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Abstract -
Motor vehicles’ rate models for predicting emissions of

oxides of nitrogen (NOX ) are insensitive to their modes of
operation such as cruise, acceleration, deceleration and idle,
because these models are usually based on the average trip
speed. This study demonstrates the feasibility of using other
variables such as vehicle speed, acceleration, load, power
and ambient temperature to predict NOX emissions. The
NOX emissions need to be accurately estimated to ensure
that air quality plans are designed and implemented appro-
priately. For this, we propose to use the non-parametric mul-
tivariate adaptive regression splines (MARS) to model NOX

emission of vehicle in accordance with on-board measure-
ments and also the chassis dynamometer testing. The MARS
methodology is then applied to estimate the NOX emissions.
The model approach provides more reliable results of the
estimation and offers better predictions of NOX emissions.
The results therefore suggest that the MARS methodology is
a useful and fairly accurate tool for predicting NOX emis-
sion that may be adopted by regulatory agencies in under-
standing the effect of vehicle operation and NOX emissions.
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1 Introduction
Vehicular emissions can bring serious impacts on the

air quality, and have thus received increasing research
concerns [1]. Outdoor air pollution is estimated to cause
1.3 million annual deaths worldwide [2]. Road transport
often appears as the single most important source of ur-
ban pollutant emissions in source apportionment studies
[3]. In the coming decades, road transport is likely to re-
main a large contributor to air pollution, especially in ur-
ban areas. For this reason, major efforts are being made
for the reduction of polluting emissions from road trans-
port. These include new powertrains and vehicle technol-

ogy improvements, fuel refinements, optimization of ur-
ban traffic management and the implementation of tighter
emission standards [4]. In recent decades, many emission
models have been developed. Afotel et al. [5] proposed
regression models to estimate light-duty gasoline vehicle
emissions of CO2 based on vehicle velocity, acceleration,
deceleration, power demand and time of the day. How-
ever, the model did not include NOX emissions. Oduro et
al. [6] proposed multiple regression models with instan-
taneous speed and acceleration as a predictor variables to
estimate vehicular emissions of CO2 but not NOX . Tóth-
Nagy et al. [7] proposed an artificial neural network-
based model for predicting emissions of CO and NOX

from heavy-duty diesel conventional and hybrid vehicles.
The methodology sounds promising, but applied to heavy-
duty vehicles only, and the fit function contains many de-
tails which make the model difficult to understand. Emis-
sion model based on instantaneous vehicle power, which
is computed on total resistance force, vehicle mass, accel-
eration, velocity, and drive-line efficiency, was developed
by Rakha et al. [8]. However, the model applies for fuel
consumption and CO2 emission factor and does not in-
clude the NOX emission.

A key gap in our understanding of these emissions is
the effect of changes in vehicle speed, power and load on
average emission rates for the on-road vehicle fleet. Vehi-
cle power, load and vehicle speed are closely linked to fuel
consumption and pollutant emission rates [9]. Improved
understanding of the link between operating conditions
and emissions could develop accurate models for predic-
tion of vehicle emissions. The quality of the application of
any road vehicle emission model largely depends on the
representativeness of the emission factor such as carbon
dioxide (CO2), carbon monoxide (CO), nitrogen oxides
(NOX ), volatile organic compounds (VOCs) and particu-
late matter (PM). This refers to the accuracy with which
the emission factor can describe the actual emission level
of a particular vehicle type and driving conditions applied
to it.

This work focuses on using the MARS methodology to
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improve the prediction accuracy of chassis dynamometer
and on-board measurement systems. The dynamometer
testing is one of the three typical vehicle tailpipe emission
measurments methods, where emissions from vehicles are
measured under laboratory conditions during a driving cy-
cle to simulate vehicle road operations [10]. The real
world on-board emissions measurement is widely recog-
nized as a desirable approach for quantifying emissions
from vehicles since data are collected under real-world
conditions at any location travelled by the vehicle [11].
Variability in vehicle emissions as a result of changes in
facility (roadway) characteristics, vehicle location, vehi-
cle operation, driver, or other factors can be represented
and analysed more reliably than with the other methods
[12]. This is because measurements are obtained during
real world driving, eliminating the concern about non rep-
resentativeness that is often an issue with dynamometer
testing, and at any location, eliminating the setting re-
strictions inherent in remote sensing. Though this mea-
suring technique seems to be more promising, the need to
improve the prediction accuracy of emission factor espe-
cially with NOX emissions by using effective statistical
techniques is important in any emission inventory.

