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Abstract - 

One of the most prohibiting factors when 

attempting to reuse structural steel members or 

systems of members is the time and labour required to 

accurately determine dimensions. Current practices 

dictate that all required measurements are recorded 

by hand using tape measures and calipers which adds 

a significant cost to reused steel. To mitigate this cost, 

a semi-automated method for identifying structural 

steel components and systems is proposed that uses 

data acquired in the form of a 3D point cloud. Current 

research in the field of automated object recognition 

currently has two major limitations: (1) a priori 

knowledge, such as a building information model 

(BIM) is required, or (2) only simple, flat surfaces can 

be identified. The purpose of this study is to 

preliminarily investigate the possibility of automating 

the process of (1) cross section identification, (2) end 

connection geometry of bolted connections, and (3) 

relative component position of multi-component, 

planar structural systems such as trusses. Cross 

section identification is performed by creating filters 

that match standard structural sections and then 

convolving them over images of the cross section data. 

The end connection geometry is identified using Hough 

algorithms to detect lines and circles representing the 

limits of the component and the bolt holes, 

respectively. Planar structural systems are identified 

using Hough algorithms to detect lines which represent 

the components of the system. The results from the 

proposed methods show a strong potential for fully 

automated processes to be able to identify structural 

steel components and systems without a priori 

knowledge. 
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1     Introduction 
 

Steel reuse has long been an underutilized method for 

reducing the life cycle cost of structural steel construction. 

It is believed that steel reuse could be increased by up to 

150% of current reuse rates if there was a greater 

economic incentive to reuse steel [1]. This was found by 

performing an extensive survey of members of the steel 

construction industry. These members included steel 

service centers, demolition companies, scrap steel dealers, 

steel fabricators, and engineers and designers. A common 

concern among these groups was the economic benefit, or 

cost, of reusing structural steel because of the low cost of 

new steel components and the high value of scrap steel. 

A common method of reducing the cost of specific 

activities is to automate that activity, or part of that 

activity. In the field of civil engineer, a number of 

research endeavours have been undertaken with the goal 

of automating the identification process of physical 

objects. The automation process begins with data 

acquisition. A number of 3D sensing methods have been 

developed to reduce the cost associated with data 

acquisition. These methods can be divided into two 

categories: image based systems, and time-of-flight based 

systems. An image based system records many digital 

images of a scene and then registers these images together 

using the principles of collinearity and coplanarity [2]. 

This process is often referred to as photogrammetry or 

videogrammetry, depending on whether digital 

photographs or frames from digital video recordings are 

used. Alternatively, time-of-flight based systems, which 

are typically referred to as laser scanners, measure the 

time required for a signal to travel from the base unit to 

the object and back. The main advantage of using image 

based systems is the speed of data collection [3]. Image 

based systems can perform 3D mapping in real time [4]. 

The benefit of using a time-of-flight based system is the 

higher accuracy that is achieved. Regardless of the 

collection method, the result of this type of data collection 

is a 3D point cloud of the structure’s surface geometry. 

This point cloud will normally contain millions of 

individual data points. 

After the physical geometry of the structure has been 

recorded, automated object recognition can be performed. 

Automated recognition of civil engineering components is 

not a new field of research. Bosché [5] presented a means 

of detecting construction objects for the purpose of 

automated progress tracking as well as determining 

dimensions for dimensional control of steel structures. 

This built on the original method developed by Bosché 

and Haas [6] which compared 3D point cloud data to 3D 
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building information models (BIMs) to determine the 

presence of a component. Dimensional control of concrete 

structures, specifically the flatness of concrete slabs, was 

investigated by Tang, Huber, and Akinci [7]. Marble 

façade panels have also been analyzed for flatness using 

3D point cloud data as well [8]. A common limitation of 

this line of research is that a priori knowledge is required, 

whether it be through a BIM or the knowledge that the 

object in question should be perfectly flat. 

The field of machine vision attempts to automate 

detection, often without a priori knowledge. One of the 

cornerstones of machine vision is known as the Hough 

Transformation. The Hough Transform is used to identify 

shapes in 2D or 3D images. While the theory and 

underlying objectives of the Hough Transform remain the 

same, the implementation, and effectiveness of the 

implementation, can vary greatly [9]. This detection 

method is commonly employed for the automated 

detection of planar elements in binary images [10]. For 

3D applications, automated edge and surface 

reconstruction has been performed from point cloud data 

[11] [12]. Providing edges and surfaces with semantic 

information has only been performed for very simple 

surfaces, such as ceilings, floors, and walls [13]. 

