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FUZZY CLUSTERING-BASED MODEL FOR PRODUCTIVITY FORCASTING

ABSTRACT

Forecasting productivity of construction operatiaasa difficult but crucial task in planning
construction projects. Over the past decades, maogels have been developed to forecast productivity
for different construction operations. Models manteof several functional relations and controllgdab
specific number of control rules are more in linghvihuman reasoning and logic. Neural-Network-Dnive
Fuzzy Reasoning (NNDFR) structure as one of thesdeis shows a great performance for modeling
datasets among which clear clusters are recogeizhbtk of the compatibility of conventional NNDFR
with fuzzy clustering algorithms besides the inmight attention paid to the optimization of numiwdr
clusters in this model, created a potential areduidher research. The main contribution of thepgmsed
model is to develop a modified NNDFR system to nhambastruction data. To this end, Fuzzy C-Means
(FCM) algorithm is substituted for K-means in NNDBRucture, and its parameters such as the nunfiber o
clusters and weighting exponent are optimized thinogenetic algorithm. The proposed model is further
verified through simulation of a construction op&na in which several qualitative and quantitatfaetors
are considered. Its implementation to the caseystlibws a considerable improvement of model
performance with lower Mean Squared Error (MSE)e Tdeveloped model assists researchers and
practitioners in utilizing historical constructialata to forecast productivity of construction opieras with
a high accuracy that could not be obtained by tiathl techniques.
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INTRODUCTION

Fuzzy models and artificial neural network (ANN)st&ms have provided an effective tool for
addressing uncertainty in decision-making. Uncetyaias the ineradicable nature of constructiornguts
convinced researchers to approach such intelliggstems. In the past few years, these systems were
dramatically applied to develop forecasting modelshe construction management area (Boussabaine,
1996; Bowena & Edwardsa, 1985; Chan, Chan, & Ye@0§9; Cheng & Ko., 2003; Kim, An, & Kang,
2004; Leu, Chen, & Yang, 2001; Li, 1995; Martin tekdre & Thomas Ng, 2003; Moselhi, Hegazy, &
Fazio, Potential applications of neural networkscamstruction, 1992; Tah & Carr, 2000). Productivit
estimation of construction operations, as a degisiiierion in project planning and control, hasdme an
interesting target for forecasting models.

Integration of basic soft computing techniques swash neural networks, fuzzy logic and
evolutionary algorithms (EAs) empowered researcteraake more efficient forecasting models. In such
models, mainly the gaps of each method are trdatetie complementary ones. This trend led to areati
of a variety of hybrid intelligent structures. Bdsen the area of study and inherent features ofitia,
one of those structures showing the best accuraybe selected as the most appropriate one. Ot of
structures that has been considered as a notatrtdulctory step to today’s innovative neuro-fuzzy
systems, is Neural-Network-Driven Fuzzy ReasonMiDFR). With the help of self-learning ability of
ANN, this model succeeded to present a state-ehthenethod for fuzzification and inference procedu
to a conventional fuzzy system. This capabilitysidbes emerging tendencies to the application cftetu



based fuzzy and neural network systems led us totisize the benefits and potential constructive
modifications of NNDFR system. The objectives af thurrent research can be summarized as follows:

1. Develop a modified NNDFR system to model constarctiata
2. Optimize the NNDFR model parameters, such as nuwibgusters and weighting exponent

LITERATURE REVIEW

Simulation is one of the most widely used technigire operational research and managerial
science (Law & Kelton, 2000). Construction simwatiis a powerful tool that can be used by a
construction company for several tasks, such aglystovity measurement, risk analysis, resource
planning, and the design and analysis of constmctinethods (Sawhney, AbouRizk, & Halpin,
Construction project simulation using CYCLONE, 1998mong all these applications, productivity
measurement might be considered as the most inmpdetetor in construction planning and control. Mos
research works in construction simulation have igafocused on simulation modeling with little
emphases on studying the qualitative variables dlffect the simulation process itself (Elwakil, 201
Although some studies have investigated the efiéatariables, such as weather (Moselhi, Gong, & EI-
Rayes, Estimating weather impact on the duratiomafstruction activities, 1997), on productivity of
construction processes, there is still a lack séaech on this area. In most cases, there is rm@néfied
functional relation between variables affecting rapienal level of simulation process and their owp
This matter convinced researchers to utilize ma#i@al models like ANN that is used to model comple
relationships between a set of dependent and imdiepe variables.

