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Abstract -
Best practice for the detection and annotation of visible

defects in slated roofs is by annotation of photos, ideally or-
thophotos. If such a process is to be effectively automated
in support of emerging Digital Twinning solutions, it is nec-
essary to first recognise the external sub-components of the
roof in the orthophotos, in particular the slated and leadwork
areas. Using a dataset composed of many photos from two
historic buildings, this study develops and compares differ-
ent deep-learning -based semantic segmentation models to
segment roof orthophotos into slated areas, leadwork, and
‘other’ areas. Since orthophotos typically contain pixels
which do not belong to the roof panel (black ‘background’
pixels), the method employs a subsequent ‘background’ label
correction step. The best-performing model is found to be
PointRend with Focal Loss: overall aAcc = 99, mIoU = 88.91,
and mAcc = 92.77; for slate class, IoU and Acc is nearly 100;
for leadwork class, IoU and Acc is around 90.

Keywords -
Semantic segmentation; Deep learning; Slated roof; Or-
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1 Introduction
For most traditional slated building roofs, they are

mainly composed of different elements: slate roofing tiles,
leadwork, stonework, and masonry [1]. Additional deco-
rative or functional accessory components may also exist,
e.g. ventilator, balustrade, satellite, etc. Slates occupy
the largest area and are where deteriorations happen eas-
ily and frequently, especially due to weathering with time
[2]. To better detect the visible defects in roof monitoring,
the annotation of photos is a common practice. The best
practice to date employs orthophotos due to their benefits
for length and area quantification.

Within the emerging area of Digital Twinning in the
built environment [3], there is great interest in automating
data acquisition and processing for building fabric mon-
itoring, in order to efficiently, robustly and safely detect
and monitor defects, and support computer-aided mainte-

nance decision making. In the context of slated roofs, we
showed in [4] how orthophotos can be generated for indi-
vidual roof panels, from UAV-acquired photogrammetric
data and the building’s 3D digital twin model. To ensure
effective defect detection in each such orthophoto, it is
next necessary to distinguish the sub-components inside
the orthophoto, in particular the slated and leadwork areas.

Semantic segmentation was developed decades ago, and
can be applied to different kinds of data, from 2D image to
3D point cloud, and even video data. When applied to 2D
images, it enables assigning a class label to each pixel of
an image, and such pixel-level semantic information can
help make judgements or be leveraged by other tasks [5, 6].
With the development of deep learning, different deep ar-
chitectures have been introduced, especially Conventional
Neural Networks (CNNs). As a result, the performance of
semantic segmentation models has been greatly improved,
not only in accuracy but also in efficiency [7].

In construction informatics research dealing with 2D
and 3D data, such as in Scan-to-BIM, semantic segmenta-
tion is increasingly regarded as an essential step after data
collection, to provide further information useful to subse-
quent tasks such as object detection [8]. This technique
has been applied to different types of data, including: (1)
2D image of indoor scene [9] and aerial images of dif-
ferent architecture [10]; (2) 3D point cloud of building
interiors [8], plumbing and structural components [11],
autonomous vehicles and robot navigation [12].

This paper reports on the development and compar-
ison of well-established deep-learning -based semantic
segmentation models for segmenting orthophotos of in-
dividual roof panels into ’background’, ’slate’, ’lead’, and
’other’ classes.

2 Related work

With its powerful pixel-level segmentation ability, se-
mantic segmentation has been developed into a well-
established tool in Computer Vision.

Most recently, different deep learning models have been
proposed for 2D image data. DeepLabV3, a widely used
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system developed by Google [13], can handle the prob-
lem of segmenting objects at multiple scales with cas-
caded module and Atrous Spatial Pyramid Pooling(ASPP).
Compared to DeepLabV3, PointRend demonstrates better
performance (higher mIoU value), by extracting the point
features made up on fine-grained features and coarse pre-
diction [14]. Specifically, PointRend handles better the
problems of smooth region and blurry contours from bi-
linear sampling process. Thanks to the recognisable fea-
tures, the object can be easily detected and classified for
this task, but the contour detection should be more precise.

In recent years, Vision Transformer (ViT) has achieved
superior performance to the commonly used CNNs, by
splitting each image into patches. Due to their outstand-
ing performance in image classification, these models have
also been explored for semantic segmentation: Segmenter
can capture global interaction between elements of a scene
using transformer, rather than the traditional convolutions,
which would easily cause information loss [15]. Seg-
Former reaches better performance and efficiency by re-
designing the Transformer encoder and uses a simple mul-
tilayer perceptron (MLP) decoder[16]. However, all au-
thors also point out that ViT relies heavily on large-scale
datasets to achieve good performances [17].

Within these main classes of deep learning models, dif-
ferent variants can be created by modifying different some
components, such as the loss function. Focal Loss is a
commonly used loss function for dealing with class imbal-
ance and putting more focus on the hard and misclassified
examples, by multiplying each class loss with a weighting
factor [18]. Dice Loss can deal with the imbalance prob-
lem between foreground and background, by giving more
importance on foreground than background, thus making
the model region-related [19]. These two loss functions
and the default Cross-Entropy Loss can be paired and used
together in improving model training [20].

3 Method

We assume as input an orthophoto of a slated roof panel
generated by the method presented in [4]. The generated
orthophoto shows the roof panel, which is composed of
different essential sub-components, slates and leadwork,
as well as other less frequent elements (e.g. stone, grid,
equipment, glass, ladder, etc.), as can be seen in Figure 5.
Since the intention of this work is to find defects in slated
areas as well as leadwork areas, we must first segment the
orthophoto to isolate these particular subparts. For this,
we explore different methods for (pixel-level) semantic
segmentation.

3.1 Dataset

The data output of Duff House in Banff, Scotland by
Li et al. [4] includes data for 36 panels. We split these
into 27 panels for training and 9 panels for testing. For
each panel, we retain maximum 10 unmerged orthophotos
obtained from different photos of the same panel (with
different angles and covering the panel in various ways).
This dataset is used for developing and comparing different
initial semantic segmentation models.

In addition, the data output of St Mary’s Church, in Stir-
ling, Scotland includes data for 18 panels. With this data,
we created another dataset composed of one unmerged
orthophoto per panel. This dataset is used solely to test
the generalisability of the models created using the Duff
House dataset.

Finally, a combined dataset using data from the two
buildings is created. It is divided into a training dataset
that is ∼80% of the overall dataset (27 panel orthophoto
data of Duff House, along with 13 panel orthophoto data
of St Mary’s Church) and a testing dataset that is the
remaining ∼20% (9 from Duff House, along with 5 from
St Mary’s Church). Here, only one unmerged orthophoto
is kept for each panel. We select the orthophoto with the
largest coverage of the panel.

All the orthophotos used in the datasets above are man-
ually labelled in 4 classes: background (labelled as 0),
slate (1), leadwork (2), and other (3). The other category
contains: stone, grid, equipment, glass, ladder, etc. The
class other normally occupies a very small proportion of
pixels in orthophotos.

3.2 Deep learning model

As discussed earlier in 2, these are the state-of-art mod-
els that can be useful to the specific problem in this study:
DeepLabV3, PointRend, Segmenter, Segformer. Basic
hyper-parameter settings are tuned for best performance
by comparing these deep learning models. Our settings
are reported in Table 1. All models were pre-trained using
their default weights.

Table 1. Experimental parameters
Parameter Value
Batch size 4

Max iteration 2400
Validation interval 400

Training vs. Validation 75% : 25%

During training, the input images are not rescaled. This
is because most of the roof orthophotos are rectangular
with varying width-to-length ratios, and the resizing pro-
cessing operations that are typically applied in semantic
segmentation pipelines would result in information loss.
But, to meet the requirements of input image size and com-
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puting capacity limits, all images are cropped (tiled) and
read as 512 × 1024 × 3 matrices.

As will be shown in the Experimental Validation (Sec-
tion 4), PointRend with default backbone (ResNet) and loss
function (Cross-Entropy Loss) achieves best performance
all four initial models. As a result, further experiments are
conducted by using different loss functions including Dice
Loss (sensitive to region detection) and Focal Loss (sen-
sitive to imbalance problem). With grid search as a tool
for hyperparameter adjustment, specific weights between
different losses are selected for best performance.

The models trained with the Duff House dataset were
then tested with the St Mary’s Church dataset to assess its
generalisation ability. The results lead us to finally use
the combined orthophoto dataset (Duff House + St Mary’s
Church) for training and testing a final model with best
segmentation performance and generalisation ability.

3.3 Background label correction

In most deep learning semantic segmentation methods,
precise delineation of segmentation boundary is a chal-
lenging problem, with many confusions arising at those
boundaries. Figure 1 illustrates this issue with a typical
output of the semantic segmentation models we explored.
The figure highlights the discrepancies between the Pre-
diction and Ground Truth (GT) for the different classes.

However, in this study, the set of background pixels
is actually known a priori, because the panel boundary
is defined by the Digital Twin 3D model projection (see
[4] for details). In other words, the Ground Truth for the
background class is known a priori. Therefore, an extra
step is introduced to correct the False Positive (FP) and
False Negative (FN) results for the background class:

1. False Negative (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ≠ 0 and 𝐺𝑇 = 0): In
this case, the predicted label is simply changed back
to ‘0’ (i.e. background class).

2. False Positive (𝐺𝑇 ≠ 0 and 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 0): In
this case, the predicted label is changed from the
background class to the most likely other class. As
illustrated in Figure 2, for each FP pixel the non-zero
label that appears most frequently in the 3 × 3 grid
around it is selected as the new label. If the grid
contains only background pixels (i.e. class ‘0’), then
the grid is expanded by one pixel (i.e. 5 × 5 grid)
and the process is repeated until a at least a non-zero
label is found. As will be shown, this simple process
works well in our context.

As will be shown in the Experimental Results (Sec-
tion 4), while the baseline semantic segmentation results
are already good, this process delivers some additional
improvements.

3.4 Semantic segmentation results

The model trained in Section 3.2 is tested using in-
dividual orthophotos generated by the process described
in [4], which may not necessarily cover entirely a given
roof panel of interest or may overlap. To obtain one sin-
gle orthophoto covering the overall panel with a unified
semantic segmentation result, the labels of individual or-
thophotos must be merged. For this, for each pixel, the
label that appears most frequently among the unmerged
orthophotos is selected as the final label. In cases when
two (or more) classes have the same frequencies for all
unmerged orthophotos, the final label will be selected in
the following order of priority: other, leadwork, slate. For
example, if slate and other appear the same time for one
pixel, then other would be chosen as the final label, be-
cause we observed that the other objects always lay above
the slate surface.

4 Experimental results
In this section, evaluation metrics for semantic seg-

mentation are first introduced. Then all the experimental
results are reported. First, different models are trained
using the Duff House training dataset and tested using the
Duff House and St Mary’s Church testing datasets. The
best model is selected by comparing these results, and it
is finally re-trained and tested using the combined dataset.

All the training and testing work is completed in the
Google Colab Pro environment, with NVIDIA A100 GPU
40 GB.

4.1 Evaluation metrics

The segmentation results for each class are evaluated us-
ing two parameters: Intersection over Union (IoU): com-
puted by contrasting the Prediction and Ground Truth seg-
mentations; and Accuracy (Acc): calculated by dividing
the sum of the True Positive pixels by the sum of the True
Positive pixels and False Positive pixels. To compare the
testing performance between different models, the follow-
ing overall evaluation metrics are evaluated:

• aAcc: the Accuracy of all pixels, evaluating the clas-
sification accuracy.

• mIoU: the mean IoU of all classes; mIoU is an im-
portant indicator to measure the accuracy of overall
semantic segmentation.

• mAcc: the mean Acc of all classes, evaluating the
overall performance in pixel classification.

In the following, we report results for different models
in the form of tables and confusion matrices. In the tables,
we report for each model: the aAcc, mIoU and mAcc for
both overall and overall (excl. background), and then IoU
and Acc for each of the four classes. For the confusion
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Figure 1. Colour coded confusion matrix (left), semantic segmentation model output (middle), illustrations of
FP/FN from the perspective of background class(right).

Figure 2. Illustration of the correction of FP for the
background class. Left: Example 1 where the label
is corrected to ’1’ after one step; Right: Example 2
where the label is corrected to ’2’ after two steps.

matrices, we report both absolute (in pixel counts) and
relative (in percentages) confusion matrices.

4.2 Background label correction

Regardless of the model employed, the Background
model correction step described in Section 3.3 can be ap-
plied to correct FP and FN for the background class. We
thus demonstrate the benefits of this correction using one
model (which we will see later performs well): PointRend
(CEL+FL).

Table 2 and Figure 3 show the results obtained when
training and testing this model on Duff House dataset,
before and after applying the background label correction
results.

While the baseline performance is already quite good
(all metrics > 85 and most of them are > 95), the addi-
tional corrective step improves performance for all classes,
in particular the leadwork and other classes,which had the
lowest performance without this correction. The higher
increases in mIoU (+1.81 to 94.64) and mAcc (+1.19 to
97.24) also indicate a reduced difference in performance
among the different classes. Although anticipated, this
improvement is welcome, because the background regions
are often next to leadwork regions. And so, any correction
of background class would most likely benefit the lead-
work class. Nonetheless, the results demonstrate the good
performance of the proposed background label correction
method.

4.3 Initial models with Duff House dataset

All models are first trained using Duff House training
dataset only, and tested with the Duff House testing dataset.
Table 3 presents the performance of the different models.
Generally, all models already show good performance:
the evaluation metrics of overall performance are all > 90,
most of them are > 95 and even nearly 100. Generally,
the target class, slate, is segmented satisfactorily. Errors
mostly come from the classes leadwork and other.

By comparing the first 4 rows, PointRend stands out
with the highest values in all evaluation metrics. The
variants in the last three rows are then developed based
on PointRend, in an attempt to enhance performance with
regard to specific challenges with our dataset, namely data
class imbalance (the leadwork and other classes occupy
much fewer pixels than background and slate) and region
ambiguity.

Among all the variant models, PointRend(CEL+FL)
achieves the best overall performance. Though it is close
to the default PointRend model, it increases the values on
other class both in IoU (+0.89 to 88.52) and Acc (+0.88 to
94.76). In comparison, PointRend(CEL+DL), by adding
the Dice Loss function, also improves the performance
on leadwork class, but with a sacrificial drop on other
class and accordingly, a decreased overall performance.
Therefore, from all the 3 variant models, we conclude that
the Focal Loss more successfully improves the results and
accounts for data imbalance better than Dice Loss.

4.4 Testing generalisation with St Mary’s Church
testing dataset

Table 4 reports the evaluation results of all models de-
veloped in Section 4.3 on the testing dataset of St Mary’s
Church. This enables an assessment of the model’s gener-
alisation, since no data from St Mary’s Church was used
to train those models. Table 4 shows a similar pattern as
Table 3: all models can segment the slate area more ac-
curately than leadwork and other classes, while the other
class has the worst performance among all classes. How-
ever, compared to the performance on Duff House, there
are general decreases in the overall performance of all
models, such as a nearly 30 drop in mIoU and nearly 20

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

678



Table 2. Testing results before and after background label correction
Result overall overall (excl. background) background slate leadwork other

aAcc mIoU mAcc aAcc mIoU mAcc IoU Acc IoU Acc IoU Acc IoU Acc
Before 98.97 92.83 96.05 - - - 99.26 99.77 98.26 99.0 88.57 92.91 85.26 92.5
After 99.36 94.64 97.24 98.52 92.86 96.32 100 100 98.57 99.3 91.49 94.9 88.52 94.76

Figure 3. Confusion matrices before (left) and after (right) applying the background label correction step.

Table 3. Testing results on Duff House
Model overall overall (excl. background) background slate leadwork other

aAcc mIoU mAcc aAcc mIoU mAcc IoU Acc IoU Acc IoU Acc IoU Acc
DeepLabV3 99.24 93.54 96.73 98.24 91.39 95.64 100 100 98.37 99.25 89.49 92.48 86.31 95.18
PointRend 99.36 94.46 97.11 98.52 92.61 96.15 100 100 98.59 99.3 91.62 95.28 87.63 93.88
Segformer 99.17 93.43 96.63 98.08 91.23 95.51 100 100 97.99 98.97 89.6 94.05 86.11 93.51
Segmenter 99.03 92.06 94.73 97.75 89.41 92.97 100 100 97.81 99.31 86.9 92.22 83.52 87.39

PointRend(CEL+DL) 99.03 90.78 93.51 97.75 87.71 91.34 100 100 98.1 99.45 88.4 96.16 76.63 78.42
PointRend(CEL+FL) 99.36 94.64 97.24 98.52 92.86 96.32 100 100 98.57 99.3 91.49 94.9 88.52 94.76
PointRend(DL+FL) 99.33 94.46 96.91 98.45 92.61 95.88 100 100 98.45 99.35 91.48 94.37 87.9 93.93

drop in mAcc. When comparing models in different rows,
performance values for the leadwork and other classes are
lower and more spread out than the other class and the
same classes in Table 3. In general, there is no promi-
nent model that stands out in all metrics specifically for St
Mary’s Church.

Therefore, even though aAcc remains close to 100% and
the general performance is acceptable, the generalisation
ability of the models is limited. Put another way, unsur-
prisingly the models, when trained using data from only
one building (Duff House), work but not sufficiently well
for other buildings. Therefore, more data, especially with
diverse features of leadwork and other classes, should be
used for training.

4.5 Models trained with combined dataset

Based on the results above, the best performing model,
PointRend (CEL+FL), is retrained using the the combined
training dataset, and tested the combined testing dataset.

The overall performance, reported in Table 5, is almost
at the same level as that of Table 3, whose performance was
already very high. Looking at individual classes, a slight
improvement is achieved for the slate class with IoU (+0.04
to 98.61) and Acc (+0.25 to 99.55). However, some re-
ductions in performance are observed for the leadwork and

other classes. But, importantly, compared to the results in
Table 4, all metrics show significant improvements. This
implies that the new model has achieved a greater level
of generalisability (it performs well on testing data from
both Duff House and St Mary’s Church) without signifi-
cant drop in overall performance. Naturally, this does not
mean the new model will work in all cases of slated roofs;
much more diverse data would need to be collected for
that. But, the selected model performs satisfactorily.

4.6 Visualise semantic segmentation results

After merging the result labels using the strategy in
Section 3.4, the resulting confusion matrix is reported
in Figure 4. It shows that the slate class segmentation
accuracy is still high, but the confusion between leadwork
and other is not insignificant.

This is further illustrated with three example roof pan-
els in Figure 5 and Figure 6. The segmentation result of
Panel A is nearly flawless. In Panel B, though the situa-
tion is more complex (containing other pixels), the slated
area of this orthophoto is generally segmented satisfacto-
rily. However, there are still some pixel misclassifications
specifically caused by the other class, with confusions ob-
served particularly between slate and other at the bottom
of this panel. In the result of Panel C, there are noise pixels
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Table 4. Testing results on St.Mary’s Church by models trained using Duff House training dataset
Model overall overall (excl. background) background slate leadwork other

aAcc mIoU mAcc aAcc mIoU mAcc IoU Acc IoU Acc IoU Acc IoU Acc
DeepLabV3 96.48 62.74 69.51 91.84 50.32 59.35 100 100 96.42 98.56 31.3 37.51 23.23 41.97
PointRend 96.66 65.65 75.62 92.26 54.2 67.49 100 100 96.37 97.9 45.93 75.46 20.3 29.11
Segformer 96.89 66.72 76.74 92.79 55.63 68.99 100 100 97.25 98.14 43.48 65.41 26.15 43.41
Segmenter 97.21 66.58 74.05 93.53 55.44 65.4 100 100 96.91 99.1 53.94 78.69 15.48 18.42

PointRend(CEL+DL) 96.39 64.17 76.33 91.63 52.23 68.44 100 100 96.12 97.3 43.48 85.3 17.1 22.73
PointRend(CEL+FL) 94.79 64.31 80.45 87.92 52.41 73.93 100 100 92.94 93.89 41.93 78.25 22.35 49.66
PointRend(DL+FL) 94.6 62.5 74.24 87.48 50 65.66 100 100 93.11 94.52 40.63 60.9 16.27 41.55

Table 5. Testing results on combined dataset
Model overall overall (excl. background) background slate leadwork other

aAcc mIoU mAcc aAcc mIoU mAcc IoU Acc IoU Acc IoU Acc IoU Acc
PointRend(CEL+FL) 99.0 88.91 92.77 97.68 85.22 90.35 100 100 98.61 99.55 85.93 91.99 71.11 79.52

at the top of the roof panel, the GT of which is slate but
predicted as other. The reason for this mistake possibly
lies in the biological growth on the slate surface, which
may still confuse the deep learning model despite some of
the training data containing it. This issue may nonetheless
be addressed through a more extensive training dataset.

Figure 4. Confusion matrices of results after apply-
ing merging strategy

5 Conclusions
Different deep learning models for semantic segmenta-

tion are developed and compared using a dataset composed
of data coming from two traditional buildings: Duff House
and St Mary’s Church. PointRend added with Focal Loss
(PointRend(CEL+FL)), trained by the combined dataset is
chosen as the most suitable when considering both datasets
jointly. All of its evaluation matrices, except the ones in
other class, are all > 85%.

The performance of all models is enhanced thanks to
an extra background label correction steps: by eliminat-
ing the confusion between background and other classes
(especially leadwork and other, which are usually the sur-
rounding area of slate), the background accuracy is cor-
rected to 100%, and the accuracies of other classes are
shown to also increase.

However, the confusion matrix in Figure 4 shows that the
confusion between leadwork and other is still significant,
affecting the accuracy of other. This is possibly because
that the other class includes many kinds of objects. While
enhancing the model robustness may be achieved with
more data, it must be highlighted again that our main focus
is the effective segmentation of the slate and leadwork
classes.

The proposed method focuses on the traditional build-
ing roofs, but the methodologies developed are equally
applicable to more modern roofs with a slate or tile con-
struction.

It should be noted that the ’best’ model is just marginally
better than the other ones, with all of them perform reason-
ably well. The difference of testing results on Duff House
and St. Mary’s Church indicates the risk of over-fitting,
which can be addressed by getting more data involved.
With more data collected and used for training, the strat-
egy of selecting the best and most robust model can be
improved. Future work can thus first look at collecting
more building roof data in order to further validate and
improve the orthophoto generation pipeline, and train se-
mantic segmentation models with greater generalisability.
These data shall include roofs with various forms and
shapes, including slate laying methods and different com-
ponents around the slated areas, and in various conditions,
containing different levels of deteriorations.

Future work should also look at the next step of our
proposed overall pipeline, starting with the detection of
defects in the slated areas in particular, and the leadwork
areas as well. Due to the fact that all the created orthopho-
tos have the same orientation and uniform scale, we an-
ticipate that this should ease the development of further
machine learning models.
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(a) Panel A. (b) Panel B.

(c) Panel C.

Figure 5. Orthophotos of typical panels.

(a) Panel A. (b) Panel B.

(c) Panel C.

Figure 6. Semantic segmentation results of orthophotos of the typical panels shown in Figure 5
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Abstract 

In the rapidly evolving field of artificial 
intelligence (AI), synthetic data generation has 
become increasingly crucial, particularly in domains 
where real-world data is scarce, expensive, or 
sensitive. In this study, we introduce BCGen, a novel 
image realism enhancement pipeline that integrates 
our proprietary synthetic construction data 
generation and autonomous labeling engine, 
BlendCon, integrated with Generative AI. Leveraging 
the graphical capabilities of Blender and the deep 
learning prowess of the ControlNet model, BCGen 
represents a novel approach to synthesizing and 
enhancing construction site imagery. Our 
methodology narrows the reality gap, delivering 
images with increased realism and diversity while 
preserving the full annotations. The paper delineates 
our approach, methodology, and the broader 
implications of our findings. Through meticulous 
hyperparameter tuning and an innovative post-
processing technique, we demonstrate the enhanced 
realism and diversity of the generated images, 
pointing towards the vast potential of synthetic data 
in visual AI applications within construction. 
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1 Introduction and Background 

1.1 Overcoming Data Acquisition Challenges 
in Construction with Synthetic Solutions 

Since 2017, the construction industry, known for its 
complex operations and dynamic environments, has 
increasingly harnessed Deep Learning (DL) to overcome 
unique challenges in data acquisition and processing 
across various domains, such as safety, road surveys, 

bridge inspection, and site operation monitoring [1]. 
Despite the significant role of DL in revolutionizing 
traditional practices, such as object detection, instance 
segmentation, and pose/activity recognition—often 
surpassing human capabilities— its integration into the 
construction sector faces hurdles, notably, the scarcity of 
fully-annotated data [2]. This scarcity stems from the 
high costs and time requirements for manual collection 
and labeling, logistical challenges in deploying sensors, 
and confidentiality issues, highlighting a critical barrier 
to leveraging data-hungry DL tools within the sector [3]. 

To address the limitation mentioned, synthetic data 
generation, bolstered by advances in rendering engines 
and GPUs, offers a promising solution, especially for 
tasks difficult to label in real-world settings. The 
adoption of Blender [4] and video game engines for data 
generation demonstrates this potential, particularly in 
facilitating the creation of human-centric images [5-7]. 
This strategy addresses the disparity in the volume of 
training images available in computer science versus 
construction studies, where the former often uses multi-
million-image datasets while the latter struggles with far 
fewer images [8]. These rendering engines enable the 
generation of synthetic data, addressing data scarcity and 
streamlining the deployment of DL techniques in 
construction contexts more effectively.  

