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Abstract - 

Cost estimation is economically critical before 
starting off a construction project. One of the 
essential assignments for materials’ prices prediction 
is to control the cost of inventory. Even though the 
prediction system based on support vector machine 
(SVM) recently has been emerged as a favourable 
choice, the prediction accuracy of SVM is usually 
deteriorated with nonstationary price data. Thus the 
way to explore workable price prediction still remains 
a challenge to be resolved for materials’ cost control. 
In this paper, an enhanced online least squares 
support vector machine (LS-SVM) is proposed to 
predict the trend of building materials prices. Our 
design is to incorporate with empirical mode 
decomposition (EMD) to deconstruct nonlinear and 
nonstationary data for the set of intrinsic mode 
functions (IMFs), which are represented in sinusoid-
like waveforms. Superior prediction, therefore, can 
be attained by predicting IMFs with online LS-SVMs. 
According to our simulation results, proposed EMD 
designs notably improve prediction accuracy from 
online LS-SVM and are workable for the cost 
estimation of building materials. 
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1 Introduction 

Effective cost estimation is paramount to 
stakeholders for evaluating viability of a construction 
project. Categorization of this assignment is about to 
control resources comprehensively of materials, labour, 
and equipment [1]. Of these resources, severe fluctuation 
of material cost from domestic and international 
economic influences is usually imputed for the principal 

cause of failure [2]. This stresses the indispensability of 
materials’ prices prediction during pre-project planning. 

In past years, the expert systems based on support 
vector machine (SVM) have become a main stream in 
statistical machine learning and prediction. The initial 
motivation of SVM was to classify patterns by linearly or 
nonlinearly separating classes using a hyperplane [3]. 
This idea soon had been improved for linear or nonlinear 
function’s estimation and is also known as the support 
vector regression (SVR) [3], [4]. After the release of 
SVM and SVR, Suykens and Vandewalle proposed a 
refined version called least squares support vector 
machine (LS-SVM) [5]. In this work, least squares loss 
function and equality were designed to substitute for ε-
insensitive loss function and inequality constraints in 
SVM and SVR [6]. Such reformulation significantly 
reduces the computing load for large data set and makes 
it more popular in many prediction systems [6]. 

Nevertheless, when support vector machine works 
with nonstationary data, insufficiency of this kind of 
system will manifest. The issue arises from SVM’s 
identical form, which utilizes a linear function ( )f x  

involving kernel function to resolve nonlinear problems. 
This design sometimes is improbable in that a unique 
function cannot satisfy whole sequence of non-stationary 
time series [7]. Such limitation is inapplicable for 
financial analysis, e.g., exchange rate and price 
prediction [8]. 

Based on the merits of SVM, some enhancements 
have been developed for nonstationary systems. For 
instance, in the work of Chang et al. [7], single linear 
function of SVM is replaced by multiple functions for 
nonstationary time series. Zhang et al. suggest 
deconstructing nonstationary signal beforehand by using 
wavelet packet transform [9], and LS-SVM cooperating 
with differential evolution is designed by Chen et al [2]. 
For more efficiency, the algorithm of empirical mode 
decomposition (EMD) has been utilized to deconstruct 
nonstationary data for sinusoid-like signals IMFs, then 
SVMs can mostly predict (track) almost-stationary IMFs 
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[10], [11]. Another algorithm named local mean 
decomposition (LMD) was reported to take over EMD by 
better signals quality and prediction accuracy, but this 
algorithm is highly depending on optimal smoothening 
processes to signals [12]. 

In this paper, we propose a LSSVM-based system for 
prices trend prediction of building materials. Prediction 
accuracy of proposed system was tested with two 
building materials of copper and aluminium. Our system 
utilizes online algorithm to dynamically update training 
database with daily prices [13], [14]. For more accuracy, 
the algorithm of EMD is adopted to deconstruct 
nonstationary price data before online LS-SVM. Superior 
accuracy of online EMD LS-SVM can be further 
achieved by improving the prediction performance of 
IMF1.  

