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relatively low. With the push for energy conservation, 

demand-side management (DSM) and demand 

response (DR) are becoming vital tools under the 

smart grid paradigm. This paper outlines some 

experience obtained at the University of Tasmania, 

Australia in developing DSM and DR systems. 
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1 Introduction 

Electric power systems are undergoing a profound 
change. This change is driven by several factors that 
include technical, economic and environmental factors. 
We need to deal with an aging infrastructure of power 
systems and maintain the required level of grid 
reliability.  We need to integrate renewable energy 
sources, particularly wind and solar, and provide secure 
power supply to our customers, and at the same time 
improve operational efficiency. The emerging changes 
and challenges are particularly significant for 
distribution grids, where the level of automation or 
“smartness” is relatively low.  Manual and “blind” 
operations along with old electromechanical relays are 
to be transformed into a “smart grid”. This 
transformation is necessary to meet environmental 
targets, accommodate distributed generation, and 
support plug-in electric vehicles.  In fact, these needs 
present the power industry with the biggest challenge it 
has ever faced.  On one hand, the transition to the “grid 
of the future” has to be evolutionary – we still need to 
supply electricity to our customers to keep the lights on.  
On the other hand, the challenges associated with the 
smart grid are significant enough to expect 
revolutionary changes in power system design and 
operation. 
With the push for energy conservation, demand-side 

management and demand response are becoming vital 
tools under the broad smart grid paradigm. 
The term “demand-side management” (DSM) was 

first introduced by Electric Power Research Institute 
(EPRI) in the 1980s, and since then has been widely 
used around the world.  In fact, DSM is a term that 
implies many activities such as direct load control, peak 
shaving, peak shifting, and various load management 
strategies.  Effective load management programs are 
often referred to as demand response (DR).  According 
to the US Federal Energy Regulatory Commission, DR 
is defined as: 

“Changes in electric usage by end-use customers 

from their normal consumption patterns in response to 

changes in the price of electricity over time, or to 

incentive payments designed to induce lower electricity 

use at times of high wholesale market prices or when 

system reliability is jeopardized.” 
This paper outlines some experience obtained at the 

University of Tasmania, Australia in developing DSM 
and DR systems.  Section 2 presents an evaluation tool 
for DSM of domestic hot water systems in distribution 
grid, and Section 3 discusses the development and 
implementation of fast DR in isolated power systems. 
 

2 Demand-side Management Evaluation 

Tool 

Effective implementation of DSM programs delivers 
operational benefits such as reduced peak demands and 
relieved overloads, which are essential in a power 
system with growing penetration of fundamentally 
intermittent renewable energy sources [1]. Successful 
DSM programs also provide economic gains such as 
deferrals of costly network upgrades as well as network 
security enhancements [1]. Moreover, in a deregulated 
electricity market, DSM programs offer opportunities 
for aggregation of demand reduction to support market 
and network operations of a power system [2]. In 
addition, consumers receive financial incentives through 
participation in DSM programs. 
There are three different methods to implement 

DSM in a power distribution network. In indirect load 
control, consumers manually adjust their consumption 
in response to incentive programs such as time-of-use 
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(TOU) tariffs [3]. In autonomous load control, devices 
autonomously adjust their consumption in response to 
detected changes in the power system or to commands 
sent from the control centre. In direct load control 
(DLC), devices are centrally controlled by the utility 
operator [4]. 
Hot water load forms a significant share of the total 

domestic demand. For example, it accounts for up to 40% 
of domestic energy consumption in Australia, and 
around one third in Tasmania [5], [6].  Moreover, 
domestic hot water systems represent insulated thermal 
energy storages that continually supply hot water even 
during periods of power interruption. Hence, they are 
commonly targeted for DSM programs to reduce peak 
loads and improve the load factor. Well-designed DSM 
programs minimize customer discomfort due to cold 
showers. 
This section presents the development of an 

evaluation tool that assists in designing a DSM program 
to deliver desired peak load reductions while 
maintaining satisfactory level of comfort for all 
customers. The tool estimates the available domestic hot 
water loads in a controlled area, and determines optimal 
switching programs. A switching program refers to a 
direct load control schedule applied to domestic hot 
water systems (to strategically switch them on and off) 
in order to achieve a desired load reduction during peak 
periods. 
 

2.1 Structure of the Tool 

Main modules of the tool are shown in Figure 1. The 
modules are grouped in three main functional blocks. 
The numbered grey circles represent inputs and outputs 
(I/O). 
 

 
 
Figure 1. The structure of the DSM evaluation 
tool. 

 
The Input block represents the user interface, which 

allows the tool user to enter parameters required for 
simulation (the number of households in the controlled 
area, the number of Monte Carlo simulations, the 
desired peak reduction, etc.) as well as to view default 
parameters and change them if necessary. The 

Simulation block is the main block of the tool; it 
contains four modules: the hot water consumption 
generator, hot water cylinder model, switching program 
optimizer, and performance calculator.  The Output 
block contains the exporter, which exports the data to an 
external (Excel) file. 
Default parameters and parameters entered by the 

user via the user input interface are represented by I/O 1. 
The hot water consumption generator receives I/O 1 and 
determines hot water consumption profiles for 
individual households; these profiles are represented by 
I/O 2. The hot water cylinder model receives I/O 2 and 
calculates uncontrolled hot water loads and shower 
temperatures for the households; the results are 
represented by I/O 3. The user can observe the 
aggregate uncontrolled load curve of the households in 
the controlled area, and proceed with the optimization 
of switching programs. The switching program 
optimizer receives I/O 3 and produces switching 
programs based on the user-defined parameters (the 
desired peak reduction target, control periods etc.). The 
best switching programs are presented to the user, so 
that he/she can select the most suitable switching 
program. The hot water cylinder model then calculates 
controlled hot water loads (I/O 5) by applying the user-
selected switching program (I/O 4) to the hot water 
consumption profiles (I/O 2). The performance 
calculator receives I/O 5 and determines key 
performance indicators such as peak reductions and 
customer’s comfort. Results in the form of 24-hour load 
curves are presented to the user (I/O 6), and exported to 
an external file (I/O 7) via the exporter. 
 