A number of the models discussed above either do not
estimate NOX emissions, or are so sophisticated as to re-
quire excessive data inputs. There needs to be a balance
between the accuracy and detail of a model for its ease of
application. Therefore, to enhance the prediction perfor-
mance for the NOX emissions, the MARS modelling ap-
proach is proposed in this paper. This, we aim to estimate,
with high accuracy, the NOX emissions. The effective-
ness of the model is then determined by dividing the data
into two parts, one for building the model (learning) and
the other for validating the model (testing). The results
are verified by comparing the real data and the MARS
predicted values.

2 Methodology

2.1 Chassis Dynamometer Data Collection

This study uses secondary data corrected by the New
South Wales (NSW) Road and Maritime Service (RMS),
Department of Vehicle Emission, Compliance Technol-
ogy Operation. The data were collected on the second
by second basis and four vehicles were used for the test.
The test vehicles include Toyota, Ford, Holden and Nissan
from 2007 and 2008 model year with an engine displace-
ment ranging from 1.8L to 2.0L. A chassis dynamometer
set-up in the laboratory simulates the resistive power im-
posed on the wheels of a vehicle, as shown in Figure 1.
It consists of a dynamometer that is coupled to drive lines
that are directly connected to the wheel hubs of the vehi-
cle, or to a set of rollers upon which the vehicle is placed,

and which can be adjusted to simulate driving resistance.
During testing, the vehicle is tied down so that it remains
stationary as a driver operates it according to a predeter-
mined time-speed profile and gear change pattern shown
on a monitor. A driver operates the vehicle to match the
speed required at the different stages of the driving cycle
[13]. Experienced drivers are able to closely match the
established speed profile.
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Figure 1. Schematic representation of a chassis dy-
namometer testing.
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Figure 2. Schematic representation of on-board
measurement.

2.2 On-Board Data Collection

Data from on-board instruments, can facilitate devel-
opment of micro-scale emission models [10]. Compared
with conventional dynamometer testing under carefully
controlled conditions, on-road data reflects real driving
situations. Accordingly, second-by-second emissions data
were collected using a Horiba On-Board Measurement
System (OBS-2000), as shown in Figure 2, with the same
testing vehicles as with the dynamometer test cycle. The
equipment is composed of two on-board gas analysers,
a laptop computer equipped with data logger software, a
power supply unit, a tailpipe attachment and other acces-
sories. The OBS-2000 collects second-by-second mea-
surements of nitrogen oxides NOX , hydrocarbons (HC),
carbon monoxide (CO), carbon dioxide (CO2), exhaust
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temperature, exhaust pressure, and vehicle position (via a
global positioning system, or GPS). Although the instru-
ment measured other pollutants, the focus of this work
was to build a model for NOX emissions. For the mea-
surement scale used, accuracy for the NOX emission mea-
surements, reported in percentage, was ±0.3%. A two
second lag in NOX emission measurement was accounted
for in the data spreadsheets. NOX sensor calibration was
carried out throughout the data collection period. To en-
sure consistently smooth and good data collection without
frequent interruptions due to any possible unit malfunc-
tion, inability of batteries to stay charged and calibration
issues throughout the period, proper maintenance and di-
agnostic procedures were strictly followed.

3 Multivariate Adaptive Regression Splines
(MARS) Model

MARS was introduced for fitting the relationship be-
tween a set of predictors and dependent variables [14].
MARS is a multivariate, piecewise regression technique
that can be used to model complex relationship. The space
of predictors is divided into multiple knots in order to fit a
spline function between these knots ([14], [15]). The ba-
sic problem in vehicular emission modelling is how best
to determine the fundamental relationship between depen-
dent variables, and vector of predictors, such as speed,
acceleration, load, power, ambient temperature including
other factors.