1.2 An Introduction to our Synthetic Data 
Generation Engine, BlendCon  

In a forthcoming publication, we introduce BlendCon, 
a computational framework that addresses the need for 
high-quality, diverse data in the construction industry, 
particularly for the advancement of Deep Neural 
Networks (DNNs)-based visual AI. The framework 
utilizes the graphics engine, Blender, to generate 
synthetic, fully-labeled data, which is a step forward in 
overcoming the limitations associated with manual data 
collection and privacy concerns. BlendCon creates a 
virtual construction site, producing diverse synthetic 
images by randomizing key elements of the scene. This 
approach has been validated in two key areas: trainability 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

683

mailto:sina.davari@mail.utoronto.ca
mailto:ali.tohidifar@mail.utoronto.ca
mailto:civdaeho.kim@utoronto.ca


and scalability. For instance, Yolov7 models trained with 
data generated by BlendCon showed comparable or 
superior performance to models trained with real data. 

BlendCon distinguishes itself by integrating dynamic 
elements, such as mobile equipment and human workers, 
into synthetic image generation and by offering 
simulations from multiple perspectives, breaking away 
from the limitations of single-viewpoint models and 
enhancing diversity in synthetic data. Furthermore, it is 
equipped with multimodal label generation capability, 
producing various types of labels for each image, namely 
depth maps, semantic masks, and 2D and 3D bounding 
boxes (BBs) and key points for construction workers. 

While BlendCon has proven effective in synthetic 
data generation and the trainability of DNNs, it still faces 
a pivotal challenge: the "reality gap." In the subsequent 
section, we delve deeper into this challenge and elaborate 
on how this gap, i.e., the divergence in the perceptual and 
contextual quality between synthetic and real-world 
imagery, is a crucial factor influencing the effectiveness 
of DNNs trained on synthetic data in real-world scenarios. 

As we delve into the realm of synthetic data 
generation and the pursuit of enhanced image realism, we 
arrive at an inquiry that guides our research trajectory: 
How can we further improve BlendCon? By enhancing 
image realism through generative AI, we propose the 
next generation of BlendCon, aimed at offering a scalable 
solution to the scarcity of labeled construction datasets 
and facilitating the adoption of deep learning within the 
construction industry. 

1.3 Reality Gap in Synthetic Data Generation 
The concept of the reality gap emerges from the 

inherent differences between the distributions of real and 
synthetic images. Synthetic images, while beneficial in 
overcoming data scarcity, often lack nuanced details and 
contextual variability present in real-world scenarios [9]. 
This disparity can lead to a decrease in the effectiveness 
of DNN models when applied to actual construction 
environments. Effectively bridging this gap is thus a 
critical objective in enhancing the utility of synthetic data 
for DNN training, a process referred to as domain 
adaptation in machine learning [10,11]. Two primary 
methods have emerged to address the reality gap: 
enhancing realism and domain randomization. 

A) Enhancing Realism: This approach focuses on 
making synthetic images closely mimic real-world 
scenarios. Studies suggest that the heightened realism in 
synthetic data significantly improves the performance of 
DNNs, allowing them to better adapt to real-world 
applications [12]. By refining textures and lighting 
conditions, and incorporating real-world irregularities, 
this method aims to reduce the perceptual differences 
between synthetic and real imagery while preserving full 
annotations [13,14]. This approach is not without its 

limitations; significantly, the process of enhancing 
realism in synthetic images can be both time-consuming 
and costly, and the subjective nature of 'realism'—what 
is deemed realistic—remains ambiguously defined. 

B) Domain Randomization: Contrasting with the 
pursuit of realism, domain randomization adopts an 
unconventional tactic –intentionally making synthetic 
images more abstract or less realistic. This method 
involves introducing a high degree of variability in the 
synthetic images, which paradoxically can lead to the 
development of more robust DNN models. The premise 
is that by exposing the DNN to a wide range of variations, 
the model learns to focus on the most critical features, 
becoming more adaptable to real-world variability. A 
notable study in this area demonstrated the effectiveness 
of this approach, where severely randomized images 
contributed to the training of robust models capable of 
bridging the reality gap [15]. This approach, however, 
requires significant computational resources and carries 
the risk of overgeneralizing DNN models, potentially 
leading to models that, while robust in handling diverse 
scenarios, may not perform optimally in specialized tasks, 
such as construction applications. 

The choice between these approaches depends on the 
specific requirements of the application and the nature of 
the tasks the DNN models are expected to perform. This 
paper marks the beginning of our exploration into the 
first approach, laying the foundation for a future study 
that is planned to investigate both strategies with the 
objective of evaluating their impact and effectiveness in 
optimizing the utility of synthetic data for training DNN 
models in construction applications. 

1.4 ControlNet for Enhanced Image Realism 
In this study, we introduce BCGen, a pipeline for 

integrating the power of generative AI, specifically the 
Stable Diffusion (SD) model, ControlNet [16], into our 
automated construction image synthesis and labeling 
framework, BlendCon. This marks the first application of 
ControlNet in the construction domain for image-to-
image translation, generating more realistic images from 
synthetic ones while maintaining full annotations.  

ControlNet is designed to integrate spatial 
conditioning controls into large, pre-trained text-to-
image diffusion models. By leveraging robust and deep 
encoding layers of these models and applying zero 
convolutions, it finetunes the imagery while avoiding the 
introduction of deleterious noise. Its ability to handle 
various inputs, such as edges and human poses, and its 
robust performance across datasets of differing scales, 
make ControlNet an essential tool for generating realistic 
images from synthetic data, particularly in applications 
where maintaining accurate annotations is as crucial as 
image quality itself [16]. 

ControlNet distinguishes itself by its ability to fine-
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tune the realism of generated images while preserving 
annotations [16]. This capability is crucial in applications 
like construction site imaging, where maintaining the 
accuracy of annotations is as important as the visual 
realism of the images. By integrating ControlNet, we 
hypothesize that synthetic images could become more 
adaptable for real-world applications, thereby potentially 
bridging the reality gap. This assertion, however, remains 
to be validated in future phases of our research. 

1.5 Related Work on Enhancing the Realism 
of Synthetic Images  

Deep learning, particularly Generative Adversarial 
Networks (GANs) [17] and Diffusion Models [18] has 
been pivotal in enhancing image realism. GANs, by their 
adversarial nature, refine images to closely resemble real 
photographs. Diffusion Models, demonstrate remarkable 
capabilities in text-to-image generation and synthesizing 
photorealistic images, offering a significant leap in image 
quality and diversity [19]. GANs, while effective, may 
struggle with ensuring stability during training, 
producing artifacts [20]. Diffusion Models, however, 
characterized by their gradual process of image 
formation, offer higher stability and image quality, albeit 
at the cost of increased computational complexity. 

A recent study leveraged diffusion models, including 
ControlNet, to enhance the FFHQ-Aging dataset [21], 
producing synthetic images that exhibit a diverse array of 
facial expressions, ethnicities, and lighting conditions, 
thereby advancing the realism and quality of synthetic 
imagery for facial image augmentation [22]. Furthermore, 
in the medical domain, diffusion models have been 
extensively utilized for various applications, including 
realistic endoscopic image generation [23] and 
synthesizing MRI sequences and thoracic X-ray images 
[24].  
Several of the mentioned studies have implemented 
established photorealism metrics to gauge the quality of 

the enhanced images. Metrics such as the Inception Score 
[25], Fréchet Inception Distance [26], Kernel Inception 
instance [27], Structural Similarity Index Measure [28], 
Learned Perceptual Image Patch Similarity [29], and 
Contrastive Language-Image Pre-training (CLIP) [30]-
based metrics [31] have been pivotal in assessing the 
realism of synthetic imagery. However, despite such 
evaluations, there remains an underexplored area in the 
existing literature: assessing the cost-effectiveness of 
employing these advanced generative models. To the best 
of the authors' knowledge, a systematic examination of 
the cost-benefit analysis of utilizing such sophisticated 
techniques for enhancing synthetic image realism has not 
yet been documented.  

2 Method 

2.1 Architecture of BCGen: BlendCon with 
Integrated Generative AI 

Our proposed framework, BCGen, leverages a three-
part pipeline to enhance image realism. Figure 1 
demonstrates the BCGen pipeline, encapsulating the end-
to-end process from image synthesis with BlendCon, 
through realism enhancement via the ControlNet pipeline, 
to the final avatar cut and paste for anatomical accuracy, 
ensuring the retention of high-quality annotations.  

To further elucidate, initially, BlendCon synthesizes 
RGB construction site images, along with their 
corresponding depth maps, semantic masks, and precise 
annotations of 2D and 3D bounding boxes and key points 
for construction workers, using inputs such as horizon, 
processed scenes, animated avatars, and lighting and 
camera configuration. The outputs are fed into the 
ControlNet pipeline, where the RGB images, depth maps, 
and semantic masks—alongside a text prompt—are 
processed by ControlNet to create more realistic images.  

Our text prompt is "a high-quality, high-resolution 

 
Figure 1. The proposed image realism enhancement pipeline 
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image of a construction site.” We also pass "blurry, 
blurred, bad anatomy, low quality" as the negative 
prompt. 

This integration of ControlNet paves the way for 
enhanced realism while meticulously preserving all 
annotations, including worker key points and 2D and 3D 
bounding boxes. Hyperparameter tuning is employed to 
refine this process and optimize the outputs, a topic we 
will explore in detail in the subsequent section. In the 
final stage, to ensure anatomical accuracy and maintain 
the integrity of our key point annotations, we initiated a 
process termed ‘Avatar cut and paste,’ which involves 
extracting the worker avatars from the initial BlendCon-
generated images and superimposing them onto the 
images enhanced by ControlNet.   

2.2 ControlNet Hyperparameter Tuning  
 Given ControlNet’s extensive range of adjustable 

parameters, such as the degree of reliance on the input 
images, conditions, and text prompts, we embarked on a 
rigorous hyperparameter tuning exercise employing a 
grid search methodology. This allowed us to identify the 
most ideal settings for our particular use case. Moreover, 
it was during this tuning process that we encountered 
scenarios where, despite explicitly excluding poor 
anatomy and low quality in our negative text prompt, the 
output sometimes exhibited compromised structural 
integrity, especially in the anatomy of the construction 
workers, and as outlined previously, to counteract this, 
we resorted to avatar cut and paste.  

We investigated six ControlNet hyperparameters, 
namely output image size, conditioning scales—which 
determine the weight of our conditions, i.e., depth maps 
and semantic masks, classifier-free guidance scale (CFG) 
—which dictates the influence of the text prompt on 
image generation, number of inference or denoising steps 
for the diffusion model, input image strength—which 
determines the input image weight, and the choice of 
diffusion model noise scheduler, across three different 
random seed initializations. The results were scrutinized, 
and the most effective hyperparameter combinations 
were selected through visual comparisons.  

The initial phase of our study involved a qualitative 
assessment of the synthetic images generated by our 
pipeline, relying on visual observation to evaluate the 
quality. We considered any image unrealistic, blurry, 
distorted, or exhibiting anatomical inaccuracies and 
abstract backgrounds as unsatisfactory. Figure 2 
showcases examples where the interplay of 
hyperparameters resulted in suboptimal results, such as 
compromised human anatomies, abstract backgrounds, 
and blurred images, underscoring the inherent challenges 
and complexities of synthetic data generation. 

3 Results, Discussions, and Limitations 

3.1 Hyperparameter Tuning Results 
Our analysis underscored the significant impact of 

image size on output realism, diversity, and quality, 
investigating two sizes of 512 by 512 and 1280 by 1280, 
which revealed that larger images notably enhanced all 
aspects. Our investigation into the number of inference 
steps, specifically examining 40, 80, and 150 steps, 
revealed its critical significance: fewer than 50 steps 
often resulted in blurry and structurally unsound images, 
while exceeding 100 steps did not notably improve 
quality but extended runtime unnecessarily.  

The investigated eight schedulers are linear multistep 
(LMSDiscrete), denoising diffusion implicit (DDIM), 
denoising diffusion probabilistic (DDPM), multistep 
diffusion probabilistic (DPMSolverMultistep), Euler 
(EulerDiscrete), pseudo numerical (PNDM), Euler with 
ancestral sampling (EulerAncestralDiscrete), and unified 
predictor-corrector scheduler (UniPCMultistep) [32]. 
The unified predictor-corrector noise scheduler was 
identified as the most effective for our task.  

The interplay of CFG, Strength, and Conditioning 
Scalehyperparameters, and their impact on image realism 
was further explored. We charted the instances where 
these parameters harmonized to produce satisfactory 
outputs, yielding realistic images with minimum blurs, 
and anatomical inaccuracies, as demonstrated in Figure 3. 
The graph illustrates the frequency of the satisfactory 
outcomes across various configurations of CFG, strength, 
and conditioning scales, with marker size indicating the 
occurrence count. 

We experimented with conditioning scales of [0.3, 
0.8], [0.5, 0.5], [0.8, 0.3], and [0.8, 0.8], input image 
strengths of 0.5, 0.7, and 0.9, and CFGs of 5, 7.5, 10, and 
12.5. Ultimately, we selected a conditioning scale of 0.8 
for both depth maps and semantic masks, a strength of 90 
percent, and a CFG of 12.5. 

3.2 BCGen Results and Discussions 
The application of ControlNet to the original 

synthetic images from BlendCon has resulted in 
enhancements in realism and diversity, as evidenced in 
Figure 4. The before-and-after comparisons illustrate the 
ControlNet-induced changes, with noticeable 
improvements in texture detail, lighting fidelity, and the 
incorporation of realistic environmental effects. These 
images not only demonstrate an enriched visual diversity 
but also indicate a substantial narrowing of the reality gap, 
affirming the potential of our approach in creating 
realistic images for use in AI training and other 
construction industry applications. 

While generative DL models today can produce 
hyperrealistic images, our contribution lies in the unique 
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capability of our pipeline to maintain original annotations.  
The importance of annotated images cannot be 

overstated, as manual labeling of 2D, 3D, key points, 
semantic masks, and depth maps involves considerable 
costs, time, and potential for errors. Our effort ensures 
that the synthetic images generated are not only visually 
compelling but also maintain full annotations, making 
them immediately useful for DNN training and other 
applications within the construction industry. 

3.3 Limitations of The Study 
This research is a stepping stone, highlighting the 

necessity for verification and validation methods tailored 
to the unique requirements of enhanced synthetic image 
evaluation. The study presents several limitations that 
inform its theoretical implications: 

A) Generalization of Results: The findings, although 
promising, are not yet generalizable across all potential 
input scenarios, indicating that further research is 
required to broaden the applicability of the results. For 
instance, the suboptimal results in indoor environments 
with a high degree of clutter, as seen in the last row of 
Figure 4, suggest that the model may struggle with overly 
complex indoor construction scenes. This issue may arise 
due to the lack of specific information in the textual 
prompt and a heavy reliance on it. This aspect will be 
further investigated in future studies.  

B) Evaluation of Results: Established photorealism 
metrics could play a pivotal role in evaluating the quality 
of enhanced images, enabling the creation of business-
oriented key performance indicators that measure the 
efficacy and cost-efficiency of synthetic data generation 
and enhancement. However, the investigation of these 
established metrics for evaluating the efficacy and cost-
efficiency of the synthetic data enhancement process was 
not carried out in the current stage of our study. 

As previously discussed in our methodology, the 
initial phase of our study was dedicated to a qualitative 
assessment of the synthetic images generated by our 
pipeline, where we relied on visual observation to 
determine the quality of the output. This subjective 
method highlights a limitation in our evaluation process, 
underscoring the need for developing objective criteria 
and metrics to assess realism and AI training applicability. 
C) Computational Resources: The computational 
demand varies with the conditions set and image size, 
with the current setup requiring about 40 seconds per 
1280 by 1280 image on two NVIDIA RTX 3090 GPUs, 
which could be a limiting factor for scalability. 

D) Variability in Text Prompts: Our exploration of 
variability in text prompts was limited to a few variations 
of main and negative prompts, restricting our 
understanding of their precise impact on the results. 
Further detailed prompt engineering is designated for 
future research. 

 
Figure 3. Visualization of ControlNet 
hyperparameter tuning through grid search 
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Figure 2. Examples of suboptimal image generations: (a): BlenCon’s synthetic images, (b): a satisfactory result, 
(c) compromised human anatomy, (d): a generated image suffering from both blurriness and compromised 
human anatomy, (e): occurrence of both anatomical inaccuracies and an abstract background. 

 
Figure 4. Contrast between the original synthetic construction site image from BlendCon (leftmost) and its 
enhanced iterations by ControlNet, showcasing diversity improvement and realism enhancements. 
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4 Looking Ahead: Future Directions 
Building upon the work presented in the previous 

section, the development of business-oriented 
performance indicators metrics for measuring synthetic 
data quality and degree of enhancement is essential. 
These metrics should not only assess the visual fidelity 
of the images but also quantify the cost-benefit of 
enhancing realism within a corporate context. Upcoming 
studies will focus on validating DNN trainability, 
performance, and affordability with enhanced images, 
crucial for practical AI applications. 

Further exploration into additional input modalities 
for ControlNet, such as human poses or edge maps as 
conditions or main inputs, is planned. Leveraging human 
key point detection models, such as OpenPose [33], could 
allow for a more nuanced representation of worker 
anatomies. This aligns with methods like Control-GPT 
[19], which combines programmatic sketches with text-
to-image generation, a technique that could be adapted to 
enrich our dataset diversity and control [19]. Additionally, 
we plan to explore the implementation of alternative 
generative models besides ControlNet to assess their 
performance and facilitate comparative analysis. 

By experimenting with multiple prompts and 
conditions, we aim to refine our generative model's 
output further, ensuring that the synthetic images not 
only serve the construction industry's current needs but 
also pave the way for emergent AI-driven solutions. 

In future research, we aim to employ photorealism 
metrics for developing business-oriented key 
performance indicators, thereby measuring the efficacy 
and cost-efficiency of synthetic data generation and 
enhancement. This initiative seeks to standardize the 
validation of synthetic image quality within the AI field.  

Additionally, we will evaluate the performance of 
DNNs trained on limitedly available real-life 
construction datasets, synthetic data generated by state-
of-the-art models, such as Midjourney [35], and domain-
randomized synthetic imagery. This evaluation is crucial 
to verify our method's cost-effectiveness and practicality 
in real-world applications, shedding light on the 
economic viability of leveraging such advanced 
techniques in the construction industry. 

5 Conclusion 
In this study, focusing on the investigation of the 

reality gap in synthetic data generation, we introduced a 
pipeline incorporating the stable diffusion-based model, 
ControlNet, within our synthetic construction data 
generation and labeling engine, BlendCon. This pipeline 
paves the way for generating a diverse range of enhanced 
synthetic images, while preserving their full annotations, 

i.e., depth maps, semantic masks, and 2D and 3D 
bounding boxes and key points for construction workers. 
Our investigation reveals that ControlNet's 
hyperparameters critically influence the enhancement of 
realism, prompting us to conduct a thorough search 
across over 2,300 hyperparameter combinations, 
evaluating them through visual observation. This 
exhaustive process underscored the significance of 
quantifying realism via photorealism metrics and 
highlighted the need to balance the costs associated with 
synthetic image generation and enhancement. In 
conclusion, our study demonstrates that cutting-edge, 
controllable diffusion-based generative models hold 
significant potential for the construction industry, 
enabling the creation of realistic, fully annotated 
synthetic imagery by narrowing the reality gap. 
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Abstract 

This study merges artificial intelligence (AI) image 
recognition technology with Building Information 
Modeling (BIM), to develop a prototype system for 
the automation and visualization of construction site 
progress control. Our focus is the strategic 
deployment of multiple construction site surveillance 
cameras using a BIM model to encompass the entirety 
of the construction site. Following the capture of 
camera images, the application of object detection 
techniques within AI image recognition locates all 
actively constructed objects in the images, 
subsequently identifying the construction phases to 
which these objects belong. By integrating multiple 
camera perspectives from the site into a BIM model, 
the results of AI detection are automatically inputted 
into the corresponding components of the model.  
Finally, real-time on-site progress information 
obtained from the BIM model is compared with the 
progress schedule, and the comparative results are 
visually presented on the BIM model components in 
distinct colors. Through this visual approach, 
managerial personnel can intuitively and instantly 
control the construction progress. 
 
Keywords –  

Deep Learning, Image Recognition, Construction 
Progress Management, Build Information Modeling, 
Automation, Visualization 

1 Introduction 
In the project management of the traditional 

construction industry, monitoring the progress of the 
project has always been an important task [1]. In addition 

to having a profound awareness of the construction 
environment, the on-site engineer must also understand 
drawings. Progress data must be collected on-site, and 
real-time progress information must be presented in the 
form of text and data for project managers to refer to [2]. 
For less experienced site engineers, there may be 
cognitive standards for different construction phases. 
Moreover, it is not easy for people who are not familiar 
with engineering to convert two-dimensional drawings 
into three-dimensional scenes, which will cause 
differences in information transmission. 

In order to fully support the life cycle of construction 
projects and interpret engineering information models 
through computer programs, BIM came into being. The 
application of BIM covers all stages of the building life 
cycle, including planning, design, procurement, 
construction, operation and maintenance, etc. [3]. In the 
construction stage, BIM is commonly integrated with 
project timelines to create a 4D model for construction 
simulation. Although the dynamic model exists, on-site 
engineers still need to update the schedule data of the 
model components by comparing animations with actual 
on-site construction conditions to achieve progress 
control. 

Using a huge management manpower to collect and 
organize complex data, this traditional management 
method no longer seems efficient enough. Many studies 
have surveyed how to improve complex data processing 
procedures that rely on manpower [4]. In order to allow 
managers to perform progress management tasks more 
quickly and ensure that progress evaluation standards are 
unified, thereby making the overall management process 
smoother. 

As technology advances, more research in artificial 
intelligence (AI) has made significant strides in recent 
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years. Machine learning is a method of learning from past 
data and experiences to identify operational rules. Deep 
learning, a subset of machine learning that applies  multi-
layered neural networks to simulate human neuron 
functions, has achieved notable breakthroughs in the 
fields of images, videos, and speech [5-6].

The rapid development of AI image recognition 
technology has led to its expanding applications in the 
field of engineering, particularly in construction 
industries for the management of construction machinery, 
personnel, and materials. This project aims to apply AI 
image recognition to construction progress control, 
focusing on the use of object detection technology in AI 
image recognition to achieve automated recognition of 
various work progress in construction sites.

However, constrained by factors such as the site's 
scope, layout, component obstructions, and camera wide 
angle, AI image detection can only address detection 
within a single image, making it challenging to cover the 
overall area. Even with multiple cameras set up to 
encompass the overall area, integrating the detected 
results from these cameras and automating the 
comparison with the construction planning schedule still 
requires the development of effective solutions.

Therefore, this project further integrates AI image 
detection with BIM technology and develops a prototype 
system. This system, utilizing multiple cameras, applies 
an AI image recognition model to recognize the 
construction status of work items within the images. 
Subsequently, through the BIM model, it achieves image 
alignment and identifies the corresponding components, 
inputting the construction progress of the respective 
components into the BIM model. Finally, in the 
application program, a visual representation using a color 
concept is employed to present different progress states, 
enabling project managers to control the construction 
progress in real-time.

This study will establish an image-based construction 
progress detection model applicable to the construction 
phase, providing project managers with a method to 
assess construction progress states through image object 
detection. Adopt the BIM model for the integration of 
component construction states, automatically inputs the 
corresponding component progress states into the BIM 
model. This not only avoids variations in construction 
progress judgment among different personnel but also 
enhances the utilization of human resources, thereby 
improving the efficiency and convenience of on-site 
progress management.

Based on the background, this study plans to propose 
a progress object detection module used in the 
construction phase. By collecting images of the progress 
of each stage of construction, it can be used as training 
data. By combining common model architecture, an 
object detection model suitable for identifying 

construction progress is selected. Apply the transfer 
learning method and adjust model parameters to improve 
the recognition rate, and then find the most suitable 
model for construction progress detection. Finally, 
integrating with the BIM model at the application end 
will achieve component positioning, integrate multiple 
images of the same component for detection input, and 
address differences in progress judgment due to manual 
input and optimize human resource utilization.

The study will be divided into four phases. First is the 
collection of construction progress image data, followed 
by the training and testing of the object detection model, 
optimization and validation of the object detection model, 
and finally, the integration of BIM for automated and 
visualized construction progress monitoring.

In terms of data collection, cameras will be installed 
at the construction site to collect image data, 
supplemented by collecting relevant construction 
progress photos from online sources.

The establishment of the object detection model 
adopted transfer learning. This pre-trained model will 
undergo training and testing to seek an optimal object 
detection model. The parameters of the model will be 
systematically optimized and adjusted to enhance the 
accuracy of the detection model.

During the model validation and testing phase, 
images or videos directly obtained from construction 
sites will be utilized. Image recognition will be applied 
to identify the construction activities in the data source. 

Adopting the BIM model as the data integration hub, 
simulating camera deployment conditions, utilizing 
image recognition technology to detect the construction 
status of components within the coverage area, and 
inputting it into the model components. The integrated 
construction progress of components can be 
automatically input into the scheduling system.

The prototype system will compare with the original 
schedule, and using different progress visualization 
methods, categorize the results by color. Through 
visualization, management personnel can grasp the 
progress concretely and intuitively in real time.

