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Abstract – 

Classification of lidar data to ground and non-

ground points is important for accurate topography 

mapping and reliable estimation of slope, volume and 

buildings’ geometry over urban areas. Manual or 

semi-automatic classification provides relatively good 

results, however, automatic classification in complex 

areas with diverse object sizes is still challenging. 

This research aims to propose two novel algorithms 

based on Getis-Ord Gi* (or Gi*  for short) and Local 

Moran’s I (LMI) statistics to classify a lidar point 

cloud into a set of points representing ground and 

another set of points reflected from non-ground e.g. 

buildings and vegetation. The 

 Two statistics, Gi* and LMI, have been widely used 

in cluster analysis to identify clustered features of 

high z-scores and low z-scores. Based on the two 

statistics, we proposed two classification algorithms 

that allow varying window sizes e.g. 100 m, 150 m and 

200 m, and applied the algorithms to the lidar data in 

order to obtain optimal classification results. The 

results show that the Gi*-based algorithm decreases 

omission errors but increases commission errors 

when compared to the LMI-based approach. Overall 

the 100-m window size outperforms than the other 

window sizes in terms of feature extraction in slant 

areas, whereas the 150-m window size provides 

slightly better results in a complex scene of high-rise 

buildings and dense vegetation, and the 200-m 

window size is more efficient if large buildings are 

present in the study area. This feasibility study 

indicates that autocorrelation statistics such as Gi* 

and LMI can be effectively used to classify a lidar 

point cloud.  
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1 Introduction 

A Digital Elevation Model (DEM) is a grid containing 

elevation information of ground which can be derived 

from lidar point clouds. The DEM can be used for 

topography mapping and extraction of non-ground points 

including man-made and natural objects such as buildings 

and trees. Light detection and ranging (lidar) is a proven 

technology for generating highly accurate Digital 

Elevation Models (DEMs). However, Pingel et al. [1] 

reported that terrain classification is a challenging 

problem for DEM production since classification errors, 

commission errors in particular, are always inevitable.  

Although conventional filtering algorithms e.g. 

morphological filters for classification in general areas 

are performing well, accurate classification of lidar point 

clouds in complex urban scenes including large and small 

objects with diverse elevation [2-4] is challenging. 

Classification results often depend on the assumptions 

made to the neighbours of each lidar point [5]. One of the 

assumptions is that the points representing an artificial 

object are clustered with elevations above the mean value 

of the neighbours, and the points representing ground are 

also clustered but have elevations below the mean value 

[6]. This assumption can be formulated as a criterion for 

lidar data classification by utilising some spatial 

autocorrelation statistics. For example, Getis and Ord [7] 

claimed that using Moran’s I (MI) in conjunction with the 

G statistic would improve the understanding of a given 

spatial data set. Hence this study aims to apply two local 

statistics, namely, Local Moran’s I (LMI) and Getis-Ord 

Gi*  (or Gi*  for short), for effective classifications of a 

lidar point cloud into points representing ground and 

points reflected from non-ground such as buildings and 

vegetation. 

Previously, MI has been applied to images as a texture 

measurement tool for object classification [8-11]. Su et 

al. [10] claimed that a higher accuracy for object 

classification is achieved by applying MI, compared to 

other spectral and textural measurement methods. They 

achieved 87% of Cohen’s kappa index as an accuracy 

indicator of the MI-based classification. However, the 

calculation of MI for lidar data is challenging because of 
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the high point density. On the other hand, LMI is one of 

the spatial autocorrelation statistics that Roggero [12] 

utilised for deriving information from spectral images. 

The potential of LMI comes from the nature of its spatial 

autocorrelation functionality that compares a local 

variation with the global variation [12, p. 58]. In this 

paper, a local variation of elevation is compared with the 

overall variance of elevation in a pre-defined window. 

