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INTEGRATION OF UNCERTAIN REAL-TIME LOGISTICSDATA FOR REACTIVE
SCHEDULING USING FUZZY SET THEORY

ABSTRACT

This paper considers the integration of uncerteai-time logistics data for reactive construction
scheduling. In order to manage a construction ptogficiently, an accurate schedule representirgy t
current project progress is inevitable. The quadityl up-to-dateness of such a schedule dependseon t
availability of real-time data. Typically, real-terlogistics data contain information about the labmslity
of material, equipment and personnel as well agrelgl dates and site conditions. The accuracy and
inherent uncertainty depends on the location whaee real-time data was acquired. Currently, the
integration of such data into a construction scheds a very time-consuming, manual and, thus,rerro
prone process. Therefore, this paper proposes kodwbgy that enables an automatic integratioruchs
uncertain data into construction schedules. Bygiateng uncertainties into the existing scheduleirth
impacts on the construction work can be evaludfed.this, discrete event simulation is appliedotder
to model uncertain input parameters for simulatimodels this methodology applies the fuzzy setsrtheo
In combination with alpha-cut sampling techniquésctete model input parameters are obtained. By
applying reactive scheduling with several disceatent simulation experiments, the results can led ts
modify construction schedules according to agreexftames and costs. In order to demonstrate and
validate the presented approach an example is ctetlu

KEYWORDS

Real-time logistics data, reactive constructionesithing, uncertainty modeling, fuzzy set theorgcdéte
event simulation

INTRODUCTION

The efficient execution and control of constructfgnjects depends highly on the accuracy of the
underlying construction schedules. In turn, theligaf construction schedules and their being ojtate
depends on the availability of real-time data. lkeneral, up-to-date schedules must include current
information about the overall construction progresedified planning documents or available equiptmen
One crucial point is the gathering and evaluatibmeal-time data regarding their impact on the ailer
project progress. In practice, a lot of significagl-time data are increasingly logistics-relatedal-time
logistics data contain information about availabiaterial, equipment and personnel as well as ugddate
delivery dates and site conditions. In this contéxtto-ID techniques are appropriate methods téecbl
logistics data automatically. Biometrics and RFIE dypical Auto-ID techniques that can be readily
applied on construction sites and along the wayatde the construction site. These data implicitiply
different types of uncertainties due to infrequerdlections, varying transport times, or manual
assumptions. By integrating uncertainties into éxésting schedule their consequences on constructio
works can be evaluated. In this context, discreenesimulation is well suited. Generally, uncertdata
can be expressed by probabilistic functions oryussts (Zadeh, 1965). The Fuzzy Theory is oftediegp
if manual assumptions should be considered. Theadmpf disturbances or changed conditions can be
analyzed by adding additional fuzzy constraints pedorming several simulation experiments. Based o
the simulation results the planned schedule camdudified to keep to the agreed timeframe and cdsts.
procedure is called reactive scheduling. Normalhg, main goal is to repair the schedule in suclayp that
the original structure of the schedule is only gfehas minimally as possible (van de Vonder e2aDy).

In this paper a concept is presented to integratentain real-time logistics data into discrete reve
construction simulation model by using fuzzy sdts.this context the so-called alpha-cut sampling
technique is used to investigate the impact of tag#ies on the simulation results.