Figure 1.The process diagram of image-based 
construction progress detection model
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Figure 2. Demo diagram of integrates AI image 
detection with BIM technology

2 Related Research
The research topics related to this study include real-

time progress monitoring and AI image recognition, 
especially for construction progress monitoring. The 
literature review for these topics are as follows.

2.1 Real-time Progress Monitoring
Past research has utilized various Field Data

Capturing Technologies (FDCT) [7] to collect progress 
data from construction sites, integrating them with 
Building Information Modeling (BIM) to enhance 
construction progress monitoring. These include image 
recognition of construction elements, alignment with 4D 
models for comparison, RFID for tracking personnel and 
materials, UWB positioning systems for progress 
tracking, and laser scanners for construction environment 
scanning to create 4D As-Built BIM models, compared 
with 4D Designed BIM models [8-11].

These technologies still have limitations for 
improvement in progress management applications, such 
as the need for confirmation of work status for UWB and 
RFID, like verifying completion and installation. Point 
cloud analysis requires more time for processing to the 
object level for project progress.

2.2 AI Image Recognition for Construction 
Progress Monitoring

In recent years, the application of image recognition 
in construction through deep learning has been steadily 
increasing, encompassing the identification of elements 
like construction workers, materials, and machinery [12-
13]. The studies of applying AI image recognition, for 
construction progress monitoring are relatively few.

Utilizing image recognition for automated progress 
monitoring in construction projects involves extracting 
features through deep learning to detect and identify 
construction status. Zheng et al. [14] utilized R-CNN 
model to automatically detect modules and identify their 
status, such as Hooking, Lifting, and Final Positioning.

With the affordability of cameras, gathering rich 
information from construction sites to achieve automated 
visual monitoring of construction sites becomes feasible 

[15]. Martinez et al. [16] utilized low-resolution CCTV 
images and combined deep learning methods (R-CNN) 
with Finite State Machines (VFSM) to identify labor and 
key equipment in floor manufacturing. The study 
presents the calculation of task duration and working 
hours, providing managers with clear and real-time 
insights into workstation progress.

The study adopts deep learning-based recognition 
technology to propose a framework suitable for on-site 
construction progress management. Data collection is 
conducted using fixed on-site cameras to improve the 
costly investment in equipment and manpower. The use 
of YOLO and transfer learning enhances efficient 
detection, particularly in scenarios with limited 
construction photos. Furthermore, this study aims to 
define major operational steps in structural engineering, 
such as rebar binding, formwork assembly, and concrete 
pouring, for effective control and management of 
construction progress. Additionally, suggestions for 
integrating progress management systems will be 
provided, improving existing research.

3 Methodology
To achieve these objectives, we designed a prototype 

system, which includes the required model architecture, 
on-site install flow, and functional displays. Building the 
progress object detection module in the construction 
phase, configuring site cameras, data integration and 
presentation will be detailed in the following sections.

3.1 Building Progress Object Detection 
Module in the Construction Phase

The study proposes the utilization of a progress object 
detection module for the construction phase. By 
collecting images of construction progress at various 
phases and applying transfer learning, the model 
parameters will be adjusted to enhance recognition. A
comparison of various models will be conducted to 
identify the most suitable one for construction progress 
detection.

The implementation is divided into three stages: 
image classification and data collection, selection of the 
object detection model, and training/testing of the object 
detection model.

3.1.1 Image Classification and Data Collection

To collect datasets for training the model, this study 
focuses on collecting relevant images from architectural 
projects, specifically targeting the structural construction 
phase. To mitigate redundancy in the training data that 
may result in high feature similarity and potentially 
impact the model's training outcomes, photos are 
collected through three distinct approaches: daily 
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progress photos, time-lapse cameras on site, and online 
sources. 

In this study, focusing on architectural structures, the 
collected progress images are mainly categorized into 
rebar tying, formwork assembly, and concrete pouring. 
Recognizing variations in the construction sequence 
between columns and walls, which proved to be 
confusing in initial tests, the construction phases are 
dissected into distinct phases: rebar tying of columns, 
pre-rebar tying of walls, completion of rebar tying of 
walls, formwork assembly of walls, formwork assembly 
of columns and concrete pouring. 

3.1.2 Selection of Object Detection Model 

The object detection model is composed of three parts: 
input, convolutional neural network layers, and detection 
layers. The convolutional neural network layers serve as 
the main network backbone, responsible for extracting 
image features and producing a feature map by merging 
the extracted features through pooling layers. The 
detection layers are responsible for the final prediction of 
object categories and generating candidate boxes. 

To explore and seek a suitable combination of 
detection models, this study chose one-stage and two-
stage object detection models, and selected models that 
have performed well in most related studies, YOLOv5 
represents the one-stage model, while Faster R-CNN 
represents the two-stage model. Then, five groups of 
convolutional neural network layers and detection layers 
are constructed. 

Table 1 Comparison of object detection model 
combinations 

 
Convolutional 

Neural Network 
Layers 

Detection 
Layers mAP(%) FPS 

1 ResNet50 YOLOv5 27.6 11.7 
2 ResNet50 Faster R-CNN 31.8 4.3 
3 DenseNet121 YOLOv5 31.1 10.3 
4 DenseNet121 Faster R-CNN 38.3 3.9 
5 CSPDarknet53 YOLOv5 51.1 17.6 

The training conditions are set to 300 epochs, with 16 
samples per batch, and image pixels of 640x640. The 
pixel size of the images utilizes the maximum value 
allowed by the computer hardware to avoid suboptimal 
training results. Regarding optimization parameters, the 
original default values of the model will be used, and to 
examine the fundamental performance of the model, no 
transfer learning pre-trained weights will be adopted. The 
model will be trained from scratch to obtain the detection 
model's training results. 

Among the selected detection model combinations, 
the model with the highest individual accuracy will be 
compared. Considering conditions such as detection box 
overlap and detection speed, YOLOv5 - CSPDarknet53 
will be adopted as the detection model for this study. 

 
Figure 3. Compare prediction results and 
candidate boxes of detection models 

3.1.3 Training and Testing of the Object Detection 
Model 

The quantity of the dataset can impact the accuracy. 
During the initial stages, obtaining a clear and adequate 
number of construction progress photos posed challenges. 
This is mainly due to construction activities developing 
in different phases, and the collection of construction 
photos progresses gradually with the advancement of the 
project, making it difficult to rapidly and substantially 
increase the data volume. 

To address this, the study utilizes the mosaic feature 
proposed in YOLOv4 [17] as a form of data 
augmentation to generate additional photo data, aiming 
to increase the number of the dataset. Additionally, the 
study adjusts hyperparameters during the training process 
to enhance the detection accuracy of the model. In this 
phase, transfer learning is applied, utilizing the dataset 
named MS COCO (Microsoft Common Objects in 
Context) [18-19] to train the YOLOv5 model. This 
source was designed to detect and segment common 
objects like humans, cars, and buses in daily life. The 
dataset consists of 328K images and 80 object categories. 

Through transfer learning and hyperparameters 
optimization, the optimized model improves 20.4% 
accuracy over the original model, with no significant 
degradation in FPS (frames per second, FPS) 
performance. On average, the optimized model shows 
better loss values and performance compared to the initial 
architecture. 

Table 2 Model optimization performance 

YOLOv5 Accuracy 
(%) 

Recall rate 
(%) 

mAP 
(%) 

FPS 
 

Initial model 63.1 74.67 51.1 17.6 

Optimization 
model 83.5 71.74 57.9 17.4 

3.2 Site Cameras Deployment and Data 
Integration and Presentation 

Upon the completion of the detection model, many 
surveillance cameras are deployed on the construction 
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site to record real-time video during the ongoing 
construction. This process is aimed at further recognizing 
the construction progress of each component. The 
positioning and alignment of cameras are constrained by 
some factors such as the site location and installation 
conditions. Therefore, systematic positioning and 
alignment are adopted to facilitate recognition and 
utilization of image data. In addition, image capture is 
performed from multiple angles, many components will 
be recorded repeatedly. This study provides a procedure 
to integrate images and presents a visual approach that 
enables management personnel to intuitively and 
promptly comprehend the construction progress.

3.2.1 Site Cameras Deployment

The input source for this study is captured from the 
surveillance camera at the site. To ensure alignment 
between the input and the system's camera, two sets of 
camera initialization, positioning, and alignment 
configurations must be executed. The methods vary 
depending on whether the on-site surveillance cameras 
are already installed or are to be set up based on 
parameters. In this study, the coordinate system in Unity 
is utilized as a reference for calculating the relative 
spatial position after importing the model. Different 
processes and methods for installation are planned for 
two scenarios, as illustrated in the figures below.

Figure 4. Case of on-site surveillance cameras are 
already installed

Figure 5. Case of on-site surveillance cameras are 
set up based on system parameters

3.2.2 Mechanism of Construction Image Detection 
and Input

The return of images captured by the surveillance 
cameras at the site to the system's main server, the image 
detection model is utilized for recognition. The 
recognition results are outputted as a txt format, 

including information such as the coordinates of the 
detection box's center point, length, height, recognized 
progress phase, and mAP value.

The consistency perspective has been established 
between Unity and site cameras, the photos captured by 
the cameras can be considered aligned with the
perspective of the model. Therefore, use the Unity Physic.
Raycast function for component selection to find the 
component corresponding to the recognition result.

Figure 6. Demo of Physic. Raycast function for 
component selection

Because the system integrates multiple cameras, it 
may recognize different phases for the same component.
This study proposes three solutions, allowing users to 
choose the most suitable method for their engineering 
project. These are prioritized based on accuracy (mAP), 
construction phase, and detection frequency. This 
approach enables the provision of distinct update 
principles based on the condition of the engineering 
project.

3.2.3 Visual Presentation and the User Interface

Through the automated progress update function, it 
can reduce the human resources required for project 
management. On the other hand, visual presentation 
allows operators to understand the construction progress 
through screen presentation, thereby effectively 
improving work efficiency. This study proposes two 
visual presentation methods, explained as follows:

Users can select components through the Physic.
Raycast function in the operation interface. This will 
query and display different colors corresponding to the 
construction phases detected by image recognition, 
simulating the on-site construction situation.

Figure 7. Query and display different colors 
corresponding to the construction phase
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Another visual presentation method focuses on the 
overall progress control. Users can update component 
progress through the progress update interface. When this 
function is enabled, the system will compare and analyze 
the planned and actual completion dates for each 
component, presenting the results through the 3D model 
display area.

Figure 8 Process of schedule update and model 
presentation

4 Application Scenarios
Based on the prototype system developed, this section 

will conduct tests through various scenarios to showcase 
the functionalities developed to achieve the research 
objectives. The following sections will categorize the 
system's operations and provide detailed demonstrations 
and explanations for each application mode.

4.1 The Camera Deployment of the Prototype 
System

In the initial phase, this study utilized a simulated 
construction site in an interior parking floor of the 
building to validate whether the camera deploy 
functionality of the prototype system aligns with the 
requirements of typical construction scenarios. The red-
highlighted area in the layout represents the scope of the 
research tests. Four surveillance cameras with 
corresponding field-of-view lenses were strategically 
installed both on-site and within the system, facilitating 
subsequent progress detection through the detection 
function and verifying its capability to cover the entire 
testing area.

Figure 9. The layout of the research tests scope
and camera deploys

The test has already pre-installed multiple perspective 
cameras in the system, and the desired camera position 
data will be obtained within the prototype system. In the 
system interface's 3D model display area, the selected 
perspective camera position will be shown. Users can 
choose a reference component closest to this camera by 
clicking with the mouse and calculating the X and Y-axis 
displacement. Finally, at the site, using this reference 
component as the origin, surveillance cameras will be set 
up using relative displacement.

Figure 10. Demonstration of Camera set up on site 
and in model

4.2 Recognize Various Construction Phases
This study utilized an existing building to simulate 

the site environment and whether the detection model can 
recognize various construction phases. The study 
modified the final images to depict scenarios such as 
rebar tying of columns, formwork assembly of walls, and 
concrete pouring.

Through the execution of image recognition functions, 
the prototype system of this study successfully 
recognized the construction phases of components, 
except for components that have been obstructed.

Figure 11. Simulate the completion phase of rebar 
tying and formwork assembly
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Figure 12. Simulate the completion phase of 
concrete pouring

4.3 Multi-angle View Detection and Results 
Integration

After the AI conducts object detection and outputs the 
results, the prototype system automatically reads the 
information. Subsequently, from four different 
perspectives, the BIM model is interactively selected 
using the Unity Physic. Raycast function. Based on these 
selected components, progress data is updated. The BIM 
model, representing the defined testing area, adjusts its 
color presentation according to the different construction 
phases. The extraction of the updated results from the 
selected components confirms the effective coverage of 
the entire construction area using multiple cameras.

Figure 13. The completion phase visualization  of 
rebar tying and formwork assembly

Figure 14. The completion phase visualization  of 
concrete pouring

4.4 Use Surveillance Cameras for Recognize 
Testing during the Construction Stage

After validating the relevant functions indoors, the 
system proceeded to on-site testing in a construction 
setting. In this case, focusing on a construction project, 

CCTV images from the construction site were used as the 
image source, and the BIM model for the project was 
constructed for system testing. Initially, the prototype 
system deployed surveillance cameras. After measuring 
and calculating the data for the coordinates of the 
system's perspective camera at the site, the system 
completed the installation of the perspective camera. The 
comparison between the system's perspective view and 
the construction site image after deployment is shown in 
the following figure.

Figure 15. Comparison of system perspective and 
construction site images

Subsequently, the construction image recognition 
function was executed. The prototype system, after 
detection, retrieved the results and utilized the 
functionality to select the components to be updated. The 
comparison between the recognition results and the 
system interface is illustrated in the following figure. 
This presentation of results demonstrates the feasibility 
of various functions of the prototype system in practical 
cases.

Figure 16. Comparison of recognized results and 
visualization component screen

5 Conclusions
This study proposes a prototype system that integrates 

AI image recognition, BIM, visualization technology, 
and on-site construction image monitoring. It not only 
provides real-time monitoring of construction site 
progress but also establishes an automated and visual 
management system. The AI detection and recognition 
integration mode, based on BIM, realizes an automated 
and visual construction progress management platform.

The system automates the integration of detection 
results from multiple surveillance cameras, ensuring 
comprehensive progress control over the entire 
construction area. It also utilizes a BIM model to 
integrate construction schedules, achieving automated 
updates to the schedule, thus reducing the operational 
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loading on project managers. 
In terms of functionality, the system integrates a BIM 

model and 4D construction management, using 
visualization technology to present different construction 
phases according to the schedule. Additionally, the 
system uses different colors on the component to show 
detection results, simultaneously comparing planned 
schedules with actual schedules. This color-coded 
representation indicates whether the construction 
progress of components is ahead or behind, providing 
project managers with a more concrete and intuitive 
understanding of construction progress. 

With the continuous development of mixed reality 
technology, this study plans to integrate wearable mixed 
reality devices in the future. This involves presenting the 
model on MR devices to assist less-experienced on-site 
engineers in quickly familiarizing themselves with the 
site conditions. Additionally, by replacing camera 
installations with wearable mixed-reality devices, the 
aim is to achieve real-time image detection and updates. 
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Abstract -

Pavement crack tracking in unstructured road environ-

ments has been and continues to be a crucial and challenging

task, playing a vital role in achieving accurate crack seal-

ing for automated pavement crack repair. However, slen-

der cracks suffer from insufficient feature extraction and low

tracking efficiency. In this article, a hybrid adaptive control

scheme combined with a self-tuning neural network and pro-

portional–integral–derivative (PID) is proposed for dynamic

visual tracking of pavement cracks. Specifically, the scheme

extracts crack features on the road image plane based on a

S2TNet system and determines an optimal control input to

guide the robot. S2TNet cross-integrates the global features

through the multi-head attention module. It also adaptively

recalibrates the channel responses of partial feature maps for

fusion operations with the transformer module. Moreover,

the Neural–PID controller is designed for adaptive adjust-

ment of control parameters, and the scheme was validated

on a physical robot platform. Extensive experimental re-

sults showed that the effectiveness of the proposed method in

achieving real-time tracking for pavement cracks.

Keywords -

Crack Tracking; Crack Segmentation; Transformer; Neu-

ral–PID Control; Mobile Robot

1 Introduction

Pavement cracks are prevalent and hazardous defects

that significantly impact driving safety in highway trans-

portation. They primarily arise from a range of factors,

such as heavy traffic loads, subpar construction practices,

the influence of climate, and inadequate drainage[1, 2].

Failure to promptly repair pavement cracks can lead to ac-

celerated deterioration of the pavement structure through

the ingress of rainwater. Even a small crack can rapidly de-

grade into a pothole overnight, posing a significant hazard

to high-speed driving[3, 4]. Hence, regular maintenance

and repair of pavement cracks are imperative to prevent

crack deterioration and ensure traffic safety[5, 6]. Manual

sealing is the conventional approach for repairing pave-

ment cracks. However, manual pavement repair proves

to be time-consuming, expensive, and subjective. There-

fore, there is a growing demand for automated and efficient

repair methods in pavement crack tracking.

Recent studies have primarily focused on the develop-

ment of crack segmentation with convolutional neural net-

work (CNN)-based methods in road environments. For in-

stance, [7] constructed a novel crack segmentation network

called CrackW-Net, and designed the skip-level round-trip

sampling block, which can be easily used in various net-

work structures. [8] developed mobile robot system can

effectively segment pavement cracks in real scenarios at a

speed of 25 frames per second. [9] used a 3D printer as

a crack-filling machine. In recent years, path tracking re-

search based on mobile device motion control has become

popular. A crack sealing system was designed to control

the experimental three-dimensional (3D) printer to repair

cracks[2]. [10] proposed the cross-entropy-based adaptive

fuzzy control for crack tracking with VT-UMbot.

The insufficient feature extraction is significantly trig-

gered by the limited receptive field in the CNN segmenta-

tion model and it often leads to a coarse segmentation

of the cracks. Over the years, researchers have pro-

posed various techniques to improve object detectabil-

ity. These approaches include encoder-decoder[11], multi-

scale attention[12], and multi-scale feature extraction[13].

Additionally, efforts have been made to enhance object

feature representation[14] and fusion[15]. However, de-

spite these advancements, challenges still persist in the

field, such as inadequate detection of detailed features

and susceptibility to background lighting conditions. On

the other hand, low tracking efficiency is also caused by

Slender pavement cracks have extreme length-width ra-

tio and complex topology, which lead to irregular paths.

Path tracking research mainly focuses on distribution rules

and trajectory obeying certain rules. Recent tracking con-

trol methods range from traditional PID to various op-
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timized and improved PID such as fuzzy control[10], ge-

netic algorithms[16] and ant colony algorithms[17]. How-

ever, challenges related to tuning of control parameters in

specialized environments significantly impact the perfor-

mance of path tracking.

This article presents a pavement crack tracking frame-

work that enhances tracking efficiency in unstructured road

scenarios by fusing real-time crack video context features

with transformer-based segmentation and proposing Neu-

ral–PID control strategies in the crack tracking. To address

the insufficient feature extraction and low tracking effi-

ciency, extensive experiments are conducted and verified.

The contributions of this work are fourfold:

• Aiming at the problem of pavement crack tracking,

a joint transformer-based fusion model and Neu-

ral–PID tracking control scheme is proposed. This al-

gorithm successfully achieves stable real-time track-

ing for pavement crack.

• Enhancing the performance and effectiveness of

crack segmentation in challenging road conditions

with insufficient feature extraction. This article In-

troduces a transformer-based fusion model, which

leverages multi-fusion strategies to address the chal-

lenges posed by coarse crack feature extraction.

• Considering pavement cracks with slender shape and

irregular path, a Neural–PID tracking control method

is proposed to improve the performance of tracking.

Specifically, adaptive adjustment of control parame-

ters is achieved by neural network.

• Conducting extensive experiments on self-created

S2T-Crack dataset, the proposed algorithm is suc-

cessfully deployed in self-developed vision-guided

robot. The results show that our method achieved

State-of-The-Art.

The structure of this article is organized as follows.

Section 2 provides the existing related work. Section 3

outlines the detailed design of our methodology. Section

4 presents the experimental validation of our approach.

Finally, Section 5 summarizes the article and discusses

future directions.

2 Related works

This section reviews the literature relevant to our pro-

posed pavement crack tracking.

Crack Segmentation. Crack segmentation is a crucial

distress inspection technique for different infrastructures,

including roads, bridges, tunnels, airports and buildings.

There are numerous crack segmentation methods devel-

oped based on deep learning. YOLOv5[18] is a single-

stage object detection model known for its architectural

features such as the incorporation of Cross-Stage Partial

(CSP) and Spatial Pyramid Pooling-Fast (SPPF) methods

in the backbone network, as well as the utilization of Fea-

ture Pyramid Network (FPN) and Path Aggregation Net-

work (PAN) in the Neck network. A lightweight pavement

crack detection model is proposed to realize the dual tasks

of object detection and semantic segmentation[19].

However, CNN models primarily focus on local feature

extraction, which may result in information ambiguity and

coarse segmentation when dealing with long-range de-

pendency relationships. Therefore, this research aims to

fuse YOLOv5 with Transformer to achieve effective crack

segmentation.

Vision Transformer. Thanks to strong representation

capabilities, researchers are looking at ways to apply trans-

former to computer vision tasks. In various visual bench-

marks, the performance of the transformer-based model

is similar to or better than other CNN types of networks.

[20] classified these visual transformer models accord-

ing to different tasks, and analyzes their advantages and

disadvantages, so as to review them. A new video in-

stance segmentation framework based on Transformer is

proposed, called VisTR, which regards the VIS task as a

direct end-to-end parallel sequence decoding / prediction

problem[21]. [22] designed a segmentation model called

SEgmentation TRansformer (SETR). A large number of

experiments show that SETR has achieved competitive

results on Cityscapes.

Compared to CNN, transformer incurs higher compu-

tational costs and longer training times. Given the subtle

nature of crack features, achieving fine-grained segmen-

tation of cracks is crucial. Therefore, this research in-

troduces self-attention and cross-attention mechanisms to

enhance feature extraction.

PID Control. PID control is widely used in path track-

ing control of mobile robots. In the absence of robot

knowledge, the PID controller may be the best controller

because it is model-free and its parameters can be easily

adjusted separately. However, the parameters depend on

artificial empirical values, and parameter optimization is

an existing challenge. [23] used the adaptive PID con-

troller to adjust the error to adjust the front wheel angle.

A robust PID controller for flight control of four-rotor air-

craft is proposed[24]. An adaptive fuzzy control (CEAFC)

method based on cross entropy is proposed for PID param-

eter tuning[10].

Traditional PID controllers are susceptible to external

disturbances when it comes to parameter adjustments,

leading to convergence issues and system uncertainty. To

address these challenges, this study proposes the Neural-

PID approach to ensure effective tracking performance.
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Figure 1. General framework of our proposed scheme for pavement crack tracking on vision-guided robot. It
mainly includes two separate modules: transformer-based crack segmentation (including two branches and three
fusion modules), Neural-PID crack tracking (containing three layers networks). All modules are implemented
based on the unified YOLOv5 framework, and the details of each module are shown in Figure 2. It is worth
noting that both the input video images and tested results were conducted on the S2TCrack dataset.

3 Methodology

This work first describes related issues of pavement

crack tracking systems. Additionally, it is deployed on

vision-guided robot to achieve crack tracking. This section

presents the details of our proposed method.

3.1 Framework

This article focuses on two key aspects of crack track-

ing in road environment. Firstly, it addresses the chal-

lenge of achieving accurate crack segmentation in pave-

ment scenarios characterized by slender crack and com-

plex background. Secondly, it examines the low tracking

efficiency of crack tracking control methods in limited pa-

rameters tuning conditions. To address these challenges,

a crack tracking framework is proposed that ensembles

transformer-based fusion network and Neural–PID track-

ing control algorithm. This framework, illustrated in Fig-

ure 1, comprises two main modules: transformer-based

crack segmentation and Neural–PID tracking control. The

feature fusion module employs the yolov5 under the popu-

lar transformer to encode and decode crack video images,

enabling the fusion of image pixels at the feature level. In

order to adaptively tune the tracking controller parameters

more quickly, a three-layer structured neural network is

used. A detailed overview of the framework is presented

in the subsequent subsections.

3.2 Crack Segmentation with Transformer

The proposed module employs the yolov5 under the

popular transformer to encode and decode crack video

images, enabling the fusion of image pixels at the fea-

ture level. In contrast to the initial iteration of YOLOv5,

this study presents a novel approach that incorporates a

two-branch convolutional neural network backbone. This

backbone is illustrated by the light-green modules in Fig-

ure 2, and it is designed to extract crack features between

video frames from a vision-guided robot. In the context

of fusion utilizing FT modules, the fusion process occurs

at three distinct stages, facilitating the integration of fused

characteristics that comprise both coarse-grained and fine-

grained semantic information.

A common layer in the encoder and decoder structure

is multi-head attention, which consists of multiple parallel

self-attention mechanisms. In Self-Attention, Q, K, and

V are three vectors calculated on the same input (such as

a word in a sequence). Specifically, Q, K, and V can be

obtained by applying a linear transformation (e.g., using a

fully connected layer) to the original input word’s embed-

ding. The dimensions of these three vectors are usually

the same and depend on the decisions made during the

model design. During the computation of Self-Attention,

Q, K, and V are used to calculate attention scores, repre-

senting the relationship between the current position and

other positions. Attention scores are obtained by taking

the dot product of Q and K, dividing the scores by 8,

and applying softmax normalization. This process yields

weights for each position. Next, these weights are used to

compute the weighted sum of V, resulting in the output for

the current position. In order to illustrate the effectiveness

of our proposed FT fusion module, the feature extraction

network of YOLOv5 is extended and redesigned as a back-

bone composed of two streams to achieve modal fusion and

interaction.