Throughout all of this research, the ability to 

automatically identify complex objects, such as those that 

would be found in a structural steel building, has not been 

established. 

Automating the process of identifying existing 

structural steel components would significantly reduce the 

cost of reusing such materials, thereby making steel reuse 

a more economically viable alternative to new steel. It is 

forecast that this sort of economic improvement to the 

steel reuse industry would facilitate a significant increase 

in the reuse rate [1]. 

2     Methodology 

2.1     Overview 

The research method was separated into three 

preliminary studies: (1) cross section identification, (2) 

end connection geometry identification, and (3) joint 

location identification. The goal of these studies was to 

demonstrate the possibility of automating the 

identification process of structural steel components 

without a priori knowledge. As this was a preliminary 

study, the employed research method was semi-automated 

and limited in its applicability. 

The cross section identification was performed on 

standard wide flange beam cross sections, but the 

developed algorithms were applicable to any standard 

cross section. The end connection geometry identification 

was performed on a plate containing holes. The intent of 

this study was to simulate the end of a beam with bolt 

holes located in the beam’s web. The joint location 

identification algorithm was performed on a planar truss. 

The developed algorithms were based on the assumption 

that all members of interest would be aligned along a 

common plane 

2.2     Data Collection 

The data collection for each research area was 

conducted in the same manner but on different structures. 

Data collection was carried out using a terrestrial 3D laser 

scanner. This laser scanner records geometric data as a list 

of x,y,z coordinates from objects within line-of-sight of 

the base unit. This meant that the laser scanner recorded 

the geometry of the desired structure as well as any nearby 

objects such as trees or other structures. The accuracy of 

the particular laser scanner used in this study is ±3 mm at 

25 m [14]. 

The geometric data from one structure was recorded 

for each of the research methods presented. The cross 

section identification used data from a structural steel 

teaching aid (Figure 1a). This structure consists of a 

number of different standard steel cross sections, 

including wide flange beams, hollow structural sections, 

and channel sections. The end connection geometry 

identification was performed on data collected from a 

steel plate containing eight bolt holes (Figure 1b). The 

joint location identification was performed on data 

collected from an exposed truss supporting the roof of an 

arena (Figure 1c). Each of these data sets was comprised 

of multiple instances of laser scanner data that have been 

merged into a common coordinate system using 

commercial software. 

Figure 1 - Point cloud data used for cross section 

identification (a), end connection geometry identification 

(b), and joint location geometry (c) 

a)

b)

c)
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2.3     Cross Section Identification 

The process of cross section identification began by 

pre-processing the point cloud data. In this step, members 

that were to be analyzed were isolated from the rest of the 

point cloud and aligned such that the principle axis of the 

member was aligned with the z-axis and the strong axis of 

the cross section was aligned with the x-axis. This step 

was performed manually in 3D computer-aided design 

(CAD) software. 

This separated and aligned point cloud is then sliced 

orthogonally to its principle axis with the purpose of 

creating binary images that represent the cross section 

geometry of the scanned member (Figure 2a). These 

images were created by first projecting the points 

contained in a single slice onto a plane that was parallel to 

the slice. This plane was then pixelated and pixels 

containing a point were marked as being filled. A varying 

number of the binary images were created based on the 

slice thickness and length of the member’s point cloud. 

The slice thickness and pixel size of the resulting binary 

image were user defined parameters. These binary images 

then needed to be compared to equivalent binary images 

that represent the geometry of known structural steel 

sections. For this purpose, a database was created that 

contained a filter for each standard structural steel cross 

section. These filters were designed based on simplified 

geometry, where components of the cross section were 

always treated as rectangular (Figure 2b).  

Figure 2 - The binary image of sliced point cloud (a), and 

a filter (b) 

A convolution algorithm was implemented to compare 

the binary image of the scanned data with the binary 

image of the filter. Each filter was compared to each 

slice’s binary image, and a match was established based 

on the number of corresponding pixels from both images. 

