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Abstract 

 
The collection of as-built data for construction 

progress monitoring remains challenging. This paper 
develops two case studies on image-based modeling, 
in which point cloud models are created based on the 
photo collection of the construction site. The first 
case considers 399 unordered construction images 
previously taken for purposes other than progress 
monitoring, whereas the second case considers 118 
photos that have been taken based on the results of 
the first case study. The results of the first case study 
are employed to improve the quality of the point 
cloud model in the second case, using the site photo 
collection captured by the first author for the 
purpose of establishing an enhanced point cloud 
model. The results of the two case studies are 
compared. Furthermore, the results are compared 
with those of other researchers and found that they 
are in a good agreement with other reported results. 
Finally, some suggestions are proposed to improve 
the image-based model for construction progress 
monitoring, particularly for industrial projects that 
involve a large construction site and various work 
packages. 
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1 Introduction 
 

Decision making during the construction phase 
significantly depends on accessible as-built and as-
planned information. Daily construction site 
photographs are robust sources of as-built data that can 
be easily captured by either the construction manager or 
any site staff member. A 3D image-based model can 
also be automatically created daily using computer 

vision algorithm and image-processing techniques. Such 
models can aid in the visualization of discrepancies 
between as-built and as-planned data in an augmented 
reality environment, which facilitates progress 
monitoring.  A project manager’s effective decision 
making in selecting corrective actions during the 
construction phase significantly depends on the 
immediate detection of schedule delay, and such 
corrective actions can prevent delays and budget 
deficiencies [1]. Figure 1 shows that the project control 
process mainly occurs during the construction phase. 
This process comprises three steps, namely, monitoring, 
comparing, and corrective action selection. In the first 
and second steps, members of the project management 
team prepare information products that visualize 
important data to facilitate decision making by the 
project manager. Figure 1 also shows various graphs 
(e.g., gaunt charts or s-curves) and images that can be 
used to present the status of the construction process. 
From it, we can thus determine whether such material 
can help the project manager to immediately identify 
discrepancies between actual and as-planned 
performance. 
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Figure 1. Using information products for decision 
making 
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     Several researchers highlighted the limitations of 
current manual data collection approaches in terms of 
speed and accuracy. According to Akinci et al. (2006), 
field staffs in construction sites spend 30% to 50% of 
their time recording and analysing field data [2]. 
Moreover, data transfer from a site to a field office 
requires additional time, because most data items are 
not captured digitally [2]. Daily construction site 
photographs, which are robust sources of as-built data 
for construction progress monitoring, comprise a usable 
and easily accessible source of information for as-built 
progress data [1]. Digital images can be easily captured 
without additional cost for construction projects [3]. 
According to Section 4.21-b of the FIDIC series book 
(Red Book)—Conditions of Contract for Construction, 
photographs are among the progress reporting 
requirements that a contractor should regularly (e.g., 
monthly) send to the owner [4]. Aside from progress 
documents, photographs have more applications, and 
can be easily captured using a handheld digital camera 
by a contractor staff, construction manager, 
superintendent, the owner’s representative, the 
subcontractor, or other project team members. In this 
approach, collections of photographs are used to 
reconstruct the 3D as-built scenes using computer vision 
algorithm and image processing techniques [1], [3].  
 
      This paper focuses on the creation of 3D as-built 
point cloud models using construction site photographs. 
By registering these 3D models on a 4D as-planned 
model, the progress of construction projects can be 
visualized in an image. 
 

2 Background 
 
     In 2006, augmented reality was proposed as a 
technique for the visualization of construction progress 
monitoring [5]. The use of augmented reality enables 
the visualization of construction progress in an image by 
superimposing a 3D model on the actual construction 
scene, and then highlighting discrepancies from the 
schedule by color coding any part of a structure. 
Golparvar-Fard et al. (2009) then proposed a 
visualization system called 4D Augmented Reality 
(D4AR) for the automatic visualization of construction 
progress monitoring [1]. In this system, daily site 
photographs are captured using a digital handheld 
camera by anyone involved in a construction project [1]. 
In D4AR, the location of a photographer and the 
orientation of each camera are computed based on the 
images using computer vision algorithm and image 
processing techniques. The generated 3D image-based 
model is then used as an overlay on the 4D as-planned 
model for the visualization of progress monitoring; here, 

color coding makes it easier for the user to understand 
what the model represented [1]. Finally, Golparvar-Fard 
et al. (2011) reported that the identification, processing, 
and communication of progress discrepancies are 
enhanced by the integration of the visualization of as-
built and as-planned performance and can thus serve as 
a powerful remote project management tool for remote 
decision making in the A/E/C and FM industries [3].  
 