3.3 Neural–PID Control for Crack Tracking

In the process of actual pavement crack path tracking

motion control, due to the complex control environment

and the nonlinear and time-varying characteristics of the

controlled object, the conventional PID control can not
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adjust the adaptive parameters and achieve good adapt-

ability. Using the error back propagation technology, the

multi-layer feedforward neural network is called to become

a back propagation neural network. Because of its prop-

erties, it has excellent performance in nonlinear mapping,

such as function approximation and pattern recognition.

There are three layers in the back propagation neural net-

work model: input layer, hidden layer and output layer.

The input layer processes the type and quantity of in-

put. By controlling the number of layers and activation

functions, the hidden layer introduces the possibility of

nonlinear mapping. The output layer is responsible for

generating some information. The output of the neuron

model structure is usually expressed as a nonlinear com-

bination of input and weight.

� (�) =
�� − �−�

�� + �−�
(1)

The three non-negative gain parameters of the PID con-

trol scheme are output by the BP neural network, so the

sigmoid function and other functions without negative out-

put values are applied.

�(�) = � ·
1

1 + �−�
(2)

ℎ(�) = min(max(0, �), �) (3)

� (�) = � ·
��

�� + �−�
(4)

where u is upper bound of the output. It is used to regulate

the output range.

Back propagation neural network nonlinearly maps the

input, output and error to the three parameters kp, ki and kd

of the PID controller. In addition, the BP neural network

has three neuron points for the input layer, five neuron

points for the buried layer, and three neuron points for the

output layer. The commonly used Tanh function is used in

the hidden layer. Combined with BPNN and PID control

algorithm, the online self-tuning of PID control parameters

can be realized, and the optimal pavement crack tracking

motion control effect can be achieved. The structure of the

Neural–PID scheme is shown in Fig.1.

4 Experiments

This section focuses on evaluating the proposed method

through representative benchmarks and validation. The

first aspect covers the experimental settings. Then, the

crack segmentation results are analyzed and discussed.

Subsequently, our Neural–PID method is deployed on a

vision-guided robot to achieve real-time tracking of pave-

ment cracks.

4.1 Experimental Setting

The model training experiments were conducted on an

Intel(R) i9-13900K(F) CPU running at 5.8 GHz, along

with an NVIDIA GeForce RTX4090 GPU (24 GB) and

the following software versions: CUDA v10.2, cuDNN

v8.0.1, Pytorch v2.0, and Python v3.8. The unmanned

wheeled robot is equipped with an embedded Nvidia Jet-

son AGX Xavier computer, serving as the main processor

with the following specifications: 512 CUDA cores and

64 tensor cores within an Nvidia Volta GPU, v8.2 ARM

CPU with 8 cores, and 32 GB DDR4 memory. To acquire

pavement crack video images in the front view scene of

the unmanned wheeled robot, a front-mounted Realsense

D435i camera with a 135-degree field of view (FOV) and

an RGB-D perception unit is utilized. The embedded envi-

ronment includes Jetpack 4.4, PyTorch 1.8, Linux Ubuntu

18.04, and ROS Melodic, as shown in Figure 3.

The evaluation metrics utilized to assess the perfor-

mance of our proposed method are Precision (B), Preci-

sion (M), Recall (B), Recall (M), and AP (Average Preci-

sion). Furthermore, the AP incorporates mAP0.5 (B), and

mAP0.5 (M), which represent the AP with an IoU thresh-

old greater than 0.5, and mAP0.5:0.95 (B), mAP0.5:0.95

(M), which pertain to the average AP with an IoU thresh-

old ranging from 0.5 to 0.95 in increments of 0.05. The

Figure 2. The architecture of YOLOv5 uses a fusion transformer method that encompasses four separate compo-
nents: backbone, neck, head, result.
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Figure 3. Working conditions of our vision-guided
robot under different perspectives are displayed.

notation (B) represents the metric of the predicted bound-

ary frame, corresponding to crack detection. Similarly,

the notation (M) represents the metric of the binary mask,

corresponding to crack segmentation.

4.2 Results of Crack Segmentation

This section presents an approach to significantly en-

hance the performance of crack segmentation using the

proposed method. The experimental results are analyzed

on the open data set CFD and the self-built data set

S2TCrack.

4.2.1 CFD Dataset

CFD is utilized for evaluation. The CFD dataset com-

prises 118 pavement crack images, each with dimensions

of 480 pixels by 320 pixels. These images were captured

by individuals standing on the road using an iPhone. The

ground truths were meticulously annotated at the pixel

level, a task that demands significant labor. The im-

ages exhibit high quality with a smooth and clean back-

ground. Table 1 compares the performance of YOLOv5,

our method (Ours), on the pre-trained models n, s, m, l, x.

Our method, using the different pretrained model, demon-

strated improved performance on the CFD dataset. The

following best performance metrics are: [Precision(M) =

0.6818, Recall(M) = 0.5178, APval0.5(M)=0.5304, AP-

val0.5:0.95(M)=0.2453]. Moreover, based on the com-

prehensive results obtained from the CFD dataset, our

proposed method exhibits significantly better performance

and versatility, showcasing its exceptional ability in pixel-

level crack segmentation tasks.

4.2.2 S2T-Crack Dataset

This section also includes a comparative experiment on

the self-built S2TCrack dataset, as presented in Figure4.

Our method demonstrates superior segmentation perfor-

mance in the pretrained model ’s’, which boasts a mere

6.7M parameters and 15.2M GFLOPs. Meanwhile, the

segmentation accuracy is moderately acceptable. Along

with the segmentation results of three scenes from the

self-built S2TCrack dataset, YOLOv5 roughly splits the

cracks, ignoring certain subtle features, which may result

in incomplete masks, leading to fractures or local losses.

Our method effectively generates masks that appropriately

cover the target cracks, thanks to the utilization of SA and

CA. To further enhance the performance, FT modules are

integrated to fuse crack features. Our method is capa-

ble of generating highly accurate binary masks, making it

suitable for various complex scenes.

4.3 Online Tuning of PID Parameters

This section presents an approach to significantly en-

hance the performance of crack tracking using the pro-

posed method. The experimental results are analyzed on

different control algorithms.

4.3.1 Comparison of Tracking Control

As shown in Figure 5, compared with CEAFC, the

Neural-PID control scheme approaches the ideal solution

with a faster convergence rate at iteration 200, indicat-

ing that the Neural-PID has stronger deterministic global

search ability and faster high-dimensional optimal solution

discovery speed. The results show that the Neural-PID

control algorithm is superior to the other three methods.

Table 1. Real-time segmentation results in the CFD dataset.
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Figure 4. Visualization of segmentation results using YOLOv5 and our proposed method of our created S2T-
Crack dataset.

According to the convergence curve, the Neural-PID algo-

rithm needs 60 iterations to find the local optimal solution

and 90 iterations to get rid of the local optimal solution.

Compared with the 150 iterations required by the CEAFC

method, this is a huge reduction. Therefore, Neural-PID

can eliminate the local optimal solution and improve the

robustness of crack tracking control.

Figure 5. The comparison results of algorithm opti-
mization.

4.3.2 Analysis of Tracking Error

Table 2. The comparison results of crack tracking
error.

   
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    



 







Experiments are performed on real roads to verify the
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performance of road crack tracking, as shown in Table

2. This average absolute error is used as a performance

evaluation index. The unmanned wheeled robot uses the

proposed method to compare the results of road crack

tracking error with other control methods during the track-

ing process. Crack #1 is a straight pavement crack. In the

case of crack #1, our algorithm achieves the smallest aver-

age crack tracking absolute error in the pre-trained model

’s’, with a measured value of 4.12 mm. Crack #2 is a

curved pavement crack. For the case of crack #2, our al-

gorithm achieves the smallest average absolute error in the

pre-trained model ’s’, with a measured value of 4.63 mm.

Crack #3 is a continuous turning pavement crack. Our

algorithm achieves the minimum mean absolute error in

the pre-trained model ’s’, and the measured value is 5.67

mm.

5 Conclusions

This article addresses two critical issues in road crack

tracking: insufficient feature extraction and low tracking

efficiency. To overcome these challenges, the research

primarily focuses on enhancing the pavement crack feature

extraction from crack video images using our transformer-

based crack segmentation method. By combining SA and

CA, and leveraging FT model, the performance of binary

masks in segmentation instances is significantly improved,

enabling fine-grained segmentation of pavement cracks.

Through the proposed Neural-PID, our method is deployed

on NVIDIA AGX Xavier to enable real-time tracking of

actual pavement cracks on a vision-guided robot. In future

research, the utilization of road crack depth images will

be considered, along with the exploration of alternative

control methods to enhance the accuracy and robustness

of the tracking control algorithm. The developed vision-

guided robot can be integrated with repair mechanisms to

accomplish road crack repairs.
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Abstract -
In this study, we introduce a detailed physics-based parti-

cle system for simulation of the shotcrete process. The devel-
opment of this framework concept is informed by an extensive
literature review encompassing diverse modeling and simula-
tion methodologies applied to shotcreting processes, coupled
with insights derived from experimental studies on shotcrete.
This method can effectively capture key shotcrete character-
istics such as adhesion, cohesion, and rebound. Furthermore,
simulated shotcrete particles have interaction with different
objects, colliding and bouncing off different geometries that
represent various construction substrates and conventional
reinforcements. The primary objective of the process sim-
ulation is to expedite the advancement of robotic systems
tailored for executing shotcreting operations, extending be-
yond mere visualization purposes. Through the integration
of shotcrete process simulation into a virtual environment, a
simulated representation of a robotic concept can be system-
atically experimented upon to anticipate and understand its
behavior. This approach proves instrumental in refining the
design of robotic systems, optimizing robot motion planning,
mission planning, and enhancing management and operation
practices.

Keywords -
Shotcrete; Process Simulation; Robot; Particle System

1 Introduction

Despite having a pivotal role in the world’s economy,
construction sector has been one of the last domains to
adopt and apply automation technologies. This could be
attributed to the irregular and ever-evolving nature of the
construction site and the diverse, intricate tasks typically
mandated. However, the scarcity of skilled work force,
escalating labor costs, accrescent demand for new infras-
tructure, and the imperative need for maintaining existing
ones emphasize the necessity for the integration of automa-
tion and robotic technologies in the construction industry
[1].

Shotcrete as a concrete compaction method has gained

popularity over the past century due to its exceptional
economic efficiency. Even though shotcreting is highly
mechanized today, the quality of the process is still heav-
ily reliant on the skill of human operators. Conversely,
this method poses significant challenges, subjecting work-
ers to strenuous physical exertion, continuous exposure to
hazardous dust, and the constant risk of ground instability.

In a standard shotcrete project, understanding the thick-
ness and distribution of the material adhered to the target
surface is fundamentally important. Knowledge of the
rebounded material is also essential to minimize waste
and operational costs. If a robot is to be deployed to
autonomously carry out tasks traditionally performed by
humans, profound understanding of the intricacies of the
process becomes imperative. Without such knowledge,
the robot may be at risk of sustaining damage (e.g., from
rebounded shotcrete material) or not be able to carry out
its task (e.g., without awareness of shotcrete cohesive fail-
ure, the robot may become indefinitely stuck in a loop of
spraying the same spot repeatedly).

Therefore, we have developed a particle system inte-
grated with a physics engine, with the aim of improving
the accuracy and efficacy of shotcrete process simulation.
This conceptual framework is considered an essential facil-
itator for robot-based shotcreting. The paper is structured
into two main sections. Firstly, it provides an overview of
the current state of robot-based shotcreting and shotcrete
process simulation. Secondly, it presents and discusses the
simulation’s composition and delves into implementation
details.

2 Background
Efforts have been made to employ robotic manipula-

tors for shotcreting in underground structures, including
tunnels [2, 3, 4]. Cheng et al. [5] simplified the control
system of a semi-automated shotcreting manipulator and
validated their model through real-time computer simula-
tion. They also utilized a simulation model for calculating
the nozzle path in a fully automated shotcreting robot.
Girmscheid and Moser [6] introduced a versatile robotic
system capable of manual, semi-automatic, and fully au-
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tomated shotcreting, demonstrating promising results and
emphasizing the potential of automation in construction.
These methodologies incorporated shotcrete profile mea-
surement and application control, utilizing laser scanning
before and after the shotcreting process, resulting in ac-
curate estimations of the thickness of the accumulated
shotcrete. However, one might ask, what if the applied
layer of shotcrete is not within the specified tolerances, re-
quiring its removal and negating the economic efficiency
of shotcrete.

The noticeable differences in nozzle trajectories ob-
served between manual and automatic shotcreting on a
shared robotic platform, as emphasized in the study by
Nabulsi et al. [7], suggest divergent approaches taken by
robots and humans in the application of shotcrete. In con-
texts such as tunneling and ground support, ensuring uni-
form coverage is paramount. Equally crucial is a compre-
hensive understanding of how different nozzle paths can
influence the final shape of the shotcrete on the surface,
particularly in applications like infrastructure restoration.
In conclusion, despite significant advancements in remote-
controlled robot-based shotcreting, challenges persist in
achieving full autonomy. The question of whether current
technology can enable robots to autonomously perform
shotcreting remains unanswered.

Shotcrete is a complex process of spraying concrete
mixture onto a designated surface with high-impact veloc-
ity. This involves shooting a multi-phase blend of cementi-
tious material, water, aggregates, and admixtures through
a hose. Besides air, an additive, a quick-setting agent, is
often introduced at the nozzle. In application, a major-
ity of the sprayed concrete adheres to the target substrate.
However, a fraction of the material may exhibit rebound,
impinging upon objects and adjacent surfaces or returning
to the ground. The efficacy of the shotcrete operation sig-
nificantly hinges on the proficiency of the operator, who
plays a pivotal role in minimizing rebound and preventing
the detachment of previously applied shotcrete.

It is common to apply sprayed concrete over steel re-
inforcements. These structures are affixed to the surface
with a specific distance, partially obstructing it. Spray-
ing with the nozzle perpendicular to the surface can lead
to the creation of large air pockets or sand lenses behind
these elements. A skilled operator directs the nozzle to fill
the space between the reinforcement and the wall, ensuring
complete encapsulation with concrete. A basic illustration
of the shotcrete process is shown in Figure 1.

A realistic simulation ought to incorporate shotcrete
sprayability parameters. According to Trussell and Jacob-
sen [8], the term sprayability is frequently used to describe
properties such as:

• Adhesion which is the ability of sprayed concrete to
attach to the substrate and avoid falling. It is mostly
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Figure 1. Simplified shotcrete process model

affected by the nature and status of the substrate and
the composition of the mix.

• Cohesion which is the ability of fresh sprayed con-
crete to stick to itself and avoid falling and slumping
under its own weight. It can be measured in terms of
the thickness that can be applied before the build-up
material starts to fall under self-weight.

• Rebound which is an unwanted yet unavoidable by-
product of the shotcrete process and occurs when the
shotcrete particles fail to adhere to the substrate and
instead bounce back from the surface. Armelin and
Banthia [9] put an effort to derive a constitutive model
of the rebound phenomenon.

There are additional properties associated with the
sprayability of shotcrete. Some researchers found strength
gained with time to be an intriguing aspect [10, 11]. In a
study by Han et al. [12], Artificial Intelligence (AI) was
employed to rapidly determine the mix proportion of wet-
mix shotcrete. Others, such as [13], focused on examining
the impact of process parameters and model-based process
control.

The absence of any need to prepare concrete forms
renders shotcreting an extremely competitive technology.
Nevertheless, the skills of the nozzle operator play a vi-
tal role in minimizing material waste during application,
thus impacting the economic efficiency of the construction
process [14]. Therefore, construction companies invest
significantly in training their shotcrete personnel. They
require workers to undergo repetitive shotcreting drills as
part of their training until their skills are fully developed.
While this method is not sustainable and not always ap-
plicable, researchers have addressed the issue by focusing
on the development of real-time simulators for shotcrete
training.

Presumably, Börjesson and Thell [15] were the first
researchers to experiment with various rendering tech-
niques in developing a virtual environment for shotcrete
training. They implemented a particle system and put for-
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ward the idea of addition of gravity and dynamic forces to
the shotcrete particle, albeit in their implementation they
utilized ray casting for their adhesion model. They de-
liberately limited the particle system to rendering of the
spraying effect with no impact on the surfaces. More-
over, their work lacked realistic sprayability parameters
of shotcrete. Nevertheless, they managed to commercial-
ize the findings of their research into a real-time training
simulator [16].

In their study, Velez et al. [17] developed a real-time
shotcrete simulation that introduced gravity to affect re-
bound and detached concrete. They also employed ray
tracing for the adhesion model and introduced a shadow
mapping technique to account for cells on the target surface
that were shadowed by the steel mesh from the nozzle’s
perspective. While their approach was commendable, it
leans toward oversimplification, especially in the aspect
of particle collision with other objects—a complexity that
may not be fully captured by their model.

3 Shotcrete process simulation
In this chapter, a novel shotcrete process simulation is

introduced to address the limitations identified in previous
research. The proposed method enhances critical aspects
of the process, addressing adhesion, cohesion, rebound,
and simulation of the shotcrete application over additional
supporting elements. This contributes to a more thorough
and realistic depiction of the process.

The simulation involves parameters that can be catego-
rized into two main groups: those related to the perfor-
mance of the particle system, such as the number of active
particles and simulation time step, and those related to the
shotcreting process, such as nozzle spread angle and re-
bound rate. The latter parameters are adopted and adapted
from the current state of the art (i.e., scientific articles and
technical reports).

This section is divided into three subsections. The first
part explains the functioning of the particle system, includ-
ing the initialization of particles, and their emission. The
next part delves into the implementation of the sprayabil-
ity parameters of shotcrete—detailing what happens when
particles hit an object. Finally, the output of the simulation
is described and discussed.

3.1 Particle system

Ballou [18] drew an analogy between shotcrete and the
action of throwing balls dipped in paste at a surface. He
highlighted that the transfer of paste to the surface occurs
upon the ball rebounding, emphasizing the importance of
a certain degree of rebound as the primary method for
transferring cementitious material to the target surface.
Subsequently, each successive ball hitting the surface con-

tributes to and compacts the already deposited concrete
into the voids and porosity of the surface. It is not an ex-
aggeration to assert that shotcreting is similar to shooting
out particles. Similarly, aggregates, acting as particles,
transfer mortar to the target surface, filling cracks and
voids, contributing to excellent in-place compaction due
to their high kinetic energy.

The foundation of this model is rooted in the intricate
functioning of a particle system, which serves as the pri-
mary mechanism for simulating and visualizing various
aspects of the shotcrete process. The particle system is
designed to emulate the behavior of individual particles,
representing shotcrete particles, as they interact with sur-
faces, undergo collisions, and contribute to the build up
of material on the target substrate. This sophisticated
approach allows for a detailed and dynamic simulation,
enabling a closer approximation to real-world shotcrete
scenarios.

Firstly, particles are initialized with a randomized direc-
tion. Illustrated in Figure 2, the parameter Spread denotes
the angle of the spray cone, and its value can be adjusted
within the simulation environment. In practical scenar-
ios, the spray cone angle depends on factors such as the
type of mix (wet or dry), material composition, and air
pressure. The data for Spread have been sourced from
[19]. All particles originate from a circle with a variable
diameter, simulating the nozzle aperture, and each is as-
signed a direction vector. The magnitude of the velocity
vector is randomly chosen from a range between a mini-
mum and maximum value, with velocity data derived from
experimental studies conducted by Ginouse et al. [20].

To account for the effect of gravity on the particle, a
vector expressed as (0, 0,−9.8) �/� is added to the defined
velocity vector in each second of the simulation. With-
out gravity, the particle would have followed a straight
path along the velocity vector toward the point (�, �, �), as
illustrated in Figure 2. However, due to gravity, the par-
ticle deviates toward the negative � direction in each time
step, eventually hitting a point (�, �, �′) slightly lower.
Substantial evidence from the work of Ginouse and Jolin

Nozzle
P

Spread 𝒗𝒗

𝒓𝒓

𝜽𝜽

(𝒙𝒙,𝒚𝒚, 𝒛𝒛)
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Figure 2. Particle initialization and emission
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[19] supports this observation. In their study, high-speed
cameras captured images of shotcrete spray, revealing that
the shotcrete particles are influenced by gravity even over
short distances.

The particle engine handles creating and updating par-
ticles throughout the simulation. Essentially, the number
of particles to be emitted is determined by the value of this
parameter, which is set in the simulation. Each particle
is randomly initialized and is updated at each time step
during its active lifespan. When a particle hits a surface
and adheres to it, it is deactivated and returned to the pool
of total number of particles.

The total number of particles and particles emitted per
second are two essential parameters in the simulation. In-
creasing the value of these parameters would enhance the
realism of the simulation, but it comes at the cost of com-
putational efficiency. Nonetheless, this provides flexibility
to run the simulation on machines with varying computa-
tional power.

3.2 Shotcrete sprayability parameters

It is assumed that during a small time-step, each particle
travels in a straight line. Hence, the collision problem is
simplified to finding the intersection between a line seg-
ment and other basic geometries [21]. For instance, when
simulating the adhesion of material on a wall, the target
surface is treated as a finite plane. The algorithm then
seeks the intersection between a line segment and a finite
plane. If collision is detected, the intersection point is
calculated. A similar approach is applied to handle inter-
sections between a line segment and a cylinder, making it
suitable for simulating shotcreting in tunnels and objects
along the spray path (i.e., reinforcements).

When an intersection point is found, the algorithm de-
termines whether the particle adheres to the surface or
rebounds. This is achieved by calculating the rebound per-
centage rate of that particle, referencing Melbye curves. In
his technical handbook, Melbye [22] identified and cate-
gorized the factors affecting rebound, declaring the nozzle
angle to the substrate as the decisive one. Therefore, the
angle between particle’s velocity vector and the surface
normal vector at intersection point is calculated. Based
on this angle, rebound percentage rate is determined. If
the particle adheres to the surface, a value based on the
deposition model is added to the corresponding height-
field. Subsequently, the particle is deactivated, and the
visualization is updated in the simulation. If the particle
rebounds, the collision response involves assigning a new
direction, which is the reflection of the velocity vector
with respect to the surface normal vector. The magnitude
of the reflected velocity is multiplied by the coefficient of
restitution of shotcrete (𝑒) derived from [23]. The parti-
cle continues to be updated until it adheres to any surface

Table 1. Proposed algorithm for particle collision
with surface, and subsequent adhesion or rebound

Pseudo-code:
nowPos = shotcreteParticle −> position;
velocity = shotcreteParticle −> velocity;
nextPos = nowPos + (velocity ∗ diffTime);
point = compileIntersection(lineSegment, surface);
if (!contactOnSurface(point))

return;
chance = generateRandomNumber();
normal = compileSurfaceNormal(point);
rebound = calculateReboundRate(velocity, normal);
if (chance <= rebound)

deactivate(shotcreteParticle);
updateHeightField();
updateVisualization();

else
velocity = 𝑒∗ compileReflection(velocity, normal);

(the target surface, reinforcements, or the ground). The
pseudo-code for this algorithm is presented in Table 1.

In the simulation of cohesive failure, the algorithm sim-
plifies the process using a modified seed fill algorithm,
akin to the approach in [17], to identify the detachment
area. A detachment occurs when the difference between
neighboring values exceeds ℎ𝑚𝑎𝑥 , as specified in [24].
The detachment volume is then calculated based on the
disparity between the number of adhered particles in the
detachment zone and those in neighboring cells. Conse-
quently, an equivalent number of particles detach from the
target surface and fall to the ground. This may result in
more material being detached, creating a hole-like effect
characteristic of shotcrete cohesive failures. For a more
in-depth illustration of the proposed simulation process
and the interrelationships among its various components,
please refer to Figure 3.

3.3 Output of the simulation

The most critical outcome of the process simulation is
the amount of concrete deposited at each point on the tar-
get substrate. To capture and analyze this information,
a data structure capable of storing accumulated material
values is essential. A height-field, representing a two-
dimensional array of integers, emerges as a valuable tool
for presenting the simulation results. During the simula-
tion, the height-field is visualized as heat-maps, providing
a dynamic representation of the concrete deposition. Sub-
sequently, this data is stored and shared with other software
in image file formats, facilitating in-depth analysis or ren-
dering within an environment visualization engine. While
realistic rendering of the height-field could enhance the
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Figure 3. Proposed system component diagram of the shotcrete process simulation

simulation’s visual realism, it is important to note that this
research is not primarily focused on training human oper-
ators. Therefore, realistic rendering for human perception
is not a priority; instead, the emphasis lies in ensuring that
the output is well-defined for machine interpretability.

This methodology enables the execution of simulations
involving 10 million particles, with 0.1 million particles
emitted per second, and a simulation time step of 0.001
second, close to real time. These simulations were con-
ducted on a system equipped with an AMD Ryzen 7 3700X
CPU and 16 GB of RAM, using VEROSIM®, a software
solution for virtual reality and simulation.