ANN tries to simulate the structure and operatibimuman neural network system. An ANN is
comprised of an interconnected set of artificialno@s operating based on a connectionist appraach t
computation. The ability of learning by examplesnad this technique to a very useful tool in data
modeling (Lawrence, 1994). This technique can ligwve predictive model where the relationships
between inputs and outputs are not sufficiently kmoRatterns and relationships of historical da&@ ar
recognized to acquire the “knowledge” used todice unknown output values for a given set of input
values (Sawhney & Mund, Adaptive probabilistic redunetwork-based crane type selection system,
2002). In the past few decades, ANN dramaticallys vegoplied to develop forecasting models in
construction management area (Boussabaine, 1996, K, & Kang, 2004; Li, 1995; Moselhi, Hegazy,
& Fazio, Potential applications of neural netwoiksonstruction, 1992). These models are well duite
the problems where the underlying reasons and tguatfliinput-output relations are not studied. Fuzzy
logic was introduced as a response to the needypdtamatic reasoning more in line with the hunwaicl
In this approach, unlike ANN, interpretability ofie inference procedure is the center of attention.
Construction management following other areas eéaech has applied this concept in different areas,
such as risk analysis, construction simulation eted (Carr & Tah., 2001; Zhang, Tam, & Shi, 200%3.
these researches and many studies alike showntpiieal approach of acquiring membership functions
had been remained as the only method of desiga fong period of time. Lack of a definite method to
design membership functions was resolved with titegration of ANN and fuzzy logic which lets
membership functions be determined by self-learrahiity of ANN. Adaptive Neuro-Fuzzy Inference
System (ANFIS) is a well-known example of thesernduzzy systems. Although ANFIS is more flexible
and robust than the more traditional modeling systeit only supports the singleton and linear otitpu
membership functions.

Clustering is considered as one of the most impbréad frequently used techniques in data
analysis (Beringer & Hullermeier, 2006). Data ohustg is the task of organizing a data set intéedént
groups, such that the objects of the same clustemare similar to each other compared to thosmher
clusters. Fuzzy C-Means (FCM) (developed by Dunh9i3; improved by Bezdek in 1981) clustering can
be considered as one the most dominant algorithnimoih theoretical and practical applications ofada
mining. FCM possesses a fuzzy approach for regpitie memberships to different clusters. It allows
each data point to belong to more than one cludfemy of the clustering algorithms are based on



knowing the number of clusters beforehand. FCM ritigm is of that type and therefore requires this
initial value before clustering has been accomplishClustering techniques extensively have enhanced
hybrid intelligent systems. As a well-known exampleakagi-Sugeno (TS) type fuzzy models define
different regions in the data space each of whirasents a linear input-output mapping (Takagi &
Sugeno, 1985). It is prevalent in TS models thaa@omatic method, like fuzzy clustering, is exfgdito
attain candidates for linear regions (Jantzen, 1998kagi and Hayashi (1991) utilized clustering
techniques to partition the inference rules for aubdl-Network-Driven Fuzzy Reasoning model
(NNDFR). In this model, the data is grouped by Kavie and the number of inference rules is equdido t
number of clusters.

NNDFR (Takagi & Hayashi, 1991) was the first apalion of neural networks in self-regulating
design of membership functions (Jain & Jain, 199his approach forms a nonlinear multi-dimensional
membership function, which internally combines #ie fuzzy variables via clustering algorithms.
Proposed model is beneficial to the datasets amdmich clear clusters are recognizable. Compardtedo
ANFIS that only accepts constant and linear fumgias consequent relationships, NNDFR inference par
is typically constituted from separately trainedirag networks. Multi-dimensional membership funogo
enable the model to consider the interdependendbeofnput variables, which is regarded as the main
improvement of NNDFR over the conventional fuzzgsening frameworks. The main drawbacks of this
model are: 1) Lack of compatibility with fuzzy ctesing algorithms, which enables the user to regula
fuzziness of membership functions. 2) Disregardimg optimization of the number of clusters, which
could notably distort the fitness of resulted model

Each type of hybrid intelligent systems has its oparameters and structure, which can
extensively alter its outcome. Those parametersillysare attained through an optimization driven by
historical data. Consequently, Evolutionary Algonis (EAs) have been turned into one of the basic
components in the structure of many hybrid inteltigsystems. Genetic Algorithm (GA) initiated byhdo
Holland in 1975, is considered as the most wellvkmdEA. In GA, an initial population of randomly
generated individuals is produced and it evolvegatd better generations by altering and mutatirgg th
properties of the population. This EA, which mimitte natural evolution process, involves following
main steps (Haupt & Haupt, 2004): 1) Generateahjpopulation. 2) Evaluate fitness of populatioh. 3
Selection. 4) Crossover. 5) Mutation. 6) Generate population and evaluate fitness. This evolutipna
process allows fine-tuning of many hybrid intellgestructures, such as neuro-fuzzy systems, and
subsequently enables the model to show a highel ¢dyperformance.