The matches for each filter and each slice were recorded 

and the highest match value from all slices was selected as 

the match for that particular member. 

2.4     End Connection Geometry Identification 

End connection geometry identification began with 

pre-processing the point cloud by trimming any points not 

associated with the plate and by aligning the plate with the 

yz-plane. The aligned point cloud was then converted into 

a binary image (Figure 3a) by projecting the data points 

onto a parallel plane, pixelating the plane, and then 

marking pixels that contain at least one data point as 

filled. With a smaller pixel size, and therefore more detail, 

it was likely that this binary image would contain many 

empty pixels that should be filled based on the assumption 

that data points are taken across the entire plate’s surface. 

To fill these pixels, an expansion and contraction 

algorithm was implemented. This algorithm began by 

filling each pixel that neighbors a filled pixel. Alone, this 

method would alter the size of the plate and holes by 

expanding the region that was classified as the plate’s 

surface. To remedy this, the filled pixels are contracted 

whereby each filled pixel that neighbors an empty pixel 

was marked as empty. The resulting image is one that 

represented the plate’s surface as filled pixels (Figure 3b). 

Finally, all non-edge points were marked as empty (Figure 

3c) because the detection algorithms used for the 

geometry identification required that only edge points be 

present in the binary image.  

Figure 3 - The binary image of a steel plate with bolt holes 

after creation (a), filling (b), and edge detection (c) 

a) b)

b)

a)

c)
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The detection of important features, namely the edges 

of the plate and the size and location of bolt holes, was 

completed using Hough algorithms. The algorithms used 

for this particular study were pre-built, commercially 

available implementations of the Hough transform for line 

detection and the Hough transform for circle detection. 

The particular Hough algorithms that were implemented 

returned the start and end locations of detected lines and 

the center and radius of detected circles. 

Post-processing of the detected lines and circles began 

by extending and/or trimming detected lines such that 

their ends met at a common point. This was performed so 

that the detected lines would properly represent the edges 

of the plate. Further, and optional, post-processing was 

performed based on two assumptions: (1) the plate is 

expected to be rectangular, and (2) the holes are expected 

to be arranged in a grid pattern. The detected lines and 

circles were adjusted to meet these assumptions. First, 

each line was rotated about its center so that it ended in a 

horizontal or vertical alignment. The lines were then 

extended and/or trimmed, as before. Next, the center 

locations of holes were aligned such that holes in a 

common row would have a vertical position equal to their 

average vertical position before adjustment and holes in a 

common column would have a horizontal position equal 

to their average horizontal position before adjustment. 

2.5     Joint Location Identification 

The pre-processing for the joint location identification 

algorithm began in a similar manner to the end connection 

geometry identification. The point cloud was first 

trimmed to only include the points of interest; specifically, 

the truss to be analyzed. The truss was then aligned such 

that the plane of the truss was parallel to the xy-plane. As 

before, a binary image was then created by projecting the 

data points onto a parallel and pixelated plane, where the 

pixels containing a point were marked as filled (Figure 

4a). 

The analysis phase began with an implementation of 

the Hough transform to detect lines in the image of the 

truss. These lines were detected iteratively by detecting a 

single line and then clearing pixels that are in close 

proximity to that line. Figure 4b and Figure 4c show this 

progression for the first two detected lines. Figure 4d 

shows a later stage in the iterative process where the first 

line representing a web member has been detected. This 

process results in a number of detected lines that is much 

greater than the number of truss elements that exist 

(Figure 5a). The elimination of redundant lines was 

performed during post-processing. 

Figure 4 - Binary image of a truss before line detection 

(a), after the first line has been detected (b), after the 

second line has been detected (c), and after the first line 

representing a web member has been detected 

Figure 5 - Detected lines before post-processing (a), after 

merging (b), after trimming and extending (c), and after 

end point adjustment (d) 

a)

b)

c)

d)

a)

b)

c)

d)
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Post-processing of the detected lines was carried out in 

a three step method. The first step was to eliminate 

redundant lines to produce results where the number of 

detected lines matched the number of members in the 

planar structure (Figure 5b). This step was performed by 

determining groups of lines that had similar slopes and 

close proximities. Each group of lines was then merged 

into a single line in an average position based on the 

group. The limits of the line were determined based on the 

extreme limits from the lines in the group. The next post-

processing step was to trim and/or extend each line so that 

lines met at common points (Figure 5c). For the case 

where more than two lines were approximately 

intersecting, an adjustment was made to force this 

intersection to a single point (Figure 5d).  

