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Abstract - 

Mobile robots in automation construction have 
been designed for applications of craning, conveying, 
excavating, and floor polishing. These robots 
nowadays are equipped with various sensors to detect 
environmental information and finish tasks 
autonomously. When robot’s navigating path needs to 
be rescheduled, the supervisor of robot can duly 
interrupt system and then redefines a new route for 
robot. In addition to robot remote control by radio 
signals, using digital camera to receive instructions 
from supervisor’s gestures is also effective and can 
avoid the drawback of networked data routing. In this 
paper, we propose a gesture tracking system by 
simulating a traffic light baton to guide a differential 
drive robot in construction site. Here a real-time 
moving object detection first tracks supervisor’s 
waves (gestures) with digital camera. Next the system 
determines guiding direction and steering angles 
based on fuzzy logic. All of our designs are 
implemented in single FPGA chip for operating under 
rigor environments. The experimental results 
demonstrate that proposed gesture tracking system is 
accurate and promising for chip-based gesture 
guidance on construction robots in the future. 
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1 Introduction 

Tracking pre-defined paths is one of the most 
important capabilities of mobile robots. The paths of 
robots are generally constructed in various configuration 
of tags or environmental features so that robots can detect 
and compare with onboard virtual maps. These paths and 
maps have to be installed and recorded beforehand in 
order to guarantee that robot can run on expected paths 
[1-4].  

However, due to the changeability of construction 
sites, path tracking algorithms are inapplicable with pre-
defined paths. For example, an indoor floor cleaning 
robot will bump into obstacles once the house fittings are 
changed. Although the robot designed with heuristic 
algorithm can learn and update maps after every new 
bump [3], this kind of control scheme in construction 
sites is unworkable in that heavy and large robot will 
cause serious safety issues to workers and facilities.  

Besides, the algorithm called simultaneous 
localization and mapping (SLAM), which can recognize 
indoor environmental features, might overcome 
aforementioned problem by replacing heuristic algorithm 
with digital camera. Recently, the SLAM can achieved 
real-time processing by using algorithms of simpler 
training, improved classifying, steady-state operations, 
and high-end computers [4], [5]. The problem is that 
SLAM working under extremely changeable 
environments still remains a challenge to be resolved. 
Any failure of tracking or computing delay from SLAM 
will cause a disaster by lost robots. 

In the construction sites, mobile robots have been 
designed for various applications of craning, conveying, 
excavating, road and tunnel inspecting, serving, and 
tiling machine [6-11]. The navigating paths of robots are 
usually determined by humans’ volition. For instance, the 
path of a road inspecting robot could be randomly 
rescheduled depending on the obstacles, traffic 
conditions, and cracks found by the supervisor. Similarly, 
optimal manoeuvre and parking location of a mining haul 
truck is also dynamically determined by supervisor for 
relative position to excavator, turning space, loading of 
the truck, and terrain of mine. Consequently, a semi-
automatic control system is assumed to be more suitable 
than a fully automatic system in construction sites. 

A typical semi-automatic system in robotics is the 
supervisory control. This kind of system is composed of 
a supervisor and robot. The supervisor controls the 
performance and progress of assignments and duly 
interrupts and reschedules operations of robot. For the 
role of robot, it just needs to perform routine tasks with 
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pre-defined control modes [10]. Such control mechanism 
might look inferior to a complete automatic system, but 
a safe working environment with heavy robot, therefore, 
can be secured from accident. 

In this paper, we simulate a real-time hardware-based 
gesture tracking system for guiding a differential drive 
robot. The gesture tracking design on robot can update 
navigating path accordingly by detecting supervisor’s 
gestures (waves). Comparing with traditional gesture 
recognitions, the palm tracking is practically replaced 
with coloured traffic light baton in construction sites. 
Such design avoids interferences of palm’s tracking, 
which will break down under a crowded or nonideal 
illuminated environments. In addition, the range of a 
wave is generally defined as an approximative value in 
real-life operations. This makes fuzzy logic a suitable 
choice in our system to interpret the scale of a waving 
range. Finally, by considering the rigor environments of 
construction sites, all of our designs were realized in a 
single field programmable gate array (FPGA) chip in 
order to conform to criteria of lower power, cost, and 
installation dimension. 

This paper is arranged as the follows. In the Section 
2, gestures (waves) tracking algorithms based on moving 
object detection will be represented. Resource usages of 
FPGA chip design and demonstration will be shown in 
the Section 3. A short discussion is arranged in the 
Section 4, and the conclusion of paper is drawn in the 
Section 5. 