3 Computer vision techniques for image-
based modeling (IBM) 

 
        Several computer vision techniques for IBM have 
recently been used to create 3D models from a 
collection of input images (i.e., unordered daily 
construction site photographs in our study). In this 
approach, the locations of the photographer who 
captures the images are unidentified, and images are 
captured under various illumination, resolution, zoom, 
and quality conditions [6], [7], [8]. Then, 
correspondences between images should be estimated 
for scene reconstruction from an image collection. The 
goal of correspondence estimation relative to 
construction progress monitoring or to any use of the 
image collection is to take a raw set of images and then 
identify sets of matching 2D pixels across all the images 
[6]. Each set of matching pixels represents a single point 
in 3D [7]. For correspondence estimation, the distinctive 
local features of each image are initially identified, after 
which similar-looking features in different images are 
determined [6], [7]. Once the correspondence problem 
is solved, the structure from motion (SfM) procedure is 
used to estimate the location of the camera and 3D 
points [1], [6], [7], [8]. The SfM procedure studies both 
structure (i.e., 3D view of the construction site) and 
motion (i.e., motion of the camera within the 
construction scene) [6]. SfM estimates the extrinsic and 
intrinsic parameters of a single image pair [8]. Thus, the 
process must start with an ideal initial image pair with 
good estimates of camera parameters for the chosen pair 
[1], [8]. In the current paper, the initial image pair is 
selected manually. In our case study, the sparse model 
becomes vague and difficult to understand when the 
inappropriate image pair is selected. To estimate the 
intrinsic parameters of a camera, the focal length must 
be extracted from the exchangeable image file format 
(EXIF) tags of JPEG images to initialize the focal 
length of the new camera [6], [8]. In this paper, the sizes 
of original images are changed using Xnview [9] 
software to maintain the EXIF tags. All computer vision 
techniques are applied using VisualSfM software 
[10],[11]. We use the SIFT of Lowe [12] for feature 
detection as well as the functions available in 

IT APPLICATIONS



VisualSfM [10],[11] for matching and SfM. The process 
of capturing images and as-built point cloud model are 
shown schematically in Figure 2. 
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Figure 2. Process of collecting as-built data resulting in 
the reconstructed 3D as-built point cloud model 
 

4 Case study 
 
     Two case studies are implemented. The first uses an 
unordered photo collection previously captured for 
purposes other than progress monitoring and image-
based modeling.  
     The photographs in this collection are captured 
randomly from any part of the construction site for 
documentation and for presentation in weekly and 
monthly progress reports. Some of these photographs 
are unrelated to project management tasks or are 
captured under poor conditions. For instance, some are 
taken from afar, or with the glare of the sun. More 
importantly, some are captured without any overlay, 
which is needed for good image-based modeling.  
The second study uses the results of the first study and 
the images captured by the first author for the purpose 
of progress monitoring. This case study is conducted to 
investigate the quality of the point cloud model, with the 
aim of using the results for enhanced image capture and, 
consequently, improved IBM. In this section, a 
collection of images for a recent project is used to 
establish an as-built point cloud model of the 
construction scene. In this case, the photographs 
captured the scenes related to project management tasks 

only. Moreover, the photographer tried to capture 
photographs with a good overlay to achieve proper 
image-based modeling. Figure 3 shows the development 
of the models for these studies. 
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Figure 3. Development of the models for the two case 
studies 
 

4.1 Case study 1 
 

     The project is the construction of a gas compressor 
station. The construction site covers approximately 20 
ha, and the image collection includes approximately 
3000 photos. A cutoff date is chosen, and images 
captured after this date are eliminated, resulting in a 
final number of 399 remaining images. These images 
were captured with different resolutions and under 
different illumination conditions. Furthermore, different 
staff members captured these images using different 
digital cameras.  
     Many of the images in the collection are not relevant 
to project management tasks. Moreover, the 
photographer was not able to choose the appropriate 
frame to capture the photographs of the scenes related to 
project management tasks. Figures 4 and 5 show 
examples of faulty photography. Figure 4 shows an 
image with the minimum number of SIFT features in 
the collection, with the location visualized by red points.         
This photograph is captured far from the structure and 
under the glare of the sun, which caused a significant 
decrease in the number of SIFT features. Figure 5 shows 
an image sample with an inappropriate frame of 
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photography. This image has the maximum number of 
SIFT features in the collection, but many of these 
features (which can be seen on the ground) are not used 
for image-based modeling for the purpose of project 
progress monitoring.   
 

