Exploring Local Feature Descriptors for Construction Site Video Stabilization

Jung Yeol Kima and Carlos H. Caldasb

a PhD Candidate, Dept. of Civil, Architectural and Environmental Engineering, Univ. of Texas at Austin, USA
b Associate Professor, Dept. of Civil, Architectural and Environmental Engineering, Univ. of Texas at Austin, USA
E-mail: jungyeol.kim@utexas.edu, caldas@mail.utexas.edu

Abstract -
Recent studies on automated activity analysis have adopted construction videos as an input data source to recognize and categorize construction workers’ actions. To ensure the representativeness of its analysis results, these videos have to be gathered randomly in terms of time and location. In doing so, such videos must be taken with hand-held cameras, a fact that inevitably leads to videos including jittery frames. Such frames can decrease the accuracy of automated activity analysis results. One area of the most recent and effective action recognition methods involves using spatio-temporal action recognition algorithms. The jittery frames, however, are fatal to the recognizing of a human worker’s action using such an algorithm. Jitters can be removed from the videos by using video stabilization technologies. The video stabilization is the pre-processing of action recognition for automated activity analysis. Regarding the video stabilization, local feature descriptor plays a major role in the stabilization process, and the correct selection of proper descriptor is critical. Therefore, the purpose of this study is to identify the best local feature descriptor for the video stabilization. This paper describes detail steps of the stabilization and provides performance analysis of various local feature descriptors in terms of stabilization of videos from construction site.

Keywords -
IT applications, video stabilization, video interpretation, activity analysis, work sampling, productivity measurement, action recognition

1 Introduction

Videotaping has long history in gathering on-site data for construction productivity analysis \cite{1}\cite{2}\cite{3}\cite{4}\cite{5}. Recent years, due to the advancement of computer vision technologies, many researchers have studied on automated interpretation methodologies of construction site videos\cite{6}\cite{7}\cite{8}\cite{9}\cite{10}\cite{11}\cite{12}\cite{13}\cite{14}. One of the construction industry’s computer vision application areas is activity analysis. Activity analysis is a continuous measurement and improvement process that helps craft workers increase their time spent on actual construction work. It includes the application of work sampling in its measurement process and requires manual observations of workers \cite{39}. The main focus of the computer vision application in the activity analysis is to substitute, in construction videos, the manual observation of construction workers’ actions with automatic recognition and categorization \cite{9} \cite{12} \cite{18}.

To ensure the representativeness of its analysis results at the site, the construction videos have to be gathered randomly in terms of time and location \cite{39}. The well-planned combination of hand-held and fixed closed-circuit television (CCTV) cameras can be a solution to obtaining those random videos. CCTV camera is a convenient tool to obtain videos at random intervals but has a limitation regarding random locations. It cannot cover all the areas of the construction site. A hand-held camera is useful in gathering those videos at random time intervals and places, but such videos inevitably include jittery frames. Jitters in those videos can decrease the accuracy of automated activity analysis results. One area of the most recent and effective action-recognition methods uses spatio-temporal action-recognition algorithms \cite{22}. The jittery frames, however, are fatal to the recognizing of a human worker’s action when such an algorithm is being used; the jitters in the videos can distort the spatio-temporal volumes, trajectories, or features. Those jitters can be removed from the videos by using video stabilization technologies. The video stabilization is the pre-processing of action recognition for automated activity analysis. Regarding the video stabilization, local feature descriptor is one of the most important elements. Therefore, the purpose of this study is to identify the best local feature descriptor for the video stabilization. This paper describes detail steps of the stabilization and provides performance analysis of various local feature descriptors in terms of stabilization of videos from construction site.
2 Related work

2.1 Automated Action Recognitions for Activity Analysis

In the automation of activity analysis, researchers have studied three types of action recognition technologies: (1) sensor-based [15][16]; (2) 2D image/video-based [6][9][11][12][13]; and 3D vision data- (i.e., depth image, point clouds, and human skeleton) based ([17][19][18]) action recognition. All these approaches have contributed to the automation of activity analysis. However, the 2D and 3D vision-based approaches assume that their inputs are static. Most of the studies use vision data from fixed 2D or 3D imaging sensors. In actual situations, some of the data have to be gathered by hand-held imaging sensors, where jitters are unavoidable. Therefore, it is necessary to adopt the stabilization technologies of the data. This paper focuses on the stabilization of 2D video data.