The MARS algorithm searches over all possible uni-
variate hinge locations and across interactions among all
variables. It does so through the use of combinations of
variable called basis functions. The approach is anal-
ogous to the use of splines. This study aims at ex-
ploring the potential of applying the MARS methodol-
ogy to model NOX emissions using the following set
of input parameters: speed, acceleration, load, power
and ambient temperature of chassis dynamometer and
on-board emission measurements. The problem can be
stated as a multivariate regression problem. Suppose
that N pairs of input-output parameters are available:
{yi, x1i, · · ·xmi}N1 , where the depend variable yi, i =
1, 2 · · · , N , is the ith measure of NOX and the predic-
tor xli, i = 1, 2 · · · , N , l = 1, 2, · · · ,m, is the ith
measure of the lth parameter. We assume that the data
{yi, x1i, · · ·xm}N1 are related through the following equa-
tion

y = f(x1, · · · , xm), (x1, · · · , xm) ∈ D ⊂ Rm, (1)

where f(·) is an unknown multivariate deterministic func-
tion and D is the domain of inputs. Since the true map-
ping in (1) is not known, it is desired to have a function
f̂(x1, · · · , xm) that provides a “good” fit approximation

of the output data. The good fit between f̂(x1, · · · , xm)
and the output data is using the integrated mean square
error (MSE) estimated.

MSE =
1

N

N∑
i=1

[
yi − f̂(x1i, · · ·xmi)

]2
. (2)

To regularize the problem, that is, make it well-posed, a
restriction is imposed for the solution f̂(x1, · · · , xm) as
functions residing in the linear space:

F = f : f(·) = βo +
M∑

m=1

βmhm(·), (3)

where {hm(·)}Mm=1 is a set of basis functions and
{βm}Mm=0 are coefficients of representation. In this pa-
per, hm(·) is the splines basis function defined as:

hm(·) =
Km∏
k=1

[
sk,m · (xv(k,m) − tk,m)

]
+
, (4)

where sk,m are variables that take values ±1, v(k,m) la-
bels the predictor variables and tk,m represents estimated
values on the corresponding variables. The quantity Km

is the number of “splits” that give rise to each basis func-
tion βm. Here the subscript “+” indicates a value of zero
for negative values of the argument. The basis functions
involved in (1) are known as “hockey sticks” basis func-
tion. MARS searches over the space of all inputs and
predictors values (knots) as well as interactions between
variables. Now, given the estimated coefficients {β∗

m}M0 ,
basis functions {h∗m(·)}M0 and operation parameters de-
scribing a new measurement, the emission of the new
measurement can be predicted by taking the following
steps:
1. Segregate operation parameters including speed, ac-
celeration, power, load and ambient temperature from the
raw data.
2. Predict the emission NOX by using the approxi-
mate function f̂(·) with {β∗

m}M0 and {h∗m(·)}M0 , that is

f̂(x1i · · ·xmi)= β∗
0 +

M∑
m=1

β∗
mh

∗
m(x1i · · ·xmi),

i = 1 · · ·N , where {x1i · · ·xmi}N1 are from new mea-
surements. The basis functions, together with the model
parameters, are combined to produce the predictions
given the inputs. The general MARS model equation is
given as:

f̂(X) = β0 +
M∑

m=1

βmhm(X), (5)

where {β}m0 are the coefficients of the model that are es-
timated to yield the best fit to the data, M is the num-
ber of sub-regions or the number of basis functions in the
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model, and hm(X) is the spline basis function given in
(4). This model searches over the space of all inputs and
predictor values (referred to as “knots”) as well as the in-
teractions between variables. During this search, an in-
creasingly larger number of basis functions are added to
the model to minimize a lack-of-fit criterion. As a result
of these operations, MARS automatically determines the
most important independent variables as well as the most
significant interactions among them. From Put et al. [15],
it is noted that the search for the best predictor and knot lo-
cation is performed in an iterative process. The predictor
as well as the knot location, having the most contribution
to the model, are selected first. Also, at the end of each
iteration, the introduction of an interaction is checked for
possible model improvements.

