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Abstract - 

Localization (position tracking) inside tunnels is 
difficult.  GPS signal is not available inside tunnels, 
and installation of wireless access points is expensive.  
In this work, we propose the use machine vision for 
localization in tunnels.  The advantage for such 
approach is that it requires no installation of any 
infrastructure, needed with radio triangulation 
approach.  Prior researches have shown that machine 
vision can successfully identify positions in both 
outdoor and indoor environments.  However, such 
application has never been tried inside tunnels.  In 
this paper, we present our work on developing 
appropriate algorithms for localization in tunnels.  
One potential application for localization in tunnels is 
to help tunnel maintainers acquire accurate location 
information in tunnels when they do tunnel 
inspections and maintenances. 
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1 Introduction 

Tunnels need to be inspected, monitored, and 
maintained during their lifetime.  Without proper 
inspection and maintenance, accidents may happen and 
endanger its users.  In 2006, there was a fatal accident in 
the Central Artery Tunnel in Boston, USA.  The ceiling 
fell off and caused death.  The accident could have been 
avoided with proper inspection [1].  Similar tragic 
accident happened in Tokyo-bound Sasago Tunnel, 
Japan.  Emergency inspections conducted after the 
incident identified 16 similar defects out of 59 tunnels of 
similar type [2].  Both accidents might have been avoided 
with proper inspection.  Therefore, it is important to 
conduct proper inspection, monitoring, maintenance to 
ensure tunnel safety. 

In this work, we try to develop a positioning or 
localization system inside tunnels to assist tunnel 
inspectors.  The tunnel inspectors drive or walk through 
the tunnel to be inspected.  During this course, inspectors 
pay attentions to spots that have visual anomalies or past 

issues.  They then record the spot by taking notes, 
pictures, or voice recording.  These records are 
automatically tagged with its whereabouts inside tunnels 
with the system to be developed.  Thus, the tunnel 
inspector can focus on his inspection work without 
needing to identify the position for the record.  Thus, the 
system can help inspectors be productive, reduce human 
errors in recording positions, and hopefully can achieve 
better inspection quality. 

In the past, automated localization in closed space 
such as mines and tunnels can be done through wireless 
sensor network [3].  Such technique, however, requires 
setup of wireless sensor nodes.  This leads to an initial 
cost for such system.  The cost includes sensor nodes and 
their batteries.  The system also needs to be maintained, 
including replacing faulty nodes and charging batteries.  
Alternatively, one can use Wi-Fi to achieve localization 
with the same technique.  However, using Wi-Fi needs to 
setup wireless hotspots and their wiring for electrical 
power.   In addition, this hotspot infrastructure also needs 
to be maintained. 

To overcome above-mentioned shortcomings, we 
propose using machine vision to construct automated 
positioning system.  The proposed method requires no 
prior installation of infrastructure.  Nor does it need prior 
knowledge of the environment (i.e. no need for “figure-
prints”.)  In this paper, we first present the theoretical 
background for applying machine visions in localization.  
Then, we introduce a research platform for localization 
in tunnels.  Finally, we share issues for localization in 
tunnel and give remarks for out platform. 

 

2 Localization using Machine Vision 

The basic idea behind localization using machine 
vision is illustrated in Figure 1.  When the user is at 
position A, the stereo camera (formed by two cameras) 
picks up some feature points.  Let us assume one of the 
feature point is point P.  With proper setup of the stereo 
camera, the three-dimensional (3D) coordinates with 
physical dimensions can be calculated using the approach 
later described.  The calculated coordinates’ origin is 
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located at the centre between two cameras that constitute 
the stereo camera.  Now, suppose the user moves to 
position B.  The stereo camera picks up another set of 
feature points.  If the feature point P is still picked up by 
the stereo camera, then point P will have another 
coordinate because the origin has moved with the stereo 
camera.  Using the original and updated coordinates of 
point P, user’s movement can be then tracked.  The 
method will not work if there are no overlaps of feature 
points.  Therefore, the system needs to continuously “see” 
and track features in the tunnel.  Such approach has been 
proven successful on Mars [4], outdoor environments [5] 
and indoor settings [6].  However, our work seems to be 
the first attempt in tunnels. 

Figure 2 illustrates the overall procedure for 
localization using machine vision.  These steps are 
explained in subsequent sections. 

