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Abstract - 

Efforts undertaken in identifying, analyzing and 
assessing project risks are only made good use of 
when proper risk treatment strategies are decided 
upon and pursued. Based on the criteria established 
by senior management, the risk management plan 
goes about defining how each risk is to be handled. 
There are options to that end, including acceptance, 
avoidance, transfer and mitigation. Whilst these 
strategies are known to all in the industry, the 
decision-making process is far from easy. A research 
was undertaken to optimize risk treatment in 
construction projects, where both costs and benefits 
are balanced out at the project level. The paper 
particularly introduces Ant Colony Optimization 
(ACO) as a capable algorithm for the balanced 
selection of risk treatment strategies; that is to 
reduce the overall risk severity in a project at the 
minimum cost possible. ACO resembles the real life 
behavior of ants in their intelligent and guided 
search for food. The research is being applied in the 
pipeline construction sector and made use of 
professional knowledge and project records from a 
big construction company in the Middle East. The 
paper further presents an example project to 
demonstrate how ACO explores the risk treatment 
alternatives in a project and chooses the optimal set 
of strategies in such context. 
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1 Introduction 

Project risk management (PRM) is crucial and 
indispensable to the success of projects. Indeed, risks in 
the complex projects of nowadays have magnified in 
terms of number and global impact. Projects are more 
than ever exposed and averse to risks, and stakeholders 
are asking for more risk management to cover 

themselves against financial or legal consequences [1]. 
Efforts have been undertaken over the years to help 

us better identify and analyze risky events in projects. 
Yet, little has been done to address the decision-making 
component during the risk handling/treatment stage [2, 
3]. A review of the literature revealed that research on 
risk handling/treatment is mostly opinion- or case-based 
and, as such, it offers scant guidelines for making the 
decision [2]. 

Only recently have researchers realized the need to 
address risk treatment in more depth. Chapman and 
Ward [4] recommended balancing the cost of treatment 
actions with the consequences of the associated risks. 
Quantitative approaches were then adopted to optimize 
and/or simulate the risk treatment strategies in light of 
the set project objectives [1, 2, 3]. 

 

2 Challenge and Research Approach 

The aforementioned researches are difficult to apply 
in construction projects, as they depend on numerical 
variables difficult to estimate in real world practice. 
Furthermore, the poor and inefficient record keeping, 
which is not uncommon in some construction 
companies, will complicate the matter further. 
Accordingly, the authors developed a model that 
employs indices for the risk treatment decision-making 
[5, 6]. 
 

2.1 Optimizing the Risk Treatment Actions 

Optimizing the risk treatment in a project involves 
identifying the actions with the highest benefit-cost 
(B/C) balance to that project. A risk treatment index, IRT, 
is devised to measure the B/C balance, as follows: 

 
IRT = ((RMb – RMa) / CRT) * RMb (1a) 
IRT = (PbIb * (PbIb – PaIa)) / CRT (1b) 

 
where RMb is the risk magnitude prior to the risk 
treatment action, RMa is the risk magnitude after the 
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risk treatment action, Pb is the probability of risk 
occurrence prior to applying the risk treatment action, Ib 
is the risk impact prior to applying the risk treatment 
action, Pa is the probability of risk occurrence after 
applying the risk treatment action, Ia is the risk impact 
after applying the risk treatment action, and CRT is the 
cost associated with the risk treatment action. 

As noted, the B/C ratio is multiplied by the term 
RMb so as to factor in the relative significance of the 
project risks, which is a fundamental aspect in the 
succeeding optimization process. The authors’ approach 
allows using either qualitative or quantitative data 
sources [6]. Utilizing the model in case of qualitative 
data is made possible via the use of numerical rating 
scales that correspond to the qualitative terms. 
 