3.1 Model selection and pruning

In general, non-parametric models are adaptive and can
exhibit a high degree of flexibility that may ultimately re-
sult in over fitting, if no measures are taken to counteract
it. The second step is the pruning step, where a “one-at-a-
time” backward deletion procedure is applied in which the
basis functions with the least contribution to the model are
eliminated. This pruning is based on a generalized cross-
validation (GCV) criterion. The GCV criterion is used to
find the overall best model from a sequence of fitted mod-
els, where a larger GCV value tends to produce a smaller
model, and vice versa. The GCV criterion is estimated
using (7) as the lack-of-fit criterion [17]:

GCV =
1

N

N∑
i=1

(
yi − f̂(Xi)

)2

[
1− C̃(M)

N

]2 , (6)

where
[
1− C̃(M)

N

]2
is a complexity function, and C̃(M)

is defined as C̃(M) = C(M) + d.M , of which C(M) is
the number of parameters being fit and d represents a cost
for each basis function optimization and is a smoothing
parameter of the procedure. The higher the cost d is, the
more basis functions will be eliminated [16].

4 Results and Discussions
Five vehicular emission predictor variables, namely,

speed (m/s), acceleration (m/s2), power (W ), temper-
ature (◦C) and load (Nm) were used with the response
variable of NOX (g/s) in an attempt to identify the rela-
tionships that vehicular emission models developers wish
to understand. To explore factors affecting vehicular
emission models, the present study provides results and

some interpretations from the MARS model. Table 1 and
2 summarize the variable selection results using MARS,
whose beta factor coefficients βm are denoted BFm . In
a MARS model, basis functions are used to predict the
effects of independent variables on NOX emission factor.
The interpretation of MARS results is similar to but not as
straight forward as that of classical linear regression mod-
els. A positive sign for the estimated beta factors for the
basis function indicates increased NOX emission, while
a negative sign indicates the opposite. The value of beta
factor implies the magnitude of effect of the basis function
(i.e., variable effect) on the NOX emission.

Table 1. List of basis functions of the MARS and
their coefficients for on-board measurements.

Beta Basis Value
factor function
BF0 0.249827
BF1 Max(0, SPEED-8.1127) –0.000142123
BF2 Max(0, SPEED-11.667) 0.000342034
BF3 Max(0, SPEED-12.5242) 0.000442178
BF4 Max(0, SPEED-16.3889) 0.0032363
BF5 Max(0, SPEED-23.8889) 0.011587
BF6 Max(0, SPEED-24.1667) 0.0439038
BF7 Max(0.95-ACCEL, 0) –0.0013075
BF8 Max(0, ACCEL-1.25) 0.0073075
BF9 Max(0, ACCEL-5.85) 0.0113075
BF10 Max(0, ACCEL-7.21) 0.0311017
BF11 Max(0, AMBT -22.12) 0.00023075
BF12 Max(0, AMBT -23.47) 0.00313022
BF13 Max(0, AMBT -24.76) 0.02113075
BF14 Max(0, LOAD -10.53) 0.01561811
BF15 Max(0, LOAD -52.34) 0.0179656
BF16 Max(0, LOAD -60.16) 0.023224571
BF17 Max(0, Power -8.98) 0.0148769
BF18 Max(0, Power -21.32) 0.01567893

For the effect of each basis function, max (0, x − t) is
equal to (x−t) when x is greater than t; otherwise the ba-
sis function is equal to zero. As shown in Table 1 and 2,
the MARS model contains 19 and 15 basis functions for
on-board and dynamometer testing respectively. The on-
board measurements and dynamometer testing have sim-
ilar interpretations. It can be observed that all the five
predictor variables play crucial roles in determining NOX

vehicle emission. From Table 1, beta factors BF1, BF2,
BF3, BF4, BF5 and BF6 account for the nonlinear ef-
fect of vehicle speed in the emission model. The effect
of speed on NOX emissions can be explained as follows.
By using the onboard measurements method, if the speed
of the vehicle is less than 8.1127 m/s or 29.2 km/h, it
has negligible effect on the NOX emission (indicated by
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BF0), but from 11.667 m/s or 42 km/h this effect is in-
creased with an increase in speed (indicated by BF2-BF5).
The emission rate can reach 0.0439 g/s when the speed is
about 24.1667 m/s or 82 km/h (indicated by BF6).