RELATED WORK

In the manufacturing industry the acquisition odlféme data is often performed by Auto-ID
techniques. Due to fixed production lines, ideabfe resources, and detailed schedules the recoedéd
time data can be clearly associated to activitfiedb® planned scheduling. Furthermore, the meastaéal
contains marginal uncertainties. Consequently-tizad data can be directly used to update the gldnn
schedule (Hotz et al., 2006). In contrast, in cdrigineering several concepts regarding the a¢iquisf
real-time data by Auto-ID techniques were propoged recently. Only a few early applications were
implemented in practise. For example, in Cho et(2011) the authors investigated vertical resource
transports on construction sites. Selected ressunege labelled with RFID tags and the correspandin
elevators were equipped with stationary readinga#sv In Yin et al. (2009) the authors proposedtsTto
RFID-based production management system for a wanitn yard. Kim et al. (2009) developed a goods
inward inspection on construction sites for preifzdted components and steelwork for bridge constnuc
In Ren et al. (2011) the authors propose an RFI&dacontrolling management for goods inward
inspection and installation of tubes. In Ergen kt(2007) the authors proposes a concept regarding
intelligent building components. These componengscapable of holding information about their s$atu
assembly guide and maintenance information. Howewsertainties and the impacts on the schedule are
not considered.

Regarding scheduling problems the general resdidchture is broader. Scheduling in presence
of real-time data is referred to as dynamic schiadu{Ouelhadj & Petrovic, 2009). Generally, in the
predictive-reactive scheduling approach the exgssohedule is revisited in response to real-time da
occurrence. The approach in the paper at handnitasito the predictive-reactive approach. In Yul &i
(2004) the authors propose an analytical conceptitomatically adjust schedules. Their approadiased
on linear programming and tries to minimize theidgon. This approach only takes single activitesl
the project duration into account. Van de Vondealef2006) proposes plain heuristic proceduresrtiay
be used to repair the deviation between targetekdbs and the actual-state schedules. The additiona
consideration of priorities or further time windovgspossible. With the help of simple sampling noeth
different schedule alternatives may be generateite@traightforward construction processes ang anl
few resources were considered.

However, the application of discrete event simolatmodels is an established methodology for
analysis and planning of processes. In Halpin (1@ Tommelein et al. (1994) the first approaches
regarding civil engineering are described. Domajrectfic construction processes, technological
dependencies and resource requirements can babaesby applying different modelling concepts. For
example, Martinez (1998) developed a special-p@psisnulation modeling tool for planning and
estimating earth-moving operations. In RuwanpuraABouRizk (2001) the authors propose a special
purpose tunnelling simulation tool. For the domafitunneling, a demonstration of a methodology @ivh
discrete event simulations and fuzzy expert systeamsbe integrated is given in Shaheen et al. (2009
Further, Kulejewski (2011) investigates how fuzzymbers and alpha-cuts of a fuzzy number can be used
to model imprecision of constraints. In this calgda-cuts are used to assess a certain probadildyt the
uncertainty regarding constraints. However, no mration of real-time data is investigated. Nelveless,
the effort to model realistic and simulation modslsery high. Because of this, in practise theliapfion
of simulation is not very common. Therefore recesgearch is investigating model driven simulation
modeling. With the help of building information ned (BIM) and knowledge-based methods semi-
automatic model generation and adaption can bieadi{\Wu et al., 2010; Xu et al., 2003).

REACTIVE SCHEDULING CONCEPT

In this section a proposed reactive constructidredaling approach is presented in which real-
time logistics data are considered for controlliagd updating construction schedules. A schematic
overview of this approach is illustrated in FigureThe concept consists of four steps accordinth¢o
reactive scheduling concept. Firstly, the acquisitipreparation and adaption of real-time logistiata are
performed. Typically, real-time logistics data aint information about the availability of material,



equipment and personnel as well as delivery dates ste conditions. The accuracy and inherent
uncertainty depends on the location where the tieed-data was collected. A typical data measurement
point is a factory shipping area to get some inftion regarding predicted material delivery dates.
Another measurement point is the personnel accedhe construction site. The recorded data contain
information about the personnel and their spedjfialification. Subsequently, it is possible to cédte
whether the required personnel for a certain dgtame available. However, sometimes the collediaiz
cannot be directly assigned to activities of thieeslule because the date of measurement is way affiead
the planned execution date. In addition, manualrapsions or related uncertainties have to be takitm
account. For example, the delivery date of matesiat specified to within the next five to ten days.
Another example is that a diseased worker will appe the next two days with a certain probabilg. a
result, there is a need to prepare the collectgitios data in a way that they can be used toigred
possible delays. In this context fuzzy set thesrysed model the uncertain logistics data for daetive
scheduling approach.