2.2 Why Ant Colony? 

The optimal reduction of project risk severity 
requires comparing potential actions for treating 
individual risks. The literature has noted the difficulties 
associated with using mathematical optimization on 
large-scale problems [7]. This has contributed to the 
development of alternative optimizers, such as genetic 
algorithms, ant colony, particle swarm, etc. The study 
by El-Beltagi et al. [7] compared these alternative 
optimizers in an attempt to identify the ones with the 
better performance. Study noted ant colony to perform 
superiorly in discrete optimization problems besides 
being the least demanding in regards to the computer 
processing time. As a result Ant Colony Optimization 
(ACO) was the evolutionary algorithm of choice in this 
study. The paper focuses on this element of the research. 
 

3 Ant Colony Optimization 

ACO was developed by Dorigo et al. [8] based on 
the fact that ants are able to find the shortest route 
between their nest and a source of food. This is done 
using pheromone trails, which ants deposit whenever 
they travel as a form of indirect communication, figure 
1. When ants leave their nest to search for a food source, 
they randomly rotate around an obstacle, and initially 
the pheromone deposits will be the same for the right 
and left directions. When the ants in the shorter 
direction find a food source, they carry the food and 
start returning back following their pheromone trails 
and still depositing more pheromone. New ants at the 
nest will choose the shortest path with the more 
concentrated pheromone. Over time, this positive 
feedback (autocatalytic) process prompts all ants to 
choose the shorter path [9]. 

Implementing ACO for a certain problem requires a 
representation of S variables for each ant, with each 

variable i having a set of ni options with values l ij and 
associated pheromone concentrations τij; where i = 1, 
2, ..., S, and j = 1, 2, ..., ni. As such, an ant is consisted 
of S values that describe the path chosen by the ant, 
figure 2 [10]. 
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Figure 1. Schematic of the ant colony search for 
food 
 

 
 
Figure 2. Ant representation 
 
Many researchers use a variation of this general 

algorithm, incorporating a local search to improve the 
solution [11]. In the ACO, the process starts by 
generating m random ants (solutions). An ant k (where k 
= 1, 2, ..., m) represents a solution string, with a selected 
value for each variable. Each ant is then evaluated 
according to an objective function τ. Accordingly, 
pheromone concentration associated with each possible 
route (variable value) is changed in a way to reinforce 
good solutions, as per equation 2 [8]: 

 
τij(t) = ρ τij(t-1) + ∆τij ; t = 1, 2, …, T (2) 

 
where T is the number of iterations (generation cycles); 
τij(t) is the revised concentration of pheromone 
associated with option l ij at iteration t, τij(t-1) is the 
concentration of pheromone at the previous iteration (t-
1); ∆τij  is the change in pheromone concentration; and 
ρ  is the pheromone evaporation rate (0–1). 

In equation 2, the change in pheromone 
concentration ∆τij is calculated as [8]: 

 
                m         R / fitnessk ; if l ij is chosen by k 

∆τij(t) = Σ  { (3) 
               k=1       0         ; otherwise 

 
where R is a constant called the pheromone reward 
factor; and fitnessk is the value of the objective function 
(solution performance) calculated for ant k. It is noted 
that the amount of pheromone gets higher as the 
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solution improves. Therefore, for minimization 
problems, equation 3 shows the pheromone change as 
proportional to the inverse of the fitness. In 
maximization problems, on the other hand, the fitness 
value itself can be directly used. 

Once the pheromone is updated after an iteration, the 
next iteration starts by changing the ants’ paths (i.e. 
associated variable values) in a manner that respects 
pheromone concentration and also some heuristic 
preference. As such, an ant k at iteration t will change 
the value for each variable according to the following 
probability [8]: 

 
 [ τij(t)]α∗ [ ηij(t)]β 

pij(k, t) = (4) 

 Σlij  [ τij(t)]α∗ [ ηij(t)]β 
 
where pij(k, t) is the probability that option l ij is 

chosen by ant k for variable i at iteration t; τij(t) is the 
pheromone concentration associated with option l ij at 
iteration t; �ij  is a heuristic factor for preferring among 
available options and is an indicator of how good it is 
for ant k to select option l ij (this heuristic factor is 
generated as per the problem characteristics and its 
value is fixed for each option l ij); and α and β are 
exponent parameters that control the relative importance 
of pheromone concentration versus the heuristic factor 
[10]. Both α and β can take values greater than zero and 
can be determined by trial and error. 