2.2 Hot Water Consumption Generator 

The first step in the development of the hot water 
consumption generator was to acquire knowledge of hot 
water consumption patterns of households in the 
controlled area. To achieve this objective, a telephone 
survey was conducted on 1000 randomly selected 
households across Tasmania. It recorded demographic 
data (e.g. number of usual residents, combined income 
etc.) and details of hot water usages (e.g. average 
number of showers per day, average shower length etc.) 
of the surveyed households. This survey focused on two 
peak periods in the Tasmanian power distribution 
network, i.e. morning and evening peaks from 6am to 
10am and from 5pm to 8pm, respectively. Figure 2 and 
Figure 3 show major results of the survey. Figure 2 
suggests a positive correlation between the average 
number of showers and the family size, in the morning 
and evening peaks. An unexpected drop in the average 
number of morning showers in households with six or 
more residents can be explained by a relatively small 
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sample size of this household type (just 2.3% of the 
total surveyed households). 
 

 
 
Figure 2. The average number of showers versus 
family size. 

 

 
 
Figure 3. The histogram of average lengths of 
showers. 

 
As can be seen in Figure 3, the length of a shower 

can vary from 2 min to 15 min, however, a great 
majority of showers (about 51%) last from 5 min to 8 
min. 
To estimate domestic hot water consumption 

profiles, we also acquired energy metering data of 279 
households across Tasmania. These data were obtained 
from meters dedicated for metering electric water 
heating alone, and represented water heating energy 
consumption of individual households recorded in 5-
minute intervals. We considered two types of hot water 
usages: high volume usage that lasts for more than 5 
min and low volume usage that lasts for 5 min or less. 
Based on the modelling, 1 min of hot water usage 
requires approximately 10 min of heating to restore the 
temperature set by the thermostat. Thus, a continuous 
energy consumption (a switched-on condition of the 
electric water heater) for a period of more than 50 min 
is regarded as a high volume usage (represented by 
showers), and a consumption of less than or equal to 50 

min is regarded as a low volume usage. Using weekday 
data only, we derived probability distributions of the 
starting time for showers (Figure 4) and low volume 
usages (Figure 5). 
 

 
 
Figure 4. The probability distribution of the 
shower starting time. 

 

 
 
Figure 5. Probability distribution of the starting 
time for low volume usages. 

 
Both survey results and energy metering data 

revealed that domestic hot water consumption depends 
mostly on the family size. Therefore, all households in a 
controlled area are divided into four groups according to 
the family type based on the number of residents in a 
household. Table 1 shows a typical distribution of 
families in a controlled area. 
We need also specify probabilities of household 

occupants taking morning showers only, evening 
showers only, or both. Demographic data [7] and 
household energy consumption records are used to 
estimate probabilities in Table 2, which determine the 
number of showers each family type take in the morning, 
evening, or morning and evening. Similar to showers, 
the probability of a low volume usage depends on the 
family size of a household. The tool uses multipliers to 
scale this probability up based on the family type. 
Default values of the multipliers are 1.0, 1.2, 1.6 and 2.0, 
respectively. The tool user can redefine these values, if 
required. Figure 5 gives the probability of a low volume 
usage occurring in a household at a given time. 
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Shower lengths and gaps between consecutive 
showers are specified by their mean, maximum and 
minimum values. We define minimum and maximum to 
discard unrealistic values (e.g., a one-minute shower) in 
probabilistic simulations. Normal distributions are 
assumed. Default values used by the tool are shown in 
Table 3. A low volume usage is denoted as a single 5-
min draw. If required, the user can redefine these values. 
 

Table 1: Family types and their distributions 
Family Type 1 2 3 4 

Family size Very small Small Average Large 

Number of 
residents 

1 2 to 3 4 to 5 
6 and 
above 

Distribution in 
a population 

25% 50% 22.5% 2.5% 

 
Table 2: Shower probabilities for different families 

 Number of shower 

Family type 0 1 2 3 4 5 

Type 1 5% 95%   0%   0% 0% 0% 

Type 2 0% 41% 53%   6% 0% 0% 

Type 3 0% 20% 60% 19% 1% 0% 

Type 4 0%   7% 40% 47% 5% 1% 

 

Table 3: Shower lengths and gaps between showers 

Parameter 
Min 
(min) 

Max 
(min) 

Mean 
(min) 

Standard 
deviation (min) 

Shower length 5 15 8 4 

Shower gap 5 7 6 1 

 
The starting time of each hot water usage is 

specified based on probability distributions derived 
from actual energy metering data. 
The tool employs a Monte Carlo approach to 

generate hot water consumption profiles for each 
household. First, the tool generates random values to 
determine specific parameters for a single household: 
family type, when showers are taken (morning, or 
evening, or morning and evening), number of showers, 
number of low volume usages, length of each shower 
and each gap between consecutive showers, starting 
time for each shower and each low volume usage. Next, 
using these parameters, the tool generates a 24-hour hot 
water consumption profile for a single household. The 
tool then repeats the profile generation process for a 
specified number of households using a new set of 
random values each time. Finally, the whole process is 
repeated for the required number of Monte Carlo 
iterations. Based on the generated hot water profiles, we 
can now proceed with calculating loads associated with 
household hot water usages. However, we need to 
develop a hot water cylinder model first. 
 

2.3 Hot Water Cylinder Model 

The block diagram of a DEHW system with a single 

heating element is shown in Figure 6. 
 

 
 
Figure 6. Block diagram of a domestic electric 
hot water system. 

