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Abstract - 

Building Energy Management Systems consist of 

hardware and software components. The hardware 

set-up of BEMS is typically made up of a set of 

computers in charge of building control and sensor-

actuator networks. The software side of BEMS is 

usually made up of a number of functional layers 

that implement standard management functionalities. 

This paper will present an application of Model 

based Predictive Control (MPC) targeted to energy 

management of the “Passeig de Gracia” metro 

station in Barcelona. This approach uses the 

predictions of future building status, obtained by 

means of a set of Bayesian Networks, in order to 

determine the optimal control policies. First the 

predictive Bayesian Networks were developed 

through the following steps: structural learning 

based on a simulated dataset; improvement of the 

network’s topology through enhanced datasets 

derived from the previous one; final refinement and 

validation based on experimental data collected 

through a pervasive wireless monitoring network. 

Then those networks were integrated within a 

control framework, including control algorithms, a 

Dymola
TM

 based virtual model of the station to 

simulate its evolvement and, on top of them, a user 

graphic interface to manage the system. The results 

about energy savings estimation determined by the 

application of model based predictive control to the 

station’s mechanical ventilation showed that as much 

as 35% can be saved on average.     
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1 Introduction 
 

The development of an innovative adaptive control of 

HVAC based on the use of predictive models is part of 

an ongoing research project, funded by the EU 

Commission and called “Seam4us” (http://seam4us.eu/). 

The pilot of such a project is the “Passeig de Gracia” 

station in Barcelona (Spain). This approach will 

overcome the traditional homeostatic short-term 

feedback mechanisms which are applied singularly to 

each equipment type. This paper concerns the design 

and the development of a new type of intelligent 

building energy management system (which is usually 

referred to as BEMS), that is able to optimise the 

operation of the mechanical air supply systems of the 

Passeig De Gracia metro station in Barcelona. To the 

purpose of this application, predictive models were 

developed to support the optimal control of indoor 

environmental conditions in the station, which was 

necessary due to the many interacting variables of the 

domain.  

BEMSs usually consist of hardware and 

software components. The hardware set-up of a BEMS 

is typically made up of sensor-actuator networks that 

accurately monitors the indoor-outdoor environment 

and the building plants state and drive the systems 

accordingly. The software side of a BEMS consists of a 

number of functional layers that implement standard 

management functionalities like plant status monitoring, 

alarm management, demand driven plant management, 

reporting, etc.. [1]. Still plant and building set-points 

follow prescribed schedules and are rarely optimized in 

response to changing dynamic conditions, including 

weather, internal loads, occupancy patterns, etc. 

Nonetheless, there are significant opportunities for 

optimizing control set points and modes of operation in 

response to dynamic forcing functions and utility rate 

incentives. A number of studies [2] have shown 

potential savings for optimized controls in the range of 

10% to 40% of the overall cooling cost.  

Model Predictive Control (MPC) may be used to 

enhance BEMSs so that they can improve their control 

performances getting close to optimal behaviour. MPC 

is an advanced control technique [3] that uses the 

predictions of future building status, obtained by means 

of a model of the building’s dynamics, in order to solve 

the problem of determining the optimal control policies 

in advance and anticipate its reaction to external forces. 

But this requires the development of integrated models 

capable of predicting the near future behaviour of the 

controlled environment under specific conditions, so 

that the optimal solution can be sought through scenario 

analysis. Furthermore, MPC models must interoperate 
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with real sensor/actuator networks that usually, for cost 

reasons, cannot be larger than few tenths of devices and 

whose deployment is constrained by a number of 

external factors. Nevertheless, the model accuracy must 

be granted despite the reduced representation of the 

physical model and the suboptimal selection of the 

parameter set. The fulfilment of such competing 

requirements compels the definition of a modelling 

framework that, by guiding the MPC modeller through a 

set of methodological steps, will contribute to design 

accurate and robust models, which are sufficiently light 

to be embedded in real control systems. Thus far the 

model part was usually left to statistical models and it 

was usually targeted to quite simple domains. In this 

paper, a new probabilistic approach was tested, 

suggesting that Bayesian Networks can provide the 

means to manage very complex domains. In particular, 

they are shown to be able to make correct inferences in 

the case of a metro station, whose behavior is affected 

by a number of variable and interacting physical 

phenomena. Hence they supported the development of a 

MPC scheme.   