Figures 4 and 5 display the robot shotcreting within the
virtual environment, offering insight into particle interac-
tion. Within this scene, two planar obstacles are intro-
duced: one simulating the accumulation of concrete on a
hypothetical wall and another positioned on the ground to
capture rebounded material. At the nozzle’s tip, an emit-
ter releases particles in a cone-shaped spray pattern. The
varying colors on each surface represent heat-maps, cor-
relating accumulated material thickness with color. Anal-
ogous to topographic maps, this visualization method aids
in identifying unevenness, crucial for assessing material
deposition uniformity. Furthermore, as extensively dis-
cussed in this section, the height-field is concurrently gen-
erated behind this layer.

Figure 4. Screenshot of a conceptual robot perform-
ing shotcreting in the virtual environment
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Figure 5. Detailed screenshot of robot-based shotcrete process within the simulation software

4 Conclusions and future work

This article introduces a concept of a framework for
realistic shotcrete process simulation. In contrast to pre-
vious methods that relied on ray tracing, our approach
utilizes a particle system to track particles from emission
until collision with surfaces. These collisions can result in
either adhesion to the surfaces or rebound. The incorpo-
ration of a physics engine allows particles to be influenced
by gravity, air drag, and interactions with obstacles. The
algorithm evaluates collisions and estimates rebound at
each time step. When a particle adheres to a surface,
the simulation increments the corresponding value in the
height-field. The output of this simulation is a height-field
representing the accumulated shotcrete on the surface, vi-
sualized through heat-maps in the simulation. This data
can be saved as an image for further analysis or rendering.

Integrating the process simulation with a robot’s kine-
matic simulation establishes a platform for offline opti-
mization for achieving objectives, including optimal sur-
face coverage, uniform material distribution, and effective
filling of irregular voids. Furthermore, enhances shotcrete
application efficiency and contributes to the versatility of
robotic operations across diverse construction scenarios.

Opportunities for refinement persist in enhancing the
realism of the process simulation. Continued efforts could
be directed toward improving the model’s fidelity, with a
focus on incorporating nuanced aspects such as the spread

of shotcrete material post-particle impact. This may be
achieved through the integration of a cellular automata
simulation, allowing for a more accurate representation
of shotcrete sprayability parameters, including adhesion,
compaction, and shrinkage over time. Furthermore, the in-
tegration of the process simulation into a Digital Twin of
a robot holds promise for conducting high-fidelity, exper-
imentable simulations. Such simulations can contribute
significantly to the design, evaluation, and deployment of
efficient robots tailored for shotcreting tasks.
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Abstract –  

Historic buildings face multi-faceted fire risks 
that threaten their conservation. A comprehensive 
fire risk assessment is essential to prevent fires and 
protect cultural heritage. Conventional practices rely 
on surveys and site visits, which are inefficient in 
capturing up-to-date information digitally and 
analyzing the risk levels quantitatively. This paper 
proposes a framework integrating Historic Building 
Information Models (HBIM) and Geographic 
Information Systems (GIS) to enable automated, 
data-driven fire risk assessment of historic buildings. 
The framework consists of two key phases: 
quantitative fire risk modeling and automated risk 
assessment. The risk modeling defines unified 
indicators in accordance with fire safety regulations 
to quantify the risks exposed to the heritage buildings 
internally and externally. Both inherent building 
characteristics (e.g. fire resistance rating) and 
external spatial characteristics (e.g. adjacent access 
and spatial separation) were assessed. Next, the 
automated assessment utilizes HBIM and GIS to 
extract building and surrounding area information, 
compute the quantitative risks, and develop an 
interactive visualization platform to facilitate 
stakeholders in decision-making.  The feasibility of 
this framework is verified through a case study of 
Mandarin’s House in Macau. The results indicated 
the framework is capable of quantifying the risk 
related to fire-resistant materials (0.66), external 
access (0.75) and separation (0.76). The results 
demonstrate that the proposed framework could 
contribute a unified fire risk model quantification 
method and a BIM and GIS-combined mechanism 
for automated risk assessment to support the 
proactive conservation of valuable cultural heritage 
assets. 

 
Keywords – 

Historic Building Information Modeling (HBIM); 
Geographic Information System (GIS); Fire Risk 
Assessment; Heritage Building 

1 Introduction and Related Work 
Heritage buildings carry rich historical and cultural 

values. However, they still face multiple risks of fire. 
The combustible building materials and lack of fire 
protection systems make them vulnerable to fire hazards 
[1]. In addition, electrical, heating and other systems in 
these historic structures can become ignition sources due 
to insufficient maintenance [2]. This renders heritage 
architecture especially susceptible to fire threats. For 
instance, the original Church of Mater Dei in Macao was 
destroyed by recurrent fires in history, leaving only ruins. 
The Zhengjiao Chanlin Buddhist Pavilion at A-Ma 
Temple also caught fire again after restoration. This 
indicates that even refurbished heritage buildings remain 
prone to fire risks [3]. Comprehensive fire risk 
assessments are one of the proactive measures to identify 
underlying fire hazards and evaluate the vulnerability of 
buildings to fire emergencies, and thus are imperative 
for fire prevention and heritage conservation. 

Effective Fire risk assessment can help determine the 
fire risk level of buildings and provide guidance for fire 
protection measures and emergency plans. Fire risk 
assessment for heritage buildings is particularly 
challenging, as it involves various factors, such as the 
building materials, structures, occupancies, firefighting 
systems, surrounding environments, and access routes. 
Moreover, heritage buildings may have complex and 
irregular shapes and sometimes undertake restorations, 
making it difficult to collect accurate and up-to-date data 
for fire risk assessment. 

Traditionally, fire risk assessment for heritage 
buildings is mainly based on qualitative methods such as 
questionnaire surveys, site visits, and expert judgments. 
These methods heavily rely on human efforts to collect 
and process the fire risk-related information of the 
building, such as the combustibility of the materials, the 
presence of ignition sources, the availability of fire 
protection systems, and the accessibility of fire vehicles. 
Then, according to relevant criteria and standards, the 
fire risk level of the building is calculated and classified. 
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However, these methods have several limitations. Firstly, 
fire risk assessment is time- and labor-consuming, prone 
to errors and uncertainties, resulting in the inefficient 
acquisition of up-to-date information and inconsistent 
assessment results affected by assessors’ experience. 
Secondly, there is a lack of comprehensive risk 
assessment models grounded in regulations and 
practices to quantify and evaluate fire risk factors for 
heritage buildings. Thirdly, assessment results are 
ambiguous, lacking data visualization and user-friendly 
interactive tools to support firefighting decision-making 
and planning. 

Therefore, there is a need for a more efficient and 
reliable method for fire risk assessment of heritage 
buildings [4]. In recent years, with the development of 
digital technologies such as Building Information 
Modeling (BIM) and Geographic Information Systems 
(GIS), new methods have emerged to facilitate fire risk 
assessment of heritage buildings. BIM is a digital 
representation of the physical buildings that contain 
various attributes and parameters such as materials, 
structures, fire-resistant ratings and space functions, 
which can help analyze the building's fire hazard [5,6]. 
GIS is a data management and analysis system that 
incorporates various spatial information regarding 
buildings and road networks, such as locations, 
orientations, distances, and relations, offering rich 
geographic data of the external environment to support 
the analysis of the building's fire vulnerability [7,8]. 

By integrating BIM and GIS, both building internal 
and external information can be utilized to assess the fire 
risk of heritage buildings, further providing suggestions 
for fire prevention measures and emergency plans [9]. 
However, previous research on the integration of BIM 
and GIS has mainly focused on route planning and 
spatial visualization, while their usage for automated 
and quantitative fire risk assessment is still in its infancy. 
Many key factors, such as the intrinsic properties of the 
building and the surrounding terrain features, have not 
yet been systematically explored. Therefore, there are 
still many untapped opportunities for fire risk 
assessment combining BIM and GIS. Moreover, the 
mechanism of identifying relevant data in BIM and GIS 
and utilizing the data for risk quantification deserves 
further exploration in order to establish automated fire 
risk assessments for heritage buildings. 

This paper proposes and validates an integrated 
historic BIM (HBIM) and GIS framework for automated 
fire risk assessment of heritage buildings, which can 
overcome the limitations of conventional methods by 
improving the efficiency of data acquisition and 
reducing manual efforts. The framework combines 
building inherent features from HBIM models and the 
external space characteristics from GIS to quantify the 
risk levels of heritage sites. The framework is applied to 

a case study of the Mandarin's House, a Chinese heritage 
building in Macao listed in the UNESCO World 
Heritage Site [3,10]. The results validate that the 
proposed framework can effectively quantify and 
visualize the fire risk levels in multifaceted aspects and 
provide data-driven analytics for fire prevention and 
emergency management of heritage buildings. 

2 Overview of the Framework 
The proposed framework of HBIM and GIS-

integrated automated fire risk assessment of heritage 
buildings consists of two phases: quantitative fire risk 
modeling and automated risk assessment. Figure 1 
shows the overview of the framework. 

Quantitative fire risk modeling aims to define and 
quantify the fire risk factors of heritage buildings based 
on the building parameters from HBIM models and the 
spatial data sets from GIS. The fire risk factors are 
divided into two categories: building inherent features 
and external space characteristics. For each category, a 
set of indicators is selected and weighted according to 
the relevant regulations and best practices in the field of 
fire safety and heritage conservation. Then, risk indices 
are established as numerical values to calculate and 
indicate the fire risk level of the heritage building. 

The second phase is automated risk assessment, 
which analyzes and visualizes the fire risk of heritage 
buildings based on the risk indices. It consists of three 
steps: HBIM-based internal risk analysis, GIS-based 
external risk analysis, and automated risk assessment 
and visualization. The HBIM-based indoor risk analysis 
leverages HBIM models of heritage buildings to extract 
data of building components. GIS-based external risk 
analysis uses GIS data of heritage sites to identify and 
evaluate the spatial factors that influence the fire 
vulnerability of the buildings, such as the adjacent 
structures and firefighting parking routes. Last, 
automated risk assessment and visualization integrates 
the HBIM and GIS data and develops an interactive 
platform to visualize the 3D BIM models, 2D GIS base 
maps, meshes of neighbor structures, and routes along 
with the associated risk results. The visualization 
platform serves as a graphical interface for stakeholders 
to understand the potential dangers exposed to the 
heritage buildings and further facilitate fire prevention 
and emergency management. 

3 Quantitative Fire Risk Modeling 
In general, factors affecting heritage fire risks can 

be categorized into four groups, i.e., fire hazards, 
heritage building characteristics, surrounding 
environments, and fire safety management [11]. 
Specifically, heritage building characteristics, including 
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building inherent features, means of egress, portable 
firefighting devices, integrated fire service installations, 
and water supplies, are primarily related to the intrinsic
attributes of heritages, and thus are highly related to 
HBIM modeling. Also, the surrounding environments 
cover the aspects of external space characteristics, road 
traffic, firefighting resources, external water supplies, 
and surrounding potential dangers, which fit well with 
the scope of GIS analysis. As an initial exploration, this 
study would focus on building inherent features and 
external space characteristics. To quantify the fire risks 
of these two factors, relevant regulations and codes in 
different countries and regions are reviewed and 
referenced [12–15].

3.1 Fire Risk of Building Inherent Feature
Building inherent features refers to the attributes of 

building elements that affect the fire spread and 
propagation. In this study, the concept of fire resistance 
rating (FRR) is employed as the indicator of building 
inherent features to measure the duration (in hours) of 
building elements for withstanding fires passively. 
According to [13], the FRR can be ranged as 0.25, 0.5, 
0.75, 1, 1.5, 2, 3, 4 and 6 hours, in which a higher value 
of FRR represents a better fire-resistant performance. To 
comprehensively quantify the fire risks of entire 
buildings, the FRR of various building element classes, 
including walls, roofs, floors, doors, columns, windows, 
slabs, and stairs, would be obtained individually and 
then calculated aggregately to form a united fire risk 
index. For consistency, the study defines the fire risk 
index to represent the potential risks of the heritage 
building suffering from fires, with values ranging from 
0 (lowest risk) to 1 (highest risk). Correspondingly, the 
relation between the fire risk index of different building 
elements and their FRRs is denoted as in Equation (1):

𝑅𝑖𝑗 = 1 − 𝐹𝑅𝑅𝑖𝑗 𝐹𝑅𝑅𝑚𝑎𝑥⁄ (1)

where 𝑅𝑖𝑗 is the fire risk index of the 𝑖 -th building 
element in the 𝑗-th class in terms of building inherent 
features, 𝐹𝑅𝑅𝑖𝑗 is the fire-resistance rating (unit: hour) 
of the building element, and 𝐹𝑅𝑅𝑚𝑎𝑥 is the maximum 
regulated FRR (i.e., 6 hours in [13]).

Next, to holistically assess the fire risks of each 
building element class and the entire heritage building, 
the weighted fire risk index is introduced by multiplying 
the individual fire risk index with the volume of the 
building element, as shown in Equation (2). The volume 
of building elements is considered as it can reflect the 
utilization ratio of elements with different FRRs to 
approximate their fire-resistant performance to the 
whole building.

{

𝑉𝑗 = ∑ 𝑉𝑖𝑗

𝑅𝑗 = (∑ 𝑅𝑖𝑗 × 𝑉𝑖𝑗) 𝑉𝑗⁄

𝑅𝐵𝐼𝐹 = (∑ 𝑅𝑗 × 𝑉𝑗) ∑ 𝑉𝑗⁄

(2)

where 𝑉𝑖𝑗 is the volume of the 𝑖-th building element in 
the 𝑗-th class, 𝑉𝑗 and 𝑅𝑗 is the aggregated volume and 
fire risk index of the j-th building element class, 𝑅𝐵𝐼𝐹 is 
the holistic fire risk index in terms of building inherent 
features.

Consequently, through decomposition and weighed 
aggregation of building elements, 𝑅𝐵𝐼𝐹 can be utilized to 
represent the fire-resistance capabilities of the holistic 
heritage buildings.

3.2 Fire Risk of External Space 
Characteristics

External space characteristics refer to the spatial 
conditions that determine the exposure and isolation of 
heritage buildings and affect the spread and severity of 

Figure 1. Overview of the framework
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fires, which include proximal access and spatial 
separation. Proximal access is considered as it affects 
how the way fire trucks can be accessed and parked near 
the fire-affected heritage buildings. Spatial separation 
evaluates whether the heritage building has sufficient 
fire separation distance to its adjoining buildings to 
prevent fire propagation across buildings. 

To quantify the risks of the proximal access, the 
quadrilateral sides of heritage buildings would be first 
investigated. More specifically, according to [14], if the 
side is directly next to a road with a width no less than 
the minimum width for emergency vehicular access (i.e., 
4 meters in [13]), it is suitable for fire response operation. 
In this manner, all the quadrilateral sides would be 
examined to verify their suitability. In case all the 
quadrilateral sides are not suitable, [15] also regulated 
that the alternative roads within a closely accessible area 
(i.e., 30 meters in [14]) serve as a secondary option to 
assist in emergency operations. 

Correspondingly, this study introduces the fire risk 
index of proximal access to comprehensively take the 
quadrilateral sides and the closely accessible area into 
account. As indicated in Equations (3) and (4), the fire 
risk index is related to the number of suitable 
quadrilateral sides when there exists at least one suitable 
side (i.e., ∃ 𝑤𝑠 ≥ 𝑊𝐸𝑉𝐴 ), otherwise, it would be 
determined by the suitability of the roads in the closely 
accessible area (i.e., either ∃  𝑤𝑟 ≥ 𝑊𝐸𝑉𝐴  or ∀  𝑤𝑟  <
𝑊𝐸𝑉𝐴 ). Hence, the values of the fire risk index of 
proximal access could be 0 (lowest risk), 0.25, 0.5, 0.75, 
0.875, and 1 (highest risk). 

𝑅𝑠 = {
0, when 𝑤𝑠 ≥ 𝑊𝐸𝑉𝐴

1, when 𝑤𝑠 < 𝑊𝐸𝑉𝐴
 (3) 

𝑅𝑝𝑎 = {

∑ 𝑅𝑠 4⁄ , when ∃ 𝑤𝑠 ≥ 𝑊𝐸𝑉𝐴

0.875, 𝑤hen ∀ 𝑤𝑠 < 𝑊𝐸𝑉𝐴 & ∃ 𝑤𝑟 ≥ 𝑊𝐸𝑉𝐴

1, when ∀ {𝑤𝑠 , 𝑤𝑟}  < 𝑊𝐸𝑉𝐴

  (4) 

where 𝑅𝑠  is the fire risk index of an individual 
quadrilateral side of a heritage building, 𝑤𝑠 and 𝑤𝑟 are 
the widths of the quadrilateral side and the roads in the 
accessible area, 𝑊𝐸𝑉𝐴  is the regulated minimum road 
width for emergency vehicular access, and 𝑅𝑝𝑎  is the 
fire risk index of proximal access. 

For spatial separation, the height and the minimum 
distance of the surrounding buildings directly adjacent 
to the heritage building is considered. According to [13], 
the regulated minimum fire separation distance varies. It 
depends on whether either the heritage building or its 
adjoining buildings are high-rise. This is detailed in 
Equation (5): 

𝐷𝑚𝑖𝑛,𝑖 = {
𝐷𝑚𝑖𝑛,𝐻 ,   when ∃ {𝐻ℎ  , 𝐻𝑎,𝑖}  > 𝐻ℎ𝑟  

𝐷𝑚𝑖𝑛,𝐿 ,   when ∀ {𝐻ℎ  , 𝐻𝑎,𝑖}  ≤ 𝐻ℎ𝑟
 (5) 

where 𝐻ℎ  and 𝐻𝑎,𝑖 are the building height of the heritage 
and the 𝑖 -th adjoining building, 𝐻ℎ𝑟  is the regulated 

height in the definition of high-rise buildings (i.e., 27 
meters for residential buildings in [11]). 𝐷𝑚𝑖𝑛,𝐻  and 
𝐷𝑚𝑖𝑛,𝐿 are the regulated minimum fire separation 
distances when at least one high-rise building exists and 
when no high-rise building exists (in [13], 𝐷𝑚𝑖𝑛,𝐻  is 9 
meters and 𝐷𝑚𝑖𝑛,𝐿  is 6 meters for conservative 
calculation). 𝐷𝑚𝑖𝑛,𝑖  is then calculated as the minimum 
fire separation distance between the heritage and the 𝑖-
th adjoining building. 

Correspondingly, the fire risk index of spatial 
separation of each adjoining building is introduced by 
considering whether the minimum fire separation 
distance is satisfied or not, as shown in Equation (6). The 
holistic fire risk index of spatial separation of the 
heritage building is eventually calculated by averaging 
the results of all the adjoining buildings, as indicated in 
Equation (7): 

𝑅𝑠𝑠,𝑖 = {
0,                          when 𝐷𝑖 ≥ 𝐷𝑚𝑖𝑛,𝑖

1 − 𝐷𝑖 𝐷𝑚𝑖𝑛,𝑖⁄ , when 𝐷𝑖 < 𝐷𝑚𝑖𝑛,𝑖  
  (6) 

𝑅𝑠𝑠 = ∑ 𝑅𝑠𝑠,𝑖 𝑁⁄   (7) 

where 𝐷𝑖  is the actual fire separation distance between 
the heritage and the 𝑖-th adjoining building, 𝑅𝑠𝑠,𝑖 is the 
fire risk index associated with the adjoining building, 𝑁 
is the total number of adjoining buildings, 𝑅𝑠𝑠  is the 
holistic fire risk index of spatial separation. 

Eventually, the total risk of external space 
characteristics (𝑅𝐸𝑆𝐶) is then calculated as a weighted 
combination of the risks of the proximal access and the 
spatial separation using a coefficient φ, as shown in 
Equation (8). Theoretically, the coefficient φ represents 
the importance ratio between the proximal access and 
the spatial separation. However, no quantitative 
evidence was found in the existing literature for 
comparing their importance, which in turn suggests a 
further investigation with firefighting experts to 
determine the specific values suitable for the local 
countries or regions. For simplicity, this study adopts 
𝜑 = 0.5 , assuming that proximal access and spatial 
separation are equivalently important. As a result, 𝑅𝐸𝑆𝐶  
represents a unified fire risk index that comprehensively 
considers the potential impacts of proximal access and 
spatial separation on the heritage building in the 
surrounding environment. 

𝑅𝐸𝑆𝐶 = 𝜑𝑅𝑝𝑎 + (1 − 𝜑)𝑅𝑠𝑠 (8) 

4 Automated Risk Assessment Using 
HBIM and GIS 

4.1 HBIM-based Internal Risk Analysis 
After modeling the fire risk of the building's inherent 

feature, relevant building data such as the fire-resistant 
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rating and volume of various building elements needs to 
be obtained for risk analysis. In this study, the HBIM of 
heritage buildings is utilized as a digital tool to access 
and manage fire risk-related information. More 
specifically, Industry Foundation Classes (IFC) [16] is 
selected for data exchange as it is a standardized open-
source data schema widely used in the architecture, 
engineering, construction, and operations industry. To 
acquire the fire-resistant rating, the property ‘FireRating’ 
in the property set ‘Pset_FireRating’ defined in the IFC 
4 schema is extracted [16]. In addition, volumes of 
various building elements are obtained individually 
using the property ‘Volume’ in the property set 
‘Pset_BuildingElementPhysical’. To enable automated 
data extraction, self-developed scripts are compiled 
using IfcOpenShell and Pandas libraries [17,18] to 
iterate all the building elements and retrieve their fire-
resistant rating and volumes, serving the preprocessed 
data for further risk quantification. 

4.2 GIS-based External Risk Analysis 
For the risks of external spatial characteristics, this 

study adopts OpenStreetMap (OSM) [19] for data 
acquisition and ArcGIS software [20] for data 
processing and visualization. OSM contains the critical 
spatial data regarding adjacent buildings and roads of the 
heritage building, such as the width of roads, the height 
and footprint of buildings, and the longitudinal and 
latitudinal coordinates of common spatial features. 
Accordingly, the OSM data of the heritage building 
region is first collected using the Overpass Turbo wizard 
[21], and then relevant attributes are extracted and 
compiled into tables. The OSM data and tables are 
further imported into ArcGIS Pro for spatial analysis and 
visualization. To calculate the risks of proximal access, 
the width of roads can be directly retrieved from the 
OSM data, i.e. ‘width’ of the ‘highway’ objects in OSM. 
Regarding the calculation of spatial separation, the 
height of the heritage building and adjoining buildings 
can be also obtained from the OSM data (‘height’ or 
‘levels’ of the ‘building’ objects in OSM), and the fire 
separation distance can be determined by utilizing the 
geometric boundary of the buildings. Specifically, this 
study adopts the built-in function named Near in ArcGIS 
to measure the shortest distance between the heritage 
and its adjoining building. As a result, all the input data 
required by the quantitative risk models (i.e., Equations 
(1) – (8)) can be efficiently collected using HBIM 
models and GIS systems to support further automated 
risk assessment. 

4.3 Automated Risk Assessment and 
Visualization 

The HBIM model and GIS data are integrated into a 

common environment in ArcGIS Pro. To align the 
HBIM model to its geographical location, built-in 
functions (Join and Relate) are used to connect the 3D 
IFC model to the 2D base map. Furthermore, layers 
regarding the roads and 3D meshes of the adjoining 
buildings are created by employing the OSM data. To 
enable automated risk assessment, custom Python 
scripts are created to access the HBIM and GIS data and 
calculate the risk index of the building's inherent feature 
𝑅𝐵𝐼𝐹  and the external spatial characteristics 𝑅𝐸𝑆𝐶 . For 
visualization, the results are further associated with the 
HBIM model, the GIS basemaps, the road layers, and the 
3D adjoining building meshes, in which users can query 
the attributes and the results by interacting with the 
graphical representation. Different colors are set to 
display the severity of fire risks for more intuitive 
visualization. Eventually, the analytical HBIM and GIS-
combined scene are published via ArcGIS Online to 
allow users to access results and support them in risk 
assessment and subsequent decision-making. 

5 Case Study 

5.1 Application to heritage building 
To validate the feasibility of the proposed framework, 

a case study was conducted on a heritage building in 
Macao. The Mandarin's House is selected, which is a 
typical Lingnan-style courtyard house built around 1881 
[9], with traditional Chinese brick and timber 
architectural features and intricate decorative details. 

A LOD 200 HBIM model of Mandarin's House was 
created in Revit [19] (as shown in Figure 2). The model 
included basic architectural elements like walls, 
columns, doors, windows, and roofs. The HBIM model 
was exported as an IFC data model, which was further 
imported into ArcGIS Pro. The OSM data of the 
surrounding area was also collected and imported into 
the same geographical scene. Python scripts were 
developed to extract the relevant building components 
and properties from the IFC data model and the OSM 
spatial data. The scripts also computed the fire risk index 
based on the proposed equations. Specifically, in the 
calculation of building inherent features, 582 building 
elements in total were processed to retrieve their FRRs 
and calculated their elemental fire risk index, e.g., 236 
walls (fire risk index: 0.58), 123 doors (0.84), 116 
windows (0.92). Regarding the external spatial 
characteristics, the boundary of the heritage building 
was simplified as a quadrilateral polygon, in which the 
width of the four sides was extracted to check if they 
satisfied the requirements of the minimum width for 
emergency vehicular access or not. Also, 21 roads within 
the 30-meter area were also obtained as the secondary 
options for alternative proximal access. In addition, the 
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fire risk index of the 16 adjoining buildings was
investigated to calculate their fire risk indices according 
to their heights and fire separation distances. To 
visualize the results, an analytical scene was published 
into a web scene viewer via ArcGIS Online.

