
Using Benders Decomposition for Solving Ready Mixed 

Concrete Dispatching Problems  

Mojtaba Maghrebi 
a
, Vivek Periaraj

 b
, S. Travis Waller 

a,c
, Claude Sammut 

d 

a 
School of Civil and Environmental Engineering, The University of New South Wales (UNSW), Sydney, Australia 

b
 Department of Systems and Industrial Engineering, The University of Arizona, Tucson, AZ, USA 

c
 National Information and Communications Technology Australia (NICTA), Sydney, Australia 

d
 School of Computer Science Engineering, The University of New South Wales (UNSW), Sydney, Australia 

E-mail: {maghrebi, s.waller, c.sammut}@unsw.edu.au, vivek.periaraj@gmail.com 

Abstract 

Large scale dispatching problems are technically 

characterized as classical NP-hard problems which 

means that they cannot be solved optimally with 

existing methods in a polynomial time. Benders 

decomposition is recommended for solving large scale 

Mixed Integer Programming (MIP). In this paper we 

use the Bender Decomposition technique for 

reformulating the Ready Mixed Concrete Dispatching 

Problem (RMCDP). Benders decomposition involves 

separating  the original RMCDP formulation into the 

master (lower bound) and sub-problems (upper 

bound). The master problem only deals with integer 

variables and the sub problem is usually a linear 

programming problem. Benders optimally cuts and 

Benders feasibility cuts are added to the master 

problem upon solving the sub-problem at each 

iteration.. The proposed method is tested on a  single 

real instance  and results are reported.  

Keywords: Benders Decomposition; Ready Mixed 

Concrete (RMC), Dispatching 

1. Introduction

During the past 10 years a growing body of literature 

has been devoted to Ready Mixed Concrete Dispatching 

Problems (RMCDP); however, this area still suffers from 

a lack of practical solutions [1-6]. In RMCDP it is 

desirable to find the best truck and depot allocation for 

each delivery. A few attempts have been made to acquire 

the exact solution of RMCDP; nevertheless, as a result of 

increasing the size of the problem the complexity is 

increased exponentially [4] and cannot be solved in a 

polynomial time. Heuristic solutions have been 

implemented widely in the literature to alleviate this 

problem. Among the introduced methods, Genetic 

Algorithms is the most promising heuristic solution in the 

RMCDP literature [1, 3, 5, 7-10]. Other heuristic 

methods also have been tested in this context, such as 

Ant Colony [11], Particle Swarm Optimization (PSO) [12, 

13], Bee Colony Optimization (BCO) [14] and Tabu 

Search (TS) [14]. Despite developments in implementing 

heuristic methods in RMCDP, the solution structure of 

most of the mentioned techniques is pretty much same. 

Moreover, the main drawback for these techniques is that 

there are a number of infeasible allocations in the 

outcomes of these techniques. Thus, via supplementary 

algorithms, obtaining a viable solution has been 

attempted. To overcome this issue, [3] presented an 

evolutionary based method which can solve the RMCDP 

without the need for any supplementary algorithm.  

 Rather than simply looking at heuristic methods 

some other numerical approaches have been studied. Yan, 

Lai [15] introduced a numerical method for solving the 

RMC optimization problem. They proposed a method 

that works by cutting the solution space iteratively and as 

well is integrated with branch-and-bound. Lin, Wang [16] 

introduced a new RMCDP formulation inspired by  the 

job shop problem. Yan, Lin [17] used decomposition and 

relaxation techniques coupled with a mathematical solver 

to solve the problem. Variable Neighbourhood Search 

(VNS) was tested by Payr and Schmid [18] to deal with 

RMCDP. One of the robust RMCDP formulations was 

proposed by Asbach, Dorndorf [19]. In this method, 

depots and customers are divided into sub-depots and 

sub-customers. More recently, Maghrebi, Periaraj [20] 

implemented a Column Generation (CG) method which 

is amenable to the Dantzig-Wolfe reformulation for 

solving large scale models which with available 

computing facilities cannot optimally solve in 

polynomial time. However, the Benders decomposition 

[21] has not been used in RMCDP, which is the main 

contribution of this paper.  

The 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC 2014)



2. RMC Benders Decomposition

In 1962 [21] Benders introduced a decomposition 

method for solving MIP which later was generalized by 

Geoffrion [22]. Benders’ methodology involves 

decomposing the compact formulation into master (lower 

bound) and sub-problems (upper bound). The master 

problem is usually an integer programming problem and 

the sub-problem is usually a linear programming problem. 