Based on the previous discussion, the main 
parameters involved in ACO are: number of ants m; 
number of iterations t; exponents α and β; pheromone 
evaporation rate ρ; and pheromone reward factor R. 
 

4 Proposed ACO Model 

The index IRT can be employed to quantify the 
suitability of potential risk treatment strategies in a 
project. However, deciding upon the optimum risk 
treatment strategy for a project can be more challenging 
than it appears. Any project would have a number of 
risk treatment options constituting the decision points. 
Each of these risk treatment options can possibly 
associate with and positively influence multiple risk 
factors. Another dimension is the inter-dependency of 
risk factors. Development of a given risk can give rise 
to other risks. As such, risk mapping is indispensable to 
modeling such inter-dependency. The authors, in an 
earlier research [5], have addressed the development of 
risk maps in construction projects. The pipeline 
construction sector was used to exemplify the risk 
mapping process, where 9 risk groups were identified. 
Each group had a set of potential risks relevant to that 
group and denoted by GxRy. In this context, x refers to 

the group number and y refers to the risk code. 
 

 
 
Figure 3. Sample dynamic risk treatment pattern 
(DRTP) 
 
Obviously, each risk treatment action has a cost 

associated with it, and when enacted will affect the risks 
in concern in a certain way. Let us now assume the 
treatment strategy for the project, i.e., the set of 
treatments for reducing the project’s risk severity, is 
represented by an ant. Each treatment i has a total of ni 
options. Finding the optimum set of treatment actions 
then follows as per figure 4. 

 

 
 
Figure 4. ACO process for risk treatment 
optimization 
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In a given iteration, the process starts with 
initializing potential treatments based on the options 
available for each. Such scenario would correspond to a 
certain pheromone concentration τ0. An artificial ant is 
launched for the 1st treatment strategy and proceeds, i.e., 
pseudo-randomly walks, till the last treatment as shown 
in figure 5. 

 

 
 

Figure 5. Solution progression using ACO 
 
Each ant k would generate a solution. Having 

completed a cycle, the pheromone value of the selected 
options τij as generated by the ant is updated according 
to the pheromone updating rules. After all ants finish 
their travels, their fitness values are evaluated as per 
equations 1a and 1b and the best ant solutions then 
selected. 

The approach adopted in this study allows the 
pheromone updating to be performed according to both 
the local and global updating rules. The local updating 
rule implies that the updating is performed after each 
solution is completed, i.e., when an ant has traveled 
from 1st to last treatment. On the other hand, the global 
updating rule involves updating the pheromone after an 
entire iteration is over, that is to say, after all ants have 
completed their travels. When the iteration is completed, 
the pheromone values associated with options belonging 
to the best solution in that iteration (i.e., inter-best 
solution) are updated. 

As for the stopping/termination criteria, a maximum 
number of iterations is used in the proposed model due 
to its convenience and popularity [12]. The algorithm 
loops back for another iteration until the maximum 
number of iterations is reached. 
 

5 Illustrative Application in Pipeline 
Construction Example Project 

Substantial research was carried out by the authors 

to identify, assess and find means to treat the risks that 
have potential to influence pipeline construction 
delivery. 

Identification and assessment of risks benefited from: 
(1) the literature, (2) unstructured interviews with 
selected experts in the field, and (3) a questionnaire 
survey to a large pool of qualified experts in the Middle 
East region, where some of the authors work. Full 
details can be found in an earlier publication by the 
authors [5]. 

Survey highlighted 47 risks to exist in the pipeline 
construction context, tables 1a and 1b. It further 
revealed the prior probabilities and impacts of these 
risks. A DRM was then developed to model the 
interdependencies amongst the risks in reference. Part of 
such DRM was presented earlier in figure 3. 