2 The case study: underground station 

PdG 

The PdG metro station in Barcelona is a 3-line 

connection station between metro lines no. 2, 3 and 4 

(Fig. 1). Line 3 (L3) is located in the northern hub of the 

station, which includes spaces devoted to different 

activities: commercial, transportation, people movement, 

public and technical services, staff reserved rooms. A 

spatial survey in the station led to the identification of 

the following types of spaces: entrances (E), halls (H), 

corridors (C), platform (P) and rooms (R), including 

technical rooms, restrooms, vestibules and other areas 

whose access is restricted to the staff. Internal comfort 

is managed by means of several systems. The public 

access area is mechanically ventilated. The whole 

station is lit by means of regular, auxiliary and 

emergency light fittings controlled by several power 

circuits. People movement is favored by upward 

escalators. Other systems (e.g. split units, 

communication) are installed in commercial, technical 

and staff only rooms.  

In this paper we will show how MPC can 

optimally regulate comfort by means of a dynamic 

control strategy, instead of by a set of predefined design 

constraints. To that purpose, the station must be capable 

of dynamically accommodating the user needs, by 

driving the fans located in the station’s technical room. 

The main ventilation ducts leave from here to convey 

outdoor fresh air into the platform (PL3). Air intakes are 

located above both platform’s sides and they supply air 

changes. Two CONAU V1080 injection fans (that are 

the main object of our control) are located in the 

station’s technical room, and other two fans are 

extracting air through ventilation shafts in the middle of 

the tunnels adjoining PdG-L3 (which are not controlled 

instead). The current daily summer ventilation schedule 

keeps injector fans on during the day (from 5 am to 10 

pm) at their highest rate. They are switched off in the 

night. Similarly is valid in winter, but the fans’ input 

frequency is halved, and their air flow rate is reduced at 

about one third, as a consequence. Also, outdoor 

ventilation is conveyed through its five entrances and 

corridors leading to the platform. 

 

(a) (b) 

  
Fig. 1 – Spatial layout of the PdG underground station 

(a) and pictures (b). 

3 MPC control 

As mentioned in the Introduction, the Bayesian 

networks developed in this chapter were used to provide 

forecasts about the future state of the PdG-L3 in 

Barcelona, given the knowledge about their current state. 

Any control in buildings is targeted to minimize power 

consumption while keeping required comfort level and 

guaranteeing robustness of the solution. To this purpose, 

the control system must be optimal and adaptive, which 

is "a special type of nonlinear control system which can 

alter its parameters to adapt to a changing environment. 

The changes in environment can represent variations in 

process dynamics or changes in the characteristics of the 

disturbances […]" [4]. Reliability is also required, and 

the predictive feature is another opportunity for 

achieving high energy efficiencies: prediction gives the 

capability of taking soft control actions in advance 

instead of suddenly reacting to unexpected deviations 

from the required state, thus saving energy. MPC takes 

into account the (measured) current state of the system, 

future weather conditions and other disturbances (e.g. 

internal gains), in order to control actuators (e.g. HVAC, 

lighting and blind systems), so that energy and money 

usage are minimized. At the current point in time, a 

heating/cooling plan is formulated for the next several 

hours to days, based on predictions of the upcoming 

weather conditions. The control action is designed by 

running the model of the process over a given prediction 

horizon and evaluating the control sequence that gives 

the minimum value of the cost function [5].  

One remarkable survey about the effectiveness of 
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MPC was carried out by means of simulations and 

applied to office buildings [6]. First, the authors 

considered and compared a list of potential adaptive 

approaches, among which we cite reduction of the 

thermal comfort when the building is not used, 

widening of the room temperature comfort range, use of 

Indoor Air Quality controlled ventilation. Those 

preliminary simulations showed that the highest energy 

savings were determined by predictive control [7]. 

