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Abstract – 

Developing measurement tools to assess urban 

sustainability is one of the new streams in built 

environment; however, automated methods of urban form 

assessment are technically difficult. While planar 

characteristics of urban forms have been studied 

traditionally using the spatial metrics from remote sensing 

data such as Landsat images, height information of urban 

environments is now playing an important role in urban 

energy exchange (e.g. solar energy gains), urban air 

circulation (which is affected by interactions between 

terrain and buildings) and urban microclimate. As 

incorporating the planar metrics and the height information 

has been rarely attempted in the sustainable urban form 

studies, we propose an automatic technique for the 

quantification of 3-dimensional urban compactness which is 

one of the main factors influencing sustainability. In this 

paper, we aim to utilise one of autocorrelation statistics 

known as Moran’s   for the assessment of urban form 

compactness, considering both layout and elevation 

attributes. Additionally, Getis-Ord   statistic is also used 

for further investigation on concentration of low or high 

urban features.  
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1 Introduction 

Accurate and reliable measurement techniques are 

necessary for urban sustainability assessment as they 

provide a basis for characterisation of various urban 

neighbourhoods. Recent metrics such as Leadership in 

Energy and Environmental Design for Neighbourhood 

Development (LEED-ND) rating system credits can be 

used as sustainable urban form metrics. Urban 

Neighbourhood Pattern and Design (UNPD) is one of the 

major categories of LEED-ND rating system with a 

prerequisite of compact development. The main goal of 

this category is to build a community  [1]. A problem of 

this category is that the spatial dimension of compactness 

is often ignored. While social dimension is important in 

urban neighbourhood research, the spatial and structural 

assessment of urban neighbourhoods is also necessary. 

Apart from the shortcomings of the existing spatial 

assessment, height information of buildings has not 

been utilised appropriately even though building 

height plays a crucial role in both climatic design and 

human scale design. Climatic design aims to create 

convenient and comfort built-up areas by designing 3-

dimensional (3D) building shapes and appropriate 

arrangement of the buildings in an urban environment 

that requires adaption to the local climate. Therefore, 

it is important to investigate 3D urban metrics that can 

quantify spatial dimensions of urban sustainability.  

Urban metrics provide measurement methods of 

comparing the characteristics of different urban 

districts. There are several metrics for measuring 

characteristics of urban forms at metropolitan and 

building block scales. Spatial metrics have been 

known as effective measurement tools for 

characterizing urban forms in large study extents such 

as metropolises [2]. For example, Huang et al. [2] 

suggested seven metrics to reveal five elements of 

urban forms, namely, compactness, centrality, 

complexity, porosity and density to compare cities in 

developing and developed countries. The metrics 

characterising building pattern, complexity and 

compactness also exist; for example, Floor Area Ratio 

(FAR) and Building Coverage Ratio (BCR). However, 

metrics quantifying urban neighbourhood 

characteristics such as compactness remain scarce. 

Sustainable urban form measurement focuses on 

decision for either compact or sprawl development at 

the metropolitan scale. Compactness measurement at 

the neighbourhood scale is important for sustainable 

development assessment as the urban morphology and 

geometry affect wind speed, air quality at ground level 

[3] and energy exchange [4]. Indeed, traditional spatial 

metrics cannot characterise 3D urban forms because 

characterization of 3D urban forms requires both 3D 

data and adaptive spatial metrics. One of the 

fundamental barriers for 3D characterisation of urban 

forms is the large extent of the spatial analysis because 

3D data (such as lidar point clouds) over an urban 

environment may not cover the entire urban area or 

could not provide a sufficiently high resolution. While 

remote sensing is reported as a reliable source of 

information over urban areas [5], the proven 

advantage of 3D urban remote sensing to analyse 3D 
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urban patterns and processes has not been fully explored. 

Urban form patterns have been traditionally derived 

using spatial urban metrics applied to remote sensing 

data. This bottom-up approach, deriving information 

from structure to process [6], can be improved using 

lidar. The advantage of lidar for urban pattern assessment 

studies is to provide accurate elevation information of 

both terrain and objects e.g. buildings and trees. The 

potential of lidar data for characterising urban forms can 

be used when we adapt the spatial and urban metrics to 

3D space. 

This research aims to develop a spatial 3D metric of 

compactness. We employ Moran's   (MI) as a spatial 

metric of characterizing 3D compactness for the 

sustainable urban form assessment purpose. A novelty of 

this research lies in applying an autocorrelation statistic 

of MI to elevation information of lidar point clouds to 

investigate the level of 3D compactness of urban 

features, including man-made and natural objects. 