 

 
 

Figure 1. Localization in tunnel using stereo vision 
 
 

2.1 Camera Calibration 

This work uses stereo vision formed by two cameras 
that are aligned in frontal-parallel configuration.  Each 
camera must be calibrated first to obtain parameters 
needed for later steps.  This calibration serves three 
purposes.  First, to under how physical world points are 
projected into pixels of obtained images in each camera.  
Second, to correct distortions caused by each unideal 
cameras.  Third, to correct deviations from the frontal-
parallel assumption.  This means images from both 
cameras need to be transformed so that they are co-planar 
and row-aligned. 

The camera calibration is conducted using procedures 
recommended in OpenCV [7-8].  The procedure involves 
the following steps: 1) prepare a chessboard image, 2) 
obtain at least five different sets of images from the 
camera setup, and 3) invoke the calibration algorithm.  At 
the end of calibration, four important sets of parameters 
are obtained.  The first set is camera intrinsic matrices [9] 
(one matrix for each camera) for projecting 3D physical 
world points onto image plane on camera sensors.  The 

second set is distortion vectors for correcting lens 
distortions [10-12].  The third set of parameters is called 
the essential matrix.  This transformation matrix 
transforms image plane of the right-hand-side camera to 
that of the left-hand-side camera.  The final set of 
parameters is called the fundamental matrix that 
transforms pixels of the right-hand-side camera to 
corresponding pixels of the left-hand-side camera.  The 
essential matrix & fundamental matrix is calibrated using 
Bouguet’s algorithm [13]. 

It should be noted the calibration image must on a 
rigid and flat plane to be ideal.  Otherwise, assumptions 
about the reference chessboard image are violated and 
resultant calibration parameters will not be accurate.  
Inaccurate calibration parameters would lead to errors in 
3D coordinates, affecting accuracy of localization.  It 
turns out using tablets computers such as iPad to present 
these reference images are rather ideal since it is perfectly 
flat and it is rigid. 

 

 
 
Figure 2. The overall procedure for localization 
using machine vision 
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2.2 Image Acquisition 

In our research, we take two different approaches for 
image acquisition.  The first approach obtains images 
from physical cameras, so that the implemented system 
can be tested in the physical world.  The second approach 
obtains images from virtual cameras, calculated using 
computer graphics technique.  The second approach 
allows us to obtain perfect images free from camera-lens 
distortion and improper camera alignment.  Further, we 
have power controlling many factors that cannot be 
controlled easily in the real world.  These factors include 
lens distortion, camera alignment, lighting condition, etc.  
As a result, our platform can be used to study how each 
factor contributes to the errors in localization.  

In our work, the physical image acquisition is done 
using commodity webcams.  Their acquisition costs are 
low, and they are supported on both Windows and Linux 
platform.  Commodity webcams are connected to 
computers through USB.  USB interfaces have limited 
bandwidth, and therefore limit the frame rate of acquired 
images.  Fortunately, prior researches suggest higher 
frame rates do not necessarily give better results, 1 – 2 
FPS (frames per seconds) should be sufficient. 

There are several issues associated with images 
obtained from physical cameras.  First, they have image 
distortion problems due to less-than-ideal lens.  This is 
especially true for commodity webcams.  Second, the 
acquired images are often “noisy” under low light 
conditions.  The noise may interfere stereo-pair matching 
is later steps.  In addition, some webcam softens and 
compresses acquired images in order to reduce noise 
and/or to reduce needed bandwidth between webcams 
and host computers.  This internal processing introduces 
artefacts in acquired images.  As a result, they may affect 
the accuracy of formed stereo images.  These are the 
reasons why we also use virtual cameras to generate ideal 
images to evaluate issues in the localization system in 
development. 

 

2.3 Image Processing 

After the images are acquired from cameras, each 
image goes through a three-step process: un-distortion, 
rectification, and enhancement.   

Un-distortion uses distortion vector obtained in 
earlier calibration to correct for lens distortion.  The 
accuracy of resultant images depends strongly on the 
accuracy of calibration. 

Rectification corrects images from both cameras to 
be in the frontal-parallel configuration.  This step uses the 
fundamental matrix obtained in calibration to achieve the 
desired configuration.  Similarly, how well this 
rectification is depends on the quality of calibration.   

Enhancement processes undistorted and rectified 

images with image-processing techniques.  These 
techniques are often found in photo-editing software such 
as Photoshop.  We use image-processing techniques to 
help enhance features so that identifying feature points 
can be easier.  This step is crucial in tunnels.  This is 
because in subway tunnels and railway tunnels, they tend 
to have low light condition.  The acquired images, 
without image processing, do not possess enough feature 
points.  The system or the method of tracking movements 
using stereo vision simply breaks without sufficient 
number of feature points.  Therefore, this enhancement is 
key to successful movement tracking inside tunnels. 