PROPOSED FRAMEWORK
Introduction to NN-driven Fuzzy Reasoning

In this section, first the structure of NNDFR isadized to detect the potential areas of
improvement. The design procedure of NNDFR coulddramarized in three steps: clustering the training
dataset, training the membership neural networké.{Y), training the consequent neural network N
of each cluster. In the first step, input data spiacpartitioned to hard clusters. In this fuzzgteyn, the
number of rules equals the number of clustershéingecond step, NN, is trained between each input
vector and its corresponding cluster assignmentove@s illustrated in figure 1. For example, the
supervised part of the learning process for a vestoch belongs to cluster 3 is (0,0,1). In thedhstep,
the consequent neural networks are trained bettteemembers of each cluster, previously partiticined
the first step, and their corresponding outputs.
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Figure 1 - Second step, training the membershipah@etwork. m, number of input variables; n, numbe
of observations; k, number of clusters

Figure 2 shows a holistic diagram of the NNDFR. T\¢,.,generates the membership functions
of the premise (IF) parts of the rules and \Nprepare consequent input-output relationships (THEN
parts). This system calculates the final estimatatbut based on a weighted average of the output of
THEN parts, such that the weights are the memheratiues produced by NN,

Figure 2 - The structure of NNDFR, where W is
the membership value and y* is final estimated oufpakagi & Hayashi, 1991)

The resulting fuzzy model is expressed by the Wilhg (Takagi & Hayashi, 1991):

Rule 1: IF x = (X4, Xg, -, X)) is C1, THEN y; = NN; (X4, X3, «e s Xm)
Rule 2: IF x = (X4, Xp, ., X)) i C5, THEN y, = NN, (X4, X5, oo, X))

Rule K: IF x = (X4, X3, .., Xpp) iS Cx, THEN y = NNy (X4, X3, vy Xm)

WhereC,_, denote existing clusters. The final estimated eaan be delivered through equation
1 (Takagi & Hayashi, 1991).

. _ X We(xi).ys(xi)
L STAE )



M odified NNDFR

The above-mentioned system utilizes a hard clugjeaigorithm, such as K-Means, in order to
determine and assign the membership values. Ithbéds a hyper surface membership function by mean
of pattern recognition ability of ANN, as describiedthe second step of the NNDFR design procedure.
This innovative fuzzification approach automatigationsiders the interdependence of input variables,
which has been the definite weakness of conventiomaification process. In other words, this NNwen
hyper-surface membership function combines all 2Bmivership functions of different variables and
results in a single multi-dimensional membershipction. However, the N}, concluded from the
results of a hard clustering algorithm providesauiizziness which is not under control and capable
being regulated. The supervised part of the legrpirocess does not have enough flexibility andnlyy o
accepts the values 0 and 1. Thus, we cannot dedidat the shape of the membership functions and
modify the fuzziness assigned to each point (Fi@)rdn other words, the system has the same @dtitu
towards all of the points in the same cluster amelschot involve the distance from the centroidsaking
decisions.

Applying FCM algorithm as a substitution for K-Meagives a fuzzy approach to membership
assignment procedure. As will be explained inféllewing, FCM formula has an initial parameter, ialin
regulates the relative weights of the membershlpesto all existing clusters and consequently rodst
the fuzziness of subsequent membership functionshat case, the model is able to compute the final
estimated outcome based on an optimized contribuifoall consequent relationshigsCM allows each
data point to belong to more than one cluster. Tfthiative algorithm is performed through miniminat
of following objective function (Matteucci, 2006):

I = I 20 uf i — o @

Whereu;; is the degree of membershipxgfto the cluster j, mis any real number greaten tha
x; is the " measured data; is the center of the"jcluster, and ||*|| is a kind of distance betwédend-
dimensional vectox; and d-dimensional vectaoy .

