.efergy.us/ 



Hsun, & Jih, 2010), Hidden Markov Models (Kim, Marwah, Arlitt, Lyon, & Han, 2011) and 
others have gained traction. Electric noise in the voltage line generated by mechanical switches 
(Patel, Robertson, Kientz, Reynolds, & Abowd, 2007) and electromagnetic interference (EMI) 
noise resulting from switch mode power-supplies (SMPS) (Gupta, Reynolds, & Patel, 2010) have 
also been studied as possible features for device classification. 

 

To date, no NILM solution suitable for all types of household appliances is available. 
Zieffman and Roth (2011) note in their review of NILM methods that most of research effort in 
this area has been focused on signature exploration (also known as feature extraction). As a 
consequence, other aspects of NILM like power estimation and classification algorithm 
development have not been studied in detail. Even among the features that get proposed, due to 
lack of a standard dataset and accuracy metrics, there is no sense of how well the features 
generalize to other sets of appliances.  Also, very few of the available solutions have been 
developed with the practicality of implementation in mind.  

  

To fill this void, this paper will leverage a simple and easy-to-implement algorithm to 
obtain state change information in appliances. The contributions of this paper are twofold. First, 
we present a novel feature extraction technique that processes on transients (spikes observed 
when an appliance turns on) to extract the meaningful features. We evaluate the performance of 
our feature extraction method on the dataset used by Bergés et al. and compare their results to 
ours (Berges, Goldman, Matthews, Soibelman, & Anderson, 2011). Secondly, we also present a 
novel algorithm for off state detection that relies on steady state (state after the transient when the 
device is operating) current information. To evaluate the performance of our off state detection 
method, we present results of power estimation (done by using off state detection) on a case study 
where we collected data for 8 different modes of three appliances.  

 

A FRAMEWORK FOR POWER ESTIMATION 
 

The ultimate goal of NILM algorithms is to estimate the power consumed by all the 
devices being monitored. To achieve this, we created a framework that comprises of four distinct 
steps typically involved in a NILM setup. In this section, we summarize our methods and 
proposed algorithms for all of these steps. 
 
Event Detection 
 

Event Detection involves identifying when an event of interest (device turning on or off, 
for instance) occurs in the circuit. The algorithm we propose for this is based on step changes in 
real power. The step changes are monitored every sample. If they are above (or below) a certain 
threshold (50 Watts, for instance), they are labeled as an event of interest. After this we check to 
see if the average energy for two seconds after the event is at least 50% of the event. If so, the 
event is labeled as on. In the case of off events, we check if the average energy for two seconds 
before the event is at least 80% of the event. The numbers are chosen empirically given the 
nature of typical on and off transients, where on transients usually start with a few samples long 
spike followed by a dip, while off transients just fall off steeply. Figure 1 shows the results of our 
event detection algorithm on a combined operation of washer and microwave. 
 
Feature Extraction 

 
 Once event detection is done, necessary features from the event should be extracted in 



order to identify what device caused it. Our algorithm extracts a three second long transient for 
each event. Based on the direction of the event (positive or negative), it is labeled as on or off. 
The on transients are then normalized with the goal of highlighting the features that are 
characteristic to it. Most on transients of appliances consist of a similar large energy portion 
(roughly rectangular) on top of which small appliance and mode related variations reside. The 
goal of our normalization is to reduce the common shape portion and enhance the small 
variations for classification. The effects of signature normalization are illustrated in Figure 2. 

 

 
Figure 1- Event detection on aggregate signal of microwave and washer. The red marks indicate a 
microwave event while the green marks indicate a washer event.   
 
The normalization is done in the following steps: 
1. Smoothing: The resulting transient from the event detection is smoothened by a moving 

average of 10 milliseconds. This is achieved by convolving it with a 5 milliseconds long unit 
rectangular pulse. Then, the 5 milliseconds portions at the beginning and at the end of the 
resulting signal are removed, as these portions mostly contain artifacts from the smoothing. 

2. Threshold selection: For each smoothened transient, the root mean squares (RMS) of the real 
power values are sorted. The values at the lowest 5 percent are then selected as a threshold.  

3. Nonnegative threshold normalization: The resulting transient is normalized point-wise minus 
this threshold, and any resulting negative value is changed to 0.  

4. Normalization by maximum: The resulting transient from step 3 is then normalized by its 
maximum RMS value. The normalized transients are then taken as features for on events.  