In this paper, we review the current conceptual 

approaches in urban pattern modelling and the theoretical 

background of autocorrelation statistics of MI and Getis-

Ord   (GOG). To fill the gap of 3D compactness 

measurements at the urban neighbourhood scale, we 

propose novel 3D metrics that will be tested in the 

simulation and implementation step.  Before applying the 

statistics, the lidar data will be classified to ground and 

non-ground points. The statistics then will be applied to 

Digital Surface Model (DSM) and Normalised DSM 

(NDSM) of 6 urban districts grouped in two urban land 

uses including diverse object shapes, elevation and urban 

fabric.  

2 Urban Pattern Conceptual Approaches 

At the metropolitan scale of urban pattern recognition, 

two main conceptual approaches can be recognized; 

namely, traditional and modern perspectives. As Herold 

et al. [6] discussed, in the traditional top-down view (i.e. 

from process to structure), processes produce structures, 

while in the modern bottom-up view (i.e. from structure 

to process), structures can be a representative of 

processes. Although these conceptual approaches are 

reported for spatio-temporal analysis of urban forms, the 

main idea works for a snapshot of urban forms. That is, 

the modern view employs remote sensing data and spatial 

metrics for analysis of urban patterns whereas the 

traditional perspective believes that the processes are the 

major drivers of urban form and structure.  

While the modern approach is acceptable in urban 

growth modelling at the metropolitan scale, it can be 

enhanced using remotely sensed 3D data at the 

neighbourhood scale. However, there are two main 

problems for such improvement. One problem that could 

be emerged when using 3D data is that the height 

information will be ignored spontaneously if the study 

extent is an entire metropolis or a big city. To address 

this problem, the scale of analysis has to be modified to 

an urban neighbourhood. Therefore, 3D data can be used 

for characterising the 3D pattern of urban 

neighbourhoods.  

Another problem is lack of appropriate spatial metrics 

adapted to 3D space. The conventional spatial metrics 

are capable of charactering planar urban forms in a 

large extent. However, we need metrics that are 

capable of characterizing urban forms at the 

neighborhood scale.  

In general, urban fabric is categorised to ‘fine’, 

‘coarse’ and ‘mixed’ where fine fabric includes mostly 

small size objects and coarse fabric mostly contains 

large objects. In many cases change of fabric from 

coarse to fine, or reverse, can be a sign of land use 

change. For example, industry sites are mostly 

recognized as coarse fabric because these areas 

include large size buildings. On the other hand, fine 

fabrics are mostly residential areas. In 3D space, these 

categories can be expanded based on the amount of 

high, medium or low buildings. Table 1 shows 

possible 3D urban fabrics. In 3D space, a central 

business district can be either mixed-high or coarse-

high fabric. Downtowns can be examples of coarse 

high fabric.  

Table 1. Urban fabric categories in 3D space 

Planar 

fabric 

Height attribute of urban fabric 

High Medium Low 

Fine Fine- High Fine- Medium Fine- Low 

Coarse Coarse- High Coarse- Medium Coarse- Low 

Mixed Mixed- High Mixed- Medium Mixed- Low 

Figure 1 contains our proposed bottom-up approach 

for neighbourhood pattern analysis in 3D space. As 

can be seen, the overall goal is to start from Step 1: 

Structure, to achieve Step 4: Pattern. In this proposed 

bottom-up approach, remotely sensed 3D data would 

be employed using developed 3D urban metrics to 

derive, measure and compare urban neighbourhood 

patterns. 

Figure 1.Developed bottom-up approach of urban 

modelling in 3D space 

3 Moran’s   for Measuring 3D 

Compactness 

The relationship between pair variables is known as 

correlation and the degree of correlation is measured 

through statistical coefficients [7]. Sign and the 

numerical value of correlation coefficient are 

important; for example a positive or direct relationship 
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is determined by a plus sign and a value close to 1 (| | 
1) shows higher strength of a relationship than a value 

close to 0 (| | 0) [7]. Autocorrelation refers to the 

correlation between pairs of observations in a single 

variable [7]. This means that, in autocorrelation, the 

relationship between the values of a variable is 

investigated. Autocorrelation can be calculated for a 

variable changes over time, for linear spatial series and 

for two-dimensional spatial series. The phenomenon of 

spatial autocorrelation can be defined as the relationship 

among the values of an attribute in distributed areal units 

on a planar surface [7]. 

The null hypothesis for spatial autocorrelation is 

Complete Spatial Randomness (CSR) between 

observation values and  -value is calculated to test the 

hypothesis: if   is small (less than 0.05), the null 

hypothesis is rejected and it indicates that clusters in 

observations exist. 