2 Gesture Tracking Algorithms 

Before starting gesture tracking off, traffic light 
baton’s image from digital camera is first detected by our 
previous works of hardware-based real-time 
demosaicking and moving object detection [12], [13]. 
Once supervisor sweeps the traffic light baton, moving 
image will be immediately marked by our moving object 
detection and then tracked by hardware-based gestures 
tracking algorithms as the follows. 

2.1 Tracking a Traffic Light Baton 

We assume only a traffic light baton with specific 
colour that will be detected by robot’s camera. The 
gravity point P of baton’s moving marks can be derived 
by designating a rectangular tracking frame on marks. 
Each image picture produces one gravity point, and every 
five gravity points can determine the waving direction of 
traffic light baton by linking up first and last points. 

Besides, detected gravity points sometimes need to be 
examined on monitor amongst waves. An additional 
sorting problem of gravity points arises from the different 
sequences between detecting and displaying gravity 
points. For example, as shown in Figure 1, if P0 has to be 
first shown on monitor, P1 will appear in next picture and 

so on. Thus five gravity points will not appear on monitor 
in one picture unless a sorting mechanism is designed as 
the follows:  

1. Load the gravity points P0 to P4 into the shift 
registers R0 to R4 in turn, where the P0 is the first 
tracked gravity point and P4 is the last one. 

2. Examine gravity points’ coordinates (x, y) on image 
sensor array with registers pairs (R4, R3) and (R2, R1). 
The point that will first show on monitor should 
change to the left-hand position in each register pair. 

3. With the similar operation, examine the register 
pairs of (R3, R2) and (R1, R0) continually and swap 
data as step 2. 

4. Repeat steps 2 and 3 until the order of all gravity 
points in registers corresponding with the 
displaying sequences of monitor. Thus the most 
significant bit of R4 will be the first point showing 
on the monitor, and the last point showing on 
monitor will be the least significant bit R0. 

5. Display gravity points by reading out shift registers’ 
data from the most significant bit in order.  

Figure 1. Possible distribution of gravity points on 
monitor 

 
2.2 Confirmation of a Gesture 

After determining a wave’s direction, the next step is 
to confirm a valid gesture (wave) of supervisor. In this 
process, the first three waves initialize a new tracking and 
then the system confirms gestures by every wave. This 
mechanism can be achieved by recording wave directions 
in registers, as shown in Figure 2. In Figure 2(a), the 
registers L and R respectively denotes the left or 
rightward wave. The content of both registers will be (1,0) 
if traffic baton sweeps from the right- to left- hand side, 
and the (0,1) condition is for reverse direction. The 
operations in vertical direction are similar to the 
horizontal direction. 
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(a) 

(b) 

Figure 2. Registers’ conditions for: leftward wave (a) and 
upward wave (b) 

As shown in Figure 2(b), the register U of vertical waves 
represents upward direction and D is for reverse one. 

Meanwhile, additional shift registers are necessary 
for counting the number of waves in different directions. 
The Table 1 shows an operation of two shift register 
groups (LX2, LX1, LX0) and (RX2, RX1, RX0) to record the 
leftward waves. The number of waving leftward was 
recorded in (LX2, LX1, LX0) and waving rightward was in 
(RX2, RX1, RX0). For the leftward waves, the registers 
(LX2, LX1, LX0) were first filled with three waves after 
initialization and then (RX2, RX1, RX0) were inhibited. 
Consequently, the system after initialization only 
allowed LX2 to be continually cleaned and refilled. This 
mechanism is also similar to the waves in other directions. 

The final process of tracking a gesture is to determine 
the initial point of a wave. As humans’ behaviour, the 
same gesture will be confirmed if the initial points of 
waves are similar. Once the location of initial point is out 
of a range, the record of initial point will be reset and a 
wave of reverse direction might be considered. For the 
case of leftward waves, the traffic light baton sweeps 
from the right- to left-hand side, and the initial point CX 
will be determined by coordinate x on image sensor and 
the registers RX0 and RX1 as: 

0 1
1

0 1

, 0
2

, 0

RX RX
RX

RX RX

x x
if x

CX
x if x

  
 

 (1)

Table 1. Data variation of shift registers for leftward 
wave 

 LX2 LX1 LX0 RX2 RX1 RX0

Initial  
state 

0 0 0 0 0 0 

1st

(return)
0 0 1 0 0 0 

2nd 0 0 1 0 0 1 

3rd 0 1 1 0 0 1 

4th 0 1 1 0 1 1 

5th 1 1 1 0 1 1 

6th 0 1 1 0 1 1 

7th 1 1 1 0 1 1 
 

Operations of initial point for leftward waves are 
illustrated in Figure 3. A starting off area is defined by 
CX and errors E. Three cases in this figure can be 
discussed for: 

Case 1: 
The 0RXx  is out of starting off area on the left-hand side. 