In the case of large underground buildings, like 

PdG-L3 metro station in Barcelona, interaction with the 

outdoors is very complex and occupancy figures result 

someway difficult to predict. Hence, the dynamics of 

the station cannot be solved –and predicted– though a 

simplified thermal model. Bayesian Networks will be 

shown to work well when it is necessary to reduce a 

complex building model into a more manageable one. In 

fact, they gave back a lumped representation of a 

complex system, involving thousands of variables. 

 

 
Fig. 2: predictive model based control framework 

defined for the metro station PdG-L3.   

 

The overall MPC control framework applied to the 

station is represented in Fig. 2. Inputs   to the system 

are the variables that can be driven by the controller (e.g. 

frequency that drives injector fans). The outputs   are 

the power consumption and indicators for comfort and 

health that must be controlled in order to reach certain 

desired reference level  . The relation between inputs 

and outputs is also significantly affected by a set of 

disturbances  , such as weather, train arrival, passenger 

flows and fans external to the station: they cannot be 

manipulated but only “accounted for” by using direct 

measures. At each control step, the prediction model 

receives candidate input sequences  ̂ picked out by the 

controller; disturbance predictions come from 

disturbances models  ̂, measured outputs   from PdG-

L3 and the prediction model estimates the future output 

sequence  ̂. The optimal control sequence    is that one 

which minimizes a given cost function while complying 

with given constraints. Once the optimization problem 

has been solved, the first step   of the optimal sequence 

is applied as the best control action. The overall 

procedure is repeated at each step, thus closing the 

control loop. The implementation of those systems asks 

for the development of devices and services: 

- monitoring systems and intelligent algorithms to 

interpret occupant’s behaviour, as deeply explained 

by the authors in [8]; 

- high-level control systems capable of solving 

optimization problems in real-time;  

- accurate and fast dynamic models of buildings’ 

behaviour and their systems (which is object of this 

paper); 

- accurate modelling of disturbances. 

4 Development of predictive models 

Indeed, Bayesian Networks may be thought as a 

directed acyclic graphs that encodes assertions of 

conditional independence [9]. In fact, it orders the 

variables in a domain U. They are suitable to reduce 

complex domains into computationally manageable 

models, which is a key feature when computations must 

be performed in real-time. Also, they are capable of 

managing incomplete (e.g. one or a few data are not 

available because the corresponding sensors are broken) 

and uncertain information (e.g. if we include uncertainty 

in sensor measurements or if inputs are relative to 

forecasts of disturbance actions).  

They implement inference algorithms, thanks to the 

conditional probability relationships defined among the 

variables of the domain under analysis [10, 11]. In other 

words any node can be conditioned upon new evidences. 

This feature is particularly important in case a control 

system must work in real-time, because in that case 

evidences acquired about a state variable (i.e. from 

sensor measurements) must be propagated to update the 

state of the rest of the domain. When it is run in the 

MPC framework, the controller will make queries to a 

set of nodes belonging to the networks, whose 

probability distributions are computed from the state of 

other nodes, upon which observations (or evidences) are 

already available. In the case of PdG-L3 presented in 

this chapter, the Bayesian Networks were built in the 

Hugin
TM

 software environment. The conditional 

probability tables were learned from datasets put 

together through numerical simulations, by means of the 

“EM learning” algorithm [9].  

In order to validate their performances, different kinds 

of indices were developed. The difference between the 

predicted value  ̂  and the actual value    is defined as 

error     ̂    . The absolute error is     |  | and 

its squared error is       
 . Percentage error will 

be:               . In order to have a global 

performance index to be evaluated over the whole 

validation dataset made up of   samples, these 

CONTROLLER

PREDICTION MODEL

STATION

DISTURBANCES 

MODEL

 ̂  ̂
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instantaneous indices must be combined into global 

indices, such as the mean absolute error:  

    
 

 
∑ | ̂    |

 
         (1)                                                              

and the root mean square error is: 

     √
 

 
∑ ( ̂    )

  
 .      (2)                            

As indices of the predicted variables are related to 

different physical quantities with different units, they 

should be normalized with respect to their typical range 

of variation, by means of: 
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|         | 
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and:                       

      
√
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|         | 
        (4) 