Table 2. List of basis functions of the MARS and
their coefficients for dynamometer testing.

Beta Basis Value
factor function
BF0 0.313578
BF1 Max(0, SPEED-6.428) –0.00017255
BF2 Max(0, SPEED-9.356) 0.000625
BF3 Max(0, SPEED-18.368) 0.00575
BF4 Max(0, SPEED-25.136) 0.0635
BF5 Max(0, ACCEL-1.119) 0.00943
BF6 Max(0, ACCEL-4.235) 0.0567
BF7 Max(0, ACCEL-6.243) 0.0663
BF8 Max(0, AMBT -21.54) 0.000321
BF9 Max(0, AMBT -23.15) 0.00443
BF10 Max(0, AMBT -24.62) 0.0372
BF11 Max(0, LOAD -15.67) 0.0132
BF12 Max(0, LOAD -45.67) 0.053
BF13 Max(0, Power -13.76) 0.0168
BF14 Max(0, Power -20.64) 0.0212

This expected finding is consistent with previous find-
ings in literature. From Carslaw et al. [18], it is noted
that NOX emissions rise and fall in a reverse pattern to
hydrocarbon emissions (HC). As the speed of the vehicle
increase the mixture becomes leaner with more HC’s at
high temperatures in the combustion chamber, there ap-
pear excess oxygen molecules which combine with the
nitrogen to form NOX . From Table 1, as the speed in-
creases (indicated by BF2-BF6) the total NOX emission
emitted from the tail pipe also increases.

Beta factors (BF7-BF10) on Table 1 show the nonlin-
ear effect of vehicle acceleration on the NOX which can
be described as fellows. If the vehicle acceleration is less
than 0.95m/s2, NOX emission will reduce by 0.0013075
g/s (indicated by BF7), but if the acceleration is increased
from 1.25 m/s2, to 5.85 m/s2, the NOX emission will
increase by 0.0113075 g/s (indicated by BF8 and BF9).
The NOX emission can reach more than 0.0311017 g/s
when the acceleration exceeds 7.21 m/s2. This result is
similar to that of the speed because of depressing the ac-
celerator pedal increase acceleration as well as speed si-
multaneously. The ambient temperature is also found to
influence the NOX emission as indicated by BF11, BF12
and BF13 of Table 1, the effects of ambient temperature
on NOX emission occurrence include: (1) if the ambi-
ent temperature is less than 22.12◦C then it has no ef-
fect on vehicle NOX emission (indicated by BF11); (2)

if the ambient temperature is greater than 22.12◦C but
less 23.47◦C, NOX emission will increase by 0.00023075
g/s for 1◦C increase of ambient temperature (indicated
by BF11 and BF12); (3) if the ambient temperature is
greater than 23.47◦C but less than 24.76◦C, the vehicle
NOX emission will increase by 0.00313022 g/s for 1◦C
increase in ambient temperature (indicated by BF12 and
BF13) and (4) if the ambient temperature is greater than
24.76◦C the NOX emission will increase by 0.02113075
g/s for 1◦C increase in ambient temperature (indicated
by BF13). The higher ambient temperature resulting in
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Figure 3. MARS model for On-Board System.