logistic monitoring

l § [ . dapted schedul
c?:o @6—0' target schedule for logistics acapiec schede

process monitoring &‘I
dL
-
real-time data L:EI

A -
Acquisition Adjustment d
@ of actual |« of target @ 4
logistics data schedule
: A
uncertain actual )
logistics data preparation evaluation - S - -]
0 adaption metrics
M\ /'ﬂ\% >
XY / v o thresholds
; sensitivity
! Integration analysis taroet-actual
arget-actua
@ Biec) - » co%n arison
logistics data p

simulated actual

% schedules

simulation model

simulation —_

components

S P
E real-time data

available

target schedule

\ 4

current point in time

simulation-based analysis I

2| —>
Figure 1 — Schematic overview of the reactive amesibn scheduling approach

In the next step, the prepared data is integrateda construction simulation model by defining
additional constraints for the involved activiti@herefore, a constraint-based simulation appriscised
(Kénig et al., 2007). This enables an automaticatipd of the simulation model by adding real-time
logistics constraints. The real-time logistics dosists are so-called early starting time constgiithat
means that an associated activity cannot be ex¢@adier than the defined date. Due to the inheren
uncertainty several earliest starting times havbednvestigated. Consequently, a sensitivity asialjias
to be performed. In this context, a sensitivity lgsia is the study of how the uncertainty in thalstme
logistics data affects the schedule and the prajection. The effects can be highlighted by taayttial-
comparison. The concept how to compute input vatepsesenting real-time data by using fuzzy sets is
highlighted in this paper. In the last step, thenpled schedule should be updated, if crucial delagsher
significant deviations were detected. For this,8ation-based optimization can be applied (Nguyeal.e



2012). In this context, an important objective askieep the modification as low as possible to avoid
redisposing of personnel or equipment.

MODELING UNCERTAIN REAL-TIME LOGISTICSDATA

Several techniques exist to model and analyze tainges in model parameters, such as real-
time data. One method is Monte-Carlo simulatiort thandles uncertain input parameters as random
variables based on given probabilistic distribusion this paper the fuzzy alpha-cut analysis based
fuzzy set theory is applied (Zadeh, 1965). The yuzzt theory enables a formal description of udety
and imprecise statements. The essential concethtiotheory is the definition of sets that are lolaea
multi-valued logic rather than the classical bonlea two-valued logic. Such a fuzzy séts a set of pairs
(x,,u)g(x)),x € R with associated values of a membership functigtx) € [0,1]. This membership
function represents the grade of membership iofX. Thus,uz(x) = 0 means that does not belong to
the set{. The exampl&X = {x, uz(x)} with the membership function given by Equatiors & example of
a fuzzy set of real numbers that are approximagglyal to 3.

x—2, if2<x<3
ug(x) =44—x, if3<x<4 Q)
0, otherwise

A graph of Equation 1 is depicted in Figure 2.
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Figure 2 — Graphical representation of memberalmgtionu;(x) according to Equation 1

In the following, the integration of real-time dateodelled by fuzzy sets is demonstrated by an
example. The target schedule in Figure 3 consiftBve construction activities. Each activity has a
scheduled starting and end time. Further, eaclvigctias some precedence relationships and resource
constraints. The last activity E ends at time 7.

A

Activity |Predecessor Resqurce Duration

B requirement
A - R1 3
¢ B - R2 2
D C A R3 2
D B R4 1
E E C RS 1

I L] L] L] L] L] L) >

1 2 3 4 5 6 7 time
Figure 3 — Target-schedule with five activities dnelir precedence relations and resource requiresmen

At time 3 new real-time logistic data is availablehis data contains information about the
delivery date of resource R3 that is required hyvitg C. The collected and manually prepared data
associated with certain uncertainties. In this eplaninformation about four possible delivery tirmessd
their probabilities are available. The deliveryamhation is as stated in Table 1.