 

2.4 Stereo-Pair Forming 

Stereo-pair forming is performed after images are 
obtained and processed from stereo camera, which 
consists of left-hand-side (LHS) and right-hand-side 
(RHS) cameras.  Stereo pair forming consists of the 
following steps.  1) Identify feature points.  2) Match 
feature points.  3) Filter matched pairs.  4) Compute 3D 
coordinates.  These steps are explained subsequently. 

Identify feature points.  This step tries to identify 
some characteristic points in LHS and RHS images.  
These features are called feature points or key points.  
These points will be used to track personnel movements 
in tunnels.  This is also the reason why we may want to 
conduct image enhancement to help identify these 
characteristics points.  They can also be regarded as 
dynamic markers in the context of augmented reality 
(AR).  AR typically use markers to help AR system 
identify a particular location to present some information 
at that specific location.  In our system, we dynamically 
pick these markers from the scene, so that no prior 
installation of any marker is needed for movement 
tracking.  

There are several algorithms for identify feature 
points, such as SIFT [14] and SURF [15], etc.  Each 
algorithm uses different “descriptor” to describe a feature 
point.  In our work, we mainly use SURF and SIFT for 
identifying feature points.   They offer scale invariance, 
which is important for tracking feature points that 
involves camera movement. 

Match feature points.  After feature points are 
identified in both LHS and RHS images, they are 
matched basing on their descriptors.  Each matched pair 
of feature points are supposedly the same point in the 
physical world that is projected to image planes of LHS 
and RHS cameras.  At later steps, the 3D coordinates of 
these matched point pairs will be calculated.  In our 
current implementation, we use brute-force matcher to 
try to find as many matches as possible.  As a result, one 
feature point in the LHS image may find many 
corresponding points in the RHS image because their 
descriptors have little difference.  Thus, one feature point 
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in LHS image may results in many point pairs.  Each 
point pair has one feature point in the LHS image and one 
feature point in RHS image.  These two points in a point 
pair have the same or similar point descriptor. 

Filter matched pairs.  The point pairs obtained from 
matching descriptors of feature points may be wrong.  As 
one point pair will give a marker for tracking movements, 
they need to be correct.  It is thus necessary to filter out 
wrongly matched feature points.  Otherwise, the tracking 
of movement will be invalid.  Currently, we use rather 
simple rules to conduct this filtering.  1) The pairing 
should have one-to-one correspondence.  If one feature 
point in the LHS image matches multiple points in the 
RHS, and vice versa, it is filtered out.   2)  The matched 
feature points should have similar vertical pixel 
coordinate (y-coordinate in the image).  It should be 
noted there might still be invalid point pairs after this 
filtering.  The platform that we build allows us to test 
effectiveness of filters with virtual tunnels.  This platform 
enables us testing different algorithms or procedures 
without field trips. 

Compute 3D coordinates: After point pairs are 
formed and filtered, disparity in each point pair is 
computed.  Each point pair uses triangulation in Figure 3 
to compute a 3D coordinate corresponding to a point in 
the physical 3D world.  For feature points in each pair, 
the pixel coordinates and the computed disparity can be 
used to “re-project” the feature point into 3D coordinates 
in physical world with the use of intrinsic parameters for 
each camera.  Supposedly, the re-projected 3D 
coordinate from LHS feature point and RHS feature point 
in a point pair are the same.  However, due to possibly 
mismatched point pairs, these re-projected coordinates 
may be different.  This is known as re-projection error.   
Then, feature-point pairs with large re-projection errors 
are dropped.  Finally, we have a set of feature point pairs 
with 3D coordinates. 

 

 
 
Figure 3.  Triangulation using a feature point pair [7] 

2.5 Movement Tracking  

After stereo-pair forming, a set of feature point pairs 
is obtained with 3D coordinates.  When we have two such 
sets at different time, we can track movements in this 
period.  However, this tracking can only be done when 
these two sets of feature point pairs have intersections.  In 
other words, some feature point pairs exists in both sets.    

The same technique for forming stereo-pair is applied 
to match feature point sets in two different time.   In other 
words, match feature point descriptors.  This is an 
important factor contributing to the popularity of SIFT 
and SURF descriptors.  They claim to be robust against 
transformations (scales, rotations), enabling tracking 
feature points obtained at different time.   

