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Abstract -
Open-sea ship-to-ship transfer operation is an alternative

way to avoid port congestion. This process involves a rela-
tively small vessel which transports containers between the
harbour and a large cargo ship equipped with a container
crane. However, the presence of disturbances and uncertain-
ties caused by harsh open-sea conditions can produce an ex-
cessive sway to the hoisting ropes of the crane system. This
paper addresses the problem of robust sliding mode con-
trol for offshore container crane systems subject to bounded
disturbances and uncertain parameters. The mathematical
model of an offshore container crane is first derived whereas
the effects of ocean waves and gusty winds are taken into ac-
count. Then, based on the linear quadratic regulator (LQR)
design, a sliding surface is obtained to meet the required per-
formance and stable dynamics for the closed-loop system.
Finally, a robust sliding mode controller is proposed to drive
the state trajectories of the offshore container crane system
towards the sliding surface in finite time and maintain them
subsequently on that surface. Simulation results are given
to show that the proposed controller can significantly sup-
press the effects of uncertainties and disturbances from the
vessel’s wave- and wind-induced motion and wind drag force
on the payload.

Keywords -
Sliding mode control, Offshore crane, Ocean wave, Gusty

wind, Lyapunov, Linear Quadratic Regulator (LQR).

1 Introduction
Recently, along with rapid developments of the logis-

tics industry, port congestion becomes a major issue all
around the world due to the explosive increase in the trad-
ing volume [1, 2]. To solve this problem, some ambitious
plans of port expansion have been proposed. However,
it can be seen that expanding outwards is not a feasible
option due to land constraints [3]. Consequently, a new
method of transportation, the so-called ship-to-ship cargo
transfer operation, is introduced [4]. This operation in-
volves the transfer of containers between a huge container
ship and a relatively smaller ship, known as a mobile har-
bour by using an offshore crane mounted on the container
ship [5]. This method, emerging to become a promising
solution to improve the port’s efficiency and productiv-
ity and reduce the operational cost, could enable the ports
to stay competitive [6]. For this, the offshore container

crane system has to meet stringent safety and efficiency
requirements since open-sea waves, winds, and ocean cur-
rents easily cause the vessel to move away from a desired
position both horizontally and vertically. Therefore, the
design of the crane controller is a challenging problem
due to the presence of parameter variations and distur-
bances, e.g. changes of load during the stevedoring op-
eration, from wave- and wind-induced vibrations. These
seriously affect the control system performance.

During the past decade, several control schemes have
been developed to improve the crane operation perfor-
mance such as input shaping control [7, 8], optimal con-
trol [9, 10] and fuzzy control [11]. However, conventional
control methods, applied for crane systems in general, are
inapplicable to offshore cranes which are subject to varia-
tions in the system matrices due to the changes of the pay-
load mass and rope length and wave- and wind-induced
disturbances of a large amplitude. To ensure the safety
and reliability of offshore container crane operation, it is
necessary to mitigate the effects of these uncertainties and
disturbances.

Sliding mode control (SMC) has been recognised as a
strong control methodology for the Lagrangian systems,
for example the robotic excavator [12], construction robot
[13], and tunneling shield machine [14]. The SMC de-
sign begins with the selection of a stable sliding surface
with desired performance characteristics. Then, the dis-
continuous control is designed to drive the state trajectory
towards the sliding surface and maintain it on this sur-
face over time. The dynamic characteristics of the result-
ing closed-loop control system will be equivalently deter-
mined by the sliding surface design. In [5], the model of
an offshore container crane was first introduced where the
length of the hoisting rope was considered as a constant.
Then, an extended mathematical model was developed
in [15] by taking into account the variation of the rope
length. For this, a second-order sliding mode controller
was also proposed to deal with the problem of trajectory
tracking of the crane trolley position and its hoisting rope
length. Recently, a further improved result was reported
in [16] by considering the offshore crane control problem
in three dimensions. However, there remain interesting
questions as to how to deal with the payload mass, rope
length variation and input disturbances due to nonlinear
frictions, strong waves and gusty winds which can signif-
icantly affect the payload sway angle of offshore cranes
and their safe operations.
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In this paper, the problem of robust sliding mode con-
trol is investigated for offshore container crane systems
with bounded disturbances and uncertainties. Here, based
on the dynamics analysis, the mathematical model of the
ship-mounted container crane subject to parameter varia-
tions and disturbances, is derived for the first time. By uti-
lizing the LQR design approach, a desired sliding surface
is obtained. A robust sliding mode controller is then syn-
thesized to drive the state trajectories of the closed-loop
system towards the sliding surface in finite time and main-
tain it there after subsequent time. Simulation results are
given to illustrate the feasibility of the proposed approach
in terms of reducing the effects of uncertainties and dis-
turbances caused by the changes in payload mass, length
of rope and also the vibration effects of ocean waves and
gusty winds.