2.2 Video stabilization

Video stabilization falls into two types: hardware-based stabilization during recording and software-based, post-processing digital video stabilization [35][21]. Hardware-based stabilizers consist of complex and expensive sensors and lens systems to reduce the movement of cameras. Cheaper cameras also adopt sensors and firmware to offset camera motions. However, these hardware-based systems fail to provide sufficient stabilization function to compensate for complex camera motions and severe jerking. Therefore, to obtain stable videos, post-processing video stabilization is still required [35]. The Post-processing digital video stabilization is defined as “the process of removing the unwanted motion from input video sequence by appropriately warping the images” [37]. It is not a real-time solution but can be applied to the videos taken by any type of cheap hand-held cameras. This paper focuses on the software-based post-processing digital video stabilization.

Software-based video stabilization (hereafter “video stabilization”) can be divided into two types: (1) 2D and (2) 3D video stabilization [20]. A general 2D video stabilization method is composed of the three steps as shown in Figure 1: 1) motion estimation, 2) motion compensation, and 3) image composition [36][23][35]. Motion estimation means the estimation of motion between two sequential frames (i.e., motion between the previous and current frames). Motion compensation provides the computation of global transformation to stabilize the current frame. Based on the transformation, image composition warps the current image. Recently, more innovative approaches have been introduced such as very stable and anti-distortional.

Figure 1. General video stabilization method [36]

3D video stabilization does not mean the stabilization of 3D vision data. It is for 2D videos, though it uses the estimation of 3D model of input camera motion and scene. It also use image-based rendering techniques to render new frames based on the estimated camera motion path. The new rendered frames are frames of video stabilized [24][25][26]. One interesting study that used this method is a content-preserving warping carried out by Liu et al. [20]. It distinguishes itself from other methods by not having a blank area on the stabilized video.

The 2D video stabilization is limited regarding significant depth variations but is still a simple, robust, and efficient solution [35][20]. The 3D video stabilization could overcome the depth variation problem but is more complex and often depends on unreliable depth estimation [35]. Furthermore, the authors assumed that a cameraman does not walk when taking videos, and those videos consequently have less depth variations. Therefore, this paper focuses on the 2D video stabilization methods instead of 3D based methods.

3 Our Approach

3.1 Overview

Our approach, shown in Figure 2, is a variation of the 2D-based general video stabilization method. It consists of five steps with details given in the following paragraphs.

The first step is to extract local feature descriptors from the first and second frames. Again, these descriptors are one of the most important elements of the video stabilization method. They are used for the estimation of geometrical transform for stabilization. The geometrical transform is estimated by the matched descriptors of sequential frames.

In this paper, the authors selected the following four descriptors: (1) Scale-Invariant Feature Transform (SIFT) [28]; (2) Speeded Up Robust Features (SURF) [29]; (3) Fast Retina Keypoint (FREAK) [30]; and (4) Oriented FAST and Rotated BRIEF (ORB) [31]. The authors selected these features because SIFT is well known for its scale and rotation invariant performance [32]; SURF is inspired by SIFT but is known for its
higher detection speed and better performance. FREAK is a newer descriptor and shows the faster detection speed and better robustness than SIFT and SURF according to its inventor’s experiments [30]. ORB is a combination of FAST (Features from Accelerated Segment Test) corner detector [42][43] and BRIEF (Binary Robust Independent Elementary Features) descriptors. Rublee et al [31], the inventor of ORB, insisted that ORB outperforms SURF and SIFT. The experiment’s results regarding the stabilization performance by these feature descriptors will be described in the next section of this paper.

Our approach differs from of Wang and Schmid [27] by eliminating SURF descriptors before identifying matched descriptors. They simply selected SURF descriptor and motion vectors to estimate homography between two consecutive frames and eliminate matched descriptors in the people’s region. Our approach is simpler but effective because there are still sufficient amount of descriptors outside of the worker’s regions that enable the estimating of the geographical transform. Importance to this step is the accurate recognition of human workers.

The second step is to recognize construction workers in each frame using a human-detection algorithm, histograms of oriented gradients (HOG) [33] and to remove unnecessary local descriptors detected within the workers’ regions in each frame. Figure 3 shows the example descriptors detected in the worker’s regions. Those descriptors can be sources of error during the estimation of geometrical transformation; indeed, the directions of workers’ movements (trajectories) can differ from the camera’s jittering directions. Figure 4 shows the matched local feature descriptors outside of the worker’s regions in the sequential frames. In this case, the estimation of the geometrical transform in the next step will be incorrect [27].