 
For off events, feature extraction is different because off transients look the same for all 

devices. So, current signatures are used to extract the off event features. For any off event 
detected, we check for the current signatures right before and after the event. The current 
waveforms are then aligned according to their phase relative to the voltage. This was done by 
finding the zero-crossing (point where the sinusoidal voltage waveform is zero) of the voltage 
waveform before and after the event and using the difference to shift and align the current 
waveform accordingly. The aligned waveforms are then subtracted to find the current waveform 
of the appliance that went off. Then, one period of that waveform is extracted and used as feature 
for classification of that appliance. Figure 3 details this process. 



Device Classification 
 

Once the necessary on and off features are extracted, a nearest neighbor algorithm is 
implemented for classification. The algorithm was chosen for its performance and efficiency, 
keeping in mind the feasibility of using it online and in a practical setting. The algorithm works 
by calculating the distance (Euclidean, in this case) between the extracted test transient and all 
the data in the training repository. It then classifies the test sample as whichever label it is closest 
to. The training data is collected by extracting aforementioned features (on transients and current 
waveforms) from similar devices in a standalone setting.  
 
 

Transients before Normalization       Transients after Normalization 

 
Figure 2- Effects of normalization on extracted transients. The left plots show the transients before 
normalization, while the ones on the right show the same transients after normalization. For instance, the 
transient labeled Cooktop1 on the right is the transient of mode 1 of Cooktop from the left after 
normalization, and so on. Normalized P stands for Normalized Power. 
 

The same is done for steady state current signatures of each mode. We wait a few 
seconds after the state change of a device for the transient to become steady and take that as the 
steady state. This is done to identify what device went off. Figure 4 shows results of device 
classification on the power signal shown in Figure 3. 

 
Power Estimation 
 

Our power estimation algorithm leverages step changes in power as well as steady state 
current information to perform power estimation. We track all the devices that are on at any 
given instance based on the results of our classifier. Anytime there is an off event, we first check 
to see if the off drop is within 10% magnitude of any of the on transients at that instance. If such 
an on is found then those on and off transients are grouped together, and power is calculated 
based on an extrapolation of their average value between those time periods. If such an on is not 
found (for various reasons including a very sharp spike in the on transient), we extract a period of 
the current waveform of the device that went off, and run it against the nearest neighbor classifier.  

 



 
Figure 3- Steps involved in extracting the current waveform of the device that changed state from on to off 

after an off transient is detected. 

 

 
 
Figure 4- All the transients (extracted after event detection in Figure 4) that were labeled as one of the eight 
possible categories after Device Classification. Dishwasher 1, Dishwasher 3, etc. refer to different modes 
of the dishwasher. The transients in a particular category are overlaid on top of each other.  
 

EVALUATION 
 
Evaluation of on transient feature extraction technique 
 

This section summarizes the performance of our algorithms on real-world data. To 
evaluate the robustness of our on transient feature extraction algorithm, we tested it on the dataset 
described by Bergés et al. (2011). Of the three datasets presented in the paper, we explored the 
dataset that includes data from a house (with 17 appliances and 176 on events) and the dataset 
that includes data from an apartment (with 14 appliances and 35 on events). These datasets 
included current and voltage readings from the main circuit panel sampled at a frequency of 15 
KHz using a split core current transformer and a 1/100 voltage attenuator similar to the one 
described in (Anderson et al., 2012). We tested our feature extraction algorithm with theirs by 
using the same classifier (nearest neighbor) on the extracted features. Table 1 summarizes the 
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results. Our features (which are only dependent on real power on transients) outperformed 
features described in the paper (which included regression coefficients from both real and 
reactive power). As a benchmark, we also tested the performance of nearest neighbor algorithm 
on non-normalized on transients.  
 

Table 1- Comparison of the performance of our feature extraction techniques for on transients 
with feature extraction techniques described by Bergés et al. (2011). The datasets were divided 
into training and testing so that there was at least one training sample and one testing sample for 

all events. 
 