 
 
For predicting the shower temperature and power 

consumption for domestic hot water systems accurately, 
we develop a hot water cylinder model based on the 
most common domestic hot water system in Tasmania, 
which has a 165 L cylindrical storage tank and a single 
2.4 kW heating element.  We validated the model with 
experimental data and found that predicted and 
measured values were closely matched. The measured 
and predicted values of normalized power consumption 
and top layer temperature over 48 hours are shown in 
Figure 7 and Figure 8.  Figure 9 shows the measured 
and predicted shower temperatures during four 
successive showers. 
We found that the mean prediction error in the total 

energy consumption was less than 6%, while the mean 
absolute error in predicted shower temperature was less 
than 3oC. It was considered acceptable for the model to 
be used in the tool. 
 

 
 
Figure 7. Measured and predicted power 
consumptions, normalized to 2400 (W). 
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Figure 8. Measured and predicted top layer 
temperatures of the storage tank. 

 

 
Figure 9. Measured and predicted shower 
temperatures in a shower schedule. 

2.4 Performance calculator 

The performance calculator has two main functions: 
calculating peak reductions in the hot water load and 
estimating the customers comfort level.  
First, it determines an average uncontrolled load 

profile for each household. The average uncontrolled 
load profile for a household represents an average 
profile of the household obtained over a specified 
number of Monte Carlo iterations. 
Then, it determines an aggregate uncontrolled load 

curve LU by aggregating uncontrolled load profiles for 
all households.  An aggregate controlled load curve LC 
is obtained in a similar manner after a switching 
program is applied to the uncontrolled loads produced 
by the hot water cylinder model for individual 
households. The peak load reduction Rτ of the control 
period τ is defined as  
 

�� = 1 −
���[
C��
]

���[
U��
]
                 (1) 

 

where max[LC(�)] and max[LU(�)] are the peaks of LC 
and LU the control period τ, respectively. 

The customer’s comfort level depends on the 
frequency (or probability) of getting a “cold shower”— 
the event when the shower temperature drops below the 
comfort temperature (e.g. 43oC) specified by the tool 
user. Preferred shower temperatures range from 40oC to 
44oC [8]. Because of a large number of households in 
the controlled area, we can assume the same comfort 

temperature for all customers. The tool allows the user 
to change the comfort temperature if required. 
 

2.5 Switching Program Optimization 

Figure 10 shows a block diagram of the switching 
program optimizer. Here I/Os are depicted as numbered 
blocks. I/O 1 represents parameters of the control 
management system, I/O 2 optimization parameters, I/O 
3 uncontrolled loads generated by the hot water cylinder 
model, and I/O 4 represents optimized switching 
programs. 
 

 
 

Figure 10. The block diagram of the switching 
program optimizer. 

 
The switching program generator uses user-specified 

control management system parameters and optimized 
turn-off periods from the optimizer to create switching 
programs, as shown in Figure 11. Here a control step is 
the smallest switching time interval, and a turn-off 
period is the time interval where the hot water system is 
turned off for a number of consecutive control steps. A 
switching cycle consists of the turn-off period followed 
by the turn-on period. A control period consists of 
multiple switching cycles (there are two control periods 
– for the morning peak and for the evening peak). 
Control groups are formed by shifting the switching 
cycles by one or more control steps. To ensure the time-
shifted switching cycles are contained within a control 
period, each control group has one switching cycle less 
than the control period. In [9], it was demonstrated that 
division of households based on the family type does 
not significantly affect the comfort level of household 
residents. Therefore, the entire set of households can be 
divided into control groups of approximately the same 
size regardless of the family type of a household. 
The load estimator determines the total controlled 

hot water load by applying a switching program to 
uncontrolled loads of individual households. The load 
estimator sets the load to zero during the turn-off 
periods of the applied switching program and restores 
the load during the turn-on periods. Water temperature 
is not considered in the load estimation. 
The main function of the optimizer is to optimize 

turn-off periods of a switching program. It consists of 
the user-defined control period (UDCP) optimizer and 
the optimized control period (OCP) optimizer. 
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Figure 11. A switching program and its control 
management system parameters. 

 
The UDCP optimizer determines turn-off periods 

based on the user-defined control periods and the peak 
load reduction targets. The control periods remain 
unchanged throughout the optimization process. The 
UDCP optimizer implements an iterative process to 
minimize the mean error between the user-defined 
target LT and the estimated aggregate controlled load LC 
in each switching cycle of a switching program. To 
calculate required changes in the turn-off period for 
each switching cycle, it applies proportional and integral 
(PI) functions to the errors. In Figure 12, e(j,k) and 
τoff(j,k) are the mean error and the turn-off period of 
switching cycle j in iteration k, respectively; Kp is the 
proportional gain and Ti the integral time of the PI 
functions. 
 

 
 

Figure 12. Block diagram of the UDCP 
optimizer. 

 
The proportional function multiplies the error by Kp. 

The integral function sums the errors of switching cycle 
j from the previous (S-1) iterations to the current one, 
and multiplies the result by Kp/Ti. The sum of the 
current turn-off period and outputs from PI functions is 
converted by the limiter function into an integer 

between the minimum and maximum values. The final 
result is the turn-off period for the next iteration. 
The OCP optimizer determines turn-off periods and 

control periods of a switching program based on the 
user-defined peak load reduction target LT. First, it finds 
the starting time ts and finishing time tf of the initial 
control period. The time ts is found as the first 
intersection of the aggregate uncontrolled load LU and 
the target LT, as shown in Figure 13.  To avoid a high 
payback peak after the control period, the finishing time 
tf is found by solving the following equation: 
 

� 
���
 ∙ ��
��
��

= 
� ∙ ��� − ��
                (2) 
 

where the left hand term represents the total 
uncontrolled energy consumption between ts and tf. 
To further minimize the error between LC and LT, the 

OCP optimizer iteratively tunes the switching program 
optimized by the UDCP optimizer. The OCP optimizer 
increases or decreases the turn-off period τoff of each 
switching cycle to minimize the error between LT and 
LC. We define three tolerance levels: L1 and L2 are, 
respectively, 1% and 2% above LT, and L3(j) is the 
difference between LT and the estimated maximum 
restored load in switching cycle j, if τoff(j) is decreased 
by one control step: 
 


���
 = 
� −���[
��� − 2
, 
��� − 1
, 
���
] ∙
�� !"