ASHRAE Guideline 14-2002 [12] establishes that for 

calibrated simulations, the CVRMSE and NMBE of 

energy models shall be determined for each calibration 

parameter by comparing simulation-predicted data to 

the utility data used for calibration. The proposed 

indices are the coefficients of variation of the root mean 

square error (CVRMSE) and normalized mean bias 

error (NMBE). Following this guideline, the RMSE has 

been selected as the main performance index for 

evaluating the accuracy of a BN. The range of the 

considered variable has been taken as a normalization 

factor and the NRMSE has been selected as final index 

for the design process of the BN because it includes 

information about both bias and variance of the error. 

4.1 Predictive models 

Basically, the development process of both Bayesian 

Networks consists of three main phases: 

1. definition of the network topology; 

2. preparation of the training set and learning of the 

conditional probability tables; 

3. final assessment of the network. 

In the case object of this chapter, the behaviour of 

the metro station Passeig de Gracia was first simulated 

through whole building analyses, which provided 

datasets encompassing all the possible environmental 

conditions, such a knowledge was transferred into 

Bayesian Networks then. Three datasets were generated: 

- the first one was made up of randomly generated 

data, which means that the inputs (e.g. weather, 

heat gains, occupancy figures etc..) were allowed to 

vary without additional constraints in their range;  

- the second sample, called “likely” dataset, was 

generated through simulations whose inputs were 

allowed to vary within their same ranges cited 

above, their differential variations being 

constrained, so that the difference between the 

value of each variable at the present time step and 

the value of the same variable at the previous time 

step was limited by a threshold; 

- the third “typical” sample was built through 

simulations, whose inputs were taken from real 

measurements, such as real weather conditions, 

number of people etc ...  

The use of the random dataset was targeted to 

provide to the networks information about any kind of 

combination of events possible, including the less likely 

ones. Then, more information about the more likely 

scenarios included in the second and third datasets was 

added. These two last datasets were constrained by 

setting input variables within those values which were 

measured in past years (e.g. weather conditions, 

occupancy, driving frequencies of ventilation systems). 

The whole building model used for running simulations 

was developed as a lumped parameter model in the 

Dymola
TM

 simulation environment, that is based on the 

Modelica language [13]. Starting from a validated 

library for building simulation developed by the 

Lawrence Berkeley National Laboratory [14], a specific 

library for underground stations was developed. 

However, such a model cannot be run in real-time when 

the controller needs to determine the best candidate 

control strategies, so it was reduced into the less 

computationally demanding form of Bayesian Networks. 

The PdG-L3 predictive model was split into two 

Bayesian Networks: 

1. temperature prediction dynamic Network (TP-

DBN), which is in the form of a DBN, because it 

forecasts expected temperature in the station given 

inputs about current and past time steps;  

2. air flow prediction Bayesian network (AF-BN), 

which is  in the form of a regular BN, because it 

estimates variables relative to air flow in the station 

and energy consumption of the fans, given its 

current status. 

Once available, the two networks were run 

according to the scheme outlined in Fig. 3. At every 

iteration the controller will opportunely query the two 

networks to get future estimations about the variables 

relevant to select the most opportune control policy to 

be adopted at each running step. To this aim, the 

networks need to be instantiated first: the current 

temperature in the station’s platform (PL3) and weather 

conditions will be provided by the permanent 

monitoring network installed in the station, along with 

candidate fan frequencies. Given these inputs, the 

controller is allowed to query the AF-BN in order to 

estimate fans consumption and air changes in the station 

at each time step. Such a prediction step takes a few 

seconds and is performed by the software Hugin
TM

 

through algorithms for belief propagation. Then, the TP-

DBN will take these variables as inputs, along with 

other state variables (e.g. current PL3 temperature, 

temperature difference between inside and outside and 

forecasted weather, people, train arrival etc..) in order to 

ENERGY AND ENVIRONMENT



predict PL3 temperature at the next time step. Again, 

belief propagation is performed with this second 

network. Then, the same loop will be repeated at each 

iteration. Both the networks were built following the 

same methodology:  

- first structural learning: it was determined first by 

the a-priori knowledge from the researchers and 

cluster analyses;  

- improvement of the network’s structure: this was 

carried out through analysis of its performance 

indices, after learning conditional probability tables 

from the random dataset;  

- final refinement using the two additional datasets: 

adding more datasets allowed the developers to 

quantify even probabilistic relationships among the 

variables;  

- final evaluation of the networks.  