 
 
Figure 4. The image in the collection with minimum 
number of SIFT features location visualized by red 
points 
 

 
 
Figure 5. The image with maximum number of SIFT 
features location visualized by red points 
 
     This paper uses VisualSfM software [10], [11] to 
solve the correspondence problem and bundle 
adjustment for the 3D sparse modeling of a construction 
scene. The first step is feature detection, which is 
implemented using the SIFT algorithm [12]. Figure 6 
shows the number of SIFT features determined by the 
SIFT detector [12] for each image. As can be seen, the 
tolerance between the maximum and minimum numbers 
of features is 15783.  The average number of detected 
SIFT features is 5904. Table 1 shows the maximum and 
minimum values of SIFT features. These values and the 

domain between them show that the scenes chosen by 
different photographers are vastly different, 
disproportional, and lack rational dependency. 
 
 
 

 

 
Figure 6. Number of SIFT features in 399 images of 
various sizes 

 
Table 1. Maximum and minimum numbers of SIFT 

features in the image collection (case study1) 
Image no. No. of SIFT features 

28 462 (min) 
264 16245 (max) 

 
     The images and their feature matrix are then 
imported to VisualSfM [10],[11], which computes for 
the missing matches. Figure 7 shows one image pair 
from the collection with the correspondence matches 
which are shown by solid lines. 

 
 

Figure 7. Pair of images with 831 matches 
 

Finally, the appropriate initial image pair is manually 
selected, after which the 3D reconstruction of the 
construction scene is established by running the SfM 
procedure. The reconstructed sparse scene with the 
estimated camera location is shown in Figure 8. 
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Figure 8. Sparse 3D model reconstructed from 99 
images with camera frusta 
 
     The reconstructed scene, shown in the Figure 9, has 
relative coordination, such that the absolute coordinates 
of these points can be measured using SfM_Georef 
v.2.3 [13] by defining coordination points (X,Y,Z) for at 
least three points. This transformed model is then 
overlaid on the station plan shown in Figure 10. 
According to Figure 10, the reconstructed scene covers 
only a small area of the sites, although the photo 
collection includes a scene representing the entire 
construction site. The recall characteristic (portion of 
the number of images used to number of all images) for 
this photo collection is 0.25, a value that is lower than 
that obtained by previous studies conducted by 
Golparvar-Fard et al. (2011) [3]. The low quality of this 
3D sparse model can be attributed to the small number 
of images relative to the large area of the construction 
site (20 hectares) for the gas compressor station. In 
addition, failure to overlay the images properly hinders 
the establishment of a good image-based model. Figure 
4 and Figure 5 show that some images have been 
captured in poor conditions (e.g., with the glare of the 
sun) or from a far distance or with a poor selection of 
frame, resulting in a small number of SIFT features or a 
huge amount that is not relevant to the project 
management scope. As a result, few correspondence 
matches are obtained, thus leading to a low-quality 3D 
sparse model. 
 
 

 
 
Figure 9. Two images from the photo collection (Up)-
point cloud model (down) 
  

 

 
Figure 10. Plan of the gas compressor station overlaid 
by 375,273 reconstructed points  
 

4.2 Case study 2 
 

     After performing Case 1 and confirming the low 
quality of the 3D point cloud model (recall=0.25), the 
construction site used for other project is the same as 
that used in Case 1 is divided into a large number of 
small areas. For example, industrial projects, such as 
gas compressor stations, involve various building and 
work packages (e.g., buildings, piping area and air 
coolers). In Case 2, we focus on one of the buildings 
(control building) with the size of 17 m x 40. A total of 
118 photographs are captured in 6 min, and the 
conditions under which these images have been 
captured are shown in Table 2. These images have been 
captured for IBM with the aim of a proper overlay 
between images, which is in contrast to the randomly 
captured Case 1 images. According to McCoy et al. 
(2012), the images were captured approximately 9 m 
from the building to obtain good results for IBM [14]. 
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     Figure 11 shows the number of SIFT features for all 
118 photos. According to Figure 11, the tolerance 
between the maximum and minimum numbers of 
features is 10752 which is less than the tolerance 
between the maximum and minimum numbers of SIFT 
features in the Case 1. This condition indicates that the 
method used to capture the scenes is the key factor for 
creating an enhanced point cloud model. If we use a 
larger number of photographs in Case 1, an improved 
model can be obtained, and recall can be increased.    
However, the process time required to identify features 
and solve the correspondence problem is increased. The 
average number of detected SIFT features is 12457, 
considerably higher than the average number in the 
Case 1. This finding indicates that in Case 2, we have 
more features on average, such that we expect to have 
increased correspondence among all photos in the 
collection and, ultimately, an improved point cloud 
model. The values listed in Table 3 show the maximum 
and minimum numbers of SIFT features. Figure 12, 13 
show these images with the visualized SIFT feature 
location. 
 