The Global Moran’s I (GMI) is defined by [13] as 

follows:  

𝐼 =
𝑁∑ ∑ 𝑊𝑖,𝑗𝑍𝑖𝑍𝑗𝑗𝑖

∑ 𝑍𝑖
2

𝑖
(1) 

∑ ∑ 𝑊𝑖,𝑗𝑗𝑖 = 1 (2) 

where 𝑍𝑖and 𝑍𝑗 refer to the deviation of attribute values

(i.e. elevation information of the lidar points in this 

study) of features i and j from the mean value within the 

distance threshold of a neighborhood and N is the total 

number of features within the neighborhood. In addition, 

𝑊𝑖,𝑗’s are spatial weights between the pairs i and j e.g.

inversed distance weights between the pairs. While GMI 

as a spatial autocorrelation shows the overall similarities 

or dissimilarities, LMI is known as a more effective 

spatial autocorrelation indicator which can be used for a 

microscopic analysis of GMI. Indeed, LMI exhibits the 

contribution from each observation to the global indicator 

[13]. From Equation (1), Anselin [13] defined LMI as:  

𝐼𝑖 = 𝑍𝑖 ∑ 𝑊𝑖,𝑗𝑗 𝑍𝑗      (3) 

where the weight was conveniently allocated as the 

inverse distance between the features i and j.  

A positive LMI indicates that the lidar point belongs to 

a cluster of similar values, and a negative LMI indicates 

that the lidar point is dissimilar to the neighbours. As 

LMI depends strongly on the neighbours, it is a relative 

measure [14] and therefore cannot be regarded as a z-

score for lidar point classification. According to [15], the 

z-score of LMI is defined as follows.  

𝑧𝑖 =
𝐼𝑖−𝐸[𝐼]

√𝑉[𝐼𝑖]
 (4) 

where E and V represent the expected mean and variance, 

respectively. 

All classification algorithms suffer from two types of 

errors: Type 1 errors (i.e. omission errors), and Type 2 

errors (i.e. commission errors) [5]. In this paper we argue 

that, when it comes to ground-point classification, 

omission errors are not so critical for deriving a DEM as 

long as commission errors remain small because the 

DEM is interpolated from the correctly classified ground 

points. Consequently, omission errors for non-ground 

points can be less important in an initial classification 

step because the non-ground points can be reclassified by 

applying the DEM. For this reason, the main aim of this 

study is to minimize commission errors, even though 

omission errors will be assessed as well. Gi* can be 

defined as [16]: 

𝐺𝑖
∗ =

∑ 𝑊𝑖,𝑗𝑍𝑗−𝐸[𝑍]𝑗

√𝑉[𝑍]
𝑁∑ 𝑊𝑖,𝑗

2 −1𝑗

𝑁−1

 .    (5) 

The meaning of a significance level of Gi* and LMI 

was explained by Getis and Ord [7]. That is, clusters of 

high or low values are obtained by choosing a significant 

LMI z-score. In general, a significant z-score is chosen to 

be higher than 2.58 or lower than -2.58 where the 

corresponding p-value is smaller than 0.05. As for the 

significance level of z-scores, Ebdon stated that “The 

probability that the null hypothesis is correct is referred 

as the significance level. The null hypothesis can be 

rejected if this probability is acceptably low. Significance 

levels of 0.05 or even 0.1 are possibly adequate in many 

geographical applications” [17, p.16]. 

In this paper, two significant levels of the LMI z-scores 

and Gi* values are used for lidar point classification 

because it is observed that significant positive values are 

obtained in the clusters of high-elevation lidar points and 

significant negative values are found in the clusters of 

low-elevation lidar points. The significance level of the 

LMI z-scores is ±2.58, that is, ground points are supposed 

to have z-scores less than -2.58, and non-ground points 

have z-scores greater than 2.58. However, the 

significance level of Gi*  is chosen differently in order to 

improve the classification results, that is, less than -1.65 

for ground, or greater than 1.65 for non-ground. This 

paper presents and tests the two algorithms based on the 

statistics of Gi* and LMI, then discusses advantages and 

disadvantages of the two algorithms by investigating 

omission errors and commission errors. 