In each iteration, the sub-problem is solved for a given 

solution of the master problem. If the sub-problem is 

optimal, then an extreme dual solution is used to form 

what is called a Benders optimality cut and added to the 

master problem. If the sub-problem is primal infeasible 

(or dual unbounded), then an unbounded extreme dual 

ray is used to form what is called a Benders feasibility 

cut and added to the master problem. The master and 

sub-problems are solved iteratively in this way until the 

bounds are strengthened and the algorithm converges. 

A few RMCDP formulations have been introduced, 

such as [5, 15-17, 19, 23-25]. To simplify the 

formulation in some methods [15, 17, 19, 26] the depots 

and customers are divided into a set of sub-depots and 

sub-customers, respectively based on the number of loads 

at depots and the number of required deliveries. The 

compact formulation of RMCDP can be stated as follows 

[4, 19] if  we assume RMCDP as a graph   (   ) in 

which   is the set of vertices belonging to start points, 

customers, depots and end points  {         }  

Additionally,  is the set of edges belonging to the 

distance between vertices. 
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In the RMCDP, the master problem consists of 

customer only constraints, depot only constraints, 

demand constraints, delivery constraints and perishability 

constraints involving only depot to customer arcs. The 

sub-problem consists of truck start constraints, truck 

finish constraints, customer flow constraints, depot flow 

constraints, time truck start constraints, time return 

constraints and time truck finish constraints. 

2.1. Benders Master Problem: 

The master problem in RMCDP is a mixed integer 

programming model and involves assignment of depots 

and customers subject to the time requirements. The 

Benders master problem can be formally stated as 

follows: 
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2.2. Benders Sub-problem 

The sub-problem in RMCDP is an integer 

programming model. It can be solved as Minimum Cost 

Flow network problem that enables to exploit the 

integrality properties and so can be solved as a linear 

programming model. The Benders sub-problem can be 

formally stated as follows: 
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3. Solution Approach

The master problem is a mixed integer problem and 

can be solved using branch-and-cut [27]. The master 

problem can be considered as an assignment problem of 

depot to customer arcs, subject to demand constraints and 

time restrictions. The sub-problem is solved at the truck 

level for a given set of optimal assignments associated 

with a given truck from the master problem. The optimal 

depots to customer arcs from the master problem 

determine the bounds of the customer service times at 

given customer locations. The delivery constraints affect 

the lower bound, while the perishability constraints affect 

the upper bound of the customer time. The start to depot 

arcs, customer to depot arcs and customer to finish arcs 

in the sub-problem are adjusted for their bounds based on 

the new bounds of the customer time obtained from the 

optimal solution of the master problem. The prerequisite 

for the sub-problem in the Benders solution framework is 

that it needs to be a linear programming model, such that 

its weak duality property can be used to derive the 

Benders optimality and feasibility cuts. The sub-problem 

can be solved either by the network simplex method [28] 

or by using the LP optimizer (primal or dual) to obtain 

the extreme dual solution or extreme unbounded dual ray 

solution.  

The following two integrality properties motivate 

solving the sub-problem using the network simplex 

optimizer or the LP optimizer (primal or dual). The first 

type of integrality property can be formally stated as 

follows: 

  {   |    }     {  {   }      } (26) 

and occurs when the optimal objective of the linear 

programming relaxation with real solution is same as the 

optimal objective with integer solution. The second type 

of integrality property can be formally stated as follows: 

        {             } (27) 

and is bounded from below on the feasible region; if 

the problem has a feasible solution, and the vectors  ,   
and   are integers, then the problem has at least one 

integer optimum solution. 

3.1. Optimality Cuts 

From an extreme dual solution of the sub-problem, 

the following Benders optimality cut is added to the 

master problem. Let, 

  be the extreme dual associated with the truck start 

constraint (2) for the truck    
  be the extreme dual associated with the truck finish 

constraint (3) for the truck    
   be the extreme dual associated with the depot flow 

constraint (4) for the truck    
   be the extreme dual associated with the customer flow 

constraint (4) for the truck    
  be the sum of extreme duals associated with bound 

constraints of the arcs in the sub-problem for the truck . 

                    
 (     )    

             

(28) 

Each optimality cut for a given truck   is added to the 

set   . The convergence of the algorithm is defined by 
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the value of the variable . This variable is sometimes 

called the approximation variable or the recourse 

function in the Benders decomposition context and is a 

measure of the dual objective of the sub-problem. As 

each optimality cut added to the master problem attempt 

to improve the value of this bound and thus convergence 

of algorithm can be stated when the value of    is equal 

to or within a specified tolerance of the objective value of 

the sub-problem. 