 

 
Fig. 3: The basic loop of the predictive cycle adopted 

for PdG-L3 which involves both Bayesian Networks.  

 

The first step started from the analysis of 81 variables 

included in the Dymola
TM

 dataset. Iterative cluster 

analyses [15] were useful to group those variables into 

clusters and determine those which were redundant [16]. 

Finally, the number of variables was cut down to 25. 

This final set’s variables were naturally grouped into 

two sub-clusters of variables: one of them including 

those related to air flow processes, and the other one 

including those related to the temperature dynamics.  

The second step helped in several tasks: meaning 

and dependencies between nodes have been reviewed 

according to the relationships suggested by physical 

laws; the number of intervals for discretizing the state 

space pertaining to every node, with the final purpose of 

minimizing the errors of the output variables given by 

the performance indices; a few links have been 

rearranged.  

Fig. 4-a depicts the final structure of the dynamic 

Bayesian network (i.e. TP-DBN), which was used to 

predict PL3’s temperature in PdG station in the next 

step (node TemPL3_p01), starting from inputs such as: 

forecasted number of people in the station at the next 

step (NPeSta_p01), forecasted internal gains supplied 

by trains at the next step (GaiTr_p01), current PL3’s 

temperature (TemPL3), forecasted outdoor temperature 

(TouMet_p01), forecasted air changes per hour 

(ACOPL3_p01) and deviation of temperature from the 

past time step (DtePL3). The network’s intermediate 

variables are useful to perform computations and 

simplify conditional probabilistic relationships among 

variables. Similarly holds with the AF-BN network (Fig. 

4-b), whose inputs are: forecasted frequencies of fans in 

the station and tunnels at the next time step 

(DfreTF1_p01, DfreTF2_p01, DfreSF1_p01), 

forecasted internal gains by trains (GaiTr1_p01), 

forecasted wind direction and speed (WiDMet_p01, 

WiSMet_p01), outdoor temperature (TouMet_p01) and 

current temperature (TemPL3). The main outputs are 

the power consumption of fans – in the station (PelSF1) 

and in the tunnels (PelTF1, PelTF2) – and air flow rates 

expected across the corridors leading to PL3: 

AflCNl_p01 (corridor CNl), AflCNop_p01 (sum of 

corridors Cno and CNp), AflCNq_p01 (corridoio CNq) 

and AflSlb_p01 (station link). These estimated airflows 

are then summed up coherently to the Air Mass Balance 

for computing the overall air change in PL3 (ACOPL3), 

needed as input from the TP-DBN. 

 
(a) 

 
(b) 

 
  Fig. 4: Predictive and dynamic Bayesian Network 

relative to temperature in PL3 (a) and predictive 

Bayesian Network relative to air flow changes in the 

station (b). 
 

The third step was aimed at performing further 

refinement using the “typical and “likely” datasets. 

Technically, that means that the EM learning algorithm 

was implemented by adding the information included in 

these two datasets to the information already derived 

from the “random” dataset. This process allowed to 

include information about those scenarios which are 

likely to occur more often. The refinement was mainly 

AF-BN TP-DBN

Number of people in station at t+k

Number of trains in station at t+k

Weather data at t+k

Variation of temperature at t+k-1

Temperature at t+k-1

Air change at t+k Temperature at t+k

Fan driving frequencies at t+k

Weather data at t+k

New Cycle: k=k+1

Fan absorbed power at t+k

PREDICTION MODEL

 ̂  ̂

  
CONTROLLER STATION

DISTURBANCES 

MODEL
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performed in terms of tuning the subdivisions into 

intervals of all the nodes and in terms of converting 

discrete variable into continuous variables.  