2 Methodology 

In this study we use the lidar data set over the 

University of New South Wales (UNSW) with 20-cm 

horizontal accuracy and 12-cm vertical accuracy. The 

study extent is illustrated in Figure 1.  

Figure 1. Study extent and the vertical profile along the 

line segment between Point A and Point B.  

As can be seen in Figure 1, the study extent consists of 

flat and slant areas, small and large objects with various 
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elevation values (see the vertical profile along the line 

segment between Point A and Point B in Figure 1). The 

study area contains 2 challenging areas for object 

classification: a steep slope area and a complex area. The 

complex area includes high-rise buildings, large-size 

buildings, and tall trees. In this study two algorithms are 

proposed: one based on LMI and the other based on Gi*. 

With the two algorithms, three different window sizes of 

100 m, 150 m and 200 m are tested. For each window 

size, ground and non-ground points are classified by 

applying the two algorithms. The Gi* -based algorithm is 

defined as: 

1. Set a window size. For each window,

2. Calculate Gi*  with a pre-defined neighbourhood

and weights

3. Assign the clusters of low values (Gi*   < -1.65

and p-value < 0.05) to ground

4. Assign the clusters of high values (Gi*   > 1.65 and

p-value < 0.05) to non-ground

5. Verify the results against the reference.

The LMI-based algorithm is similar to the Gi* -based 

except that the LMI z-score is used instead of Gi*, and the 

significance level is ±2.58 instead of ±1.65. Test results 

of ground and non-ground classification using the 

proposed algorithms will be compared to the reference 

ground and the reference non-ground, respectively. Two 

datasets of ground and non-ground shown in Figures 2a 

and 2b, respectively, are the classification results from a 

commercial software package known as Terrasolid, 

which can be used as a reference for comparison 

purposes as they are independently obtained. Low 

vegetation is outside our study scope, hence points of less 

than 1-m height are removed from non-ground data. Low 

vegetation thresholds of 0.5, 1, 1.5, 2 and 2.5 m were 

tested by Estornell et al. [18] who concluded that the 

larger the thresholds they chose, the smaller error levels 

they obtained. In our case, any thresholds greater than 1 

m are not appropriate because substantial vegetation of 1-

m height or higher were observed in the study area.  

     (a) 

     (b) 

Figure  2. Oblique view of reference points: (a) ground, 

(b) non-ground. 

3    Validation 

For validation of the results, two types of errors are 

calculated: Type 1 errors and Type 2 errors. Type 1 

occurs when the algorithm “rejects the null hypothesis 

even though it is true” and Type 2 occurs when the 

algorithm “fails to reject the null hypothesis even though 

it is false” [19, p. 147]. Our null hypothesis for lidar data 

classification is that ground points have low z-scores and 

non-ground points have high z-scores. Therefore, Type 1 

in ground classification occurs when the lidar point is 

actually reflected from ground but is not classified as a 

ground point, hence it belongs to an omission error. Type 

2 in ground classification occurs when the lidar point is 

reflected from non-ground e.g. a building or a tree but is 

classified as a ground point i.e. it can be categorized as a 

commission error. Omission errors and commission 

errors in non-ground classification can be defined 

similarly. 

4    Results 

One of the objectives of this paper is to show that, by 

applying Gi* and MI, clusters of low z-scores can be 

identified from ground points and clusters of high z-

scores can be identified from non-ground points. Figures 

3a and 3b show the extracted ground and non-ground 

points from the LMI-based algorithm using window sizes 

of 100 m, 150 m and 200 m. Comparing reference ground 

points (Figure 2a) and ground points extracted by the 

LMI-based algorithm (Figure 3a), it shows that a slant 

area is the subject of commission error (i.e. non-ground 

points are classified as ground points). On the other hand, 

low vegetation and man-made objects are the main areas 

of omission error in non-ground points. 