2 Modelling and Problem Statement
The offshore container crane system considered in this

study consists of a gantry crane mounted on a ship ves-
sel as visualize in Figure 1, where {O0x0y0z0} and
{OBxByBzB} are the coordinate frames respectively of
the ground and the vessel. The offshore crane system mo-
tion is represented by three generalized coordinates; in
which, y is the position of the cart, l is the length of the
rope, θ is the sway angle induced by the motion of the cart,
h is the vertical position of the cart, and mc and mp are
respectively the masses of the cart and the payload. Let
ζ(t) be the heaving and α(t) be the rolling angular dis-
placement of the vessel. Thus, the position vectors of the
cart and the payload with respect to the vessel coordinate
frame {OBxByBzB} are

pcB = [y, h]T , pmB = [y + l sin θ, h− l cos θ]T .

The position vectors of the cart and the payload with re-
spect to the ground coordinate frame {O0x0y0z0} can be
obtained by multiplying the augmented position vectors
with a homogeneous transformation matrix. Let p̂cB and
p̂mB are respectively the augmented position vectors of pcB
and pmB such that

p̂cB = [(pcB)T , 1]T , p̂mB = [(pmB )T , 1]T .

Hence, the augmented position vectors of the cart and the
payload with respect to {O0x0y0z0} are given by

p̂c0 = TB0 p̂
c
B , p̂m0 = TB0 p̂

m
B ,

where p̂c0 = [(pc0)T , 1]T , p̂m0 = [(pm0 )T , 1]T and

TB0 =

 cosα sinα 0
− sinα cosα ζ

0 0 1

 .
Thus, the kinetic energy, potential energy and Lagrangian
of the crane system are obtained respectively as

K =
1

2
mc‖ṗc0‖2 +

1

2
mp‖ṗm0 ‖2,

P =mcg(pc0)z +mpg(pm0 )z,

L =K − P,

where (·)z denotes the z-component of the vector. By
applying the Euler-Lagrange formulation

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= τi, i = 1, 2, 3

the dynamic model of the offshore crane system can be
obtained in the following form:

M(q)q̈ + f(q, q̇) + ∆f(t, q, q̇) = τ(t)− τc(t), (1)

where q = [y, l, θ]T ∈ R3 is the vector of generalized co-
ordinates and τ(t) = [Fy(t), Fl(t), 0]T ∈ R3 is the vector
of input forces. In (1), M(q) ∈ R3×3 is the inertia ma-
trix, f(q, q̇) ∈ R3 is the vector of centrifugal-Coriolis and
gravity forces, ∆f(t, q, q̇) ∈ R3 is the vector of distur-
bances in the system due to open-sea wave-induced vi-
brations, and τc(t) ∈ R3 is the vector of disturbances due
to Coulomb friction and wind drag force on the payload.

The system matrices are derived as follows:

M(q) =

mc +mp mp sin θ mpl cos θ
mp sin θ mp 0
mpl cos θ 0 mpl

2

 ,
f(q, q̇) =

2mp l̇θ̇ cos θ −mplθ̇
2 sin θ +Kcy ẏ

−mplθ̇
2 −mpg cos θ +Kcl l̇

2mpll̇θ̇ +mpgl sin θ +Kcθ θ̇

 ,
∆f(t, q, q̇) =

[
∆f1,∆f2,∆f3

]T
,

τc(t) =

 Fcy sign ẏ

Fcl sign l̇

τcθ sign θ̇ + τwd(t) sin 2πfwt

 ,
where

∆f1 =(mc +mp)
(
−yα̇2 + hα̈− (g + ζ̈) sinα

)
+ 2mp(lθ̇α̇ sin θ − l̇α̇ cos θ)