The iterations of optimizing above-mentioned ohjextfunction proceeds whilejij and C,are
updating in each step by (Matteucci, 2Q06)

1

U =—"—" 2 3
s [xi=g[\™~
k=1 T~y l
ZiNzluﬁl.xi
c = 4
] 21N=1uﬁl ( )

(k1) _ | ()

Once maxij{ uj; i } <e(0<e<1) is satisfied, the iterations will stop; whereskle

iteration step.

The two main problems that we face while placindvF@ NNDFR structure are as follows:

1. Separate Training Sets

Duo to the fuzzy nature of FCM, each data poinbhgs to all clusters, but with different degrees.
However, consequent neural networks (NNneed separate training data sets. To mitigatepioblem,
we propose a way in which each data point will &gged to one cluster with the maximum membership



value. For example, point A with the membershipuealof (0.15 0.2 0.65) will be separated as a membe
of NNj training data set.

2. Fuzzifier and Number of Clusters

The weighting exponent m, which is called fuzzifiean greatly influence the performance of
FCM. When the fuzzifier is close to 1, the resfilFEM is identical to that of k-means. When theZifier
approaches infinity, each cluster is only assigieits centroid and has a membership value oftbeérrest
of the points. Therefore, FCM regulates the fuzzénef the clusters by adjusting this weighting e»q.
Figure 3 presents an illustration of membershipalenetworks trained by the FCM algorithm of diffet
fuzzifiers. In this example, some random data {saim 2D (X, X,) data space are generated such that they
can be clearly partitioned into two well-separatadsters. After the application of FCM on generaiath
points, NNem is trained between the (XX,) coordinates and corresponding FCM membershiputsitp
By simulation of enough number of input points witithis area and plotting the outputs against
corresponding (X X,) coordinates, following surfaces will appear. Ashown, where the m is very close
to 1, FCM acts as K-Means and except a narrow appithg area between clusters, all data pointsttake
membership value of almost 1 to one cluster armit@e others. It means that mostly, only one comsety
neural network is in effect. However, in case ofhgsany higher values of m, only the center of each
cluster is solely assigned to that cluster andesponding consequent neural network. In that case,
deviation from the center of cluster will resultantivation of other consequent relationships.

.Membership

m=near 1

Figure 3 - Multi-dimensional membership functionteb random
variables (X1, X2) for different values of fuzzifiém)

Hence, the desirable shape of the membership dmatould be reached via fine-tuning the
fuzzifier. However, there is still no robust thetical way of finding the optimal value for this eoqent. It
seems that determination of the fittest value ghlyi dependent on the characteristics of the proble
Here, an optimization process in which the perforogaof NNDFR is set as the target function canvdeli
the optimal value for the fuzzifier.

The initial value for the number of clusters is tither parameter that must be determined before
clustering starts. Considering that in NNDFR thember of clusters defines the number of rules, an
improper determination of the initial value canrsfgantly distort the fitness of the model. Thus)
optimization on this parameter can make a reasenaihpromise between complexity and efficiency of
the model. As is obvious, separate optimizationstldse two parameters cannot lead us to a
comprehensive evaluation. The best solution shoaltsider all the possible combinations of these two
values.
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Optimization

Simultaneous optimization of the two parametersjz4ffier” and “Clustering Number”, can be
reached through application of genetic optimizatitm this optimization procedure, each individual
(chromosome) should be made up of two parametezn) (gespectively “Fuzzifier” and “Clustering
Number”. Iterative cycles of GA then repeat uriié ttermination condition is satisfied. Here, wesidar
a specific number of generations as the stoppinteriim. Fitness function that evaluates the
appropriateness of each individual is set to theeEM$ NNDFR system. Once the maximum number of
generations is met, the highest ranked individsi@dopted as the final solution. Figure 4 showsetitere
flowchart of methodology for this research.

CASE STUDY

This case study analyses the data gathered frostrootion processes of Engineering, Computer
Science and Visual Arts complex of Concordia Ursityr The data set consists of several quantitati
gualitative variables affecting concrete pouringi@ions and their corresponding daily productivityne
factors are considered: Temperature, Humidity, iBiation, Wind Speed, Gang Size, Labor Percentage,
Work Type, Floor Level and Work Method. These inpatiables are elaborated in Table 1. Following,
Table 2 presents a small sample of these 131 rexonds.