In a similar effort, risk treatment actions for pipeline 
construction projects were identified and associated 
with the risks from the previous research step. Fifty two 
treatment actions resulted, as illustrated in tables 2a and 
2b. Full details can be found in another publication by 
the authors [6]. 

A computerized ACO engine was developed using 
Visual Studio 8 to perform the required optimization 
process. An example project was used to demonstrate 
the functioning of ACO. Given the magnitudes of all 
risks, a total sum of 167 was recorded as indicator of the 
project’s risk severity. When risk treatments are adopted, 
the project’s risk severity is reduced. Obviously the 
dilemma is to find the most effective risk treatment 
pattern while accounting for the costs associated with 
each. The latter are represented via cost indices, table 2b. 

Assume that four risk treatments RT1, RT2, RT3 
and RT4 were available to pursue with a target of 
reducing the project’s risk severity by 10%. The 
objective of the optimization process is to maximize the 
reduction of the risk severity at the least cost possible. 

One can think of different patterns comprising the 
four treatments RT1, RT2, etc. To find the optimum risk 
treatment pattern, the process starts with initializing the 
ACO parameters and proceeding with the steps depicted 
in figure 4. A number of ants (solutions) are created, 
each of which represents a scenario of using available 
risk treatment option(s). The evaluation and pheromone 
updating continue till the termination condition is met. 

To exemplify let us consider 16 patterns for risk 
treatment. Four patterns concern the adoption of only 
one of the risk treatments RT1, RT2, RT3 and RT4 
while the rest comprises combinations of two risk 
treatments, e.g., RT1 and RT2. 

As per table 3, results show the pattern leading to the 
optimum reduction of project’s risk severity to be 
pattern 16. This risk treatment pattern consists of RT4 
and RT3. It provides the greatest reduction in risk 
severity compared to the costs invested. Also it satisfies 
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the original target of 10% reduction in risk severity. 
Any further reductions will require other risk treatment 
patterns that will apparently incur additional costs. 
 
 

Table 1a Risks in pipeline construction 
Code Description 
G1R1 Inability of the owner to finance the project 
G1R2 Delay in progress payments 
G1R3 Inefficient decision making by the owner 
G1R4 Owner's refusal or questioning of the 

compensations 
G1R5 Changes in owner expectations 
G1R6 Delay or inability of owner to give full 

possession of site 
G1R7 Delay or inability of owner to proceed with 

final acceptance 
G1R8 Owner's high expectations for quality 

beyond standards 
G2R1 Subcontractors low credibility 
G2R2 Subcontractors lack of required technical 

skills 
G2R3 Subcontractors lack of managerial skills 
G2R4 Subcontractors lack of productivity 
G2R5 Poor quality of subcontractor works 
G3R1 Scope creep/shrinkage 
G3R2 Scope vagueness 
G3R3 Drawing change 
G3R4 Actual quantities of work 
G3R5 Complex design 
G3R6 Delay of work shop drawings 
G3R7 Incomplete design & information 
G4R1 Poor communication between all parties 
G4R2 Poor qualification of consultant's 

supervision staff 
G4R3 Delay in approval of contractor submittals 
G4R4 Delay in performing testing and inspection 
G4R5 Suspension of work 
G4R6 Lack of experience 
G4R7 Change in key staffing throughout the 

project 
G5R1 Bad Quality of work 
G5R2 Low productivity of labor 
G5R3 Surveying mistakes 
G5R4 Delay in the start of the project 
G5R5 Deficient and/or insufficient safety rules 
G5R6 Shortage of labor 
G5R7 Site accidents 
G6R1 Material price fluctuation 
G6R2 Material shortage 
G6R3 Delays in material delivery 
G7R1 Maintenance cost of equipment 
G7R2 Low productivity and efficiency of 

equipment 
G7R3 Equipment frequently out of order or 

damaged 
G8R1 Corruption risks 
G8R2 Failure to obtain approvals and permits 
G8R3 Import/export restrictions 
G8R4 Potential of delay by others 
G9R1 Cash shortage 
G9R2 Inflation and interest rates risks 
G9R3 Economic crisis 