The steps no. 2 and 3 required many iterations of 

learning, refining and validating. On the whole, 140 

cycles were made with the TP-DBN (Tab. 1), which 

was useful to reduce the error from 4.98 to 0.72 °C (in 

the RMSE case) and from 17% to 4% (in the NRMSE 

case). The trend during the refinement process led to a 

continuous increment of performances, as shown in Tab. 

1. In addition, 82 cycles were needed to optimize the 

AF-BN: for the control variable, Station Fan Power 

(PelSF1) RMSE fell down from 1858 W to 377 W, 

whereas NRMSE fell from 10.3% down to 2.3%. 

In the TP-DBN all the nodes were represented by 

discrete variables. In the AF-BN all the variables were 

continuous except the following ones: frequencies of 

fans (DfreTF1_p01, DfreTF2_p01, DfreSF1_p01) and 

wind direction (WiDMet_p01).  

 

Tab. 1: Gradual improvement of performances during 

continuous refinement of the TP-DBN network. 
Cycle no. TemPL3_p01 

 RMSE (°C) NRMSE (%) 
1 4.98 17 
….   

54 3.32 12 
…   

98 1.81 6 
…   

114 1.00 4 
…   

140 0.72 4 

4.2 Cost function 

The controller unit passes a candidate control policy to 

the BNs and uses resulting predictions in order to 

compute a cost function, which must select the best 

output to be used as an input in the next time step. The 

degrees of freedom (outputs) of the controller for PdG-

L3 station are the frequencies of the station fans 

(             ). The predictions that the controller 

queries to the Bayesian Networks are the absorbed 

powers of tunnel fans and station fans (      ,       , 

      ,       ) and the air temperature in the platform 

(      ). The future outdoor temperature (     ) is 

retrieved from a weather forecast service and the air 

change in the platform (       = amount of clean air 

entering the platform) is computed as a proper 

combination of the air flows predicted by the BNs. The 

objective of MPC is to minimize the following cost 

function with respect to station fan frequencies (the 

variables marked with “tilde” (~) are the normalisation 

coefficients that corresponds to the typical values of the 

corresponding variable while the weights of each single 

objective in the cost function is determined by   ): 

 

 ∑    (
|      ( )        ( )|

   ̃
)

 

   

    (
|      ( )        ( )|

   ̃
)

    (
     ( )        ( )

  ̃
)

 

   (
      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        ( )

 ̃
)

 

    (
      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        ( )

  ̃
)

 

    (
      ( )        (   )

  ̃
)

 

 

(5) 

The inclusion of temperature in PL3 (TemPL3) 

and air changes per hour (ACOPl3) were used to 

control comfort conditions. The respective 

coefficients of eq. (5) can be tuned to weigh the 

importance of the several concurrent factors.  

 

4.3 Validation of the predictive models 

Finally the performances of the two networks were 

verified also through simulations. Fig. 5 shows the good 

agreement between the real temperature simulated by 

Dymola
TM

 in PL3 and the forecasted plot of PL3 as 

predicted by TP-DBN. The simulations performed by 

the Bayesian Networks in this case were carried out 

according to what already described. The input values at 

the first time step were instantiated as evidences taken 

by the Dymola
TM

 model. Then, the outputs from the 

networks were used as inputs for the next time step in 

the networks and the simulations were iterated in the 

same way all over the period shown in the diagram. It’s 

clear that the predictive and dynamic Bayesian networks 

(BN) are able to accurately model the temperature plot 

sin PL3 and to give the right inputs to the controller, in 

order to evaluate the best control policy. 

 

 
Fig. 5: Qualitative comparison between the real 

temperature plot computed by Dymola
TM

 and forecasts 

by the Bayesian Network TP-DBN. 

5 The Simulator 

The Bayesian predictor and the MPC logics have 

been embedded in a simulation environment that 

accurately reproduces the thermal and air-flow 
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dynamics of the outdoor and indoor environments, and 

the trains and passenger flows.  

 

Fig. 6. The Simulink SEAM4US Simulator 

architecture: occupancy (green), fan frequencies 

(blue), dimming level of lights (orange), 

measures (purple). 