Table 1: Concrete pouring process variables

Variables Description
1  Temperature (°C) Daily average of eight workiogis
2 Humidity (%) Daily average of eight working hours
3 Precipitation Reported in terms of four nur_‘ne_rlcal values: NO_[ZFHGHIIOI’I =0, Lightrain=1,
Rain = 2, and Snow = 3
wind Speed . . .
4 (km/h) Daily average of eight working hours
Gang Size .
5 (workers) Number of people in the gang
6 Labor (F;/f)rcentage The percentage of the labor (non-skilled workemnghe gang
7 Work Type Reported in terms of activity type:t®&la 1 and Walls = 2
8 Floor Level The floor number
9 Work Method Crane and bucket arrangement=1 anapiig=2
Daily Productivity Total cubic meters done during the day divided
10 3 . .
(m*/man/hour) by the gang size and working hours

Table 2: A sample of conceret pouring data

- Wind Gang Labor Daily
Terr}Eg;ature Hug}'?'ty Precipitation ~ Speed Size Percentage \./I.VC’”é I'_:leozrl h){gg:l; d Productivity
° (km/h)  (workers) (%) P v (m3/man/hour)
-8 87 2 14.2 22 36 1 3 1 1.27
-6 37 0 19.9 19 33 1 8 2 1.23
25 7 0 24 20 30 1 14 1 1.65

We randomly divide our collection of 131 data psimd two fractions of 118 and 13. As the
model runs, GA creates different individuals formad “Clustering Number” and “Fuzzifier” and then
transfers them to FCM part of the NNDFR in ordeiriitialize its parameters. The bigger fractiontloé
data collection, which is considered as the trgnilataset, trains the neural networks and builés th
appropriate structure of the NNDFR with respeceaeh particular individual. The other fraction name
testing dataset subsequently is provided to thpgreel model and evaluates the model performance in
terms of MSE. This procedure continues until tle ¢eneration is met and the fittest answer ictate

The parameters of the GA used in this framework are

» Fitness function: MSE of NNDFR output

e Population size: 30

*  Number of generations: 20

» Selection functionStochastic Uniform

» Elite count: 2

» Crossover fraction: 0.8

» Crossover functiorintermediate CrossovégRatio=1)

e Mutation function:Adaptive Feasible

e Search bounds: Clustering Number: [2,10]; Fuzzifig3]



Table 3 tabulates the winners of each generatisedan the MSE, which has been our fitness
criterion. Figure 5 plots the best and mean perditglifferent generations during the evolution mes.
The algorithm is terminated by reaching the maximommber of generations proposing 3 number of
clusters and a fuzzifier of 1.2513. These optimizellies result in the best fitness in terms of M&Rich
is improved by 52 percent compared to the winnefiref generation. The final winner with m=1.2513
implies that a typical NNDFR structure made up eMans algorithm (m=1) could not deliver the best
possible solution.

Table 3 — Genetic Optimization Result

Individuals
Generations  Clustering . MSE
Number Fuzzifier
1 3 1.8516 0.01954
2 4 1.3957 0.01949
3 4 1.3957 0.01949
4 3 1.7288 0.01734
5 3 1.4151 0.01484
6 3 1.4151 0.01484
7 3 1.4151 0.01484
8 3 1.4151 0.01484
9 3 1.4151 0.01484
10 3 1.4687 0.01221
11 3 1.4687 0.01221
12 3 1.5054 0.00976
13 3 1.5054 0.00976
14 3 1.2513 0.00932
15 3 1.2513 0.00932
16 3 1.2513 0.00932
17 3 1.2513 0.00932
18 3 1.2513 0.00932
19 3 1.2513 0.00932
20 3 1.2513 0.00932

CONCLUSION

The current research presents a framework in wthiehconventional structure of NNDFR is
improved through substituting K-Means algorithmhwCM. In this innovative structure, the number of
clusters and weighting exponent of FCM are two petars that highly affect the accuracy of modeling.
These two parameters should be optimized througjmaltaneous optimization process that considdrs al
possible combinations of them. To this end, genalgorithm is selected to perform the optimizatipn
mimicking natural evolution process. Different misdeith different parameters are developed such tha
their estimation performance in terms of MSE defirike fitness function for genetic algorithm. The
proposed model is further verified through simwatiof a construction operation in which several
gualitative and quantitative factors are consideEapirical results show that the model performaisce
improved by 52 percent during the procedure ofrogttion. The developed research helps researchers
and practitioners by providing them with an effeetivay of construction modeling where the structifre
model is fine-tuned based on the inherent featofdse data.
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