Once matching stereo-pairs at different time is 
completely, the affine transformation between these two 
sets of stereo-pairs (obtained at different time) can be 
calculated.  The affine transformation matrix between 
them can be calculated.  Then the movement can be 
inferred from the affine transformation matrix.  There are 
six independent degrees-of-freedom (three translations 
and three rotations) that need to be determined in the 
affine transformation.  Therefore, at least six correctly 
matched stereo-pairs in two different time are needed.  If 
more stereo-pairs are matched, least square method or 
QR decomposition can provide better solutions or 
accuracies.  However, because feature matching can be 
incorrect.  It is better use methods such as RANSAC 
(RANdom Sample Consensus) to help detect and 
eliminate effects from outliners.   

Once the affine transformation matrix is determined, 
the translation component is used to track movement 
occurred to the camera, which is equivalent to the 
movement of the system user. 

 

3 Implementation 

We use C++ language to construct our research 
platform for localization in tunnels.  The platform uses 
two well-known class libraries: OpenCV [7] and VTK 
[16].  Using these libraries greatly accelerates the 
development of our platform. 

OpenCV is an open-source computer-vision library.  
It runs on Windows, Linux, MacOS, iOS, and Android.  
Three main sub-libraries in OpenCV are used: calib3d, 
features2d, and highgui.  We use calib3d for camera 
calibration and 3D re-projection, features2d for finding 
feature points in images, and highgui for graphical user 
interface.  Functions used in OpenCV are summarized in 
Table 1. 
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Table 1. OpenCV function used 
Image acquisition  
cvCaptureFromC
AM 

Capture images from webcams 

Calibration 
findChessboardC
orners 

Finds the positions of internal 
corners of chessboard images. 

cornerSubPix Refines the corner locations to 
gets sub-pixel accuracy. 

stereoCalibrate Calibrates stereo cameras. 
Obtains intrinsic matrices, 
distortion vectors, essential and 
fundamental matrices. 

stereoRectify Computes rectification 
transforms for each head of a 
calibrated stereo camera. 

initUndistort 
RectifyMap 

Computes the undistortion and 
rectification transformation 
map. 

Image Processing 
remap Correct images to be free from  

lens distortion and be in frontal 
parallel configuration 

GaussianBlur Blur images to have less noises 
addWeighted Enhance edges in blurred images 
cvtColor Convert colour images to grey-

scale images 
equalizeHist Equalize histogram of images 
bilateralFilter Bilateral filter 
Feature detection 
SurfFeatureDetect
or::detect 

Feature point detection using 
SURF 

SurfDescriptorExt
ractor:: 
compute 

Compute SURF feature 
descriptors 

FastFeatureDetect
or::detect 

Feature point detection using 
SIFT 

BFMatcher:: 
match 

Brute-force feature-point 
matching 

Position tracking 
solve Use QR factorization to solve for 

affine transformation matrix 
estimateAffine3D Use RANSAC to choose the best 

affine transformation matrix 
GUI 
Imshow Show images 
waitKey Wait for key strokes 
drawMatches Show matched feature points 

between images 
 

VTK is an open-source class library for 
visualization.  It supports Windows, Linux, and MacOS.  
It is used to create 3D virtualized tunnels with texture 
mapping.  The texture was acquired using high quality 

single lens reflex (SLR) digital cameras under controlled 
lighting.  Once the virtual tunnel is created, two virtual 
cameras are placed at desired configuration and locations 
to simulate LHS and RHS images acquired by cameras.  
These simulated images are shown in Figure 4.  They 
represent images obtained under idealized conditions.  
Furthermore, we can evaluate the quality of calibration 
algorithms by looking at camera parameters, since they 
are controlled and known for these virtual cameras. 
 

 
 

Figure 4. Ideal tunnel images from virtual cameras 
 
 
In addition to the above class libraries, we also used 

OpenMP [17] for multithreading.  Two threads are used 
in the developed system.  Image acquisition and 
processing for LHS and RHS cameras are processed by 
their own threads.  Doing so effectively reduces 
processing time. 

 

4 Demonstration 

Figure 5 shows the computer generated reference 
chessboard for calibrating virtual cameras.  Doing so 
allows us to inspect the quality of calibration of all 
camera parameters, including intrinsic matrices, 
distortion vectors, essential matrix, and fundamental 
matrix.  The platform also enables us to determine the 
most convenient yet effective poses of the chessboard to 
calibrate these parameters. 

Figure 6 shows the rectified images obtained from 
cameras (either virtual or physical ones).  Showing this 
image can confirm that the calibrated essential matrix is 
correct, and after rectification the images from LHS and 
RHS cameras are indeed in front-parallel configuration 
with row alignment.  If the images are acquired from 
virtual cameras, we can further inspect the intrinsic 
matrix and check their values to see if they match the 
settings of virtual cameras. 