Tracking system with this case will still recognize a 
leftward wave, but the initial point CX will be updated 
and gradually moved to the left-hand side.  

Case 2: 
The 0RXx  is within the range of starting off area. The 

leftward wave is confirmed with last CX. 

Case 3:  
Latest 0RXx  locates on the right-hand side of starting off 

area. System with this case will immediately clean all 
waves’ records in registers and then a new rightward 
wave might be confirmed depending on upcoming waves. 
 

Figure 3. Operations of starting off area for leftward 
waves 
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Figure 4. Steering angles control by using fuzzy logic to guide a differential drive robot 

 
 
2.3 Guiding Robot with Fuzzy Logic 

This subsection represents the determination of 
steering angles for a differential drive robot. The design 
difficulty arises from the magnification of camera lens 
that causes misjudgement with the same waving range at 
different locations. Consequently, guiding a robot by 
actual spatial scale on camera is impractical.  

To resolve such problem, magnification of camera 
lens has to cooperate with fuzzy logic in proposed system. 
According to magnification of lens, 

i i

o o

h d
M

h d
    (2) 

 
ho: height of object 

hi: height of projected image 

do: object distance 

di: image distance 

 
the distance between traffic light baton and camera lens 
(do) can be derived from baton’s height (ho), projected 
image height (hi), and baton’s image distance (di). It can 
be seen that waving range iw  on monitor and do have an 

inverse proportional relationship, which approximates a 
constant of i ow d for the same wave at different 

locations and helps us to resolve aforementioned 
misjudgement problem. 

Figure 4 depicts the gesture control scheme for a 
differential drive robot. The supervisor assumed guiding 
a robot with expected driving directions. Proposed 
system on robot first tracked supervisor’s gestures then 
derived steering angles by fuzzy logic. Here the inputs of 
fuzzy set are i ow d cm2 and the outputs of fuzzy logic 

are expected steering angles from supervisor. Steering 

angles from fuzzy logic will be translated into physical 
values by the driving unit of robot. 

The fuzzy set of i ow d  is defined in the Figure 5. 

Here the triangular membership functions were adopted 
to denote “range zero (RZ)”, “range small (RS)”, ‘range 
medium (RM)”, and “range big (RB)” of i ow d  inputs. 

Triggered values of membership functions can then be 
expressed as: 
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Figure 5. The fuzzy set of wave ranges 

For the fuzzy rules, we defined TZ, TS, TM, and TL for 
the turning angles of “turn zero”, “turn small”, “turn 
medium”, and “turn large” of the different drive robot. 
Each rule was respectively assigned with weight of 0, 1, 
3, or 5, as shown in Table 2. Robot’s steering scales to 
driving unit were assumed from 0 to 5 to control robot’s 
two wheels in different speeds. Finally, as 
aforementioned discussion, the driving directions of 
robot were determined by the gravity points’ tracking as 
supervisor’s waves. 

In the end, the algorithm of defuzzification was 
minimum inference engine [14] as: 

*

'

1,
( )

0,
A

if x x X
x

other


  
 


 (7) 

 

where 'A  is a fuzzy singleton of input, and triggered 

rule l and output 'B  are,  

 *
'

1
( ) max min ( ), ( )l lB A Bl
y x y  


     (8)

 
The actual output of steering angles was based on centre 
of gravity for singletons as [15]: 

'

'

*
( )i iBi

Bi

y y
y



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

 (9)

 

where y* represents the outputs of steering angles by 
fuzzy, ' ( )iB

y  denotes the triggered values of 

membership function, and iy  is the weight of fuzzy rules. 

 

Table 2. Fuzzy rules 

Inputs RZ RS RM RB 

Outputs TZ TS TM TL 

Weights 0 1 3 5 

Table 3. Resources usages of proposed gesture 
tracking system in single FPGA 

Designs LEs % 

Total design 4,678 6.84 

       Full colour 
       demosaicking 

1,753 2.56 

   Moving detection 361 0.53 

       Gesture tracking 1,210 1.77 

       Fuzzy logic 1,354 1.98 

 

3 Experimental Results 

Proposed gesture tracking system is implemented in 
single Cyclone II 2C70 FPGA chip from Altera. Adopted 
digital camera module was set for 1280×1024 pixels 
resolution and pictures’ frame rate were 12 fps, which is 
suitable for moving detection with walking speed. Total 
hardware resources usages of logic elements (LEs) are 
shown in Table 3. It can be seen that we only consumed 
4,678 (6.84%) out of 68,416 LEs. This design involves 
the full colour demosaicking (2.56%), moving object 
detection (0.53%), gesture tracking (1.77%), and fuzzy 
logic (1.98%). 