3.2. Feasibility Cuts 

From an unbounded dual ray solution of the sub-problem, 

the following Benders feasibility cut is added to the 

master problem. Let, 

  be the extreme ray associated with the truck start 

constraint (2) for the truck    
  be the extreme ray associated with the truck finish 

constraint (3) for the truck    
   be the extreme ray associated with the depot flow 

constraint (4) for the truck    
    be the extreme ray associated with the customer flow 

constraint (34) for the truck    
  be the sum of extreme rays associated with the bound 

constraints of the arcs in the sub-problem for the truck    
                  (     )     

             

(28) 

Each feasibility cut for a given truck   is added to the set 

  
This process is terminated when the model converges. 

4. Case Study

The proposed Benders decomposition is tested by 

field data which belong to an active RMC with three 

active depots and around 50 trucks. From the available 

dataset, the data from a day on which 22 customers were 

to be supplied was selected for further studies. Among 

the customers, 2 needed 3 deliveries and 4 needed 2 

deliveries, while the remainder only needed 1 delivery. 

The authors believe that this instance is not a very 

complex RMCDP problem; however, the main goal in 

selecting a small instance is to provide an opportunity to 

investigate all aspects of RMC resource allocations in 

detail.  

The algorithm was developed in C++ and tested on a 

RedHat(R) CentOS(R)5.9 Linux server with 8 3.60GHz 

Intel(R) Xeon(R) CPUs and a 188 GB physical memory. 

The IBM CPLEX ™ version 12.5.0.0 with parallel 

optimizers using up to 8 threads was used in the study. 

The most important criteria in optimization is the 

value of the objective function. In Figure 1 the trend of 

the objective function inclusive of   is shown and in 

Figure 2 the best solution obtained so far over iterations 

is illustrated. As mentioned above, computing time is a 

challenge for RMCDP. Figure 3 focuses on this issue by 

depicting the cumulative elapsed time over the iterations. 

Now, the obtained solution will be discussed. According 

to the RMCDP the graph   includes 4 types of arcs: 

Start Depot (Empty truck) 

Depot Customer (Hauling concrete) 

CustomerDepot (Empty truck) 

CustomerEnd 

The models must find feasible arcs for all assigned 

trucks at minimum cost. The obtained solutions are 

shown in Figure 4 and Figure 5.  In these two figures, the 

blue dots are depots and red dots are customers. An arc 

that connects a depot to a customer also represents the 

travel distance between these two locations. The 

thickness of an arc shows the number of trucks using that 

route, and similarly the size of red dots (customers) 

represents the number of required deliveries.  

 Figure 5 similarly shows the travel distance between 

customers (after unloading the concrete) to depots for 

loading fresh concrete.  

 In the test instance, 17 trucks were available and the 

model used all of them (Figure 6). Although there is the 

possibility of using fewer trucks to serve all customers, 

minimizing the number of trucks has not been associated 

with the objective function.  

5. Conclusion

The application of Benders’ decomposition to the 

Ready Mixed Concrete Dispatching Problem (RMCDP) 

has been studied in this paper. Optimally solving larger 

scales of RMCDP was the main motivation for this 

approach. Benders decomposed the original RMCDP 

formulation into the master (lower bound) and sub-

problems (upper bound). In the master problem only 

discrete variables are dealt with, and the sub-problem is 

usually a linear programming problem. A Benders 

optimal cut is added to the model in each iteration, if the 

sub-problem obtained a feasible solution. Also, a 

Benders feasibility cut is added if the sub-problem is 

unbounded or infeasible. This process is iteratively 

continued until the problem converges. The Benders 

formulation of RMCDP was presented in this paper and 

tested by a real instance. Moreover, the trends of 

objective function, best solution as well as elapsed time 

over iterations were illustrated. This paper aimed to show 

how Benders decomposition can be implemented in 

RMCDP to obtain an optimum solution or near optimum 

in a practical time. The future research could involve 

improving the convergence rate for larger problems by 

devising hybrid methods to minimize the effect of 

combinatorial aspect of the RMCDP. 
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Figure 1. Objective of master problem 

Figure 2. Best solution obtained over iterations 
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Figure 3. Elapsed time (cumulative) over iterations 

Figure 4. Travel between depots (blue dots) and customers (red dots) 
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Figure 5.  Travel between customers (re d dots) and depots (blue dots) 

 Figure 6.  Schedule of Trucks 
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Notations 
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