3     Results 

3.1     Cross Section Identification 

The cross section identification process resulted in a 

match between the scanned member and a standard 

structural steel section. In total, nine members were 

analyzed that varied in size and proportion. These 

members were also hand measured to determine their true 

cross section.  

When determining the capacity of structural steel 

members, three properties are important: (1) section 

modulus, (2) web area, and (3) cross sectional area. The 

section modulus, web area, and cross sectional area can be 

used as a very simplified and relative measure of bending 

capacity, shear capacity, and axial capacity, respectively. 

The measured and predicted, based on the identification 

process, value for each of these strength metrics were 

compared (Figure 6). 

It was found that the cross section identification 

algorithm presented in this work had errors of between 

15% overestimate to 41% underestimation. For the web 

area, the error was between 16% overestimation and 23% 

underestimation. Similarly for cross sectional area, the 

error was between 21% overestimation and 36% 

underestimation. This particular sample set had two 

members that were correctly predicted. 

3.2     End Connection Geometry Identification 

The predicted values for the plate dimensions were 

quite accurate when compared to measured results. The 

height of the plate had an average error of 1.5 mm and the 

width had average error of 4.5 mm. The overall plate 

dimensions were approximately 400 mm x 300 mm. 

These errors are within the expected amount of error from 

the scan data alone. The holes radii experienced 

significantly more error. The average error for hole radius 

was 6.3 mm but the error was very uniform for all the 

holes. The minimum error was 6.0 mm and the maximum 

error was 6.6 mm. 

Figure 6 – Comparison of predicted and measured section 

modulus (a), web area (b), and cross sectional area (c) 

The location of bolt holes is an important 

measurement to have accurate knowledge about when 

incorporating a used component into new design. The 

measured, predicted, and adjusted bolt hole locations were 

calculated (Figure 7). The hole locations shown in Figure 

7 are relative to the lower left corner of the plate. In this 

relative position, the error in hole center before post-

processing alignment was between 1.0 mm and 3.6 mm. 

After post-processing alignment, this error was reduced to 

between 0.0 mm and 3.1 mm. The error can be reduced if 

the relative position of the plates is translated to minimize 

the error in bolt hole center locations. After translation the 

error was between 0.6 mm and 2.4 mm. After translation 

and adjustment, the error was further reduced to between 

0.4 mm and 1.5 mm. These errors are within the expected 

accuracy of the laser scan data and the fabrication 

tolerances. 

a)

b)

c)
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Figure 7 – Measured (a), predicted (b), and predicted and 

adjusted (c) hole center locations 

3.3     Joint Location Identification 

Physical access was not available for the truss used in 

this preliminary study due to safety concerns regarding its 

location in the building. As such, a measured length for 

each of member was determined by manually tracing the 

scan data of the truss in 3D CAD software and measuring 

these lines. Table 1 shows and compares the calculated 

and measured lengths, where the web members have been 

labeled sequentially from right to left (i.e. the rightmost 

web member is Web 1 and the leftmost web member is 

Web 8). 

Table 1 – Comparison of calculated and measured truss 

member lengths 

Calculated Measured Error 

Top Chord 8.14 m 8.00 m 0.14 m 1.7% 

Bottom Chord 6.09 m 6.60 m 0.51 m 7.8% 

Web 1 1.89 m 1.85 m 0.04 m 2.4% 

Web 2 1.93 m 1.85 m 0.08 m 4.1% 

Web 3 1.89 m 1.85 m 0.04 m 2.0% 

Web 4 1.89 m 1.85 m 0.04 m 2.3% 

Web 5 1.89 m 1.85 m 0.04 m 2.0% 

Web 6 1.83 m 1.85 m 0.02 m 1.0% 

Web 7 1.95 m 1.85 m 0.10 m 5.5% 

Web 8 1.83 m 1.57 m 0.26 m 16.4% 

Excluding the large errors associated with the top 

chord, the bottom chord, and Web 8, the error for each 

member was not greater than 0.1m. This translates to less 

than 6% error in the length measurement for these 

members. Larger errors for the three aforementioned 

members can be explained by the trimming and/or 

extending step of the identification procedure. This step 

would result in the top chord and Web 8 being artificially 

lengthened to meet at a common location. Also, the 

bottom chord would be trimmed to end at the intersection 

of the outermost web members. 