Table 1b Risks in pipeline construction 
Code Magnitude*  Related 

Risks**  
Related 

Treatments 
G1R1 2.61 2 5 
G1R2 4.57 4 4 
G1R3 3.85 4 3 
G1R4 4.12 2 14 

… … … … 
G9R3 2.48 7 3 

* Based on surveyed probabilities and impacts. 
** Relations defined via the DRM, whether directly or indirectly. 
 
 

Table 2a Risk treatments in pipeline construction 
(samples) 

Code Description 
RT1 The contractors should study the owner’s 

financial position, and his ability to finance 
the project for its entire duration 

RT2 Contractors should study & analyze the 
effect of inflation and devaluation on the 
project’s costs and consider them in its cost 
estimate 

RT3 The contractors should obtain a large 
advance payment, as possible 

RT4 The contractors should ensure receipt of 
advance payment 

… … 
RT52 Cultural and commercial awareness training 

for management and key personnel who may 
have to deal with corrupt officials 

 
 

Table 2b Risk treatments in pipeline construction 
Code Cost Index*  Related Risks**  
RT1 2.33 4 
RT2 2.80 4 
RT3 2.17 6 
RT4 1.70 6 
… … … 

RT52 6.47 9 
* Based on surveyed costs. 
** Relations defined via the DRTP. 

 

6 Conclusion 

Decisions made about risk treatment actions are 
sometimes too subjective. The primary contribution of 
the research at hand is to devise means that can facilitate 
making informed decisions about risk treatment in 
projects. With a sound decision-making process, one 
can justify why a given set of actions are adopted rather 
than others. 

The paper attempted to develop an optimization 
algorithm that utilizes ant colony for the balanced 
selection of a project’s risk treatment strategy. In this 
context, the benefits and costs associated with the 
project’s risk treatment strategy are balanced out. Due 
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to the complexity of projects and the inter-dependency 
of risks, the algorithm made use of Dynamic Risk Maps 
(DRMs) which were introduced by the authors in an 
earlier publication. The novelty of this algorithm lies in 
its multilevel evaluation process, which accounts for not 
only the direct impacts but the indirect ones as well. 
 
 

Table 3 ACO solution 
Pattern Ant’s 

Path 
Risk 

Severity 
(before) 

Risk 
Severity 
(after) 

Change 
in Risk 
Severity 

Cost 
Index 

1 RT1 167.00 163.00 2.40% 2.33 
2 RT2 167.00 159.00 4.80% 2.80 
3 RT3 167.00 156.00 6.50% 2.17 
4 RT4 167.00 155.40 6.90% 1.70 
5 RT1-

RT2 
167.00 160.00 4.19% 5.13 

6 RT2-
RT1 

167.00 156.00 6.58% 5.13 

7 RT1-
RT3 

167.00 152.00 8.98% 4.50 

8 RT3-
RT1 

167.00 154.00 7.78% 4.50 

9 RT2-
RT3 

167.00 151.00 9.58% 4.97 

10 RT3-
RT2 

167.00 155.00 7.18% 4.97 

11 RT1-
RT4 

167.00 154.00 7.78% 4.03 

12 RT4-
RT1 

167.00 152.00 8.98% 4.03 

13 RT2-
RT4 

167.00 150.00 10.17% 4.50 

14 RT4-
RT2 

167.00 150.80 9.70% 4.50 

15 RT3-
RT4 

167.00 156.00 9.58% 3.87 

16 RT4-
RT3 

167.00 147.32 11.78% 3.87 

 
 
The study showed ACO to work fairly well. It is 

understandable that other optimization engines could be 
used for such step, however, earlier studies proved ACO 
to be superior in this particular context. Despite that, 
further research on parameter selection may be 
conducted to further improve the robustness of the ACO 
model. 
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