−mpl
(
sin θα̇2 + cos θα̈

)
,

∆f2 =mp

[
(y cos θ + h sin θ)α̈+ 2ẏα̇ cos θ + 2lθ̇α̇

− (y sin θ − h cos θ + l)α̇2 + g cos θ

− (g + ζ̈) cos(θ − α)
]
,

∆f3 =mp

[
−2ll̇α̇− 2ẏα̇l sin θ − (yl sin θ − hl cos θ

− l2)α̈− gl sin θ + l(y cos θ + h sin θ)α̇2

+ (g + ζ̈)l sin(θ − α)
]
,

in which Kcy , Kcl and Kcθ are the viscous friction co-
efficients, and Fcy , Fcl and τcθ are the Coulomb friction
coefficients. The term τwd(t) represents the magnitude of
the torque produced by the wind drag force on the payload
and it can be calculated by using the following formula
[17]:

τwd(t) =
1

2
ρwv

2
wcdAp[l(t) + Lc],

where ρw is the density of air, vw is the velocity of the
wind, cd is the drag coefficient, Ap is the effective surface
area of the payload, and Lc is the average distance from
the hook to the payload center of gravity.
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Figure 1: Motion of the offshore crane during containers transfer operation.

System (1) is a typical underactuated system since the
number of control inputs is less than the number of gen-
eralized coordinates. Thus, we can partition the vector
of generalized coordinates into actuated and unactuated
parts, such that q = [qTa , q

T
u ]T , where qa = [y, l]T and

qu = θ. It follows that, the matrices and vectors in (1) can
be partitioned as

M(q) =

[
Maa Mau

MT
au Muu

]
, f(q, q̇) =

[
fa
fu

]
,

∆f(t, q, q̇) =

[
∆fa
∆fu

]
, τ(t) =

[
ua(t)

0

]
, τc(t) =

[
τca(t)
τcu(t)

]
.

The sub-blocks of the above matrices and vectors are ob-
tained based on the dimensions of vectors qa and qu.

For the purpose of control design, we introduce a state
variable vector x ∈ R6 as

x = [x1, x2, x3, x4, x5, x6]T = [y, l, θ, ẏ, l̇, θ̇]T .

Hence, by substituting [qT , q̇T ] in system (1) with the state
vector x, the offshore container crane dynamics can be
expressed in the state-space as follows:

ẋ = F (x) + ∆F (t, x) +G(x)ua(t) +H(x)ω(t), (2)

where

F (x) =


x4
x5
x6
fa

−M−1uu (MT
aufa + fu)

 ,

∆F (x) =

 03×1
∆fa

−M−1uu (MT
au∆fa + ∆fu)

 ,
G(x) =

 03×2

M
−1

−M−1uuMT
auM

−1

 ,
H(x) =

03×2 03×1
H21 H22

H31 H32

 ,
ua(t) =

[
u1(t)
u2(t)

]
=

[
Fy(t)
Fl(t)

]
,

ω(t) = τc(t),

M = Maa −MauM
−1
uuM

T
au,

fa = −M−1
(
fa −MauM

−1
uu fu

)
,

∆fa = −M−1
(
∆fa −MauM

−1
uu ∆fu

)
,

H21 = −M−1,

H22 = M
−1
MauM

−1
uu ,

H31 = M−1uuM
T
auM

−1
,

H32 = −M−1uu
(
MT
auM

−1
+ 1
)
.