��#
   (3) 

 

where τstep is the control step; τsc is the switching cycle; 

���[
��� − 2
, 
��� − 1
, 
���
]  is the maximum 
value of the aggregate uncontrolled load LU over three 
switching cycles (j-2), (j-1) and j. 
 

 
Figure 13. Initial control period in relation to LT 
and LU. 

 
The OCP optimizer tunes the τoff of all but the last 

switching cycle within a control period based on the 
three scenarios shown below, where LC(j) denotes 
values of LC within switching cycle j.  
 

• Scenario 1. The peak of LC(j) is above L2. 

• Scenario 2. LC(j) stays between L1 and L2 for 
more than 15 min. 

• Scenario 3. The peak of LC(j) is below L3(j). 
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Scenarios 1 and 2 represent overshooting, whereas 
Scenario 3 indicates over-control that can potentially 
create higher payback peaks. The OCP optimizer 
reduces LC(j) by increasing τoff(j) by one τstep, if either 
Scenario 1 or Scenario 2 is met. If Scenario 3 is met, 
τoff(j) is decreased by one τstep. No change is made on 
τoff(j) if none of the above conditions are met. 
Before changing τoff(j), the OCP optimizer considers 

the current value of τoff (expressed as the number of 
control steps) and the location of the peak of LC(j) 
within switching cycle j. For a peak located within 
control step n of the switching cycle, increasing τoff of 
this switching cycle will reduce the peak only if the 
current value of τoff is below or equal to (n-1); 
decreasing τoff of this switching cycle will increase the 
peak only if the current value of τoff is below or equal to 
n. 
If j is the last switching cycle of a control period, 

and either Scenario 1 or Scenario 2 is met, the control 
period is extended by one switching cycle; τoff(j) is then 
set to a value equal to a multiple of τstep and proportional 
to the error between the peak of LC(j) and LT. Through 
iterations, the OCP optimizer tunes the switching 
program so that the aggregate controlled load stays 
below or as close as possible to the user-defined target. 

2.6 Case Studies 

We conducted several case studies to evaluate the 
performance of the DSM evaluation tool under various 
scenarios for 279 households. This set of households 
provided us the opportunity to use actual energy 
metering data in the developed tool. We used the tool to 
randomly generate hot water consumption profiles for 
279 households and obtained an aggregate uncontrolled 
hot water load curve, which matched the actual data. In 
case studies 1 and 2, we investigated potential impacts 
of using constant values of ambient temperature, cold 
water temperature and thermostat settings on the 
simulation results. In subsequent studies, we evaluated 
the performance of switching programs produced by the 
optimizer in terms of the peak load reduction and 
customer comfort level. We used 43oC as the preferred 
shower temperature for all households. The default 
switching program configuration had 30 min switching 
cycles and 5 min control steps. The turn-off period in a 
switching cycle varied from 5 min to 25 min in the 5-
minute step. The households were divided into six 
control groups of almost equal size. 

2.6.1 Case Study 1 

This case study compares results of two simulations. 
In the first simulation, we use actual values of ambient 
temperature Ta and cold water temperatures Tc, shown in 
Figure 14. Shaded areas indicate peak periods of hot 
water usage (06:00 – 09:00 and 16:30 – 18:30). The 

profile of Ta is obtained from historical climate data for 
Tasmania [10]; Tc usually has a positive correlation with 
Ta [11], but has a smaller range of variation. As can be 
seen in Figure 14, values of Ta and Tc vary considerably 
over the 24-hour period (particularly, values of Ta), but 
their variations during peak periods are rather small. 
Therefore, in the second simulation, Ta and Tc are set to 
constant value of 8oC. 
 

 
Figure 14. Average ambient and cold water 
temperatures in winter time.  

 

Figure 15 shows two aggregate uncontrolled hot 
water load curves obtained using variable and constant 
values for ambient and cold water temperatures. We 
find insignificant difference between the two curves. 
The difference in the total energy consumption is about 
1%, and the mean absolute error (MAE) is about 1.3p.u. 
The results can be explained by the fact that a great 
majority of hot water usages occur during peak periods 
when variations of actual cold water temperature are 
rather small (within ± 1oC, in shaded areas of Fig. 14). 
On the other hand, although Ta varies significantly 
during the day, its variation has negligible overall effect 
on the rate of hot water tank heat losses. An insulated 
hot water tank idles for a long period (usually from 13 
to 15 hours) between two consecutive recharges due to 
heat loss. During this period, the effect of Ta variation is 
smoothed, and the average value of Ta produces similar 
results as its variable values. Thus, variations of Ta and 
Tc can be represented with their respective average 
values in further studies. 
 

 
Figure 15. Uncontrolled load curves for constant 
and variable values of ambient and cold water 
temperatures. 
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2.6.2 Case Study 2 

This case study compares the performance of the 
UDCP optimizer and the OCP optimizer. Both use the 
default switching program configuration to produce 
optimized switching programs that are applied to the 
same set of hot water loads. The peak reduction target is 
15% in both cases. Figure 16 and Figure 17 show the 
aggregate controlled load curves produced by the UDCP 
and OCP optimizers, respectively. Table 4 shows the 
control periods and peak reductions achieved. The 
UDCP optimizer keeps user-specified control periods 
constant in its optimization process. Probabilities of 
cold showers for each family type are shown in Table 5 
– for the uncontrolled scenario, and scenarios controlled 
by the UDCP-optimized and OCP-optimized switching 
programs. 
Comparing the aggregate controlled load curves 

produced by both optimizers, we find that the OCP 
optimizer performs much better in terms of peak load 
reduction. 
 