 # of events Accuracy of nearest neighbor classifier 

 Train 
set 

Test 
set 

 No 
normalization 

After 
normalization 

Regression 
coefficients 

Dataset 1 (Whole-House) 
  

90 86 76.4% 82.25% 76.4% 

Dataset 2 (Apartment) 
 

17 18 52.2% 65.56% 56.67% 

Dataset 1 and Dataset 2  107 104 56.1% 65.4% 58.4% 

 
Evaluation of off event feature extraction technique 
 

The dataset used in the previous section does not contain information about steady state 
current and hence cannot be used for evaluation of our off event feature extraction technique. So, 
we conducted a case study with three devices– microwave, cooktop (electric stove) and washer 
(dishwasher) to test our framework of power estimation as a whole. The devices were selected 
because of the following reasons: (i) the power consumption is roughly the same for a microwave 
and cooktop which forces our algorithm to look for other features than just power differences; (ii) 
the transients for certain washer modes are almost the same as certain cooktop modes which 
forces us to look for other characteristic features; (iii) the microwave has a slow moving 
transient, while the washer has multiple modes, which allows us to tackle the problem of power 
estimation in multiple modes and under different conditions; and (iv) these are the major 
electricity consuming appliances in a regular household kitchen. 

 
The data collection setup included an analog-to-digital converter that sampled both 

voltage and current at 2 kHz, measured on a power strip to which all of the above appliances 
were connected. A 1/100 voltage attenuator and a split-core current transformer, similar to the 
one used in (Anderson et al., 2012) were used to obtain the analog signals. Data was also 
collected for cases when two appliances were operating at the same time. We trained our 
algorithms on individual appliances and built a small repository of signatures. Then we tested the 
aggregate signals (with multiple appliances) on our training set. Figure 2 shows some of the 
transients for each of the appliances in our case study and Figure 1 shows the aggregate 
signatures for a case when two appliances were operating.  

 
A training repository was built with 504 on transient signatures for all possible modes of 

the three devices. There were eight distinct modes for the three devices. We averaged all the 
transient signatures in a particular mode to get a median signature. This way there were eight 
signatures, one for each mode, in our repository. This significantly reduced the complexity of the 
nearest neighbor algorithm without sacrificing the performance.  



Table 2- Percentage error in power estimation and number of events (on and off) in the test 
sample. The training was done on 504 on transients collected on individual appliances. 

Microwave and Cooktop-1 refers to one trail of aggregate signature where both the appliances 
were operating simultaneously, and so on. 

 
Devices in test sample Number of events Error in Power estimation 

Dishwasher 68 12% 
Microwave 4 6% 

Microwave and Cooktop- 1 8 4% 
Microwave and Cooktop- 2 8 1% 
Microwave and Cooktop- 3 8 5% 
Microwave and Cooktop- 4 8 1% 

Microwave and Dishwasher- 1 78 16% 
Microwave and Dishwasher- 2 90 9% 
Microwave and Dishwasher- 3 90 7% 
Microwave and Dishwasher- 4 96 32% 

 
DISCUSSION 

 
The feature extraction technique that we propose for on transients performs better than 

more complex methods that utilize additional information as was shown in the previous section.  
To test for its robustness, we compared its performance with non-normalized transients in the 
data from our case study, and saw accuracy improvements of up to 40% upon normalization.  
The low accuracy values in Table 1 should not be taken at face value because event detection, 
centering of extracted transients and ground truth labeling were not done using our algorithms. In 
a controlled setting where had control over the detection, centering and training, our feature 
extraction method had accuracies of up to 98%.  

 
The results from Table 2 reflect the effectiveness our off transient detection and power 

estimation algorithms. The power estimation results for Microwave and Dishwasher-4 are not on 
par with the rest of the results because some of the dishwasher modes were classified as cooktops 
modes-as their power consumption and transient shapes both look similar. Features like reactive 
power or higher order harmonics specific to a dishwasher could be added to the model to correct 
for this in expenses of extra complexity.  

 
The error in power estimation was calculated by comparing the total power consumed by 

the devices (Ground Truth) with the power consumed by devices after classification. This model 
of error estimation may be argued to be a lower bound in conveying the total picture, as over and 
under power estimate errors at event level may cancel out resulting in smaller total error. The 
only way to test for this is to verify the model over a large sample of data for consistency. Yet, 
for the test samples in the case study, values were largely consistent and the larger errors were 
borne out of misclassification between appliance types. We leave development of a better metric 
for evaluating power estimation error and expansion of the case study to include more appliance 
types as future work.  

CONCLUSION 
 

In this paper we outlined a brief history of Non-Intrusive Load Monitoring (NILM) 
techniques and presented a framework for estimating power at appliance level. As our 
contributions, we developed an algorithm that utilizes novel normalization techniques for on 
transient detection, and compared its performance against a standard dataset. We found that it 



outperformed non-normalized data by up to 13%. We also presented a method that looks at 
steady state current signatures for off event classification to perform power estimation. We 
reported on the results of using our algorithm on the data from our case study. The average error 
on power estimation was around 9%.  
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