 

Figure 11. Number of SIFT features on 118 images a 
size of 1613 x 1210. Images are reduced to 35% of the 
original. 

 
Table 2. Characteristics of the captured images 

Photography Characteristic 
Camera model Nikon Coolpix P510 

Number of captured photos 118 
Image resolution(pixel) 4608 x 3456 
Photography duration 6 minutes 

Lighting condition Sunny 
 

Table 3. Maximum and minimum numbers of SIFT 
features in the image collection (Case study 2) 

Image no. No. of SIFT features 
1 6645 (min) 

264 17397 (max) 

 

 

Figure 12. The image in the collection with minimum 
number of SIFT features location visualized by red 
points 
 

 
 
Figure 13. The image in the collection with maximum 
number of SIFT features location visualized by red 
points 

 
     Figure 14 shows the reconstructed point cloud model 
with a reconstructed camera denoted by 100 frusta. 
Figure 15 shows the 3D sparse model in dense form, as 
determined by the CMVS/PMVS module in VisualSfM 
software [10],[11]. 
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Figure 14. Point cloud model reconstructed from 100 
images with camera frusta 

 

 

 
Figure 15. 3D model reconstructed from 100 images  

 

5 Conclusion 
 
     As-built progress data collection is among the most 
challenging tasks in progress monitoring. However, 
daily construction site photographs can be used as a 
robust source of as-built progress data. This paper 
develops two case studies, and an as-built point cloud 
model is created for both cases. The results of the first 
study are used to improve the second case. The results 
of the 3D point cloud model in both cases are then 
compared, from which we have drawn several 
conclusions.  
     First, a group of images in good condition and with 
proper overlaying taken from only one view of the site 
or a group of images sporadically taken from various 
parts of the construction sites without proper overlaying 
or with faults during capturing. Such faults include the 

glare of the sun or capturing a scene that is unrelated to 
the project management task can be used to reconstruct 
only a small area of a large construction site. Therefore, 
the sparse reconstructed model which is resulted from 
Case study 1 uses only 25% of the images (Recall=0.25). 
The model can show only a particular view despite the 
existence of images taken from another view. Therefore, 
Case 1 (Recall=0.25) exhibited lower recall than Case 2 
(Recall=0.85). 
     Second, in such a large industrial project (site area is 
approximately 20 ha), some parts of the site in which 
photographs are captured should be divided into smaller 
parts so that images can be captured more accurately. 
For example, every building or piping area must be 
considered separately. Therefore, the site is divided into 
small areas in Case 2. In these areas, photographs are 
taken from one of the buildings included in the project 
considered in Case 1. The recall characteristic in the 
Case 2 is 0.85, a value that is in a good agreement with 
other reported results obtained by previous studies 
conducted by Golparvar-Fard et al. (2011) [3].   
     Table 4 summarizes the results. The results are 
benchmarked on a computer with 2.4 GHz Intel® Core 
i5 CPU, 2.00 GB of RAM, and a Windows 64-bit 
platform. According to the results shown in Table 4, 
changing the strategy of capturing construction site 
photographs in case 2 increases the recall considerably. 
The average number of detected features in case 2 also 
increases considerably. Although the collection of 
images in both cases are not similar and are from two 
different projects, the higher number of features means 
that the proper image based model we expect that the 
results show this expectation. 
 

Table 4 Experimental data 
 Case study 1 Case study 2 

Total # of images 399 118 
# of used 99 100 

# of points recovered 375,273 74,938 
Recall(#of used/Total) 0.25 0.85 

Average number of  
detected features 5904 12457 

Computation time 375  min 210 min 
 
     Finally, the authors do not refute the capability of the 
computer vision algorithm to establish 3D point cloud 
models for visualizing as-built progress data from 
unordered construction site photographs. However, we 
need to capture numerous photographs, all with good 
overlaying, when using this method. This condition is 
impossible for huge construction sites. Even if such goal 
is possible, computation time will be extended by up to 
more than a day, in some cases. Therefore, the authors 
strongly suggest the division of huge construction sites 
to smaller parts. Then, 3D point cloud models can be 
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constructed and visualized separately for every working 
package.  
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