4     Conclusions 

The three methods for identification of structural steel 

components demonstrate the possibility of accurately 

automating this process. The cross section identification 

procedure was able to predict the capacity of the cross 

section within ±50%. Given the simplified and 

preliminary nature of this study, this shows promise for 

future developments. The joint geometry identification 

method predicted the plate dimensions and bolt hole 

locations with acceptable accuracy, but the radius of each 

hole was predicted with significant but predictable error. 

The joint location identification technique obtained 

accurate results for most members of the analyzed truss. 

Invalid assumptions resulted in significant error for some 

individual members. Regardless, these three preliminary 

studies demonstrate the possibility for future 

developments resulting in the automated identification of 

structural steel components without a priori knowledge. 

References 

[1] Gorgolewski, M., Straka, V., Edmonds, J., and 

Sergio, C. Facilitating greater reuse and recycling of 

structural steel in the construction and demolition 

process. Final Report Ryerson University, Toronto 

Canada, 2006. 

[2] Wrobel, B.P. The evolution of digital 

photogrammetry from analytical photogrammetry. 

Photogrammetric Record. 13(77):765-776, 1991. 

[3] Dai, F., Rashidi, A., Brilakis, I., and Vela, P. 

Comparison of image-based and time-of-flight-based 

technologies for three-dimensional reconstruction of 

infrastructure. The Journal of Construction 

Engineering and Management. 139:69-79, 2013. 

[4] Han, S., and Lee, S. A vision-based motion capture 

recognition framework for behaviour-based safety 

management. The Journal of Automation in 

Construction. 35:131-141, 2013. 

[5] Bosché, F. Automated recognition of 3D CAD model 

objects in laser scans and calculation of as-built 

dimensions for dimensional compliance control in 

construction.  The Journal of Advanced Engineering 

b)

a)

c)

SENSING AND COMMUNICATION



and Informatics. 26:90-102, 2009. 

[6] Bosché, F., and Haas, C.T. Automated retrieval of 

3D CAD model objects in construction range images. 

The Journal of Automation in Construction. 17:499-

512, 2008. 

[7] Tang, P., Huber, D., and Akinci, B. Characterization 

of laser scanners and algorithms for detecting 

flatness defects on concrete surfaces. The Journal of 

Computing in Civil Engineering. 25:31-42, 2011. 

[8] Al-Neshawy, F., Piironen, J., Peltola, S., Erving, A., 

Heiska, N., and Nuikka, M. Measuring the bowing of 

marble panels in building facades using terrestrial 

laser scanning technology. The Journal of 

Information Technology in Construction. 15:64-74, 

2010. 

[9] Borrmann, D., Elseberg, J., Lingemann, K., and 

Nüchter, A. “The 3D Hough transform for plane 

detection in point clouds: a review and a new 

accumulator design. The Journal of 3D Research. 

2(2):1-13, 2011. 

[10] Bolles, R.C., and Cain, R.A. Recognizing and 

locating partially visible objects: The local-feature-

focus method. The International Journal of Robotics 

Research. 1(3):57-80, 1982. 

[11] Demarsin, K., Vanderstraeten, D., Volodine, T., and 

Roose, D. Detection of closed sharp edges in point 

clouds using normal estimation and graph theory. 

The Journal of Computer-Aided Design. 39:276-283, 

2007. 

[12] Yumer, M.E., and Kara, L.B. Surface creation on 

unstructured point cloud sets using neural networks. 

The Journal of Computer-Aided Design. 44:644-656, 

2012. 

[13] Xiong, X., Adan, A., Akinci, B., and Huber, D. 

Automatic creation of semantically rich 3D building 

models from laser scanner data. The Journal of 

Automation in Construction. 31:325-337, 2013. 

[13] FARO Technologies Inc. FARO Laser Scanner LS 

840/880. Instrument Technical Specifications. 2007. 

The 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC 2014)