MI and GOG are known as autocorrelation statistics 

measuring compactness and clusters of low or high 

values, respectively. In a defined study area and for an 

observation   and neighbour observations of   in a 

distance of  , MI for attribute of   is defined as [8] : 

 ( )  
 ∑∑   (    ̅)(    ̅)

 ∑(    ̅)
      (1) 

and GOG is defined as [8]: 
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where     is spatial weight and defined as the inverse 

distance between   and  , and W is the sum of all weights. 

Getis and Ord [8] compared MI and GOG. They stated 

that “  statistic measures overall concentration or lack of 

concentration of all pairs of (  ,   ) such that   and   are 

within d of each other. MI on the other hand, is often 

used to measure the correlation of each    with all    s 

within d of   and, therefore, is based on the degree of 

covariance within d of all   ” [8, p.196]. 

If we assume    and    as constants of the MI and 

GOG equations, as below, MI can be calculated based on 

GOG and then it helps for better comparison.  
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Therefore, 
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MI in Equation (1) and   in Equation (2) are unequal 

when the weighted sums ∑    and ∑    are not equal to 

  ̅ and therefore, the weight patterns are different [8]. 

In characterizing the correlation among the same set 

of weighted observations, the difference between MI 

and GOG is that MI quantifies the spatial 

autocorrelation of a feature attribute considering both 

feature locations and feature values, concurrently but 

GOG measures the compression of high or low values 

of an attribute [9].  

These two statistics can be compared using their 

corresponding  -scores. A  -score for MI statistic is 

defined as [9]: 

   { ( )   [ ( )]}  √     ( )⁄               (8) 

where E and V represent the expected mean and 

variation, respectively. 

In addition, a  -score for   statistic is defined as [8]: 

   { ( )   [ ( )]}  √     ( )⁄ .         (9) 

Measuring compactness through MI only considers 

the object’s location on a planar surface, hence, they 

are characterising only planar compactness but if we 

apply the autocorrelation statistics of MI and GOG on 

elevation attribute of urban objects we would achieve 

3D compactness considering both layout and elevation 

of objects.   statistic can be used as complementary 

statistic to derive the information for determining 

concentration of high or low values. 

Two spatial statistics of MI and GOG have been 

used so far for measuring centrality/compactness [10-

12] and concentration of high or low values [9]. MI

has been recognized as an effective measurement tool 

of compactness of socio-economic data at the 

metropolitan scale [10]. However, in literature, its 

potential to characterize 3D compactness of urban 

fabric has been rarely explored.   

4 Methodology 

This research involves in two steps including 

simulation and application to a case study. The 

patterns in the simulation step are obtained from the 

well-known morphological urban patterns. 

4.1. Simulation 

We obtained 30 and more schematic buildings in a 

constant simulation extent since at least 30 square 

input features are required for calculation of MI and 

GOG [9]. Three different patterns are constructed for 

constant features by changing the elevation attribute of 

buildings which make three types of neighborhood 

pattern in 3D space. These are mono-centric, 

polycentric and decentralized (see Figures 2a to 2c). 

   (b) 

(a)                          (b)                          (c) 

Figure 2. Monocenric, polycentric and decentralised 

neighbourhood 3D patterns 
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The study extent is a coarse-high fabric surrounded by 

fine fabric. The aerial image over all the study extent is 

shown in Figure 3a. While the aerial photo can 

demonstrate whether a fabric is fine or coarse, 3D data is 

required for 3D fabric determination. We used lidar point 

clouds with 20 cm horizontal and 12 cm vertical 

accuracy. Figure 3b shows the triangulated lidar point 

clouds and the districts which are considered for applying 

autocorrelation statistics. Lidar data in Figure 3b shows 

the DSM. To exclude the objects’ height, NDSM is 

constructed from extracted non-ground points (see Figure 

4a). A DSM contains elevation of both terrain and 

attached objects whereas a NDSM includes only absolute 

height information of objects such as buildings and trees. 

The difference between DSM and NDSM over same 

district can be distinguished through comparison between 

Figures 4b and 4c. 

 (a) 

 (b) 

Figure 3. Lidar point clouds, representing DSM and 

study districts labelled as a, b, c, …, f. 

(a) 

(b) 

 (c)  

Figure  4. (a) 3D view of non-ground points, (b) profile 

view of DSM and (c) profile view of NDSM 

We explored the potential of both MI and GOG to 

test how their results are different for different 3D 

urban fabrics of fine-low (b), fine including some 

large tall buildings (a and c), coarse-low (f), coarse-

medium (e) and coarse-high (d). The districts are 

selected based on their urban objects’ configuration. 