Table 1 — Uncertain delivery information for resceiR3

Time vague assumption
of possibility
0%
30%
40%
80%
100%

~N~No ok~ w

The uncertain delivery information for resource &® be modelled by using a fuzzy ¥etThe graph of
functionuy of the fuzzy seX is depicted in Figure 4(a) with linear interpabeti
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Figure 4 — a) Membership function of fuzzy &efor the delayed delivery

b) alpha-cut intervals fdiX]*% with o; = 0.3, a, = 0.4, a3 = 0.8

In the next step the impact of the uncertaintyhi@ teal-time data needs to be analysed. For this
discrete event construction simulation can be apply integrating additional earliest starting time
constraints. However, a fuzzy set represents moiess vague information and cannot be used djrectl
within discrete event simulation models. To overedimns, a sampling method based on alpha-cut aealys
is performed. In general, an alpha-gi{* of a fuzzy sefX is the set whose grade of membership is greater
than or equal ta as given by Equation 2.

[X]* = {x € Rlug(x) = o} @)

For the given example three alpha-cut set intef&l%, with o; = 0.3, a, = 0.4, a; = 0.8 are
chosen and depicted in Figure 4(b). The samplimgsponsible for generating a certain amount afrdie
values. To generate these values the samplingrferped for every alpha-cut. In case of the alphta-c
a, = 0.3 for example five discrete values are generatetlérrangd4, 7], for examplex; = 4.5, x, = 5.0,
x3 = 5.5,,x, = 6 andxs = 7. Then, for each discrete value a discrete eventilation run is applied in
order to analyse the impact according to a sampiagdie. The simulation model is adapted by
implementing an additional constraint regardingivégt C for each simulation run. The additional
constraint restricts the possible earliest startimg of the corresponding activity C. The simwdatiruns
start at time 3, which is the time when the new-tie@e data is collected. For five discrete valaéshe
alpha-cuta; the corresponding results are given in Table Aalfi, for each alpha-cut the mean and the
standard deviation can be calculated. The resudt cbmplete alpha-cut analysis consists of thdesarl
latest and mean starting times of all activitiest tre not finished. Figure 5 illustrates the statal results



for 1.000 simulation experiments. The mean staréind thus the ending time of activity C are delayed
such a way that the succeeding activities, sucttgty E, are delayed with high probability.

Table 2 — Disturbance impact results for alphaegut

X; Start time End time
activity C  activity E
X, =45 4.5 7.5
x, =5.0 5 8
X3 =55 5.5 8.5
x, = 6.0 6 9
x5 =7.0 7 10
.
: S
| ' C 4 mean 6.3 83
STDV 0.25| 025
| D min 4.0 6.0
Ve Ly max 10.0 12.0
L) L) ! L) ] L) L) I ) I )
1 2 3 4 5 6 7 8 9 10 time

Figure 5 — Impacts for all alpha-cuts consolidated one result
CONCLUSIONS AND OUTLOOK

In this research a concept for real-time logistiata integration into simulation models regarding
construction scheduling was presented. The airhisfconcept is to close the gap between alreadyiegi
simulation models, which do not consider informatabout real-time data, and recorded but unusdd rea
time data. To achieve this purpose the existingution model was adapted. In this adapted model, t
information about real-time data regarding constomcprocesses were modeled as additional consdrain
Then, these constraints were attached to the adedctonstruction processes. A hypothetical target-
schedule was used to demonstrate the applicatiothi®fapproach. The results clearly show that the
integration and consideration of recorded uncertaahtime data performs well. However, furthere@gh
and development of the later stages of the propapgdoach is required. For this, the results geedra
with the assistance of the stage presented inmbiik will be used as input to be processed by sdiog
stages, like simulation-based comparison or sclkealdjustment.
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