 
 
 

Figure 16. Result of the UDCP optimization. 
 

 
 
Figure 17. Result of the OCP optimization. 

 
Table 4: Control periods and achieved peak reductions 

in case study 2 
Morning Evening 

Control 

period 

Peak 

reduction 

Control 

period 

Peak 

reduction 

UDCP optimizer 07:00-12:00 7.1% 18:00-23:00 9.3% 

OCP optimizer 07:30-13:00 14.3% 17:30-00:00 15.0% 
 

Table 5: Probabilities of cold showers in case study 2 

  Uncontrolled 

UDCP 

optimizer 

OCP 

optimizer 

Family type 1 0.02% 0.02% 0.03% 

Family type 2 4.37% 4.52% 4.63% 

Family type 3 7.96% 8.27% 8.44% 

Family type 4 13.85% 14.07% 14.36% 

Overall 5.06% 5.23% 5.34% 

 
The starting and finishing times of control periods in 

a switching program are vital for peak load reduction. A 
delayed control period produces an initial peak above 
the target line, as in the evening period of Figure 16. 
Starting a control period too early defers loads 
needlessly and creates slightly higher peaks in 
subsequent switching cycles of the same control period, 
as in the morning control period of Figure 16. Control 
periods with sufficient length allow a gradual 
restoration of loads below the target line. Ending a 
control period prematurely creates an unwanted high 
payback peak at the end of the control period, as seen at 
around 11:30 of Figure 16. Similar results were reported 
in [12] and [13]. Due to shorter than required control 
periods used for the UDCP optimization, reducing the 
peaks at 10:30 and 21:30 will produce higher payback 
peaks at the end of the respective control periods. 
While both controlled scenarios produce higher 

probabilities of cold shower than in the uncontrolled 
scenario, the OCP optimizer degrades the comfort level 
more than the UDCP optimizer due to its longer control 
periods (Table 5). 
 

2.6.3 Case Study 3 

In this case study, we evaluate the tool’s ability to 
optimize switching programs for two different hot water 
load profiles. The first one has a dominant morning 
peak (this load profile was used in the case study 3) and 
the second – a dominant evening peak. The default 
switching program configuration (30 min switching 
cycle with 5-minute control steps and six control 
groups) is used.  The peak reduction target is 15%.  
Figure 18 shows the aggregate uncontrolled load curve 
of the second hot water load profile, and the aggregate 
controlled load curve after the OCP-optimized 
switching program is applied. 
Optimized morning and evening control periods are 

from 07:30 to 15:00 and from 17:30 to 23:30, 
respectively. A 9.1% peak reduction is achieved for the 
morning control period, and 13.4% for the evening. 
Table 6 shows probabilities of cold showers estimated 
for each family type under uncontrolled and controlled 
scenarios.  As can be seen from Figure 18, the tool 
cannot further reduce the payback peak detected at 
14:30 as the morning control period has reached the 
maximum limit of 7.5 hours. 
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Figure 18. The OCP optimization of a hot water 
load profile with the dominant evening peak. 

 
Table 6: Probabilities of cold showers for case study 3 

  Uncontrolled Controlled 

Family type 1 0.03% 0.05% 

Family type 2 4.11% 4.48% 

Family type 3 7.50% 8.31% 

Family type 4 14.32% 15.81% 

Overall 4.82% 5.30% 

 
Comparison of the results produced by the OCP 

optimizer in the case studies 2 and 3 (Tables 5 and 6) 
reveals that customers experience similar comfort under 
different load profiles. 
 

2.6.4 Case Study 4 

In this case study, we use the hot water load profile 
of case study 2 and compare two different switching 
programs represented in Table 7. Results produced by 
the OCP optimizer for case study 3 represent the 
implementation of the default configuration. Results 
shown in Figure 19 represent the implementation of the 
second switching program (configuration 2), and Table 
8 shows probabilities of cold showers estimated for each 
family type. The optimized control period is from 07:30 
to 13:30 in the morning and from 17:30 to 00:00 in the 
evening. Peak reductions for morning and evening 
control periods are 14.8% and 13.2%, respectively. 
 
Table 7: Switching program configurations in case 

study 4 
  Configuration 1 (default) Configuration 2 

Control groups 6 3 

Switching Cycle 30 (min) 30 (min) 

Control Step 5 (min) 10 (min) 

Turn-off periods 5, 10, 15, 20, 25 (min) 10, 20 (min) 

 
Table 8: Probabilities of cold showers for case study 4 

  Uncontrolled Controlled 

Family type 1 0.02% 0.08% 

Family type 2 4.37% 4.80% 

Family type 3 7.96% 8.67% 

Family type 4 13.85% 14.55% 

Overall 5.06% 5.51% 

The default switching program configuration 
performs slightly better in peak reduction as it has 
smaller control steps and higher number of control 
groups. Switching program configuration 2 degrades the 
customer comfort level further as hot water systems are 
switched off for longer periods of time. 
 

 
Figure 19. The OCP optimization with the 
switching program configuration 2. 

 

3 Fast Demand Response for Enabling 

Higher Penetration of Renewable 

Energy 

Customers living in remote areas often cannot be 
supplied from conventional interconnected power 
systems. These customers are usually serviced by a 
local electricity generation and distribution system with 
electricity generated using diesel fuel. Due to 
remoteness and consequent high cost of diesel fuel 
supply, the cost of electric energy in isolated power 
systems is high compared to conventional 
interconnected systems. In some locations, the price 
exceeds US $1/kWh, which is an obvious incentive for 
introducing renewable energy (RE) generation. 
Unfortunately, RE from the two most abundant energy 
sources – wind and solar – incurs significant stability 
and reliability issues due to the intermittency of those 
sources. 
This section presents fast (i.e. sub-second) demand 

response (DR) as an RE enabling technology in isolated 
power systems. The advantages of DR are presented, the 
concept of a fast DR system is discussed, and a case 
study of the first implementation of the fast DR system, 
along with some preliminary results, is presented. 
 