They can be categorized based on residential and 

educational land uses. These land uses have clearly 

different urban fabric configuration. Residential land 

use is a fine fabric and educational land use is a coarse 

fabric. To test the potential of MI for measuring 3D 

compactness we will apply MI and GOG statistics on 

the elevation attribute of lidar point clouds in both 

DSM and NDSM, derived from the point clouds. 

Indeed, we quantified the level of urban features 

compactness, including natural and man-made objects, 

in 3D space.  

5 Results 

To distinguish how various 3D patterns of urban 

neighborhoods can result in different numerical values 

of MI measurement, MI was applied on both 3D 

patterns in simulation study and 3D patterns of urban 

districts shown in Figures 2 and 3. 

5.1. Simulation Results 

Three different 3D patterns of a neighborhood are 

analysed where their difference comes from the 

change of elevation attribute of buildings and their 

layouts are exactly the same. Simulation results of MI 

over mono-centric (Figure 2a), polycentric (Figure 2b) 

and decentralized (Figure 2c) patterns are 0.13, 0.09 

and -0.23, respectively. The results for more compact 

patterns of high rise buildings are positive whereas the 

result for decentralized pattern is negative. 

These results confirm the results obtained by Tsai 

[10] in simulation study. However, in that study the 

data type, layout pattern, number of cells and the 

attribute value of each pixel were different.  

5.2. Implementation Results 

As described before, two products of lidar point 

clouds are DSM and NDSM. The DSM object’s height 

contains terrain and the object height. For an object in 

NDSM the objects height is absolute elevation. The 

autocorrelation statistics of MI and GOG are applied 

to both DSM and NDSM.   

5.2.1. MI Statistic Results 

Table 2 indicates the results of applying MI to 

DSM. As it shows, the results of residential land use 

fabric range between 0.84 and 0.92. The MI values for 

the districts with fine fabric including large and tall 

buildings are higher than the fine fabric. The MI 

values for the districts in educational land use with 

dominant coarse fabric are obtained between 0.80 and 
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0.97. While the difference between the results of 

residential and educational land uses are not clear, the 

difference between the fine-low (b) and coarse-high (d) 

fabrics is considerable. MI for a fine-low fabric is 

achieved minimum among all the results which is 0.84 

but the result for the coarse-high fabric is the maximum 

value among the results which is 0.97. The MI value for 

fine fabric of c  is  higher than the ones including high 

and large buildings (a and b). The results for a more 

compact form (d) in coarse fabric is higher than case (f) 

which is coarse-high but contains less buildings and the 

high buildings are dispersed.  

Table 2. Applied MI to DSM 

Land use Urban fabric MI 

Residential 

a. Fine 0.89 

b. Fine 0.84 

c. Fine 0.92 

Educational 

d. Coarse 0.97 

e. Coarse 0.88 

f. Coarse 0.80 

Approximately similar pattern can be seen when we 

apply MI to NDSM. As can be seen in Table 3, fine-low 

fabric (b) has the minimum value of MI, (e) and (f) have 

lower levels of MI than case (d) which is more compact. 

The difference of the results of applying MI to DSM and 

NDSM is that in case of DSM, maximum value of MI 

was obtained for case (d) which is a fine-low fabric but in 

case of NDSM, maximum value is obtained for case (c) 

which is fine fabric including some large and tall 

buildings.   

Table 3. Applied MI on NDSM 

Land use Urban fabric MI 

Residential 

a. Fine 0.99 

b. Fine -low 0.55 

c. Fine 1.08 

Educational 

d. Coarse 0.98 

e. Coarse 0.78 

f. Coarse 0.65 

All the  -scores and p-values are in significant part of 

a normal distribution curve. The  -scores higher than 

1.65 are in significant area with 90 percent confidence 

level. All our achieved  -scores are higher than 2.58, 

which means that the level of confidence achieved for all 

cases is 99 percent. As described before, the null 

hypothesis here is Complete Spatial Randomness (CSR) 

which is rejected by 99% confidence in all of our results. 

5.2.2. G Statistic Results 

As discussed in section 3,   statistic can be used in 

conjunction with MI for complementary information; MI 

measures compactness of both location and numerical 

value of an attribute distributed overall the data set but 

GOG is a concentration measurement tool for high or low 

values [9]. Table 4 demonstrates the results of applying 

GOG to DSMs of the urban districts. As it indicates, 

maximum   value is obtained for district (b) and 

minimum   value is obtained for districts (a) and (f) 

followed by (c) with a partial difference. 