Figure 2. The ground floor of Mandarin’s House

5.2 Results and Discussion
The case study demonstrated the application of the 

proposed framework for a fundamental fire risk 
assessment utilizing BIM and GIS methodologies. 
Tables 1 to 3 summarize the quantitative results of the 
fire risk assessment for both building inherent features 
and external space characteristics. The results indicate 
that the fire risk index of the inherent features of 
Mandarin's House is 0.66, representing a moderate fire 
risk level. In addition, the fire risk index of diverse 
building element classes and their volumes are presented 
in Table 1. The holistic result revealed that walls and 
slabs notably impacted the overall fire risk, given their 
substantial volumetric ratios.

Table 1. Fire risk results for building inherent features

Building/ 
element class

Element 
volume (m3)

Volumetric 
ratio

Fire risk 
index

1: Column 6.97 0.13% 0.75 
2: Door 109.06 2.11% 0.84 
3: Ramp 7.56 0.15% 0.75 
4: Roof 272.06 5.27% 0.83 
5: Slab 1506.62 29.16% 0.78 
6: Stair 2.17 0.04% 0.75 
7: Wall 3164.26 61.24% 0.58 
8: Window 98.03 1.90% 0.92 
Mandarin's 
House 5166.74 100.00% 0.66 

Table 2. Fire risk results of spatial separation

Building name Building 
height 

(m)

Actual 
distance 

(m)

Mini. fire 
separation 
distance

(m)

Fire 
risk 

index

1: Wo Fong Building 27.00 0.00 6.00 1.00
2: Lei Heng Building 34.40 0.00 9.00 1.00
3: King Yip Building 32.40 0.00 9.00 1.00
4: No.12-16, Barra 
Street 32.40 0.00 9.00 1.00

5: No.12, António da 23.20 0.00 6.00 1.00

Silva Crossing
6: Wan Seng Building 20.40 0.00 6.00 1.00
7: Weng On Building 20.00 0.69 6.00 0.89
8: Kun Seng Pavilion 35.70 0.74 9.00 0.92
9: Weng Leng 
Building 20.40 1.64 6.00 0.73

10: Wang Fu 
Building 31.90 3.00 9.00 0.67

11: Kou Fu Building 31.40 3.00 9.00 0.67
12: No.2, Barra Street 23.20 3.50 6.00 0.42
13: Hou Kio Building 34.00 4.00 9.00 0.56
14: No.5A - 5E, Barra 
Street 34.00 4.00 9.00 0.56

15: Heng Vo Building 37.40 4.00 9.00 0.56
16: No.4, Barra Street 23.20 4.50 6.00 0.25
Mandarin's House 11.00 N/A N/A 0.76

Table 3. Fire risk results of proximal access

Road Name Road width 
(m)

WEVA
(m)

Fire risk 
index

Side 1: Barra Street 4.00 4.00 0.00 
Side 2: António da 
Silva Crossing 3.00 4.00 1.00 

Side 3: no road 0.00 4.00 1.00 
Side 4: no road 0.00 4.00 1.00 
Mandarin's House N/A 4.00 0.75 

Next, the fire risk index of the external space 
characteristics is 0.76 (proximal access: 0.75, spatial 
separation: 0.76), indicating a high fire risk level. 
Specifically, the calculation of proximal access 
showcased that two out of four sides had no roads next 
to the heritage site, and among the remaining two sides, 
only one side satisfied the requirement of road width for 
emergency vehicular access. Given that there existed a 
suitable side next to Mandarin’s House, this study did 
not further consider the alternative roads within the 30-
meter accessible area. Regarding the spatial separation, 
half of the adjacent buildings are less than one meter 
from Mandarin’s House, implicating very high risks of 
fire propagation among these buildings and the heritage 
site. From another perspective, it is critically challenging 
to protect the heritage site from fire emergencies in such 
a high-density city like Macao.

The results of this case study provided a quantitative 
assessment of the fire risk for Mandarin’s House in 
terms of building inherent features and external spatial
characteristics. The results identify the most vulnerable 
and critical risks of the heritage building, thereby 
assisting heritage conservation and fire protection 
parties in prioritizing fire prevention and mitigation 
measures. For instance, in Mandarin’s House, the 
window elements get a high level of risk (0.92), which 
suggests that further proactive measures are required to 
protect these vulnerable assets. In addition, from the 
perspective of external characteristics, the adjacent 
buildings that are extremely close to Mandarin’s House 
are all distributed in the northern and eastern regions of 
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the heritage, implicating that additional fire barriers 
could be strengthened correspondingly (Figure 3). 
Hence, the proposed framework serves as a data-driven 
approach to evaluate the internal and external risks of 
heritage building in an efficient, automated, and 
quantitative manner. The proposed framework and the 
HBIM and GIS-combined visualization platform can be 
potentially expanded to other heritage buildings and 
further help stakeholders govern and manage the fire 
risks of historic centers worldwide. 

Limitations also exist in quantitative risk modeling 
and automated risk assessment. First, the scope of this 
study only focused on building inherent features and 
external space characteristics, while many other factors 
such as ignition sources, emergency exits, fire 
extinguishers, smoke detection systems, firefighting 
resources, and road traffic have not been systematically 
investigated. Site visits and interviews with stakeholders 
could reveal additional vulnerabilities not captured in 
the models. Second, the risk models had made certain 
assumptions and simplifications, and the critical 
parameters are referenced from regional codes and 
guidelines. Hence, the risk models need to be carefully 
interpreted to accommodate the relevant requirements 
when applying them to other countries or regions. In 
addition, surveys or questionnaires with stakeholders 
may provide professional judgement to rationalize the 
risk formulation based on local conditions. Last, it was 
found that data from HBIM models and GIS systems 
was occasionally inaccurate or missing, which would 
adversely influence the reliability of the quantitative risk 
results. This highlights the necessity of developing 
solutions for the semi-automated acquisition of 
geometric data of buildings to guarantee reliable inputs 
that do not overly depend on the modeler’s manual 

inputs. Therefore, future work should construct more 
standardized and automated data collection updating 
mechanisms (e.g., reality capture and aerial survey 
techniques) to improve the reliability of the result. In 
addition, more heritage buildings with different types 
(e.g., churches and palaces) should be considered in 
future studies to verify the generalizability of the 
proposed framework. 

6 Conclusions 
This paper proposes and validates a framework that 

establishes quantitative fire risk models and integrates 
HBIM and GIS techniques to develop automated fire 
risk assessments of heritage buildings. Specifically, the 
fire risk models cover both internal and external factors, 
including building fire resistance, proximal access for 
fire trucks, and spatial separation against fire 
propagation. By referencing fire safety regulations and 
practical guidelines, the quantitative modeling of fire 
risks can effectively provide clear and unified indices to 
help stakeholders better understand the diverse threats 
facing heritage sites. Therefore, the fire risk models can 
form a fundamental instrument to support stakeholders 
in prioritizing their tasks and allocating resources to 
mitigate the most crucial risks in a targeted and informed 
manner. 

In addition, an HBIM and GIS-combined mechanism 
is developed in this study to enable automatic data 
extraction, risk analysis, and interactive visualization. 
The information requirements of risk quantification are 
identified and matched with BIM and GIS data sources, 
where critical information is extracted programmatically 
to support the subsequent risk computation. Eventually, 
an interactive visualization platform is developed to 

Figure 3. Visualization of spatial fire risk patterns 
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present the fire risks in different colors to help recognize 
their spatial distributions. 

Through the case study of Mandarin's House, the 
proposed framework is validated to quantify the multi-
faceted risks exposed to the heritage site efficiently and 
effectively. Furthermore, the result discloses that the 
spatial separation aspect gained a high level of risk and 
thus deserves more attention for proactive mitigation. 
Overall, the proposed framework enables data-driven 
analytics to reveal spatial patterns of fire risk in heritage 
buildings, thereby forming a solution to facilitate fire 
prevention and emergency management. 

Future work would further investigate other fire risk-
related factors of heritage buildings and incorporate 
various data collection methods to enhance the 
reliability of the results. 
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Abstract 

The classification of concrete damage in bridges 
poses challenges, characterized by time-consuming, 
hazardous, and often subjective inspection methods. 
Recognizing the need for efficient damage 
identification and the creation of 3D models for 
maintenance purposes, this paper introduces an 
innovative approach to the inspection of reinforced 
concrete bridges. The proposed methodology 
involves 3D reconstruction of a bridge, coupled with 
a concrete damage classification system based on 
severity. Notably, the analysis ensures objectivity 
through the implementation of deep learning for 
classifying concrete damage in UAV-captured 
images. A noteworthy aspect of this research is that, 
in the training models, a precision of over 90% is 
achieved for each type of concrete damage. This 
methodology serves as a valuable contribution to 
automating and streamlining concrete bridge 
inspections, aiming to reduce costs and enhance 
efficiency throughout its life cycle. 

 
Keywords – 

UAV; Bridge; Concrete damage; SHM; CNN 

1 Introduction 
In contemporary society, bridges hold significant 

environmental significance by establishing vital 
connections between various localities. They play a 
crucial role in fostering economic and cultural 
development, among other societal factors [1–3]. 
Therefore, preserving their structural integrity, safety, 
and functionality is paramount throughout their lifespan, 
especially for emergency situations such as resource 
transportation and rescue operations [3,4]. 

Currently, numerous countries, particularly those in 
Europe and North America, confront the deterioration of 
an extensive infrastructure inventory that has surpassed 
its originally planned service life [1]. In the United 
States, the report states that 7.5% of bridges are 
categorized as structurally deficient, predominantly 
falling below the established standards [5]. In fact, a 
minimum of one-third of the over 600,000 bridges in the 
United States feature a concrete superstructure or 
wearing surface [6]. 

In recent years, notable bridge collapses attributed to 
various factors have occurred, including the Morandi 
cable-stayed bridge in Genoa, Italy (2018), the Florida 
International University Pedestrian Bridge (2018), and 
the Nanfang’ao steel single-arch bridge in Taiwan (2019) 
[4]. Taiwan, with over 28,000 bridges, faces challenges 
due to natural disasters like earthquakes, typhoons, and 
rainstorms, along with its unique geographic features, 
such as mountainous and stream-filled regions. Over the 
past decades, several bridge collapses have been 
attributed to various scour issues, including general 
scour and local scour [3]. 

Concrete structures are increasingly experiencing 
deterioration due to various factors such as aging, 
increased traffic loads, loadings from earthquakes and 
extreme weather conditions (wind, ambient vibrations) 
[4,5,7–9], such deterioration is usually caused by 
inadequate or untimely maintenance [1] Similarly, the 
prevalent structural configuration employed for bridges 
has been the multispan design with simply supported 
Reinforced Concrete (RC) girders. These girders are 
interconnected by transverse beams and are supported 
by piers and abutments at the ends, facilitating 
construction phases [1]. Consequently, while the 
emergence of cracks in concrete bridges is a crucial 
indicator of structural performance, it doesn't 
necessarily signify imminent collapse; however, it 
frequently results in diminished structural integrity 
[8,10]. Additionally, concrete damaged impact various 
aspects of structures, including bearing capacity, 
stiffness, energy absorption capacity, and resistance to 
reinforcement corrosion [8,9,11]. Therefore, timely 
detection and measurement of damaged elements are 
crucial for making informed decisions regarding 
necessary repairs and maintenance [8]. However, 
conventional inspection methods often prove laborious, 
time-consuming, and capital-intensive. Especially, in 
the case of large span bridges, traditional methods are 
not effective for rapid full-field monitoring and hence a 
radical monitoring approach is most needed [12]. 
During recent decades, ensuring life safety and the need 
to reduce inspection costs have emerged as the top 
priorities for practicing engineers and researchers [5]. 

Compared to the traditional contact methods, most 
of the noncontact Structural Health Monitoring (SHM) 
methods have improvement in the convenience and 
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efficiency of structural inspection and concrete damage 
[9]. SHM is a data processing approach that employs 
technology to offer early signals of disruption and the 
progression of damages and deterioration to avert 
potentially hazardous results to a specific structure, 
which is useful for enhanced decision-making [1,7]. The 
majority of existing SHM system consists of various 
sensors and accelerometers [7,13,14].  

Consequently, an increasingly number of SHM 
applications with noncontact means have been 
developed and applied for the monitoring and inspection 
of concrete damage in a variety of critical concrete 
structures [9]. The deployment of Unmanned Aerial 
Vehicles (UAV) for civil infrastructure monitoring is a 
relatively recent development, with only a limited 
number of practical case studies conducted for 
industries, monuments, and other civil structures. 
Typically, UAVs are equipped with an image 
acquisition system, and the captured data are manually 
processed [1,7,12]. While this approach is convenient, it 
involves labor-intensive efforts in quantifying and 
analyzing the acquired data [12]. 

In this paper, we propose a methodology for the 
classification of damage in the concrete components of 
a bridge, employing Deep Learning (DL) based method 
for image processing. DL serves as an automated 
solution for predicting and classifying data, with the 
Convolutional Neural Network (CNN) emerging as a 
prevalent and straightforward method, particularly well-
suited for image classification tasks. CNN excels in 
processing and categorizing information presented in 
image formats, making it a widely adopted approach in 
the realm of deep learning [15]. The images utilized in 
this analysis were captured by an Unmanned Aerial 
Vehicle (UAV). This approach leverages advanced 
algorithms to categorize and analyze the identified 
damaged elements, contributing to a nuanced 
understanding of structural integrity. The integration of 
UAV technology and CNN method in the proposed 
methodology offers a sophisticated and efficient means 
of assessing the condition of concrete elements in bridge 
infrastructure. This method extracts features of different 
abstract levels and maps raw pixel intensities of the 
crack patch into a feature vector through several fully 
connected layers. All convolutional filter kernel 
elements are trained from the data in a supervised 
fashion, learning from the labeled set of examples. This 
approach not only leverages advanced aerial imaging 
capabilities but also employs CNN to automatically 
extract and analyze features from the captured images, 
enhancing the precision of structural assessment in the 

context of concrete damage classification. 
The paper is organized as follows: In Section 2, we 

delve into the Background and Related Studies. Section 
3 provides the methodology for obtaining the 3D 
reconstructed case study with the classification of the 
damaged concrete using deep learning. The findings of 
our study are presented in Section 4, which covers the 
Results. Finally, Section 5 presents the scientific 
contribution and conclusions of this paper. 

2 Background and Related studies 

2.1 Concrete Damage classification 
During the last three decades, there has been notable 

expansion in the utilization of high-strength concrete 
applications in bridge construction [16]. The five most 
prevalent damage, as outlined in Table 1, encompass 
cracks, corrosion, efflorescence, spalling, and exposed 
steel reinforcement [17] . To establish a ranking system 
for the magnitude of primary damages in reinforced 
concrete, reference is made to Hüthwohl et al. [18]  and 
Highways England [19] particularly its document "CS 
450 Inspection of Highway Structures." This is 
undertaken with the objective of formulating a model to 
categorize concrete damages based on their severity.  

Hence, we have identified three magnitudes for each 
concrete damage, serving as benchmarks to evaluate 
bridge inspection damage classification methods: (1) 
Not Found (No color), (2) Moderate Damage (Orange 
color), and (3) Critical Damage (Red color). In instances 
where multiple damage types coexist, the color 
corresponding to the highest magnitude will be applied. 
As such, in the present article, neither the location of the 
damage nor the combination of types of damage in 
concrete were taken into consideration when calculating 
the magnitude. The focus was solely on the damage 
itself in a 288x288-pixel image. Additionally, due to the 
variability in image quality, it hinders the analysis of 
combinations of damage in concrete. 

2.2 Relevant studies 
The important aspect of the research presented in 

this paper lies in the utilization of computer vision to 
identify defects and damages, thereby establishing an 
objective classification process. 
 
 

Table 1 Damage scale for reinforced concrete. 

Damage Damage Scale (Color reference) 
No damage (No color) Moderate Damage (Orange) Major Damage (Red) 

Corrosion No signs of corrosion attack Moderate corrosion attack Major corrosion attack 

Crack No signs of cracks or difficult 
to detect visually 

Cracks less than 1 mm 
(difficult to detect visually) 

Cracks more than 1 mm (easily 
visible) 

Efflorescence No signs of efflorescence 
attack Moderate efflorescence attack Major efflorescence attack 

Exposed Bars No exposed bars Moderately exposed bars Fully exposed bars 
Spallation No spalls Minor deep spalls exposing Collapsed 
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Mansuri & Patel [20] devised an automated visual 
inspection system for defect detection in heritage 
structures, leveraging artificial intelligence through an 
R-CNN (Faster Region-based Convolutional Neural 
Network) object detection model. The inspection 
accuracy of this model demonstrated optimal detection 
precision, reaching 91.58%, particularly in identifying 
three damage types: "spalling," "exposed bricks," and 
"cracks." 

Zhao et al. [21] conducted a three-dimensional 
reconstruction based on images captured by unmanned 
aerial vehicles for the monitoring and inspection of 
dams, focusing on the identification of damages in the 
obtained images. Subsequently, non-contact optical 
measurements were performed for disaster prevention. 

Wang et al. [1] suggested a UAV-based method to 
promptly evaluate seismic risk in bridges. Their 
methodology encompassed the acquisition of aerial 
photogrammetric data and the automated extraction of 
geometric features, subsequently integrated into 
structural models to assess seismic risk in relation to 
capacity-demand. The feasibility of their approach was 
substantiated through a case study conducted on an 
Italian bridge, thus contributing valuable insights to the 
field of seismic risk assessment for infrastructure. 

Nappo et al. [22] proposed the utilization of 
Unmanned Aerial Vehicles (UAVs) for the semi-
automatic detection and classification of damages in 
asphalt-paved roads affected by landslides. Leveraging 
3D models and 2D images derived through UAV-based 
photogrammetry, the approach aimed to overcome the 
limitations associated with traditional visual inspections. 
The developed semi-automatic procedure quantitatively 
identified and classified longitudinal and transverse 
cracks in the pavement, presenting a swift, systematic, 
and objective alternative to conventional field surveys. 
Applied in the Province of Como, Northern Italy, the 
results underscored the methodology's utility for road 
management, providing maps of damage hotspots, 
pavement damage detectors, criteria based on the 
International Roughness Index (IRI), and road damage 
severity maps. 

3 Methods and Implementations 

3.1 Selected UAV 
The aerial survey was performed using a commercial 

quadrotor, Phantom 4 V2. (DJI, China). This portable 
UAV has a built-in GPS that is used for way-point 
navigation and dataset geotagging. The drone was 
deployed for visual inspections of various structural 
components across four reinforced concrete bridges. 
Figure 1 illustrates the implementation of the proposed 
methodology outlined in this paper for bridge inspection 
utilizing a drone. The specifications of both the vehicle 
and the camera, outlined in Table 2, play a crucial role 
in the image processing carried out by the deep learning 
model. 

Table 2 DJI Phantom 4 V2. technical specification. 

Unmanned Aerial 
Vehicle (UAV) 

DJI Phantom 4 V2 

Dimension (mm) 289.5x289.5x196 
Weight (kg) 1.375 

Max flight time Approx. 30 minutes 
Hovering flying accuracy 

(with GPS and vision 
system) 

Vertical: ±0.1m 
Horizontal: ±0.3m 

Max. speed (mph) 45 

Photo resolution 5472x3648  
pixels 

Camera Sensor 1” CMOS 
Pixels 20 Mega 

Remote range (km) 8 

 
Fig. 1. UAV used for the data acquisition 

3.2 Data acquisition 
The task of data acquisition includes (i) site 

prechecking of the bridge and surrounding area, (ii) 
flight plan drafting, and (iii) on-site data collection. 
Firstly, an examination of the area should be conducted 
to consider multiple factors such as the complexity of 
the surroundings and the visibility of the structure (e.g., 
presence of obstacles/vegetation around the structure), 
the accessibility of the area to identify suitable take-off 
and landing points, and flight restrictions according to 
local regulations (e.g., the presence of no-fly zones, the 
highest permissible altitude for flying, etc.). Then, the 
planning of the flight path exerts the most significant 
influence on data quality, as it pertains to factors such as 
lighting conditions, camera angles, offset distances, the 
flight pattern chosen, and the level of overlap between 
images [1]. Additionally, to explain the relationship 
between camera angle and distance, the terminology 
ground sampling distance (GSD) is referred to the ratio 
between the measure of an actual object to a pixel size 
[1,23,24], which is used here to describe the image 
quality.  

Our work is motivated by a project aiming at the 
damage classification in concrete bridge elements 
within a millimeter (1 mm) of accuracy, which is 
considered adequate following previous research such 
as Chen et al. [23] who show a relationship between 
GSD and Working Distance (WD) for the DJI phantom 
4 UAV with respect to the tilt angle and offset distance. 
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The overlap (OV) represents the percentage of the 
object covered in two consecutive frames, depending on 
the distance to the center of two consecutive photos. 
The value of OV is one of the parameters for 
determining the fly path in the vertical and horizontal 
directions. Even though overlapping rates are seldom 
documented and seem to be chosen based on empirical 
observations, in Chen et al. [23]  it is recommended 60% 
±5% for endlap and 30% ±15% for sidelap. In this 
work, a 60% OV vertical and 30% OV horizontal 
direction should be considered in the to ensure the 
survey quality. 

After establishing the Ground Sample Distance 
(GSD), overlap (OV), an appropriate working distance 
(WD), and tilt angle that align with the research 
objectives for image acquisition, we then move forward 
to elucidate the procedure for capturing imagery of the 
structural elements to create 3D models, as detailed in 
the subsequent subsection. 

3.2.1 Super-structure 

Linear trajectories parallel to the longitudinal 
direction of the bridge and outer beams were employed, 
adjusting the inclination angle to ensure comprehensive 
coverage of the structural beam (See Fig. 2). 

 

Fig. 2. Image acquisition process of a concrete bridge 
structural beam. 

3.2.2 Sub-structure 

In the case of the pillars (see Fig. 3), linear 
trajectories are executed, aligning with the lateral 
elevation profile of the bridge at varying heights and 
employing different camera pitch and yaw angles 
(including upward orientation for mapping beneath the 
deck). Where deemed safe, additional spiral (or point of 
interest) flights along the height of each pillar are 
conducted to ensure comprehensive coverage of all 
surfaces. As for the abutments (see Fig. 4), a parallel 
survey will be conducted along the primary faces, 
adjusting both the height and inclination angles for a 
thorough inspection. 

 
Fig. 3. Image acquisition process of the structural 

column of a concrete bridge. 

 
Fig. 4. Image acquisition process of concrete bridge 

abutments. 

3.3 Imagen processing algorithms 
The images were captured at a resolution of 

5472x3648 pixels from a dataset comprising four 
distinct bridges. The selection of these bridges was 
based on a non-probability sampling approach, 
considering their proximity to the designated study area, 
The training dataset incorporates images from three of 
these bridges, totaling 848 images. Additionally, to 
enhance the performance of our training model, we have 
incorporated another dataset provided by Hüthwohl et al. 
[18]. As part of the validation dataset, we have selected 
the Iniche bridge (refer to Fig. 5) as a case study, 
yielding a total of 142 images. 

 

 
Fig. 5 Case study: Iniche bridge. Chiclayo, Perú. 
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This implies that a higher number of neurons require 
more parameters to be learned, increasing both the 
learning time and complexity of the model. To mitigate 
the size of the CNN model, the original image is resized 
to a smaller image, specifically 228x228 pixels. 
Subsequently, 384 images, each measuring 228x228 
pixels, were generated for every original image of 
dimensions 5472x3648 pixels. Regarding the image 
quality, it is important that the images have a good 
resolution, such as HD or 4K, since the reduced image 
used to analyze bridge damage (228 x 228 pixels) may 
present noise that generates incorrect image treatment in 
the model. Additionally, the normalization of the pixels 
should be between 0 and 1, following the image 
binarization criterion based on Elizondo et al. [25]. 

3.3.1 Data Preparation 

In this paper, we employ a deep convolutional neural 
network based in Zhang et al., [26]. In the data 
preparation phase, we implemented a code snippet using 
the TensorFlow Keras API. This code segment focuses 
on organizing and structuring the input data for model 
training. Subsequently, the images are reshaped into the 
appropriate format for TensorFlow, ensuring 
compatibility by adjusting the dimensions to (number of 
images, width, height, channels). The reshaped data is 
then stored in an HDF5 file format using the h5py 
library, providing an efficient and compressed 
representation of the dataset. 

3.3.2 Data Training 

In the data training phase, we utilized the 
TensorFlow Keras API to construct a Convolutional 
Neural Network (CNN) architecture for the 
classification of concrete damage. The input data, stored 
in an HDF5 file format, is loaded, and pre-processed, 
including resizing the images to a standardized 
dimension of 228x228 pixels and normalizing pixel 
values between 0 and 1. The CNN model is designed as 
a sequential stack of layers, starting with a 
convolutional layer with 16 filters, followed by max-
pooling, batch normalization, and dropout for 
regularization. This pattern is repeated with additional 
convolutional layers, each increasing the number of 
filters. The final layer is a dense layer with softmax 
activation, representing the three categories of damage 
scale (See Table 1). During training, the model is fed 
with the pre-processed images, aiming for 30 epochs 
with a batch size of 64 and a validation split of 20%. 
The trained model is then saved for subsequent use. 
This architecture combines convolutional and pooling 
layers with normalization and dropout techniques, 
demonstrating its potential for accurate concrete damage 
classification in structural inspection applications. 
Regarding the number of images in the training model, 
this is summarized in the following Table 3. As such, it 
is important to note that from the set of photos, each 
image was manually labeled according to the concrete 
damage. 