3.1 Demand Response in Isolated Power 

Systems 

In general, DR can provide benefits to power 
systems and their customers by 
 

• Supporting frequency and/or voltage regulation 
[14], [15]; 
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• Reducing operational costs and emissions by 
increasing utilization of RE sources [16]. Note 
that reducing operating costs in turn leads to a 
greater return on investment which would 
incentivize expansion of the RE industry; 

• Reducing operational costs and emissions caused 
by traditional generators installed to provide 
spinning reserve for RE [17]; 

• Relieving stress from transmission and 
distribution infrastructure by coordinating loads 
close to RE sources [17]; 

• Reducing utility operating costs through 
advanced metering infrastructure installed to 
enable DR [18]. 

 

Most DR applications focus on large power systems, 
which have a steady and predictable load profile defined 
by morning and evening peaks. The time and size of 
these peak periods can be accurately estimated using 
historical load data and weather forecasts. In contrast, 
isolated power systems not only supply less power 
(MWs, rather than GWs) they are also geographically 
much smaller. Being smaller in capacity means that 
demand is less predictable. Being smaller in area means 
that supply from RE sources is more variable, as a 
larger percentage of the RE generators are likely to be 
affected by the same weather events (e.g. a lull in the 
wind or passing clouds). Due to their reduced demand 
predictability and increased variability of RE supply, 
conventional generation scheduling in isolated systems 
with RE is more challenging. From a generation 
scheduling perspective - where RE generation is usually 
treated as a load offset – the daily load curve becomes 
extremely volatile. An example of an isolated power 
system (IPS) with RE load curve is giving in Figure 20. 
Notice that it does not even have predetermined daily 
peaks. 
High load variation makes scheduling of diesel 

generation more difficult and less efficient, as diesel 
engines will rarely operate at their peak efficiency, and 
more generator start-ups are required. This is where fast 
DR can help. It can smooth the variability of required 
diesel generation by quickly adjusting system load. To 
be able to do that, fast DR cannot rely on typical load 
patterns – it must be executed in real-time. If DR is to 
complement RE in an isolated system, it has to be as fast 
as the speed at which RE generators change their power 
output. 
 

3.2 Demand Response as a Virtual Power 

Plant 

The idea of aggregating and controlling small loads 
to create a large block of variable demand has been 
discussed in the power engineering literature where it is 

often referred to as a ‘virtual power plant’ [19]. Since 
isolated power systems generally have only one power 
station, the idea of adding another (virtual) power plant 
to this system might be a bit misleading. However, 
isolated systems with RE might have several generating 
sources (e.g. diesel, wind, solar, etc). Therefore, 
aggregated DR could be treated as a ‘virtual generator’. 
Although such a ‘DR Generator’ (DRG) is not 
generating real power, the power system controller 
perceives it as one due to the DRG’s ability to decrease 
the amount of energy needed from other generating 
sources. 
 

 
Figure 20. Daily load diagram in an isolated 
power system. 

 
Isolated systems are usually controlled by a single 

controller. The controller is typically implemented with 
a programmable logic controller (PLC). The role of the 
controller is to schedule available generation in 
accordance with the current power system constraints, 
and to maintain system stability. In addition, the 
controller can be programmed to maximize the amount 
of RE generation and, consequently, minimize running 
costs. The controller effectively controls the entire 
system by collecting data on the current system status 
and by issuing commands to various generation sources, 
as shown in Figure 21. 
When the controller has a goal to maximize the use 

of RE, it will dispatch as much renewable generation as 
the power system can handle while simultaneously 
maintaining an appropriate level of spinning reserve to 
ensure system stability. If the amount of RE drops and 
the system suddenly does not have enough spinning 
reserve, the controller starts a diesel generator. The role 
of the DRG is to support higher RE penetration by 
providing additional spinning reserve. If sufficient 
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spinning reserve is provided by the DRG, diesel 
generator start-up is prevented. 
 

Measurement 

signal

Control signal

Power System 

Controller (PSC)

Diesel generators Wind turbines Demand Response 

Generator (DRG)  
Figure 21. Smart Grid generator in IPS control 
system. 

 
A DRG consists of three main components, as shown 

in Figure 22: 
 

• DRG Master controller, 

• communications network, and 

• slave controllers. 
 

 
 

Figure 22. The DRG architecture. 
 

3.2.1 DRG Master Controller 

The master controller collects information on 
available DR and aggregates it into predefined virtual 
loads (e.g. geographical regions). It constantly 
communicates available DR capacity to the power 
system controller (PSC) while checking for DR dispatch 
requests from the PSC. DR requests identify a target 
virtual load and the amount of demand to curtail. The 
master controller selects the individual loads to curtail 
from the virtual load, and immediately sends a switch-
off signal to each. 
 

3.2.2 Communications Network 

A multi-protocol bidirectional communications 
network delivers information between all elements of 
the DRG. Ethernet is used within the control system. A 
dedicated WiMAX network provides the backhaul 

capability. Within individual customer sites, a WiMAX 
gateway is connected by Ethernet to a ZigBee gateway 
for the final link to the load metering and switching 
devices. This communications configuration is 
configured to ensure a sub-second round trip for DR 
requests from the PSC out to the load control devices 
and back again. 
 