Figure 2. Our construction video stabilization approach

The second step is to recognize construction workers in each frame using a human-detection algorithm, histograms of oriented gradients (HOG) [33] and to remove unnecessary local descriptors detected within the workers’ regions in each frame. Figure 3 shows the example descriptors detected in the worker’s regions. Those descriptors can be sources of error during the estimation of geometrical transformation; indeed, the directions of workers’ movements (trajectories) can differ from the camera’s jittering directions. Figure 4 shows the matched local feature descriptors outside of the worker’s regions in the sequential frames. In this case, the estimation of the geometrical transform in the next step will be incorrect [27].
4 Experiments and Results

The authors compared the stabilization performance with four feature descriptors. The performance will vary according to the descriptors because they each have a different ability to discover corresponding points with jittery frames. The jittery frames include horizontal movement, vertical movement, rotation, and the combination of all the jitters. The authors used OpenCV, VL-FEAT, C++, and Matlab for the experiments. The videos were gathered from a commercial building, road resurfacing, and building exterior remodelling sites with cheap hand-held camera. The resolution and frame per second (fps) of the video used for this experiment were 573 × 320 and 5 fps. The average computation time per frame is 0.58 seconds. Figure 5 shows the experiment’s results. From the first to the fourth rows correspond to the videos from the commercial building, road resurfacing (the second and the third rows), and building exterior remodelling sites.

Each column of the figure corresponds to the video stabilization results with SIFT, SURF, FREAK, and ORB descriptors. Each image is an overlaid image from the first stabilized frame to the last. Therefore, sharpness can be a proper metric to compare their performances. The sharper the image the better the stabilization performance; it means that objects in each stabilized image are at similar locations. The yellow boxes in each image are the sharpest parts. Figure 5 shows that the overlaid images stabilized with SURF descriptor have the highest sharpness. To the naked eye, however, it is hard to distinguish the relative sharpness of the images. Therefore, the authors measured the sharpness of each overlaid image. There are many methods to estimate the sharpness of images. The authors adopted the Brenner gradient based sharpness measurement method because it is more sensitive to the sharpness changes than other methods [44]. The measurement results are shown in Figure 6. The higher number means a higher sharpness.

Figure 6 shows that SURF always outperforms other descriptors. SIFT follows SURF, and FREAK and ORB demonstrate worse performances. Sometimes, the FREAK descriptor fails to find matched descriptors between two sequent frame images. In terms of computation time, stabilization with FREAK generally showed the shortest computation time, while SIFT showed the longest.

Based on the experiments, it can be concluded that SURF and SIFT are robust to stabilize the jittery videos due to their rotation-invariant characteristics. Therefore, the authors selected SURF for the best descriptor for our construction video stabilization.

![Figure 5. Construction video stabilization results](image-url)
has some level of Type-I (False Positive) and Type-II (False Negative) errors. Furthermore, it tends to better detect upright position than other poses. Their effects were not considered because it is not the scope of this study, but the authors believe that using the human detector still could reduce the chance of errors as it stand. Another limitation of this method is that the experiment is performed with only four descriptors and a small number of videos. Experiments involving more descriptors and a greater number of videos need to be performed in the future.

5 Conclusions

The authors have explained a modified video stabilization method for the activity analysis while considering construction workers in videos. The authors also performed an experiment to find out the best descriptor with the video stabilization method. The authors used the sharpness of overlaid stabilized images as a metric to measure stabilization performance. In the experiment, SURF descriptor performed best, followed by SIFT descriptor.

This video stabilization method could pave the way for the use, at a construction jobsite, of cheap hand-held cameras and any other mobile video-recording devices, such as Gopro®, Looxcie, and Google Glass. This would mean that it could become easy, and with less expense, to gather random videos for automated activity analysis.

This study has few limitations. Human detection, a part of the second step to eliminating unnecessary descriptors, needs to be improved in the future. The HOG based human-detection algorithm used in the step

Figure 6. Stabilization performance comparisons by different descriptors.

Figure 7 shows an example of original jittery frames and stabilized frames. Figure 7 (a) and (b) are the 1st and 19th frames of the original video. The long solid line is the basis point of the first image and the dotted line is the vertical difference between the two frames. Otherwise, there is a really small amount of vertical difference in the corresponding stabilized frames (Figure 7 (c) and (d)).

5 Conclusions

The authors have explained a modified video stabilization method for the activity analysis while considering construction workers in videos. The authors also performed an experiment to find out the best descriptor with the video stabilization method. The authors used the sharpness of overlaid stabilized images as a metric to measure stabilization performance. In the experiment, SURF descriptor performed best, followed by SIFT descriptor.

This video stabilization method could pave the way for the use, at a construction jobsite, of cheap hand-held cameras and any other mobile video-recording devices, such as Gopro®, Looxcie, and Google Glass. This would mean that it could become easy, and with less expense, to gather random videos for automated activity analysis.

This study has few limitations. Human detection, a part of the second step to eliminating unnecessary descriptors, needs to be improved in the future. The HOG based human-detection algorithm used in the step
252–263.