This paper is arranged as the follows. In the Section 
2, the algorithms of our prediction designs such as EMD, 
LS-SVM, and online algorithms will be detailed. 
Comparisons among prediction results with different 
LSSVM-based designs will be listed in the Section 3. A 
short discussion about the method to enhance online 
EMD LS-SVM is in the Section 4. Finally, the conclusion 
is drawn in the Section 5. 

2 Prediction Designs 

Proposed online EMD LS-SVM is shown in Figure 1. 
Each material’s price data are firstly deconstructed by 
EMD algorithm for IMFs and a residual item Rn. These 
signals are then processed respectively by a trained 
online LS-SVM. The trend of material’s price can then 
be composed by sum of online LS-SVMs’ outputs. 
Algorithms of EMD, LS-SVM, and online algorithms are 
expressed in the following sections. 

Figure 1. The configuration of proposed online EMD LS-
SVM 

2.1 Empirical Mode Decomposition 

Empirical mode decomposition (EMD) was 
originally designed to deconstruct nonstationary time 
series data to IMFs. Huang et al. designed this algorithm 
for examining IMFs’ instantaneous frequencies by 
Hilbert spectral analysis (HSA) in order to avoid 
complicated computing [15]. Generally, the locus of an 
IMF is sinusoid-like signal and similar to the harmonic 
of original signal. The difference is that IMF’s signal 
might have various amplitude and frequencies [15]. 

The algorithm to extract IMFs can be summarized as 
the following steps:  

1. Extract local extrema points (maxima and minima) 
of tested signal ( )x t . 

2. Determine upper envelope ( )ux t  and lower 

envelope ( )lx t  by linking up local maxima and 

minima respectively. 

3. Derive the first mean 1( )m t  between upper and 

lower envelopes by: 

1

( ( ) ( ))
( )

2
u lx t x t

m t


  (1)

 
4. Define the first error 1( )h t  as: 

 1 1( ) ( )h t x t m t   (2) 

where 1( )h t  should conform to the properties of 

IMF as: 

a. The difference between extrema and zero-
crossing points number of the whole data set 
must be ≤ 1. 

b. The mean value of envelopes which are 
composed of the local maxima and minima 
should be zero at any point. 

If 1( )h t  satisfies the requirements of an IMF, the 

first IMF function can be confirmed as 

1 1( ) ( )C t h t — otherwise extracting procedure 

goes back to the step 1 and replaces ( )x t  with 

1( )h t . 

 
5. Determine the residual item 1( )R t  as: 

 1 1( ) ( )R t x t C t   (3)

 
6. Repeat the steps from 1 to 5 for IMF2 by replacing 
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( )x t  with 1( )R t , and extracting processes will stop 

when Rn(t) becomes a monotonic function.  

As shown in Figure 1, the nonstationary signal can be 
deconstructed into IMFs and a residual function. Since 
EMD’s outputs are the subsets of ( )x t , original signal 

can be expressed as: 

1

( ) ( ) ( )
n

i n
i

x t C t R t


   (4)

 

2.2 Least Squares Support Vector Machine 

Considering a given training data set which is defined 

as     1 1, ,...... , , ,n
l l i iD x y x y x R y R   . The 

LS-SVM algorithm defines a linear function ( )f x  as: 

( ) , ( )if x x b    (5)
 

where ,   denotes the dot product, ω is the weight 

vector, b is a bias, and ( )x  represents a mapping 

function to map the input vectors into a high-dimensional 
feature space. The goal of prediction is to find a function 

( )if x , which has limited error to the actual targets iy  

from training database. Thus equation (5) becomes an 
optimal problem for: 

2 2

1

1 1
min

2 2

l

i
i

e 


   

 

 , , ( 1,..., )i i isubject to y x b e i l         (6) 

where ie  denotes the variable of error for 

misclassifications, and   is defined as the penalty 

parameter to minimize estimation error and maintain 
function’s smoothness [6], [11]. 