 (a) 

          (b) 
Figure 3. Combined results of 100-m, 150-m and 200-m 

window sizes: (a) ground and (b) non-ground, using the 

LMI-based algorithm, 

Figures 4a and 4b show the all extracted ground and 
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non-ground points with 100-m, 150-m and 200-m 

window sizes using the Gi*-based algorithm. 

Comparison of the overall results from the LMI-based 

algorithm and the Gi*-based algorithm with reference 

ground and non-ground points indicates that the level of 

commission error increases while the level of omission 

error decreases. This is confirmed if we compare Tables 

1 and 2.   

 

 
(a) 

 
(b) 

Figure 4. Combined results of 100-m, 150-m and 200-m 

window sizes: (a) ground and (b) non-ground, using the 

Gi* -based algorithm  

 

The results from the LMI-based algorithm and the Gi* 

-based algorithm are demonstrated in Tables 1 and 2. 

Ground classification is improved by Gi* regardless of 

the window sizes. However, improvement in non-ground 

classification is not so obvious. Omission errors in 

ground classification decrease from the LMI-based 25-

29% to the Gi*-based 16-20% (see Tables 1 and 2). On 

the other hand omission errors in non-ground 

classification decrease slightly from the LMI-based 28-

35% to the Gi*-based 23-31%. Therefore it can be 

concluded that overall omission errors are higher than 

expected. This problem will be discussed in Section 5. 

Commission errors in ground classification increase from 

the LMI-based 1-7% to the Gi* -based 10-12%, and 

commission errors in non-ground classification also 

increase from the LMI-based 2-7% to the Gi* -based 7-

10%. Hence it is obvious that the LMI-based algorithm 

provides a more reliable result in terms of commission 

errors. From Tables 1 and 2, it can be seen that the least 

commission error in ground classification is obtained by 

using the window size of 100 m. In addition, the least 

commission error in non-ground classification is obtained 

by the window size of 150 m if the LMI-based is used 

(Table 1), and by 100 m in case of the Gi* -based (Table 

2). 

 

Table 1. Level of errors in rasters of ground and non-

ground points. 

Window 

Sizes 

(m) 

LMI 

Omission Errors (%) Commission Errors 

(%) 

GRD* NGRD** GRD NGRD 

100 29 28 1 3 

150 25 31 4.8 2 

200 28 35 7.4 7 

*GRD: Ground Classification, **NGRD: Non-ground 

Classification 

 

 

Table 2. Table 2.Level of errors in rasters of ground and 

non-ground points 

Window 

Sizes 

(m) 

Gi* 

Omission Errors (%) Commission Errors 

(%) 

GRD* NGRD** GRD NGRD 

100 16 23 10 7.4 

150 16 28 10 9.2 

200 20 31 12 10 

 

 

A significant reduction of omission errors in ground 

classification by the Gi* based algorithm can be realized 

by comparing the ground points extracted from the two 

proposed methods. The results show that Gi* with the 

100-m window size provides the least omission error and 

this is also confirmed by the error calculation given in 

Table 2. One of the areas subject to a high level of 

omission errors in non-ground classification is a slant 

area. From a visual inspection, it is likely that the least 

omission error by LMI seems to be obtained by the 150-

m window size, however, Table 1 indicates otherwise i.e. 

the least error comes actually from the 100-m window 

size. From another visual inspection, it is seen that the 

omitted points in the 200-m window size are clustered in 

the slant and complex areas but the omitted points in the 

150-m window size are dispersed.  

Tables 1and 2 represent that the commission error in 

non-ground classification is overall lower than that in 

ground classification, except the commission error in 

ground classification by LMI with the 100-m window size 

is the lowest. From the results, it can be concluded that the 

problematic areas of high commission errors are slant 

areas and object boundaries. Visual inspections of the 

errors demonstrate that the commission errors by both 

methods are lower if the 100-m window size is used. An 

interesting result is that the commission errors in non-

ground classification are not affected much by the slope. 