The linearised dynamic model of the offshore crane
system (2) about an operating point (x0, u0) can be ob-
tained in the form of

ẋ(t) = (A+ ∆A(t))x(t) +Bu(t) +Dω(t), (3)

where x(t) = x(t)−x0 and u(t) = ua(t)−u0. By choos-
ing x0 = [y0, l0, 0, 0, 0, 0]T , the state vector of the local
model can be represented as x(t) = [∆y,∆l, θ, ẏ, l̇, θ̇]T ,
and u0 can be found as

u0 = −G†(x0)F (x0),

in which G† denotes the Moore-Penrose pseudo-inverse
of matrix G. Thus, the system matrix, the input matrix,
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and the unmatched disturbance matrices are obtained as
follows:

A =
∂F (x)

∂x
+

2∑
j=1

∂Gj(x)

∂x
uj

∣∣∣∣∣∣x=x0
u=u0

,

B =G(x0),

∆A(t) =
∂∆F (t, x)

∂x

∣∣∣∣
x=x0

,

D =H(x0),

where Gj (j = 1, 2) denotes the jth column of matrix G.

3 Control Design
In this section, a robust sliding mode control scheme is

proposed to deal with the problem of trajectory tracking
of the crane system whereas the the effects of the ocean
waves and gusty winds is mitigated.

3.1 Crane trajectory

For the desired trajectory of the offshore container
crane, we assume that there are three stages:

Stage 1 (Picking up the container with time t1): The
hoisting rope length decreases from lD, where the con-
tainer is on the deck of the large ship to lU where the
container is in the upper position with a maximum lateral
velocity vR. Thus, we have

t1 =
lD − lU
vR

.

It should be noted that the rope length lD and lU are as-
sumed to be constant between the different containers.

Stage 2 (Placing the container on the smaller ship with
time t1): The rope length increases from lU to lD. This is
the reverse process for lifting the container.

Stage 3 (Moving the container with a maximum longitu-
dinal velocity vy): Assuming the whole distance of travel
of lifting, moving and placing the container is yF with the
corresponding time tF , the placing phase then will take
a time of tF − 2t1. Denote y, ẏ, l, l̇ are longitudinal po-
sition, velocity of the container and the rope length, its
rate of change respectively. We have the following dia-
grams, from which desired trajectories yd and ld can be
derived from given parameters lD, lU , vr, vy, yF . Desired
trajectories of position and velocity of the container are
obtained respectively as

yd(t) =


1
2at

2, 0 ≤ t ≤ t1,
vyt− vy t12 , t1 ≤ t ≤ t2,
− 1

2at
2 + vy

tF
t1
t+ yF − 1

2at
2
F , t2 ≤ t ≤ tF ,

ẏd(t) =


at, 0 ≤ t ≤ t1,
vy, t1 ≤ t ≤ t2,
−at+ vy

tF
t1
, t2 ≤ t ≤ tF ,

where a =
vy
t1
, t2 = tF − t1.

Similarly, desired trajectories of the hoisting rope
length and its rate of change are

ld(t) =



− 1
2bt

2 + lD, 0 ≤ t ≤ t1
2 ,

1
2bt

2 − 2vRt+ vRt1 + lU ,
t1
2 ≤ t ≤ t1,

lU , t1 ≤ t ≤ t2,
1
2bt

2 − bt2t+ vR
t1
t22 + lU , t2 ≤ t ≤ tF − t1

2 ,

− 1
2bt

2 + btF t− 1
2bt

2
F + lD, tF − t1

2 ≤ t ≤ tF ,

l̇d(t) =



−bt, 0 ≤ t ≤ t1
2 ,

bt− bt1, t1
2 ≤ t ≤ t1,

0, t1 ≤ t ≤ t2,
bt− bt2, t2 ≤ t ≤ tF − t1

2 ,

−bt+ btF , tF − t1
2 ≤ t ≤ tF ,

where b = 2vR
t1

.

3.2 Problem statement

Let us consider a reference model as follows:

ẋd(t) = Adxd(t) +Bdrd(t),

where xd(t) = [yd, ld, θd, ẏd, l̇d, θ̇d]
T and rd(t) ∈ R2 is

the bounded reference input. The matrices Ad and Bd are
designed in a way that there exist compatibly dimensioned
matrices K and L to satisfy the matching condition:

BK = Ad −A,
BL = Bd.

Define a tracking error state xe as the difference between
the plant and the reference model state responses:

xe = x(t)− xd(t).