To resolve equation (6), Lagrangian function can be 
utilized to find out ω and e. It can be written as: 

 

2 2

1

1

1 1

2 2

( )

l

LS SVM i
i

l

i i i i
i

L e

x b e y

 

  






  

   




 (7)

 

where i  is Lagrange multiplier, which can be either in 

positive or negative value. The conditions for optimality 
of equation (7) are: 

 
1

0
l

i i
i

L
x  

 


  

   (8)

 

1

0
l

i
i

L

b





 

   (9)

 

0, ( 1,..., )i i
i

L
e i l

e
 

    


 (10)

 

( ) 0, ( 1,..., )i i i
i

L
x b e y i l 




      


(11)

 

Finally, the LS-SVM for function estimation can be re-
written as: 

 
1

( ) ,
l

i i
i

f x K x x b


   (12)

 

where the ( , )iK x x  is known as the kernel function in 

the form of Gaussian radial basis function (RBF) as: 

2

2
( , ) exp

2
i

i

x x
K x x



  
 
 
 

 (13)

 

The ( , )iK x x  must satisfy Mercer’s theorem, and σ is 

the width of RBF. After the implementation of kernel 
function, we can nonlinearly map training data onto an 
infinite-dimensional space to resolve nonlinear problems 
[6], [11]. 

2.3 Online Algorithm for LS-SVM 

Prediction accuracy of LS-SVM is depending on the 
features of trained data. If the features of upcoming data 
(signals) are different to trained data, original prediction 
function will lose tracking to the trend of upcoming data. 
This leads users confronting with such problem have to 
re-train system in order to learn the features of latest data. 
To resolve this problem, an “online” mechanism has been 
implemented in system to dynamically update training 
database during prediction. This updating mechanism 
can be summarized as the following steps [16]: 
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(a). Copper 

(b). Aluminum 

Figure 2. Prices predictions (ton/USD-per day) using online EMD LS-SVM 
 

 
1. Add and update a training vector: After finishing 

prediction of a vector, a new ( )ix t  is added to the 

training database with actual value yi. 

2. Remove a vector: By following the step 1, a vector 
should be removed from database in order to 
maintain the dimension of database. However, this 
step might be not very urgent if the prediction 
system has not shortage of memory spaces and 
computing resources. 

3 Simulation	Results	

Predicted building materials prices of copper and 
aluminium are shown in Figure 2. The data of sampled 
materials prices were from the futures market of London. 
In our test, the EMD LS-SVM were first trained with 
1012 daily prices for each material and then the prices on 
233 more days from different year were tested by 
combining with online predicting algorithms. Collected 
data sets of both materials in Figure .2 are obviously 
nonlinear and non-stationary. The Figure 2 indicates the 
prediction results of proposed online EMD LS-SVM can 
track the actual material prices efficiently. 

When compare with the different prediction schemes 
based on LS-SVM, the criterion of mean absolute 
percentage error (MAPE) is chosen for evaluation 
indicator as the follows [11]:  

1

1
100%

M
i i

i i

r f
MAPE

M r

 
  

  
  (14)

where ir  denotes the actual price of building material. 

The if  is the predicted price, and M  is the sampling 

number by days.  
Table 1 lists prediction accuracy with different 

LSSVM-based designs surveyed by using MAPE. It can 
be seen that online algorithm inevitably improves the 
traditional LS-SVM by updating training database 
dynamically with incoming price data. This prediction 
result is even better than the EMD LS-SVM algorithm. 
Such a contradiction between the EMD LS-SVM and 
online LS-SVM arises from the sinusoid-like IMFs, 
which are still partially non-stationary with price data and 
deteriorates the tacking performance of trained LS-SVMs.  

However, even though online LS-SVM has better 
tracking performance than LS-SVM and EMD LS-SVM 
for non-stationary and sinusoid-like waveforms, we can 
further improve online prediction accuracy if it 
cooperates with EMD. As shown in Table 1, the last 
prediction results indicates over 40% MAPE 
improvement from online LS-SVM can be achieved after 
incorporation of EMD algorithm. 