Table 3 Number of samples used in the training model. 

Concrete 
Damage 

Training Samples 
No 

damage 
Moderate 
Damage 

Major 
Damage 

Corrosion 

2180 

544 690 
Cracks 4609 6998 

Efflorescence 1196 1094 
Exposed Bars 289 766 

Spalling 1310 1592 

3.3.3 Data Classification 

In this section, a function is developed to manage 
the loading, resizing, and normalizing each grayscale 
image to fit the required input dimensions of the model. 
From the case study, 142 images of 5472x3648 pixels 
were obtained from which only 89 images were selected 
for the classification process.  

The subsequent iteration through each image file 
involves making predictions using the loaded model. 
Additionally, contours are detected in the original image, 
and based on the predicted class, they are highlighted 
with semi-transparent colors to emphasize the severity 
of concrete damage. 

Notably, the code incorporates error handling to 
ensure the successful loading and preparation of images. 
Furthermore, contours are drawn on images to visually 
represent the detected damage patterns, contributing to a 
more comprehensive analysis. The entire process is 
geared towards automating the classification of concrete 
damage, making it a valuable tool for efficient structural 
health assessment. 

3.4 3D Reconstruction 
The initial step involves the application of 

colorization to highlight the severity of the damage in 
each 228x228-pixel image. Subsequently, a meticulous 
merging process is undertaken to reconstruct these 
images to their original resolution of 5472x3648 pixels. 

This merging process is pivotal, as resizing each 
image independently would result in the loss of critical 
georeferencing information. This information, including 
Latitude, Altitude, Longitude, Focal length, orientation, 
and other metadata, is embedded in the data provided by 
the drone for each image. Maintaining the integrity of 
this georeferencing data is essential for the accuracy of 
the final 3D spatial reconstruction.  

Following the image merging, each reconstructed 
image is meticulously reassigned its corresponding 
metadata. This involves a comprehensive analysis and 
adjustment to ensure that the geospatial information 
aligns accurately with the reconstructed visual data. 

To achieve a technically robust 3D reconstruction, 
specialized software designed for photogrammetric 
processing of digital images is employed. Notably, 
Agisoft Metashape stands out as a prominent example 
of such software. This software employs advanced 
algorithms and techniques to process the merged images 
and generate precise 3D spatial data. 
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4 Results 

4.1 Data Training 
The key metrics during the training of the deep 

learning model are summarized in Table 4. 

Table 4. Loss and accuracy of the training model 

Concrete 
Damage Epoch 

Training Validation 
Loss 

(Accuracy) 
Loss 

(Accuracy) 

Corrosion 
1/30 1.0573 

(0.7799) 
4.4956 

(0.6442) 

30/30 0.0928 
(0.9766) 

3.3723 
(0.5447) 

Cracks 
1/30 1.0725 

(0.7264) 
9.1893 

(0.1653) 

30/30 0.1149 
(0.9625) 

0.6825 
(0.8677) 

Efflorescence 
1/30 1.5263 

(0.6063) 
1.0956 

(0.3747) 

30/30 0.1526 
(0.9452) 

2.6873 
(0.6756) 

Exposed Bars 
1/30 0.9333 

(0.8396) 
2.0844 

(0.6909) 

30/30 0.0388 
(0.9884) 

1.1794 
(0.8779) 

Spalling 
1/30 1.4644 

(0.6148) 
1.9797 

(0.4435) 

30/30 0.1393 
(0.9542) 

2.9182 
(0.5280) 

4.2 Data Classification 
Given the extensive dataset, we present a table 

displaying the classification of select images featuring 
damaged concrete along with their corresponding 
confidence levels. 

In Table 5, the classification results of concrete 
damage for a photograph are illustrated. It can be 
observed that, in the case of the example, after 
processing, only corrosion, efflorescence, and spalling 
damage are noticeable. Similar results are obtained for 
all other photographs based on the level of damage they 
exhibit. 

4.3 3D Reconstruction 

After the classification process, the 228x228 pixels 
colored images are combined with their counterparts 
from the original image, which is 5472x3648 pixels 
(See Fig. 6). Subsequently, the metadata from the 
original image is transferred to the reconstructed image.  

 

 
Table 5. Classification results for concrete damage in a 

288x288 pixel example photograph 

Concrete 
Damage 

Example 
image 

Damage 
Classification 

(Level of confidence) 

Corrosion 

 
(228x228 

pixels) 

 

 
Major (59.74%) 

 

Cracks 

 
No color (100.00%) 

 

Efflorescence 

 
Moderate (98.06%) 

 

Exposed Bars 

 
No color (88.44%) 

 

Spalling 

 
Major (99.88%) 
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Fig. 6 Reconstructed image with concrete damage 

classification 
 

Ultimately, utilizing these 89 reconstructed images 
from the case study, we proceed to generate a point 
cloud and perform the 3D reconstruction of the bridge 
(See Fig. 7). 

 

 
Fig. 7 3D reconstruction of the Iniche bridge with 

concrete damage classification 

5 Conclusions and discussions 
The proposed methodology demonstrates 

efficiency in bridge inspections by combining three-
dimensional reconstruction with concrete damage 
classification using deep learning. This suggests an 
effective and automated alternative for assessing bridge 
conditions, minimizing time and costs associated with 
traditional methods. 

The implementation of deep learning in concrete 
damage classification ensures an objective approach. 
The model's ability to accurately identify and categorize 
defects in concrete from UAV-captured images suggests 
a significant improvement in result objectivity 
compared to conventional inspection methods. 

Upon reviewing the outcomes derived from the 
228x228 pixel images, it is evident that a more 
extensive dataset is essential for refining the training 
model. Also, due to the use of an external database, the 
GDS has been variable which affects the quality of the 
images and therefore affects the training database. 

Addressing the loss of georeferenced information 
after resizing images is achieved through three-
dimensional reconstruction, where the original metadata 
is transferred to the reconstructed images. This 
highlights the importance of integrating geospatial data 
for a more comprehensive and accurate assessment of 
infrastructure. 

The main limitations of this method were that it 
does not assess the quality of the images due to their 
reduction in size. Additionally, the classification of the 
magnitude of the damage was partially subjective. Other 
limitations included the acquisition of data, where 
external conditions to the infrastructure, such as the 
flow of a river, varied the quality of the images. 
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Abstract – 

The maintenance of power lines is challenged by 
the encroachment of vegetation, posing significant 
risks to the reliability and safety of power utilities. 
Traditional methods, based on manual inspection, are 
not only resource-intensive but also lack the necessary 
precision for effective and proactive maintenance. 
This paper aims to develop an automated, accurate, 
and efficient approach to vegetation management in 
the vicinity of power lines. It leverages advancements 
in data collection using LiDAR scanning technology, 
which despite its potential, faces computational 
challenges in processing large-scale 3D point clouds to 
accurately identify power lines and surrounding 
vegetation. To overcome this challenge, the proposed 
method deploys the RandLA-Net model for the 
semantic segmentation of power lines and nearby 
vegetation in point cloud datasets. Furthermore, the 
post-processing analysis of the segmented data uses 
clustering and rule-based thresholding to refine the 
identification of vegetation. Then, proximity detection 
is applied using spatial queries based on a KDTree 
structure. The results of the case study demonstrate 
the computational efficiency and accuracy of the 
proposed method, presenting a promising solution for 
power utilities. 

 
Keywords – 

Computer Vision; 3D Point Cloud; Power Lines; 
Proximity Detection 

1 Introduction 
Vegetation management is critical for ensuring the 

safety and reliability of power distribution systems. The 
encroachment of overgrown vegetation near power lines 
poses significant risks, potentially leading to power 
outages, fires, and other hazards. The primary problem in 
this sector has been the reliance on manual inspection, 
which is labor-intensive, time-consuming, and often 
limited in accuracy and frequency. This traditional 
approach struggles to keep pace with the growing 

demand for stable energy and the urgent need to mitigate 
risks associated with overgrown vegetation. 
Consequently, there is a need for more efficient, 
automated solutions in vegetation management. 
Advances in sensing technologies, particularly Light 
Detection and Ranging (LiDAR) scanning, combined 
with Machine Learning (ML) algorithms, have led to the 
development of Automated Vegetation Management 
(AVM) systems. These systems promise more frequent 
monitoring, potentially revolutionizing vegetation 
management [1]. However, a significant challenge lies in 
processing the vast volumes of 3D point cloud data 
generated by LiDAR [2], particularly in accurately 
segmenting and classifying each point to identify 
vegetation-related risks effectively. Unlike conventional 
methods relying on visual inspection or 2D imaging, 
point cloud data provides comprehensive spatial 
representation, allowing accurate distance measurements 
and identification of fine details of power lines and 
surrounding vegetation. This advancement offers a 
systematic and reliable approach to power line 
monitoring, supported by recent studies demonstrating its 
efficacy in automated vegetation management systems 
and power line inspection [3]. 

The objectives of this paper are: (1) to accurately 
detect vegetation and power lines from LiDAR data using 
Deep Learning (DL), and (2) (2) to conduct detailed post-
processing analysis to detect the proximity of trees and 
power lines. This approach is expected to enhance the 
reliability of power distribution systems and potentially 
lead to significant cost savings for utility companies. The 
results demonstrate the practical application of the 
proposed method in a real-world urban setting.  

2 Literature Review 
LiDAR technology has emerged as a powerful AVM 

tool for power distribution lines. Its ability to provide 
high-resolution 3D data has made it crucial for detecting 
and analyzing vegetation in the context of power line 
management. Gollob et al. [4] investigated the accuracy 
of estimates for individual trees and forest stand variables 
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using a mobile laser scanning system. Their study 
highlights the impact of scan variation on tree parameter 
measurements. Voelsen et al. [5] segmented point cloud 
data from a Mobile Mapping LiDAR dataset. They used 
a method combining region growing and random forest 
classification to distinguish between static and dynamic 
objects, such as poles and vegetation. Wen et al. [6] 
emphasized the significance of high-accuracy and high-
efficiency 3D sensing and associated data processing 
techniques for various applications, including detecting 
trees and poles. Lu et al. [7] introduced a localization 
system for autonomous vehicles using cluster-based 
methods to extract pole-like objects, including trees and 
street lights, from 3D LiDAR point clouds. Kutz et al. [8] 
discussed the application of high-resolution imagery and 
LiDAR-derived canopy height models in land cover 
mapping, crucial for resource management and planning. 
Gaha et al. introduced a new LiDAR-based clustering 
method for detecting poles and distribution lines, offering 
improvements in accuracy and efficiency [9]. However, 
the scope of their study was primarily focused on single-
phase lines and had limited effectiveness in occluded 
environments. 

ML has significantly changed AVM around power 
lines, allowing for rapid data processing and previously 
unattainable insights. Kyuroson et al. developed an 
unsupervised ML framework to detect and analyze power 
lines and surrounding vegetation in Power Line Corridors 
(PLCs) using various remote data acquisition techniques 
such as airborne, mobile, and terrestrial laser scanning 
[10]. Torres de Almeida et al. combined satellite imagery, 
airborne LiDAR data, and ML algorithms, including 
Linear Regression, Classification and Regression Trees 
(CART), and Random Forest (RF) to map vegetation 
height in PLCs, aiding in management planning [11]. Li 
et al. employed drone data, airborne LiDAR, and ML 
algorithms, including RF, and Support Vector Machine 
(SVM) for classifying tree species in transmission line 
corridors [12].  

Abongo et al. introduced a novel framework for 
detecting power lines using LiDAR data, utilizing a 
combination of ML (XGBoost) and geometric methods 
[13]. However, their approach was primarily limited to 
the detection aspect, without exploring subsequent data 
processing and analysis for vegetation management. 
Haroun et al. reviewed vegetation encroachment 
detection techniques using satellite images, emphasizing 
the potential of ML and DL algorithms to enhance 
detection accuracy and flexibility [14]. Park et al. used 
feature-enhanced convolutional neural networks (CNNs) 
including AlexNet, ResNet18, and VGG11 for 
classifying images from Google Street View into 
categories related to utility systems and vegetation 
overgrowth, aiding in vegetation management 
prioritization [15]. Mohd Rapheal et al. assessed a ML-

based geospatial method for classifying electricity assets 
using high-density mobile laser scanning data, achieving 
detection accuracies of 65% for overhead power lines and 
63% for electricity poles [16]. Although focused on river 
management, Rabanaque et al. presented a ML approach 
(SVM and RF) for analyzing geomorphological 
characteristics and vegetation density using LiDAR and 
multispectral satellite images [17]. Horning et al. 
discussed the challenges and advances in mapping land 
cover using ultra-high-resolution aerial imagery, 
including ML algorithms for image processing [18]. 
Oehmcke et al. utilized DL systems (MSENet14, 
KPConv, PointNet) to predict wood volume and above-
ground biomass directly from airborne LiDAR point 
clouds [19]. Their method showed significant 
improvements in accuracy compared to traditional 
approaches. Gribov and Duri proposed a solution for 
constructing line features modeling each catenary curve 
present within a series of points representing multiple 
catenary curves [20]. This solution can be applied to 
extract power lines from LiDAR point clouds. 

Mahoney et al. utilized a combination of various ML 
algorithms, including RF, Gradient Boosting Machine, 
and Artificial Neural Network (ANN), to integrate 
remote sensing of structural and optical properties of 
vegetation cover for classifying and mapping shrubland 
habitats [21]. Furthermore, studies like that of Amani et 
al., which utilized bathymetric LiDAR data for marine 
habitat mapping, showcase the versatility of LiDAR and 
RF algorithms in vegetation classification [22]. Amado 
et al. presented a method for extracting power lines from 
LiDAR point cloud data, demonstrating accurate and 
automatic extraction capabilities [23]. Awrangjeb 
introduced a power line extracting and modeling 
approach using LiDAR data, which significantly aids in 
the detection and modeling of power lines, offering a 
reliable solution to the challenges faced in power line 
extraction [24]. Li and Guo discussed the application of 
LiDAR technology for power line inspection, 
highlighting its advantages in obtaining high precision 
3D spatial information and entire power line corridor data, 
which is critical for effective inspection and maintenance 
[25]. Table 1 shows a comparative overview of most 
related works, outlining key aspects such as methodology, 
utilized dataset, main research focus, and critical 
performance metrics across different studies. 

3 Proposed Framework 
This paper proposes using Random Sampling in 

Large-scale Point Cloud Analysis Network (RandLA-
Net) model [28], designed for the semantic segmentation 
of large 3D point clouds, for AVM. This model was 
selected due to its highest overall accuracy level in 
semantic segmentation of the Toronto-3D dataset [29]. 
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structures effectively [28]. The network's architecture, 
featuring shared Multilayer Perceptrons (MLPs) and 
dilated residual blocks, enhances its processing speed, 
allowing it to handle up to one million points in a single 
pass with notable accuracy. This efficient and innovative 
approach makes RandLA-Net particularly suitable for 
large-scale point cloud analyses, demonstrating superior 
performance in both speed and accuracy compared to 
other methods, such as PointNet++. 

To assess the performance of the RandLA-Net model 
in this context, we used the Intersection over Union (IoU) 
metric. This is a standard metric in evaluating 
segmentation models, as it quantifies the accuracy of the 
model in classifying each point. It works by measuring 
the overlap between the model's predicted classifications 
and the actual, ground truth classifications. The IoU 
provides a comprehensive overview of the model's 
performance across all classes, offering insights into its 
precision and effectiveness in segmenting different urban 
elements. A higher IoU value indicates better model 
performance and a more accurate representation of the 
real-world scenario. 

3.2 Clustering and Rule-Based Thresholding 
In order to refine the segmented point cloud data in 

the initial stage of post-processing, partial clustering 
algorithm, DBSCAN, was selected for its ability to 
identify clusters of various shapes and densities within 
the data without the need for predefined number of 
clusters. This feature made DBSCAN particularly 
suitable for handling the complex and varied structure of 
the urban dataset. Key parameters like the epsilon values 
and minimum samples were carefully adjusted to align 
with the dataset's unique features, ensuring sensitivity to 
the varied densities and distributions of urban elements. 
In addition to DBSCAN, rule-based thresholding was 
implemented, setting specific height and point count 
thresholds for each urban feature class, such as trees and 
poles. This approach effectively isolated significant 
urban objects within each category while reducing noise 
and irrelevant data, thereby enhancing the clustering 
results' overall quality and accuracy. 

3.3    Proximity Detection between Trees and 
Power Lines 

To assess the risk associated with trees near power lines, 
a K-Dimensional Tree (KDTree) structure was adopted 
for streamlined spatial querying, aiming to effectively 
evaluate potential risks. The KDTree, known for its 
ability to rapidly query points in a multi-dimensional 
space, proved ideal for analyzing spatial relationships 
within the point cloud data. The process involved 
utilizing the KDTree structure to efficiently identify the 
nearest power line to each tree. Once these proximities 

are calculated, they are compared against a safety 
threshold. Tree areas falling within this threshold are 
identified as potential hazards. Considering the dataset's 
large scale, ensuring computational efficiency was a 
critical concern. This approach optimizes performance 
and resource utilization in large-scale, complex data 
operations. 

4 Implementation and Case Study 
In the implementation phase, post-processing 

techniques including clustering, rule-based thresholding, 
and proximity detection were deployed using Python. 

4.1 Data Acquisition and Preparation 
Toronto-3D dataset, developed by Tan et al. [2] was 

used in the case study. This dataset was collected along a 
1-kilometer section of Avenue Road in Toronto, Canada. 
It is a large dataset containing about 78.3 million data 
points. The dataset is notable for its high point density, 
with an average of 1000 points per square meter on the 
ground. This high density is crucial for capturing detailed 
features of the urban environment, which is vital for this 
study. The data was collected using a LiDAR sensor on a 
Mobile Laser Scanning (MLS) system. The LiDAR 
sensor captured up to 700,000 points per second, with a 
vertical field of view from -10 to +30 degrees, and an 
accuracy of better than 3 cm. Each point in the dataset 
has several attributes including the position in meters 
(XYZ coordinates), the color reflectance (RGB), LiDAR 
intensity, GPS time of collection, scan angle, and the 
object class label. The object class labels cover a range 
of urban features, making the dataset useful for semantic 
segmentation. These labels include roads, road markings, 
natural elements (trees, shrubs), building parts, power 
distribution lines, poles (utility poles, traffic signs), 
vehicles, and vertical barriers (fences, walls). 

Data preparation involved loading the point cloud 
data and performing grid subsampling with a grid size of 
0.06 meters to reduce data volume while preserving key 
features. For validation datasets, projection indexes were 
created to map model results back to the original dataset, 
ensuring a structured and efficient dataset ready for 
semantic segmentation and analysis. A projection index 
is a reference that maps each point in a subsampled point 
cloud back to its original location in the full dense point 
cloud, ensuring that any analysis or modifications applied 
to the reduced dataset can be accurately reflected in the 
original, larger dataset. The raw data from the dataset 
underwent preprocessing to convert the .ply files into a 
suitable text format for the semantic segmentation 
process. Figure 2 shows a sample area of point cloud data.  
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4.2 Semantic Segmentation 
The Toronto-3D dataset was divided into four 

sections, each covering about 250 meters of the road. 
Sections 1, 3, and 4 were used for training and Section 2 
was used for testing. The dataset underwent two separate 
training processes. Initially, it was trained without 
considering RGB and intensity data to focus on the 
geometric features (X, Y, Z). Then, it was trained again, 
this time incorporating the RGB and intensity 
information (X, Y, Z, R, G, B, intensity) to assess the 
impact of these attributes on model performance. 

Using this dataset, the RandLA-Net model underwent 
100 epochs of training to enhance its accuracy in 
segmenting point cloud data. The Adam optimizer, 
known for its efficiency with large-scale data, was 
utilized. An initial learning rate of 0.01 was set, gradually 
reduced by 5% per epoch to refine model adjustments 
and convergence. A batch size of 4 was maintained to 
balance computational resources and effective learning 
during training sessions. Throughout this segmentation 
process, the model accurately assigned a class label to 
each point, enabling the differentiation of various urban 
elements. The training time for the model was 124 hours 
and 33 minutes on a LAMBDA workstation with one 
NVIDIA RTX A6000 GPU, 48 GB RAM/GPU, and an 
AMD Ryzer Threadripper 3960×48-core CPU. The 
model without considering RGB and intensity achieved 
an overall accuracy of 93.08%, representing the ratio of 
correctly labeled points to the total number of points 
across all classes. The model considering RGB and 
intensity achieved an overall accuracy of 95.42%. 

During the testing phase, each epoch was composed 
of 25 steps, with every step processing a batch of test data. 
In the testing, a step is a single iteration over a batch of 

data and an epoch represents a single pass through the 
entire test dataset. For individual classes, the model 
without considering RGB and intensity showed very 
good performance with the classes of trees, power 
distribution lines, and poles achieving IoU of 95.76%, 
87.61%, and 76.37%, respectively. The model 
considering RGB and Intensity showed improved 
performance with the classes of trees, power distribution 
lines, and poles achieving IoU of 96.81%, 87.83%, and 
79.36%, respectively. The observed improvement of over 
3% in the poles class in the model considering RGB and 
intensity may be due to the distinctive and unique colors 
of the poles. However, the lower accuracy in pole 
detection in both models could be attributed to the 
inherent complexity of urban environments where poles 
are located. Factors such as occlusion by other objects, 
varying lighting conditions, and the poles' similarity to 
other vertical structures might make them harder to 
distinguish accurately. Compared to the work of Abongo 
et al. [13] focusing only on power distribution line 
detection, which achieved an IoU of 82.49%, our method 
notably surpasses this performance, achieving an IoU of 
87.83% for power distribution lines. 

4.3 Clustering and Rule-Based Thresholding 
 In the subsequent stage of our analysis, we used a 

combination of DBSCAN, height, and point count 
thresholding techniques to identify and isolate objects 
meeting our predefined criteria. This method involved 
adjustments of DBSCAN parameters, such as epsilon (i.e. 
maximum distance between samples) and the minimum 
number of samples, to match the unique attributes of the 
Toronto-3D dataset. Following the clustering process, we 
retained clusters that surpassed the designated height 
threshold (e.g., 8 meters for poles) and fulfilled the 

 
Figure 2. A sample area of point cloud data 
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minimum point count threshold (e.g., 500 points for 
poles). This step resulted in a refined dataset, distinctly 
differentiating and emphasizing significant urban 
features from less relevant objects. Table 2 presents the 
clustering values and thresholds for each class. Figure 3 
shows segmentation results before and after clustering 
and rule-based thresholding. 

Table 2. Clustering values and thresholds for each class 

Class 
Clustering values Defined thresholds  

Epsilon 
(m) 

Minimum 
samples 

Minimum 
point count 

Minimum 
height (m) 

Trees 0.5 20 12000 6.5 
Poles 0.5 10 500 8 
Power 
lines 0.3 3 - - 

4.4 Proximity Detection between Trees and 
Power Lines 

      The next step aims to compare the spatial data of trees 
and power lines to enable proximity detection for risk 
assessment. Leveraging KDTree's queries, we efficiently 
determined the closest power line point to each tree point 
in a multidimensional space. Assessing this against a 
predetermined safety threshold of 1 meter allowed us to 
identify parts of trees posing risks due to their proximity 
to power lines, which were flagged as potential hazards. 
Figure 4 shows the post-processed semantic 
segmentation result, highlighting hazardous tree areas 
(red points) within the safety perimeter of power 
distribution lines. 

5 Conclusions and Future Work 
The contribution of this paper lies in its integrated 
approach, utilizing the RandLA-Net model enhanced by 

RGB and intensity data analysis for precise urban 
vegetation management. This is further complemented 
by novel post-processing techniques, including 
DBSCAN clustering and rule-based thresholding, which 
collectively refine risk assessment and provide a detailed 
understanding of vegetation's proximity to power lines. 
This paper presents a comprehensive approach for urban 
vegetation management in proximity to power lines using 
point cloud data in conjunction with the RandLA-Net 
model. The approach is further enhanced by post-
processing techniques such as clustering and rule-based 
thresholding considering the specific needs of the 
application. Moreover, the incorporation of proximity 
detection for risk assessment added a practical dimension 
to the proposed framework. The RandLA-Net model 
considering RGB and intensity showed improved 
performance with various classes, including trees, power 

distribution lines, and poles, achieving IoU of 96.81%, 
87.83%, and 79.36%, respectively. The effectiveness of 
DBSCAN clustering and rule-based thresholding was 
apparent in the clarity and distinction of the isolated 
objects. Additionally, the proximity detection analysis 
efficiently pinpointed significant tree areas where trees 
can pose threats to power lines.  
      The study's findings rely on the Toronto-3D dataset, 
which might not fully represent all urban, and/or 
suburban landscapes. While the results of RandLA-Net 
exhibited high accuracy, its performance in different or 
more complex environments requires further exploration. 
Moreover, the computational demands of these methods 
could limit their feasibility in resource-constrained 
settings. Future research should prioritize testing the 
proposed framework across diverse environments, 
refining the algorithms for broader applicability, and 
integrating additional data sources for a more 
comprehensive approach. 