3.2.3 Slave Controllers 

Slave controllers are located in each DR capacity 
providing site. They consist of a pair of gateways to 
provide WiMAX-Ethernet-ZigBee signal translation 
between the backhaul network and the individual load 
control devices. The load control devices perform both 
metering and load switching. They provide a range of 
power metrics and also support set-points. 
A DRG providing spinning reserve must be 

extremely responsive and reliable. The master controller 
must be able to monitor and dispatch slave controllers at 
all times. This critical requirement becomes obvious in 
the two most common scenarios: 
 

• If the PSC requests DR for extended periods of 
time, some slave controllers may override the 
dispatch as they exceed their maximum dispatch 
duration. In this situation the master controller 
must quickly identify and dispatch another 
device (or devices) with an equivalent load. 

• If a slave controller or communication link is 
unreliable, the DRG may be forced to always 
dispatch more DR than requested to ensure a 
suitable margin of error in either load switching 
or reporting. This is not an efficient use of 
capacity and may reduce the overall 
effectiveness of the DRG. 

 

3.3 Case Study 

The fast DR technology discussed above was 
implemented in an IPS as part of the King Island 
Renewable Energy Integration Project [20]. King Island 
lies in the Bass Strait between Tasmania and the 
Australian mainland. It has a population of 
approximately 2000 people, and an economy based on 
agriculture and food processing. 
 

3.3.1 The King Island Power System 

Customer load on King Island ranges between 1 
MW and 3 MW, with an average of around 1.5 MW. 
The King Island power system is shown in Figure 23. 
There is one power station on the island with four 
distribution feeders delivering electricity to customers. 
The power station houses four diesel generators with a 
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total generation capacity of 5.8MW. Three fixed speed 
Nordex N29 (250kW each) wind turbines are installed 
on a nearby hill, together with two Vestas V52 turbines 
(850kW each) with doubly fed induction generators. 
Two 800kW diesel engines with flywheels are also 
connected to the system. In these generators the 
flywheels are separated by a clutch from a diesel engine 
and provide system with additional inertia.
 

Dump Load 

1.5 MW

Wind Farm

2.4 MW

Diesel 

Generators 

5.8 MW

Diesel Generators 

with flywheel and 

clutch (1.6 MW)

 
Figure 23. The King Island power system

 

3.3.2 The King Island Smart Grid Project

The ongoing King Island Smart Grid project has the 
goal of supporting higher levels of wind energy 
integration in the King Island power system
providing: 
1. Spinning reserve by implementing the DRG 

concept, and 
2. Fast fine-grained under frequency load sheddi

(based on the slave controller level).
The master controller constantly monitors the 

available connected DRG load and passes this 
information to the PLC-based power system controller
At the same time, the controller monitors the current 
level of power system spinning reserve. If the spinning 
reserve falls below a predefined threshold, the 
instructs the DRG to curtail some load and effectively 
raise the spinning reserve. This 
observed in Figure 24, where due to a sudden drop in 
wind generation, the spinning reserve 
reduction in spinning reserve causes
controller to initiate a request for all available DR
shown in the lower graph. 
The results shown in Figure 24 demons

implemented DRG was able to respond accurately to 
given set-points. It also shows that DR capacity can be 
dispatched reliably in 1 sec. 

3.3.3 Preliminary Implementation

Currently the King Island DRG has 50 sites under 
management and has been fully integrated into the 
power system. When complete, the DRG will be 
extended to include 150 households and several 

total generation capacity of 5.8MW. Three fixed speed 
ordex N29 (250kW each) wind turbines are installed 

on a nearby hill, together with two Vestas V52 turbines 
(850kW each) with doubly fed induction generators. 
Two 800kW diesel engines with flywheels are also 
connected to the system. In these generators the 
flywheels are separated by a clutch from a diesel engine 
and provide system with additional inertia. 
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The King Island power system. 

King Island Smart Grid Project 

The ongoing King Island Smart Grid project has the 
goal of supporting higher levels of wind energy 

in the King Island power system by 

Spinning reserve by implementing the DRG 

grained under frequency load shedding 
(based on the slave controller level). 
The master controller constantly monitors the 

available connected DRG load and passes this 
power system controller. 

monitors the current 
system spinning reserve. If the spinning 

a predefined threshold, the controller 
instructs the DRG to curtail some load and effectively 
raise the spinning reserve. This function can be 

, where due to a sudden drop in 
wind generation, the spinning reserve falls. The 

causes the power system 
all available DR, as 

The results shown in Figure 24 demonstrate that the 
implemented DRG was able to respond accurately to 

points. It also shows that DR capacity can be 

Implementation Results 

Currently the King Island DRG has 50 sites under 
en fully integrated into the 

power system. When complete, the DRG will be 
extended to include 150 households and several 

commercial loads. Prior to roll
DRG was tested with 10,000 simulated customer loads 
with minimal performance de
implies that the full DRG will supply more than 100 kW 
of sub-second DR capacity. 
 

Figure 24. Results of the 

operation. 

The effectiveness of the King Island 
largely on its integration with the 
controller. Figure 25 demonstrate
requests for the DRG and uses it as a tool for regulati
demand accurately. During the period of over 2 hours, 
the King Island power system was running in zero
diesel operation and the DRG was 
short dips in wind power generation. In this mode of 
operation, the power system controller
dispatch, and thus postpones 
diesel generator. 
 