Figure 6 shows the snapshots of proposed gesture 
tracking. A sweeping traffic baton with blue light was 
first detected and marked with white stripes, and every 
stripe was composed of 32 pixels. Here the colour 
detection was simply designed by thresholds for baton’s 
blue colour. Cluster of moving marks was real-time 
tracked by a rectangle on monitor, as shown in Figure 
6(a). Based on the rectangular mark, gravity points of 
rectangles can be plotted as the crosses in the Figure 6(b). 
These crosses represented the trajectory of a wave. 
Similarly, as shown in Figures 6(c) and 6(d), traffic light 
baton’s trajectories in vertical and horizontal directions 
were also represented by solid lines on monitor, and the 
marks of starting off areas are shown in the Figures 6(e) 
and 6(f). 
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(a) (b) 

 
(c) (d) 

 

(e) (f) 

Figure 6. The snapshots of real-life gesture tracking 
on monitor 

 

Finally, the errors of various waving ranges are listed 
in Table 4. In this test, the traffic light baton was 
vertically installed and moving horizontally on a rail in 
order to control the quality of waves. We tested different 
waving ranges for 10, 20, 30, 40, and 50cm while 

supervisor stood front camera from 1 to 3 meters away. 
Each test scenario collected 10 waves including 
initialization stage. It can be seen that errors of waves 
were efficiently controlled by a maximum of 15% and the 
most of these errors were   10%. Meantime, average 
errors were all under 10%. The accuracy of proposed 
system is sufficient to guide a robot by successively 
gestures. 

4 Discussion 

Using a traffic light baton to guide a robot is more 
practical than the palm tracking. Although guiding a 
robot by palm is natural, palm’s detecting rate is usually 
deteriorated by nonideal illumination such as shadows 
and reflections. Moreover, additional algorithms for face 
recognition might also be required to track supervisor 
under a crowded environment. In contrast to palm 
recognitions, guiding robot with a traffic light baton can 
be realized with a simpler colour detection by using 
thresholds. Proposed real-time supervisory control is not 
only working well in the dark environments but also 
mitigates the interference from reflection.  

Besides, the adequate and stable moving marks on 
traffic light baton are important to proposed system. It 
can be seen that accuracy of wave range depends on the 
number of moving marks, which represent the actual 
dimension of the traffic light baton. Accordingly, with 
1280×1024 pixels resolution of image, there is a lower 
bound of traffic baton’s height or length on monitor for 
2cm. This limitation can be improved by a higher image 
resolution without increasing of computing delay [13]. 

Finally, due to the moving marks which are composed 
of stripes, slightly move at a further location will be 
thought as a static object by system. It leads invalid 
detection at first column by 3m away from camera and 
errors’ fluctuations in each row, see the Table 4. Here a 
better detecting resolution can be achieved by decreasing 
the length of moving marks or with higher image 
resolution. 

5 Conclusions 

In this paper, we have proposed a practical gesture 
tracking for robot’s guiding system, which is based on 
the real-time hardware chip designs. Essential gestures 
such as horizontal and vertical waves have been 
represented in paper. Our designs involve real-time 
demosaicking, moving detection, and colour detection by 
thresholds to detect the specific target, a traffic light 
baton. Mobile robot’s steering angles are determined by 
fuzzy logic for different waving ranges. Proposed system 
also enables supervisor to guide robot flexibly with 
different distances from camera but without significant 
errors. Comparing with the traditional gesture guiding 
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Table 4. Horizontal waving errors with different distances away from camera 

 Waving ranges 

 10cm 20cm 30cm 40cm 50cm 

Maximum errors measured at 1m 10% 11% 10.67% 10.5% 9.6% 

Maximum errors measured at 2m 6% 9% 6.67% 13% 12.4% 

Maximum errors measured at 3m N/A 15% 8.67% 9.5% 10.8% 

Average errors measured at 1m 3.9% 6% 5.68% 6.65% 7.76% 

Average errors measured at 2m 2.6% 3.95% 3.53% 9.85% 7.96% 

Average errors measured at 3m N/A 7.4% 3.97% 5.95% 9.6% 

 
 
 
methodologies by using palm recognition, proposed 
system has the advantages of low-cost, real-time 
processing, miniature installation dimension, and a 
higher detection rate by using traffic light baton. 
Experimental results in this paper have demonstrated our 
gesture tracking system is promising for the supervisory 
control. The future work will focus on the 
implementation of gesture guiding system on mobile 
construction robots. 
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