 

The Simulink (Mathworks©) architecture of the 

SEAM4US simulator is shown in Fig. 6. The simulator 

is made of four main components: the PdG 

environmental model, the passenger flow simulator, the 

lighting control simulator and the environmental MPC. 

In this paper we are showing the potentials of MPC 

applied just to environmental control. The PdG Model 

is that one developed in Dymola
TM

. At compile time 

the PdG environmental model results in a matrix with 

tenths of thousands of unknowns. The PdG Model is 

interfaced with a weather file of Barcelona that 

provides the hourly external weather parameters, 

including wind speed and directions. The PdG 

environmental model receives as inputs passenger 

occupancy levels, lighting level of the appliances in 

each space, and fan control frequencies. It then outputs 

all the environmental parameters (e.g. air temperature 

and humidity, pollutant levels, energy consumption). 

These parameters are then fed back to the control logics 

as the basis for the next control step. In the SEAM4US 

simulator the large PdG Environmental model acts as 

the real station. The Bayesian models reported in sub-

Section 4.1 support the controller by means of 

predictions on the future status of the station. The size 

of this predictor is small enough and its computational 

time short enough to suit the model embedding 

requirements.  

The control logics implemented in the SEAM4US 

simulator is based on a particle filtering mechanism. 

The controller randomly generates a number of 

different control options that are sent to the predictor. 

The predictor updates the model with the control 

parameters and by means of Bayesian inference 

calculates the environment and energy consumption 

parameters. Then the controller ranks the predictor 

outcomes according to the cost function in eq. (5). The 

best performer is then selected and used in the next 

control step. Fig. 7 shows an example of a simulation 

results of three days of operation, which is relative to 

the environmental control. The simulation time is 

represented along the x axis, while the y axis represents 

the fan frequencies in Fig. 7-a Negative frequencies 

means that the fan direction is inverted (extracting air 

instead of supplying). Three curves are reported. The 

dashed curve (i.e. baseline) depicts the current policy 

used for fan control. The fan is driven at maximum 

speed for all the station opening time and it is turned 

off during the closure time. The second dash-dot curve 

represents MPC constrained to only two driving 

frequencies, while the third (continuous) curve is 

related to a continuous frequency driving. In addition to 

the fact that MPC control provides an energy saving 

rate that can rise up to 35%, it is noteworthy to realize 

why this happens. Comparing the baseline curve with 

the MPC controlled, it appears that in many cases the 

driving frequencies and the baseline have opposite 

signs. This means that in the standard baseline driving 

the station fans very often are opposed to the air flow 

induced by the external sources, and therefore 

contribute negatively to the air exchange. This is 

reflected by the temperature curves that are slightly 

lower – i.e. more comfortable - for the MPC controlled 

environment despite the huge energy saving (Fig. 7-b). 

Summarizing, these results show how the effectiveness 

of the MPC control of complex environment relies on 

the power and on the flexibility of the Bayesian 

predictor and of the Bayesian Inference paradigm. 
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Fig. 7 - Plots from the simulations in search of optimal 

control strategies. 
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6 Conclusions 

Predictive control of buildings is one of the most 

effective ones currently being developed by researchers. 

However, it cannot be applied without a reliable 

predictor of the expected state of the controlled domain. 

Computationally demanding software programs cannot 

be used to produce predictions at run time, but they can 

be run to generate datasets and these datasets may be 

used to transfer knowledge into Bayesian Networks. In 

fact, inputs by the controller are instantiated in Bayesian 

Networks in the form of a set of evidences; then, 

inference algorithms are propagated and expected future 

values describing the energy and thermal state of the 

domain might be estimated. This procedure can be 

repeated thousands of times at each control step and it 

makes the implementation of MPC feasible.  

When implemented in a real case, the results from 

inferences were shown to be very accurate with low 

deviations from the values estimated by means of more 

complex numerical models. In addition, our testing of 

the use of predictive Bayesian Networks embedded in a 

wider MPC framework to support the ranking of 

concurrent control policies was successful, too. So 

Bayesian Networks proved to be able to solve the 

problem of reducing complex models into more 

manageable tools for performing cumbersome 

inferences through limited computational efforts, while 

getting highly accurate results. 
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