In addition, the omission error for ground classification 

decreases to 23% for the LMI-based algorithm and to 15% 

for the Gi*-based algorithm when we combine (see Figure 

3) the ground points extracted by 100-m, 150-m and 200-

m window sizes. While the omission error reduces by 

combining the results from different window sizes, the 

commission error increases. 
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All in all, it is observed that, in the cluster of low 

values (Gi*   < -1.65 or |𝑧𝑖| < -2.58 and p-value < 0.05),

93% of the points are ground points when the window 

size of 100 m is used. Larger windows tend to decrease 

this rate to 82.5% (for the 150-m window size) and 

75.5% (for the 200-m window size). On the other hand, 

in the cluster of high values (Gi* > +1.65 or |𝑧𝑖| < -2.58

and p-value < 0.05), a high portion of the points are non-

ground points: 99.9% for the window sizes of 200 m and 

150 m, and 99.8% for the 100-m window size. Therefore 

it is reasonable to conclude that the window size of 100 

m outperforms the other choices and the corresponding 

commission error is very small. However, it should be 

noted that a substantial amount of points still do not 

belong to either the low LMI clusters or the high LMI 

clusters, hence the omission error can increase.  

5   Discussion 

The main aim of this research was to apply LMI and Gi* 

to the lidar data classification and find one that 

outperforms the other. The results, however, indicate that 

the two algorithms are comparable to each other i.e. the 

Gi*-based algorithm produces lower omission errors but 

higher commission errors than the LMI-based does. In 

addition, it is observed that most of the commission errors 

in ground classification occurred in slope areas. This 

problem is also reported by Meng et al. [20] that slant 

areas are challenging for cluster-based classifiers. 

Therefore, a slope-based algorithm is suggested to reduce 

the commission errors.  

It should be noted that the results of the proposed 

algorithms depend on window sizes and neighbours per 

lidar point (i.e. the lidar points within the given window 

size). In that sense, the study area for this research is very 

challenging because it contains high-rise buildings, large-

area buildings, complex scenes and slant areas. Therefore 

the omission errors in ground classification were higher 

than expected. This problem can be minor if an accurate 

DEM can be generated from the classified ground points, 

provided small commission errors. That is, the LMI-based 

algorithm can be applied to the DEM generation, and then 

the Gi*-based algorithm can be applied to the non-ground 

classification.  

It is noticed that the level of error is significantly 

influenced by the method of calculation. For example, 

point-wise error calculation decreases considerably when 

compared to rasterisation-based calculation. Moreover, it 

is shown that the low vegetation threshold for DEM 

generation affects both Type I and II errors [18]. Future 

work is to determine an optimal threshold to lower the 

level of omission and commission errors. 

6   Concluding Remarks 

It was shown in this paper that LMI and Gi* can be 

used effectively as the automatic classifiers of lidar points 

to ground and non-ground points. The test results from the 

two algorithms exhibit that each has advantages and 

disadvantages. The LMI-based algorithm provides lower-

level commission errors, and the Gi* based algorithm 

produces lower-level omission errors. Therefore, the LMI-

based algorithm is suitable for the DEM generation, and 

the Gi*-based algorithm is preferable for the feature 

extraction.  
As for ground classification, slant areas are identified 

as the main source of the commission errors from both 

classifiers, and of the omission errors from the LMI-based 

classifier, regardless of the window sizes. However, the 

slant areas do not cause significant commission errors in 

non-ground classification. It is also observed that the 

commission errors in non-ground classification are 

dispersed, whereas the commission errors in ground 

classification are clustered. In plain areas, the commission 

errors occurred mainly on the boundaries of buildings and 

vegetation. It is suggested that the proposed algorithms 

with a moving window or an ad-hoc window size can 

reduce such commission errors. 
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