Figure 7 shows feature points identified and 
matched before filtering by a chosen algorithm in the 
system.  Each line in the figure connects matching feature 
point in LHS and RHS images.  The original LHS and 
RHS images are shown in Figure 4.  These matches are 
obtained after rectification, thus all lines should be 
horizontal if matches are correct.  It is obvious that 
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several lines that are not horizontal, suggesting the 
feature matching do need filtering. 

 

 
 

Figure 5. Ideal reference images for calibration 
 

 
 
Figure 6. System showing rectified images from cameras 
 

 
 
Figure 7. Showing matching feature points between LHS 
and RHS images. 
 
 

Figure 8 shows feature point matching in LHS 
camera at different time in the same manner as in Figure 
8.  Since the camera is moved, the matching lines do not 
necessarily be horizontal.  However, the movement in the 
demonstrated figure is small, and therefore they should 
be close to horizontal.  One can easily spot these wrong 
matches easily in Figure 8.  Figure 9 shows filtered 
results from Figure 8 using some filter algorithm.  It can 
be seen that the results are significantly improved.  
However, there are still some mismatches left undetected.  
Therefore, it is necessary to use techniques such as 
RANSAC to perform position tracking while filter out 
outliners at the same time. 

Figure 10 shows the validation of the chose 
position-tracking algorithm.  The red curve with cross 
symbols represents true path of camera movement.  The 
blue curve with circular symbols is the inferred 
movement from the procedure summarized in Figure 2.  
The point in the centre of the grid is the starting point.  It 
is seen the current implement for position tracking does 
not offer good results since the two curves shown in the 
figure have some deviations.  We have identified several 
issues associated with the position tracking, and are 
discussed in the next section. 

 

 
 
Figure 8. Showing matching feature points from the same 
camera at different time. 
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Figure 9. Showing filtered matching of feature points 
from Figure 9.  Some mismatches are still visible. 
 
 

 
 
Figure 10. Validation of the position-tracking algorithm 
suggests the constructed tracking algorithm is not 
accurate. 
 
 

5 Issues in Localization in Tunnels 

So far, we have very limited success using the 
developed system for localization in tunnels.  The 
positions tracked have un-negligible errors.  This is 
evaluated in the virtual tunnel generated using our system.  
Thus, it is expected using the system in the real world 
would produce even worse results.  Hence, we compiled 
the issues identified so far.  Five issues have been 
identified affecting the accuracy of localization: 

Calibration of camera setup can be inaccurate.  
During calibration, cameras need to shoot from at least 
five different positions.  These five positions, however, 
cannot be chosen randomly.  They need to “obtain a rich 

set of views” [7].  Without careful choices of these views, 
errors of few centimetre can be expected. 

Identify feature points in tunnels can be 
challenging.  Comparing to other applications of 
localization using machine visions, tunnels have 
relatively little features.  Some of these features need to 
have good lighting conditions in order to reveal.  
Therefore, if the technique is to be applied in tunnels, 
additional light sources may be necessary.  Image 
processing techniques have little help. 

Feature point matching between LHS and RHS 
images can be wrong.  One key step for tracking 
positions is having obtain good reference points in 
physical space.  These reference points are obtained by 
finding good feature points in LHS and RHS cameras and 
forming stereo pairs.  Unfortunately, the stereo pairs can 
be formed wrongly.  It is necessary to use more than just 
feature descriptors to form stereo pairs.  Good filtering 
strategies are needed in order to form stereo pairs 
correctly. 

Stereo-pair matching can be wrong in two 
different time.  Not only matching feature points in LHS 
and RHS cameras can go wrong, but also matching 
feature points in different time can go wrong as well.  
This feature point tracking is necessary because we need 
to track movements of cameras.  Again, RANSAC 
technique proved helpful but not enough.  Better filtering 
techniques are needed in order to track movements 
correctly. 

Solved affine transformation matrix from two 
sets of stereo pairs can be go wrong or inaccurate.  
After stereo pairs are formed at two different time, affine 
transformation matrix can be solved.  However, if one 
fails to find enough matching stereo pairs at different 
time, then the affine transformation matrix cannot be 
solved.  In addition, if some stereo pairs are wrong, then 
the solved affine transformation matrix results in wrong 
displacement.  Good enough filter algorithm is needed to 
find outliners in stereo pairs at different time. 

 

6 Conclusive Summary 

In this paper, we describe our work on creating a 
platform to study localization in tunnels.  This study 
seems to be the first attempt in such environment.  The 
research platform enables us to study good algorithms to 
use in such application before conducting field trials.  
Class libraries used in our study are briefly introduced 
and issues that we have encountered are discussed.  
Hopefully we will get better results in near future. 
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