Table 4. Applied   on DSM 

Land use Urban fabric   

Residential 

a. Fine 43 ×     

b. Fine 98 ×     

c. Fine 47 ×     

Educational 

d. Coarse 52 ×     

e. Coarse 64 ×     

f. Coarse 43 ×     

Table 5 contains the results of applying GOG to 

NDSM. The maximum G value is achieved for district 

(b) and minimum G value is obtained for district (d) 

followed by (a). Maximum   value is obtained for 

same district (b) and district (a) is in lowest level of   

values in both Tables 4 and 5. 

Table 5. Applied   on NDSM 

Land use Urban fabric   

Residential 

a. Fine 828 ×     

b. Fine 1328 ×     

c. Fine 1188 ×     

Educational 

d. Coarse 667 ×      

e. Coarse 1078 ×     

f. Coarse 1088 ×     

In all results for   statistic, the  -scores remain in 

significant part of a normal distribution curve and the 

null hypothesis (CSR) can be rejected by 99% level of 

confidence. 

The districts where their MI value is maximum have 

minimum   value and the districts with lowest MI 

value are obtained maximum   value. This happens 

because MI measures compactness of features and 

values location whereas   measures the compression 

of high or low values. Districts (a) and (c) where we 

obtained maximum value of MI and minimum value 

of   are fine fabric in residential land use and the 

urban objects are compact in layout so their MI are 

higher than other districts. In this residential fine 

fabric, low objects are concentrated compared to cases 

(d) and (e) where higher buildings are clustered.  

6. Discussion

We promoted the bottom-up approach (from 

structure to process) of studying urban patterns using 

3D remote sensing data and by proposing 3D metrics. 

The questions remain on how to improve the top-down 

approach to explain the 3D pattern of urban areas. It is 

expected that the drivers and factors influencing on 3D 

pattern and growth of urban areas be explored by 

urban planners and economists. In detail, these 

questions are: 1) How the top-down approach can 

characterise 3D urban growth? 2) Which factors, 

drivers and processes influence on making different 
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3D urban patterns? 3) How urban modelling and spatial 

urban theories can be developed to consider both urban 

layouts growth and various vertical patterns? 

While the proposed 3D metric of MI is capable of 

distinguishing among different 3D patterns of urban 

neighbourhood caused by variation of only height 

attribute in simulation study, it needs to be integrated 

with the information derived from   statistic in the 

implementation step. Indeed, using MI in conjunction 

with GOG in each district details our derived information 

about each district. 

As the sample size and study areas are different in the 

implementation step, the MI results have to be compared 

within their context characteristics such as the number 

and size of urban objects, the area of study extent and the 

distribution of objects’ height pattern.  

Among 3D urban fabric categories (Table 1), the 

categories of fine-low, fine including some large and tall 

buildings, coarse-medium, coarse-medium with 

decentralised objects and coarse-high are analysed in this 

paper and still the compactness values from MI for other 

patterns need to be explored.  

The 3D compactness analysis in the implementation 

step could measure the compactness of all urban objects 

on a DSM including natural and man-made objects. For 

further assessment of compactness of man-made objects 

(buildings), we need to apply the statistics to the 

classified building points. For studying the compactness 

of natural objects such as trees and vegetation class we 

have to apply MI to only the classified vegetation points.  

7. Concluding Remarks

In this paper, we aimed to improve 3D urban metrics 

for 3D pattern recognition of urban neighbourhoods. MI 

was firstly applied to simulation study over 3 urban 

neighbourhood patterns where their difference come from 

the difference in height attribute only. In the simulation 

study, a compact form achieved a positive value of MI 

whereas a decentralized pattern obtained a negative value 

of MI. The results from the implementation of MI over 

urban districts indicate that the general idea of clustering 

works and can differentiate the 3D compactness level 

among the districts. However, as the urban areas are 

more complicated than the simulation patterns, we need 

further information to enhance our understanding of 

different patterns. Therefore, in the implementation step 

we added   statistic in our data processing and found that 

it could enhance our understanding through assigning a 

lower value to the patterns with shorter urban features 

than the patterns including taller objects. 

It is recommended to apply the proposed 3D spatial 

metrics to other urban fabric types for a 

comprehensive study of 3D compactness of urban 

neighborhoods. For future work, applying MI to the 

classified buildings and vegetation is suggested to find 

the level of compactness of the built-up areas and 

vegetation compactness, respectively.  
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