Consequently, the following state-space equation with
the state vector error is obtained as

ẋe(t) =Adxe(t) + (A−Ad)x(t) + ∆Ax(t) +Bu(t)

−Bdrd(t) +Dω(t). (4)

For the purpose of sliding surface design, a transformation
matrix T ∈ R6×6 is introduced such that

TB =

[
0
B2

]
whereB2 ∈ R2×2 is nonsingular. By using the coordinate
transformation z = Tx, (4) can be rewritten in the form
of the new coordinate:

ė(t) =Ade(t) + (A−Ad)z(t) + ∆Az(t) +Bu(t)

−Bdrd(t) +Dω(t), (5)

where e = Txe, A = TAT−1, ∆A = T∆AT−1, Ad =
TAdT

−1, B = TB, Bd = TBd and D = TD.
Without loss of generality, we assume that the distur-

bance ω(t) and the system uncertainty ∆A(t) are norm-
bounded as

‖ω(t)‖ ≤ ωp, ‖∆A(t)‖ ≤ β,
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where ωp, β are known positive scalars.
Our purpose is first to design a stable sliding surface us-

ing the linear quadratic regulator design approach to mit-
igate the effects of the ocean waves and gusty winds on
the system state. Then, a robust sliding mode controller
is synthesized to guarantee that the system sliding motion
converges exponentially to a ball whose radius and the
rate of exponential convergence can be chosen arbitrarily.

3.3 Sliding surface

The sliding function is defined in terms of trajectory
tracking errors as follows

s(t) = [s1(t), s2(t)]T = Ce(t) = −Ce1(t) + e2(t), (6)

where C is a constant matrix to be designed. Consider the
following quadratic performance index

J =
1

2

∫ ∞
ts

eT (t)Qe(t)dt, (7)

where Q =

[
Q11 Q12

Q21 Q22

]
is a given symmetric positive

definite matrix and ts is the starting time which indicates
the induction of the sliding motion. By noting that

2eT1 (t)Q12e2(t) + eT2 (t)Q22e2(t)

= (e2(t) +Q−122 Q21e1(t))TQ22(e2(t) +Q−122 Q21e1(t))

− eT1 (t)QT21Q
−1
22 Q21e1(t),

(7) can be rewritten in the form of

J =
1

2

∫ ∞
ts

(
eT1 (t)Qe1(t) + υT (t)Q22υ(t)

)
dt,

where

Q =Q11 −Q12Q
−1
22 Q21,

υ(t) =e2(t) +Q−122 Q21e1(t).

Based on the LQR minimisation of J in association with
the nominal system in (5), we obtain

υ(t) = −Q−122 A
T
12Pe1(t),

where P satisfies the following equation

ATP + PA− PA12Q
−1
22 A

T
12P +Q = 0,

in whichA = A11−A12Q
−1
22 Q21 andAij is the subblocks

obtained from partitioning matrix A in (5). Consequently,
we obtain

e2(t) = −Q−122 (AT12P +Q21)e1(t). (8)

During the sliding motion, we have s(t) = 0 so that

e2(t) = Ce1(t). (9)

Thus, by comparing (8) and (9), the design matrix of the
sliding function is obtained explicitly as

C = Q−122 (AT12P +Q21). (10)

3.4 Robust optimal sliding mode control

Before presenting our proposed control scheme, the
following definition and lemma are introduced.

Definition 1: The solution of system (5) is uniformly ex-
ponentially convergent to a ball B(0, r) = {e ∈ Rn :
‖e‖ ≤ r} with rate γ > 0 if for any ξ > 0, there exists
k(ξ) > 0 such that

‖e(t)‖ ≤ r + k(ξ) exp(−γt), ∀t ≥ 0.

Lemma 1: [18] Let V (t) be a continuous positive definite
function for all t ≥ 0, k∗ ≥ 0 and

V̇ (t) ≤ −ηV (t) + ν, ∀t ≥ 0,

where η and ν are positive constants, then

V̇ (t) ≤ r + k∗ exp(−γt), ∀t ≥ 0,

in which r = ν/η and γ = η is the exponential conver-
gence rate.