Figure 25. Operation of the 
 

commercial loads. Prior to roll-out on King Island, the 
DRG was tested with 10,000 simulated customer loads 
with minimal performance degradation [21]. This 
implies that the full DRG will supply more than 100 kW 

 
Results of the King Island DRG 

King Island DRG depends 
largely on its integration with the power system 

demonstrate how the controller 
the DRG and uses it as a tool for regulating 

. During the period of over 2 hours, 
power system was running in zero-

diesel operation and the DRG was used under small and 
wind power generation. In this mode of 
power system controller prioritizes DRG 

 unnecessary start-ups of a 

 
the King Island DRG. 
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4 Conclusions 

With a strong drive for energy conservation, 
demand-side management and demand response are 
becoming vital for the implementation of the smart grid 
concept. This paper outlines some experience obtained 
at the University of Tasmania, Australia in developing 
DSM and DR systems. 
The evaluation tool to recommend optimum DSM 

switching programs for domestic hot water systems has 
been developed. The tool assesses the performance of a 
DSM switching program by estimating potential peak 
load reductions and customer comfort characterized by 
the probability of cold showers. The starting time and 
the length of control periods are crucial in peak 
reduction. However, the length of control periods must 
be limited to minimize negative impact on customer 
comfort. The developed tool aims to assist distribution 
system operators in designing their DSM programs. An 
operator uses this tool to determine the available 
domestic water heating load in a controlled area, and 
predict the potential reduction in peak load. The tool 
described in this paper has been implemented in the 
Tasmanian power system since June 2013. 
The paper also presented DR as an enabling 

technology for higher penetration of renewable energy 
in isolated power systems. These systems are often 
based on diesel generators. However, due to high costs 
of diesel fuel supply, the cost of electricity in isolated 
power systems is much high compared to conventional 
interconnected systems. This presents an incentive for 
introducing renewable energy generation in isolated 
power systems. Unfortunately, the integration of 
renewable generation presents significant stability and 
reliability challenges due to their intermittency. The 
solution proposed in this paper is based on centralized 
two-way communication and control of residential and 
commercial loads. DR can be dispatched and confirmed 
within 1 second. The technology has been installed and 
successfully tested in an isolated power system on King 
Island in Australia. 

References 

[1] G. Strbac, “Demand side management: Benefits 
and challenges,” Energy Policy, vol. 36, pp. 4419–
4426, 2008. 

[2] D. T. Nguyen, M. Negnevitsky, and M. de Groot, 
“Pool-based demand response exchange—concept 
and modeling,” IEEE Trans. Power Systems, vol. 
26, pp. 1677-1685, 2011. 

[3] K. Heussen, S. You, B. Biegel, L. Hansen, and K. 
Andersen, “Indirect control for demand side 
management-A conceptual introduction,” in 3rd 

IEEE PES ISGT Europe,  pp. 1–8, 2012. 

[4] J. Kondoh, “Direct load control for wind power 
integration,” in IEEE PES General Meeting, 2011, 
pp. 1–8. 

[5] S. Elphick, P. Ciufo, and S. Perera, “Supply 
current characteristics of modern domestic loads,” 
in Power Engineering Conference, 2009. AUPEC 

2009, pp. 1-6. 

[6] D.I.E.R. of Tasmania. (24 Sep 2013). Energy in 

Tasmania. Available: 
http://www.dier.tas.gov.au/energy/energy_in_tasmania 

[7] Australian Bureau of Statistics, (01 Nov 2012). 
Available: www.ausstats.abs.gov.au. 

[8] T. Ohnaka, Y. Tochihara, and Y. Watanabe, “The 
effects of variation in body temperature on the 
preferred water temperature and flow rate during 
showering,” Ergonomics, vol. 37, pp. 541-546, 
1994. 

[9] K. Wong and M. Negnevitsky, “Development of 
an evaluation tool for demand side management of 
domestic hot water load,” Proc. IEEE PES GM, 

Vancouver, Canada, 21–25 July, 2013. 

[10] Bureau of Meteorology, Australia, (02 Oct 2012). 
Available: www.bom.gov.au. 

[11] G. van Harmelen, G.J. Delport, “Multi-Level 
Expert-Modelling for the Evaluation of Hot Water 
Load Management opportunities in South Africa”, 
IEEE Trans Power Systems, vol. 14, no. 4,  pp. 
1306-1311, 1999. 

[12] J. Kondoh, N. Lu, and D. J. Hammerstrom, “An 
evaluation of the water heater load potential for 
providing regulation service,” in IEEE PES 

General Meeting, 2011, pp. 1–8. 

[13] S. Lee and C. Wilkins, “A practical approach to 
appliance load control analysis: a water heater case 
study,” IEEE trans. power apparatus and systems, 
pp. 1007–1013, 1983. 

[14] J. A. Short, D. G. Infield, and L. L. Freris, 
“Stabilization of Grid Frequency Through 
Dynamic Demand Control,” Power Systems, IEEE 

Transactions on, vol. 22, pp. 1284-1293, 2007. 

[15] T. L. Vandoorn, B. Renders, L. Degroote, B. 
Meersman, and L. Vandevelde, “Active Load 
Control in Islanded Microgrids Based on the Grid 
Voltage,” Smart Grid, IEEE Transactions on, vol. 
2, pp. 139-151, 2011. 

[16] D. Nikolic, M. Negnevitsky, M. de Groot, et al, 
“Fast Demand Response as an Enabling 
Technology for High Renewable Energy 
Penetration in Isolated Power Systems”, Proc. 

The 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC 2014)



IEEE/PES General Meeting, Washington, DC, , 
27–31 July, 2014. 

[17] D. Westermann and A. John, “Demand Matching 
Wind Power Generation With Wide-Area 
Measurement and Demand-Side Management,” 
Energy Conversion, IEEE Transactions on, vol. 22, 
pp. 145-149, 2007. 

[18] N. Rajakovic, D. Nikolic, and J. Vujasinovic, 
“Cost benefit analysis for implementation of a 
system for remote control and automatic meter 
reading,” Proc. PowerTech, 2009 IEEE Bucharest, 
2009, pp. 1-6. 

[19] J. Kumagai, “Virtual power plants, real power,” 
Spectrum, IEEE, vol. 49, pp. 13-14, 2012. 

[20] Hydro Tasmania. (2013). King Island Renewable 

Energy Integration Project (KIREIP). Available: 
www.kireip.com.au 

[21] M. de Groot, D. Nikolic and J. Forbes, “Demand 
Response in Isolated Power Systems,” Proc. 

Australasian Universities Power Engineering 

Conference (AUPEC 2013), Hobart, Australia, 
2013. 

INVITED PAPER