0 2 4 6 8 10 12 14
5

6

7

8

9

10

11

12

13x 10
-4

Basis Functions

M
ea

n 
S

qu
ar

e 
E

rr
or

 

 

Test
Learn

GCV Test MSE

Figure 4. MARS model for Chassis Dynamometer
System.

more vehicle NOX emission is expected, because NOX

is formed in a larger quantity in the cylinder as the com-
bustion temperature exceeds the required limit. This find-
ing is also consistent with previous explanation. In addi-
tion, temperatures greater than 24.76◦C (B13) will signif-
icantly produce NOX emissions. As indicated by BF14,
BF15 and BF16, the MARS results show the effect of
load: (1) if the load is less than 10.53 Nm, then it has
no effect on NOX emission (indicated by BF14); (2) if
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the load is greater than 10.53 Nm but less 52.34 Nm,
the NOX emission will increase by 0.01561811 g/s for
1 Nm increase of load (indicated by BF14 and BF15);
(3) if the load is greater than 52.34 Nm but less than
60.15 Nm, the vehicle NOX emission will increase by
0.0179656 g/s for 1 Nm increase in load (indicated by
BF15 and BF16) and (4) if the load is greater than 60.15
Nm the NOX emission will increase by 0.02324571 g/s
for 1 Nm increase in load (indicated by BF16). As far
as the effect of power on NOX emission, BF17 and BF18
indicate that the occurrence can be described as: (1) if the
power is less than 8.98 W , then it has no effect on vehi-
cle NOX emission (indicated by BF17); (2) if the power is
greater than 8.98W but less 21.32W , NOX emission will
increase by 0.01567893 g/s for 1 W increase of power
(indicated by BF17 and BF18); (3) if the power is greater
than 21.23 W , the vehicle NOX emission will increase
by 0.01567893 g/s for 1 W increase in power (indicated
by BF18). The NOX emission as a result of the increas-
ing load and power is expected, following the remark by
Pierson et al. [19] that driving a vehicle against a higher
resistance will increase the engine load and power which
will result in increases of the carbon dioxide (CO2) and
NOX emissions.

To illustrate the NOX emission during real-world driv-
ing conditions and the dynamometer testing drive cycle,
Figures 3 and 4 show the MARS model that has the best
performance basis on independent test samples. There
were 557 data points used in the analysis, 65% of which
for building the model (Learn) and 35% for validation
(Test).

Table 3. Comparison of MARS and Multiple Linear
Regression (MLR) model

Model Summary On-Board Dynamo-
Statistics meter

MARS R2 0.63 0.57
Adjusted R2 0.62 0.56
MSE 3.35× 10−6 1.33× 10−5

MLR R2 0.51 0.50
Adjusted R2 0.50 0.49
MSE 2.57× 10−5 3.12× 10−5

The on-board system model has nineteen basis func-
tions with the best model with the least mean square er-
ror occurring at 17th basis function, R2 value of 63%
while the chassis dynamometer has the R2 of 57% with
the best model occurring at BF12. Table 3 compares the
MARS and Multiple Linear Regression (MLR) model and
presents the model summary statistics. It is clear that the
MARS model perfoms better than the MLR model as the
latter givesR2 of 51% and 50% for both the on-board and

the dynamometer test. The 12% and 7% differences in
contribution achieved by the MARS model confirms its
ability in improving the prediction accuracy of the NOX

emission. Among all the predictor variables the speed ap-
pears to have the highest contribution to NOX emissions.
Figures 5 and 6 provide a detailed plot of the real data
and prediction using MARS techniques. Note that the
predicted emissions follow the real data with sufficiently
good precision although there is a slight deviation in the
dynamometer predictions. The MSE of the on-board sys-
tem was 3.355 × 10−6 while that of dynamometer was
1.33× 10−5.
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Figure 5. Predicted values of NOX and the real data
plotted for on-board measurements.
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Figure 6. Predicted values of NOX and the real data
plotted for dynamometer testing.
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5 Conclusion
This paper has presented a MARS modelling approach

to effectively estimate vehicular NOX emissions. The
model approximates the nonlinear relationship between
the NOX emission which is a function of speed, acceler-
ation, temperature, power and load as predictor variables.
The MARS model is implemented with 19 and 15 effec-
tive piecewise-linear BFs. The model predicts the NOX

emission by forming a weighted sum of the predictor vari-
ables; thus, the predicted emission changes in a smooth
and regular fashion with respect to the input virations, of-
fering some performance improvements. The results ob-
tained indicate a promising application of the proposed
method in the estimation of NOX emissions with a rea-
sonable accuracy. The proposed method may usefully as-
sist in a decision-making policy regarding urban air pol-
lution.
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