The control scheme proposed here has the form of

u(t) = uE(t) + uR(t), (11)

where uE(t) and uR(t) are respectively the equivalent and
switching control. The equivalent control which main-
tains the sliding motion on the sliding surface is defined
as uE(t) = uE1(t) + uE2(t) where

uE1
(t) = −(CB)−1

(
CAde(t) + Πs(t)

)
, (12)

and
uE2

(t) = Kz(t) + Lrd(t), (13)

in which Π is a design diagonal matrix with real distinct
positive eigenvalues and K = KT−1. For a given con-
vergence ball radius r0, the following switching control
uR(t) is designed to force the system trajectories towards
the prescribed sliding surface

uR(t) = −(CB)−1
µs(t)

‖s(t)‖+ ε
, (14)

where

µ =
2r0λmin(Π)

ε

and ε > 0 is a small positive scalar for chattering
reduction to be selected according to the theorem stated
below.

Theorem 1: For with given bounds of the system uncer-
tainty β and disturbance ωp and radius r0, the state tra-
jectories of offshore container crane system (4) are driven
towards the sliding function designed as in (6) under the
following control law

u(t) =− (CB)−1
(
CAde(t) + Πs(t) +

µs(t)

‖s(t)‖+ ε

)
+Kz(t) + Lrd(t), (15)
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where ε is chosen to be sufficiently small such that

ε ≤ 2r0λmin(Π)

‖CD‖ωp + β‖C‖‖z(t)‖
. (16)

Proof: Consider the Lyapunov function

V =
1

2
sT (t)s(t).

By taking its derivative along the solutions of (5), we ob-
tain

V̇ (t) = sT (t)
(
C∆A(t)z(t)−Πs(t)

− µs(t)

‖s(t)‖+ ε
+ CDω(t)

)
≤ −λmin(Π)‖s(t)‖2 + β‖C‖‖z(t)‖‖s(t)‖

− µ‖s(t)‖2

‖s(t)‖+ ε
+ ‖CD‖‖s(t)‖ωp.

From (16), we obtain

µ ≥ β‖C‖‖z(t)‖+ ‖CD‖ωp.

Thus,

V̇ (t) ≤ −λmin(Π)‖s(t)‖2 +
(
β‖C‖‖z(t)‖

+ ‖CD‖ωp
) ‖s(t)‖ε
‖s(t)‖+ ε

.

Consequently, by using inequalities ab
a+b ≤ b, ∀a, b >

0, we obtain the following inequality

V̇ (t) ≤ −2λmin(Π)V (t) +
(
β‖C‖‖z(t)‖+‖CD‖ωp

)
ε.

Thus, from Definition 1 and Lemma 1, we get

V (t) ≤ r0 + k1 exp(−γt), ∀t ≥ 0,

where

r0 =

(
β‖C‖‖z(t)‖+ ‖CD‖ωp

)
ε

2λmin(Π)
,

and γ = 2λmin(Π). The proof is completed.

4 Results and Discussion
In this study, numerical values of the offshore container

crane system parameters are listed as mc = 6 × 103

kg, mp = 20 × 103 kg, h = 10 m, Kcy = 600
N/m.s−1, Kcl = 200 N/m.s−1, Kcθ = 100 N.m/rad.s−1

and g = 9.81 m.s−1. The nominal state vector is cho-
sen as x0 = [10 m, 8 m, 0, 0, 0, 0, 0]T , which provides
u0 = [0,−196.14]T kN. For the sake of illustration, the
following parameters are provided as lD = 10 m , lU = 4
m, vR = 3 m/s, vy = 0.63 m/s, yF = 10 m. The val-
ues of the constants in ω(t) are listed as as Fcy = 5 kN,
Fcl = 2 kN, τcθ = 2 kN.m, ρw = 1.225 kg/m3, vw = 15
m/s, cd = 1.05, Ap = 12 m2, and Lc = 1.2 m. The
heaving acceleration and the rolling angular displacement
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Figure 2: Trajectory tracking responses of the (a) cart position;
(b) rope length; and (c) swing angle.

of the vessel to accommodate ocean waves in an allow-
able range are assumed to be respectively ζ̈(t) = 0.4 sin t
m/s2 and α(t) = π

36 cos t rad [19]. The details of matrices
A, ∆A(t), B, D, K and L are then listed as follows:

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 3.270 −0.01 0 0.0021
0 0 0 0 −0.001 0
0 0 −5.314 0.0125 0 −0.0034