In the end, the prediction accuracy in Figure 2 is not 
only sufficiently demonstrated for daily prices but also 
feasible for the weekly and monthly prices predictions by 
cooperating with online and EMD algorithms. Although 
we only demonstrated prediction results based on daily 
prices, with the same skill in the future, weekly and 
monthly prices can also be predicted after the 
accumulation of daily prices. 
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(a). Original IMF1 and tracking of copper 

(b). Improved tracking of copper 

(c). Original IMF1 and tracking of aluminium 

(d). Improved tracking of aluminium 

Figure 3. Comparisons between original and improved tracking for IMF1 signals  

 

MAPE: 96.734

MAPE: 72.02

MAPE: 100.4 

MAPE: 75.3 

The 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC 2014)



Table 1. Error comparisons among different 
LSSVM-based predictions 

 MAPE (%)  

 Copper Aluminium 

LS-SVM 2.38543 6.36419 

EMD LS-SVM 2.07504 4.6045 

Online LS-SVM 0.87321 0.86573 

EMD Online 
LS-SVM 

0.46545 0.50844 

 

4. Discussions 

Notwithstanding EMD LSSVM-based prediction can 
achieve sufficient accuracy, comparisons between LMD- 
and EMD-LSSVM recently had been made by Dong et al. 
[17]. In their works, LMD-LSSVM outperformed EMD-
LSSVM by lower error rate and training duration of 
LMD. Since EMD has been maturely developed, a 
question might be asked for refining EMD for better 
prediction performance. After surveying the signal 
quality of IMFs and tracking capability of online EMD 
LS-SVM, prediction with EMD can be further improved 
by manipulating on IMF1 carefully. 

 As shown in Figure 3(a) and 3(c), IMF1 in each test 
scenario is composed of high frequency transitions and is 
severely non-stationary comparing with the other IMFs. 
The reason is that IMF1 involves abrupt transitions of 
original data, so these signals in IMF1 caused failure of 
tracking by using online EMD LS-SVM. This 
phenomenon can be observed in Figures 3(a) and 3(c); 
both tracking signals coloured with dotted blue lines were 
nearly flatten out.  

For resolving unsuccessful tracking with IMF1 
signals, our answer is to mitigate the components 
(nonstationary parts) that cause the failure of tracking. 
Here we suggest improving online EMD LS-SVM’s 
tracking by first double sampling IMF1’s signal. This 
manipulation is achieved by interpolating a virtual price, 
which is from the average prices of every two days. Since 
the data envelopes of maxima and minima are symmetric 
to time axis, the average values of higher frequency 
transition in IMF1 will be very close to the time axis 
(null). In other words, by double sampling IMF1’s signal, 
some predictions for minima-to-average or average-to-
maxima will be approximated to a stationary relationship. 
Consequently, online LS-SVM’s tracking capability with 
double sampling rate can then be improved. After 
tracking with double sampled signals, the tracked parts 
of virtual prices can be removed in order to restore IMF1 

to original resolution but with better online LS-SVM 
tracking performance. 

The improvements of tracking IMF1’s signal by 
manipulation of double sampling are shown in Figures 
3(b) and 3(d). By comparing with MAPEs before double 
sampling, the error rates are all significantly decreased. 
The remainders in IMF1 which cannot be tracked by 
online EMD LS-SVM are mostly with larger amplitude 
and could be classified as the noise. Here proposed 
double sampling mechanism on IMF1 makes an online 
EMD LS-SVM error rate 0.379% for copper and 0.423% 
for aluminium. Both results are also over 50% 
improvement from online LS-SVMs’ MAPE, as shown in 
Table 1. It can be seen that proposed double sampling on 
IMF1 has the potentiality for a better EMD-based 
prediction in the future. 

5. Conclusion 

This paper has proposed a LSSVM-based system for 
prediction of building materials’ prices. Higher 
prediction accuracy is achieved by online mechanism for 
dynamically updating training database. Moreover, the 
deconstruction of nonlinear and non-stationary data by 
empirical mode decomposition (EMD) can enhance 
prediction accuracy by tracking sinusoid-like IMFs and 
residual signals using online LS-SVMs. Comparing with 
latest LMD algorithm, double sampling IMF1’s signal 
can provide competitive improvement of prediction 
accuracy. Based on our successful works on enhanced 
prediction of materials prices, the future work will focus 
on the improvement of tracking capability for IMFs and 
expand prediction ranges for weekly and monthly 
materials prices. 
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