 ,

∆A =

[
03×3 03×3

Ψ 03×3

]
,

Ψ =

3.33α̇2 0 Ψ13

0 α̇2 0.98 sinα
0 0 Ψ33

 ,
Ψ13 = 6α̇2 − α̈+ (0.98 + 0.1ζ̈) cosα,

Ψ33 = −8.75α̇2 + 5.42α̈− (5.31 + 0.54ζ̈) cosα,

B =

[
0 0 0 0 1.667 0 −2.083
0 0 0 0 0 0.5 0

]T
,

D =

[
03×3
D2

]
,

D2 =

−1.667 0 2.083
0 −0.5 0

2.083 0 −2.604

 ,
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Figure 3: Trajectory tracking responses of the (a) cart velocity;
(b) hoist velocity; and (c) swing angular velocity.

K =

[
0 0 −1.962 0.006 0 −0.0013
0 0 0 0 0.002 0

]
,

L =

[
1 0
0 1

]
.

The transformation matrix is obtained as

T =


0 0 1 0 0 0

−0.625 0 0 0.610 0 0.488
0 −1 0 0 0 0

0.781 0 0 0.488 0 0.390
0 0 0 −0.625 0 0.781
0 0 0 0 −1 0

 .

Using the quadratic minimisation, the state weight-
ing matrix Q is chosen as Q = TRT−1, R =
diag(10, 10, 5, 1, 1, 1) which provides the following ma-
trix C:

C =

[
1.798 −0.949 0 −4.809 1 0

0 0 3.162 0 0 1

]
.

The upper bounds of the system disturbance ωp and un-
certainty β are a priori selected as 0.5 and 5.8 respec-
tively. From Theorem 2, by choosing the exponential de-
cay rate γ = 30, radius r0 = 0.004 for the sliding surface
trajectories s(t) and ε = 0.0025, we obtain µ = 48.

The displacements and velocities of the cart position
and rope length are assigned to track the trajectories as
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Figure 4: Switching functions.
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Figure 5: Input forces.

defined in Section 3. Aside from that, it can be shown that
if the swing angle tracks the roll angle of the vessel during
the operation process, the payload will be held on the ver-
tical plane in the frame {O0x0y0z0}. Therefore, the de-
sired payload swing trajectory is chosen as θd(t) = α(t).
Figure 2 depicts the trajectory tracking responses of cart
position, rope length and swing angle and Figure 3 de-
picts the trajectory tracking responses of the correspond-
ing velocities. Continuous small oscillations are occurred
in the cart position and its corresponding velocity due to
the persistent rolling vibration-induced motion of the ves-
sel. This continuous small oscillation is apparent in the
cart velocity response of Figure 3(a) during the container
placement stage (Stage 2). However, the rope length re-
sponse is less affected by the presence of heaving motion
of the vessel owing to robustness of the control system.

Figure 4 shows the plot of switching functions and Fig-
ure 5 shows the control forces of the system. The effect of
persistent rolling vibration-induced motion of the vessel
can also be seen in the responses of both s1(t) and u1(t).
Based on the quadratic minimisation approach, s1(t) con-
sists of the coupled motion of the cart and the swing angle
whereas s2(t) corresponds to the rope length dynamics.
Overall, based on Figure 2(a)-(b) and Figure 3(a)-(b), an
excellent decoupling of the cart position and swing angle
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is exhibited.

5 Conclusion
In this paper, the problem of robust sliding mode con-

trol for offshore container crane systems with bounded
disturbances and uncertainties has been addressed. By
taking the effects of payload mass and length of rope
changes as well as vibrations induced by ocean waves and
gusty winds into account, the mathematical model of off-
shore container crane systems is derived for the first time.
An LQR-based design approach is developed to obtain the
sliding surface to achieve the optimal performance of the
equivalent dynamics. To track the crane’s desired trajec-
tory, robust sliding mode control law is then designed to
drive the state variables of the system towards the sliding
surface in finite time and maintain them on that surface af-
ter subsequent time. Extensive simulation results are pro-
vided to demonstrate good tracking performance of the
proposed controller for offshore crane systems in dealing
with the harsh open-sea conditions.
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