           
                                      (a) Before                                                                                  (b) After 

Figure 3. Comparing segmentation results before and after clustering and rule-based thresholding 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

735



References 
[1] Cao, W., Wu, J., Shi, Y. and Chen, D., Restoration 

of Individual Tree Missing Point Cloud Based on 
Local Features of Point Cloud, Remote Sensing, vol. 
14, no. 4, p. 1346.  

[2] Tan, W., Qin, N., Ma, L., Li, Y., Du, J., Cai, G., 
Yang, K. and Li, J., "oronto-3D: A large-scale 
mobile LiDAR dataset for semantic segmentation 
of urban roadways, in Proceedings of the 
IEEE/CVF conference on computer vision and 
pattern recognition workshops, Seattle, WA, USA, 
2020.  

[3] Mongus, D., Brumen, M., Žlaus, D., Kohek, Š., 
Tomažič, R., Kerin, U. and Kolmanič, S., A 
Complete Environmental Intelligence System for 
LiDAR-Based Vegetation Management in Power-
Line Corridors. Remote Sensing, vol. 13, no. 24, 
p.5159, 2021. 

[4] Gollob, C., Krassnitzer, R., Ritter, T., Tockner, A., 
Erber, G., Kühmaier, M., Hönigsberger, F., Varch, 
T., Holzinger, A., Stampfer, K. and Nothdurft, A., 
Measurement of Individual Tree Parameters with 
Carriage-Based Laser Scanning in Cable Yarding 
Operations, Croatian Journal of Forest 
Engineering: Journal for Theory and Application of 
Forestry Engineering, vol. 44, no. 22, pp. 401-407, 
2023.  

[5] Voelsen, M., Schachtschneider, J. and Brenner, C., 
Classification and change detection in mobile 
mapping LiDAR point clouds, PFG–Journal of 
Photogrammetry, Remote Sensing and 
Geoinformation Science, vol. 89, no. 3, pp. 195-207, 
2021.  

[6] Wen, C., Habib, A.F., Li, J., Toth, C.K., Wang, C. 
and Fan, H., Special issue on 3D sensing in 
intelligent transportation, IEEE Transactions on 
Intelligent Transportation Systems, vol. 22, no. 4, 
pp. 1974-1949, 2021.  

[7] Lu, F., Chen, G., Dong, J., Yuan, X., Gu, S. and 
Knoll, A., Pole-based localization for autonomous 
vehicles in urban scenarios using local grid map-
based method, in Proceedings of 5th International 
Conference on Advanced Robotics and 
Mechatronics (ICARM), Shenzhen, China, 2020.  

[8] Kutz, K., Cook, Z. and Linderman, M., Object 
based classification of a riparian environment using 
ultra high-resolution imagery, hierarchical 
landcover structures, and image texture, Scientific 
Reports, vol. 12, no. 1, p. 11291, 2022.  

[9] Gaha, M., Jaafar, W., Fakhfekh, J., Houle, G., 
Abderrazak, J.B. and Bourgeois, M., Anew lidar-
based approach for poles and distribution lines 
detection and modelling, Comput. Sci. Inf. Technol, 
vol. 11, no. 1, pp. 85-97, 2021.  

[10] Kyuroson, A., Koval, A. and Nikolakopoulos, G., 
Autonomous Point Cloud Segmentation for Power 
Lines Inspection in Smart Grid, IFAC-

 
Figure 4. Post-processed result of semantic segmentation, highlighting hazardous tree areas 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

736



PapersOnLine, vol. 56, no. 2, pp. 11754-11761, 
2023.  

[11] Torres de Almeida, C., Gerente, J., Rodrigo dos 
Prazeres Campos, J., Caruso Gomes Junior, F., 
Providelo, L.A., Marchiori, G. and Chen, X., 
Canopy Height Mapping by Sentinel 1 and 2 
Satellite Images, Airborne LiDAR Data, and 
Machine Learning, Remote Sensing, vol. 14, no. 6, 
p. 4112, 2022.  

[12] Li, X., Wang, R., Chen, X., Li, Y. and Duan, Y., 
Classification of Transmission Line Corridor Tree 
Species Based on Drone Data and Machine 
Learning, Sustainability, vol. 14, no. 4, p. 8273, 
2022.  

[13] Abongo, D.A., Gaha, M., Cherif, S., Jaafar, W., 
Houle, G. and Buteau, C., A novel framework for 
distribution power lines detection, in Proceedings 
of IEEE Symposium on Computers and 
Communications (ISCC), Gammarth, Tunisia, 2023.  

[14] Haroun, F.M.E., Deros, S.N.M. and Din, N.M., A 
review of vegetation encroachment detection in 
power transmission lines using optical sensing 
satellite imagery, arXiv preprint arXiv:2010.01757, 
2020.  

[15] Park, A., Rajabi, F. and Weber, R., Slash or burn: 
Power line and vegetation classification for wildfire 
prevention, arXiv preprint arXiv:2105.03804, 2021.  

[16] Mohd Rapheal, M.S.A., Farhana, A., Mohd Salleh, 
M.R., Abd Rahman, M.Z., Majid, Z., Musliman, 
I.A., Abdullah, A.F. and Abd Latif, Z., Machine 
Learning Approach for Tenaga Nasional Berhad 
(TNB) Overhead Powerline and Electricity Pole 
Inventory Using Mobile Laser Scanning Data, The 
International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, 
vol. 46, no. 1, pp. 239-246, 2022.  

[17] Rabanaque, M.P., Martínez‐Fernández, V., Calle, 
M. and Benito, G., Basin-wide hydromorphological 
analysis of ephemeral streams using machine 
learning algorithms, Earth Surface Processes and 
Landforms, vol. 47, no. 1, pp. 328-344, 2022.  

[18] Horning, N., Land cover mapping with ultra‐high‐
resolution aerial imager, Remote Sensing in Ecology 
and Conservation, vol. 6, no. 4, pp. 429-430, 2020.  

[19] Oehmcke, S., Li, L., Revenga, J.C., Nord-Larsen, T., 
Trepekli, K., Gieseke, F. and Igel, C., Deep 
learning-based 3D point cloud regression for 
estimating forest biomass, in Proceedings of the 
30th International Conference on Advances in 
Geographic Information Systems, Seattle, USA, 
2022.  

[20] Gribov, A. and Duri, K., Reconstruction of power 
lines from point clouds, in Proceedings of 
International Conference on Document Analysis 
and Recognition, Cham: Springer Nature 

Switzerland, 2023.  
[21] Mahoney, M.J., Johnson, L.K., Guinan, A.Z. and 

Beier, C.M., Classification and mapping of low-
statured shrubland cover types in post-agricultural 
landscapes of the US Northeast, International 
Journal of Remote Sensing, vol. 43, no. 19-24, pp. 
7117-7138, 2022.  

[22] Amani, M., Macdonald, C., Salehi, A., Mahdavi, S. 
and Gullage, M., Marine Habitat Mapping Using 
Bathymetric LiDAR Data: A Case Study from 
Bonne Bay, Newfoundland, Water, vol. 14, no. 23, 
p. 3809, 2022.  

[23] Amado, M., Lopes, F., Dias, A. and Martins, A., 
LiDAR-based power assets extraction based on 
point cloud data, in Proceedings of the IEEE 
International Conference on Autonomous Robot 
Systems and Competitions, Santa Maria da Feira, 
Portugal, 2021. 

[24] Awrangjeb, M., Extraction of power line pylons and 
wires using airborne lidar data at different height 
levels, Remote Sensing, vol. 11, no. 15, p.1798, 
2019. 

[25] Li, X. and Guo, Y., 2018, July. Application of 
LiDAR technology in power line inspection, IOP 
Conference Series: Materials Science and 
Engineering, vol. 382, no. 5, p. 052025, 2018. 

[26] Cano-Solis, M., Ballesteros, J.R. and Sanchez-
Torres, G., VEPL-Net: A Deep Learning Ensemble 
for Automatic Segmentation of Vegetation 
Encroachment in Power Line Corridors Using UAV 
Imagery, ISPRS International Journal of Geo-
Information, vol. 12, no. 11, p. 454, 2023. 

[27] Wang, G., Wang, L., Wu, S., Zu, S. and Song, B., 
Semantic Segmentation of Transmission Corridor 
3D Point Clouds Based on CA-PointNet++, 
Electronics, vol. 12, no.13, p.2829, 2023. 

[28] Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, 
Z., Trigoni, N. and Markham, A., RandLA-Net: 
Efficient semantic segmentation of large-scale point 
clouds, in Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition, Seattle, WA, USA, 2020.  

[29] Toronto-3D GitHub repository. On-line: 
https://github.com/WeikaiTan/Toronto-3D, 
Accessed: 09/08/2023. 

[30] Ahmed, K.N. and Razak, T.A., A comparative 
study of different density based spatial clustering 
algorithms, International Journal of Computer 
Applications, vol. 99, no. 8, p. 8887, 2014. 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

737



 

 

Reinforcement Learning for Smart Mobile Factory 
Operation in Linear Infrastructure projects  

Jianpeng Cao1, Irfan Čustović1, Ranjith Soman2, and Daniel Hall1  

1Faculty of Architecture & the Built Environment, Delft University of Technology, Netherlands  
2Faculty of Civil Engineering and Geosciences, Delft University of Technology, Netherlands  

C.J.P.Cao@tudelft.nl, I.Custovic@tudelft.nl, R.Soman@tudelft.nl, D.M.Hall@tudelft.nl  
 

Abstract  
 Mobile factories promise an increased project 

efficiency with on-demand production and Just-in-
Time delivery of prefabricated elements. However, 
traditional scheduling methods predominantly focus 
on either factory or site and neglect the factory 
mobility, often leading to suboptimal 
synchronization. To address this gap, this paper 
introduces a novel reinforcement learning (RL)-based 
model for optimizing the operational policy of mobile 
factories in infrastructure projects. The developed 
model simultaneously schedules on-site and off-site 
operations, effectively integrating the performance 
metrics at the project level. Utilizing RL, the factory's 
production management system continuously learns 
and adjusts in response to real-time project 
developments, ensuring optimal decision-making 
regarding scheduling and resource allocation.  

 
Keywords – 

Reinforcement Learning; Mobile Factory; 
Scheduling;  

1 Introduction 

1.1 Mobile Factories for Infrastructure 
Projects 

The evolution of on-site and near-site prefabrication 
factories in construction and architecture is marked by 
notable milestones. Early 20th-century pioneers like 
Walter Gropius, Martin Wagner, and Adolf Meyer 
introduced systems such as the “Occident System” and 
the “Frankfurt Assembly Method,” which emphasized 
standardization [1]. The latter part of the century 
witnessed unique projects, including Moshe Safdie's 
Habitat ‘67 [2] in Montreal and Thomas Herzog's EXPO 
2000 timber roof in Hannover, highlighting local 

production for specialized architecture [3]. Additionally, 
SKANSKA AB’s “Flying Factories” [4] and LiWood’s 
“Field Factories” [5] for near-site modular timber 
prefabrication represent systematic attempts to bring 
prefabrication closer to construction sites, focusing on 
flexibility through low levels of automation. 

More recent research has shifted focus towards 
enhancing the mobility of mobile factories. Alix et al. [6] 
introduced a reconfigurable manufacturing system 
designed for frequent relocations, adept at 
accommodating fluctuating demand. Following this, 
Wagner et al. [7] unveiled a transportable and adaptable 
timber construction platform, specifically for carpentry. 
This innovation was validated through the construction 
of an intricate wooden pavilion, demonstrating its 
potential to elevate both the quality and efficiency of 
carpentry work. 

Benefits of mobile factories include efficient 
manufacturing and pre-assembly operations near the 
building site, safer and cleaner working environments, 
and reduction in the number of transport kilometers 
between the factory and the building site [8]. Particularly, 
this concept of a mobile factory is suitable for situations 
with long distances and high logistics costs like the 
fabrication of components on the construction site. 

Despite the benefits of mobile factories, existing 
research underscores the necessity for broader industrial 
testing across various domains, as noted by Alix et al [6]. 
Specifically, the application of mobile factories in large 
infrastructure projects like rail and road construction 
remains limited. This gap is noteworthy given the 
alignment between the intrinsic benefits of mobile 
factories and the demands of infrastructure projects. 
Therefore, it is crucial to urgently develop operational 
policies and decision support systems for scheduling 
mobile factories in infrastructure construction. 
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1.2 Integrated Project Scheduling  
Project scheduling is a crucial aspect of project 

management, especially in dynamic and complex 
environments like factory production and site 
construction. However, these two areas are typically 
addressed separately [9]. This separation overlooks the 
potential efficiencies that could be realized through an 
integrated scheduling approach. In the realm of 
industrialized construction, this integration becomes 
increasingly important. Industrialized construction 
requires a more streamlined and coherent workflow, 
ensuring that the prefabrication process in factories 
aligns precisely with the timelines and demands of site 
construction, thereby optimizing resource utilization and 
reducing project delays. 

Most researchers in this field have adopted a strategy 
of integrating site scheduling with storage, delivery, and 
other logistics processes. For example, Ahn et al. [9] 
streamline the synchronization of factory output with site 
demands by optimizing truck-dispatching schedules, and 
enhancing resource utilization and project timelines. 
Wang and Hu [10] integrate site scheduling into 
production scheduling by adding element storing and 
transportation processes to the traditional production 
model. This modification allows for simultaneous 
storage of different elements in the stockyard post-
production, with the timing of the storing and 
transportation processes being closely aligned with site 
requirements and schedules. However, both works do not 
consider factory mobility, which is essential for 
infrastructure projects, where the factory is transportable 
in alignment with the project progression. 

To address the identified limitations in current 
research on mobile factories, this paper proposes an 
innovative approach using a reinforcement learning-
based model to optimize operational policies in 
infrastructure projects. Unlike traditional project 
scheduling methods, which typically segregate factory 
production from site construction, our approach focuses 
on integrating these two critical components. 
Consequently, this approach not only promises improved 
project efficiency but also marks a significant step in 
adaptive project management. Building upon this 
foundation, the following section reviews existing 
research in RL-based scheduling methodologies, setting 
the stage for a deeper understanding of the approach’s 
context and significance. 

2 Literature Review 
Reinforcement learning (RL) has emerged as a 

powerful tool in this domain, offering adaptive and 
efficient solutions. The current literature on RL in project 
scheduling demonstrates significant advancements in site 
and factory production scheduling.  

2.1 Site Scheduling 
The application of RL in site scheduling is 

characterized by a variety of approaches aimed at 
addressing the dynamic and complex nature of 
construction environments. Kedir et al. [11] and Lee et al. 
[12] showcase how RL can be used to simulate and adapt 
to changing conditions on construction sites. The hybrid 
reinforcement learning–graph embedding network model 
proposed in [11] exemplifies an innovative approach to 
simulating complex construction planning environments. 
It shows the potential of RL in reducing computational 
burdens while establishing effective activity sequences 
and work breakdown structures. Similarly, [12] applies a 
digital twin-driven RL method for adaptive task 
allocation, indicating RL's capability to enhance real-
time decision-making and efficiency in dynamic 
construction environments. This emphasis on 
adaptability and prompt responsiveness is similarly 
reflected in [13], which presents a novel method for 
generating Look-Ahead Schedules using RL. This 
method addresses the challenges of manual planning by 
offering a faster, more efficient approach to scheduling 
construction site activities. 

2.2 Factory Production Scheduling 
In the realm of factory production scheduling, RL is 

utilized to address the challenges of variability and the 
need for adaptability in manufacturing processes. Several 
studies highlight various aspects of how RL can improve 
efficiency and adaptability in factory settings [14–17]. 
Du and Li focus on automated assembly planning for 
robot-based construction, employing Deep 
Reinforcement Learning (DRL) in a re-configurable 
simulator to enhance assembly planning processes [14]. 
This approach aligns with [15] and [16], which also 
explore the dynamic nature of factory environments and 
how RL can be used to respond to changes in orders and 
resources. The comprehensive review in [17] of RL 
applications in production planning and control further 
underscores the versatility of RL in managing diverse 
aspects of manufacturing, including production 
scheduling, capacity planning, and inventory 
management. 

2.3 Point of departure 
While the reviewed literature on RL in project 

scheduling offers significant insights, it reveals a notable 
limitation: the lack of integration between site scheduling 
and factory production planning. To enhance overall 
operational efficiency and achieve the promised benefits 
of on-demand production and Just-in-time delivery, it is 
crucial to achieve a seamless integration of mobile 
factories and construction sites. By integrating these two 
components, RL can drive the evolution of project 
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management towards more streamlined, efficient, and 
sustainable practices.  

3 Methodology 
The research methodology followed in this research is 
centered around the development and validation of a RL 
algorithm. RL is a branch of machine learning that draws 
inspiration from the natural learning process. In RL, the 
behavior of an entity, known as an agent, is shaped by the 
outcomes of its previous actions. Positive outcomes 
reinforce certain behaviors, lending greater importance to 
those actions and the decisions leading up to them. RL 
builds upon the foundations of Markov Decision 
Processes [18] and stands apart from supervised learning 
in that it does not rely on labeled input-output pairs for 
learning [19]. A RL model formally comprises: 
● A discrete set of states, S; 
● A discrete set of possible actions for the 

agent, A; and 
● A set of scalar rewards. 

In this framework (shown in Figure 1), an agent selects 
actions based on the rewards previously received in 
similar states. The ultimate objective is to devise a policy 
π that maps states to actions in a way that maximizes the 
overall reward. 

 
Figure 1. Reinforcement Learning Feedback Loop 

The algorithm proposed in this research work aims to 
optimize operational policies in infrastructure projects 
that employ mobile factories for construction supply. The 
methodology uniquely combines logistical mobility with 
the complexities of production and assembly processes 
within the context of a mobile factory. This presents a 
novel and challenging environment for the application 
and exploration of RL techniques. In the following 
subsection, we will explain how the RL problem was 
formulated. These include, definition of environment, 
agent, agent’s action space, reward and penalty. 
 

3.1 Environment  
The simulation divides a construction project into 

sections of uniform length, with on-site assembly of 
building components produced by the mobile factory. 
The assembly unfolds in a linear fashion, advancing from 
section to section until the project's completion is 

achieved. 

3.2 Agent  
The agent operates as the mobile factory, 

commencing at the first section and advancing toward the 
terminal section. It continuously tracks its position 
relative to the project and the quantities of both produced 
and assembled components. 

3.3 Actions 
The agent's operational choices are determined on a 

daily basis, introducing an element of strategic timing to 
the simulation. The agent has a repertoire of actions that 
directly influence the environmental state:  

● Production: Engaging in this action, the factory 
commits to the fabrication of building elements at 
a set rate. While in production mode, the factory's 
status is updated to reflect the new production 
count, and its location remains unchanged.  

● Movement: Opting to move prompts the factory 
to transition to the next section. This phase is 
characterized by a cessation of production, which 
realistically simulates operational downtime 
during relocation.  

● Idle: By choosing to idle, the factory does not 
produce or move. This inaction provides an 
opportunity for strategic timing, potentially 
waiting for more favorable conditions or to better 
align with other segments of the project. 

3.4 Reward 
The reward function in this project environment is 

designed to incentivize optimal scheduling and resource 
allocation. It includes the following components: 

● Project Completion Reward: This substantial 
reward is granted upon the successful completion 
of the entire construction project, i.e., when all 
sections have met their assembly requirements 
and the project has reached its final stage. This 
reward reflects the ultimate goal of project 
completion. 

● Milestone Reward: Awarded each time the 
project successfully meets the assembly 
requirements for a current section and progresses 
to the next. This reward is a key driver for phase-
wise project execution, encouraging the timely 
accomplishment of individual project segments. 
The milestone bonus not only acknowledges the 
completion of specific sections but also promotes 
a steady pace, ensuring that the project advances 
methodically from one stage to the next without 
unnecessary delays. 
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3.5 Penalty 
The penalty function encapsulates various 

operational costs and risks, promoting efficient and 
strategic planning:  

● Duration Cost: Emphasizes project time 
management, where shorter durations align with 
industry objectives. This cost accrues daily and 
escalates with extended project timelines. 

● Factory Running Cost: Emphasizes the 
operational expenses associated with the daily 
functioning of the factory. This cost accrues 
continuously, reflecting the resource utilization 
and maintenance required to keep the factory 
operational. 

● Factory Movement Cost: Underscores the 
expenditures associated with relocating the 
factory within the construction project area. This 
cost is incurred when the factory needs to be 
moved to a different location within the project 
site, often to align with the construction progress. 

● Shipment Cost: Reflects the logistical 
complexity of material transportation from the 
factory to the construction site. This cost is 
quantified by the distance to the current project 
section and is enhanced by a predetermined factor, 
underscoring the value of logistical efficiency.  

● Inventory Cost: Signals potential inventory 
management inefficiencies. This cost is activated 
when production outperforms assembly. The 
incurred cost, proportional to the imbalance and 
multiplied by a coefficient, advocates for a 
balance between production and assembly.  

● Underproduction Cost: Underproduction Cost 
addresses the potential consequences of 
producing fewer components than required for the 
construction project. To mitigate this risk, 
additional resources may be needed, such as 
sourcing components from external suppliers or 
resorting to on-site production, often under urgent 
circumstances. 

The penalty function complements the reward function 
by creating a balanced and comprehensive system of 
disincentives and incentives. This system encourages 
behaviors that are conducive to the overarching 
objectives of efficiency, cost-effectiveness, and timely 
delivery in construction project management.  

4 Algorithm 
Proximal Policy Optimization (PPO) [20] is selected 

for the mobile factory simulation. The PPO algorithm 
combines ideas from A2C (Advantage Actor-Critic) and 
TRPO (Trust Region Policy Optimization). It is well-
regarded for its effective balance between exploration 

and exploitation, ensuring gradual improvements in 
decision-making. It operates by making incremental 
adjustments to its policies, which prevents drastic 
changes that could destabilize the learning process. This 
characteristic of PPO makes it particularly suitable for 
the mobile factory simulation, where decisions have a 
direct and significant impact on operational efficiency 
and project cost. The algorithm's ability to handle 
complex decision spaces and maintain steady progress is 
aligned with the requirements of coordinating production, 
assembly, and movement in the simulated environment.  

5 Implementation 
The implementation for the RL problem described 

utilizes the OpenAI Gym framework to create a custom 
environment, FactoryEnv, which simulates a mobile 
factory moving through different sections of a 
construction project. It is important to note that the values 
of parameters used in this setup are for illustrative 
purposes only. In a real-world project setting, users have 
the flexibility to customize these values according to 
specific project requirements. This customization 
capability ensures that FactoryEnv can be adapted to 
various construction scenarios, allowing for more 
accurate simulations and effective training of RL models 
tailored to the unique dynamics of each project. The 
environment is characterized by parameters: 

Table 1. Environment parameters 

Parameter Description Value 
num_stops The total number of 

sections the 
infrastructure is divided 

in 

20 

parts_per_stop The number of parts 
required at each section 

10 

assembly_rate The rate at which the 
site assembles parts per 

day 

5 parts 
per day 

production_rate The rate at which the 
factory produces parts 

per day 

8 parts 
per day 

movement_time The time it takes to 
move from one section 

to the next 

3 days 

 
Along with these operational parameters, the 

environment's behavior and agent's performance are 
influenced by a set of reward and penalty parameters, 
defined as follows: 

Table 2 Reward and penalty parameters 

Parameter Description Value 
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DAILY_COST Cost incurred for each day 
of the project duration. 

-1 

FACTORY_R
UNNING_COS
T_PER_DAY 

Cost incurred for daily 
functioning of the factory 

-10 

MOVE_COST
_PER_DAY 

Additional cost for each 
day the relocation of the 

factory  

-20 

SHIPMENT_C
OST 

Cost per unit of distance 
between factory and 
assembly location 

-0.5 

INVENTORY_
COST 

Cost for parts produced in 
excess of the assembly 

requirements 

-1 

UNDERPROD
UCTION_COS

T 

Cost incurred for parts 
underproduced relative to 
the assembly requirements 

-5 

COMPLETIO
N_REWARD 

Reward granted upon the 
successful completion of 

the entire project. 

1000 

MILESTONE_
REWARD 

Reward for each project 
section completed 

30 

 
Employing PPO via the stable_baselines3 library, this 

study utilizes a multi-layer perceptron for simultaneous 
policy and value function approximation within a 
custom-defined FactoryEnv environment. The model's 
architecture and hyperparameters are meticulously 
calibrated: a linearly scheduled learning rate 
commencing at 1e-4, a discount factor at 0.99, a GAE 
(generalized advantage estimate) lambda at 0.95, and an 
entropy coefficient of 0.005. Additionally, the network 
architecture comprises dual-layered structures with 128 
neurons each for both policy and value functions. Batch 
processing is implemented with 2048 steps per batch, 
balancing computational efficiency with learning 
efficacy. The model's initialization incorporates these 
parameters, while TensorBoard integration facilitates 
detailed progress monitoring. 

6 Results 
In the presented results, we observe the performance 

metrics of a RL model over the course of training, 
measured across one million timesteps. Figure 2 
delineates the trajectory of the training loss, a key 
indicator of the model's prediction accuracy regarding 
future rewards. The plot reveals an initial phase with a 
high variance in loss, indicative of the model's 
exploratory learning and parameter optimization. As 
training progresses, a clear downward trend emerges, 
culminating in a stable, low loss value, which suggests 
that the model's predictions have become more reliable 
and consistent. Figure 3 showcases the evolution of the 

average reward during the model's evaluation phase. The 
initial negative values represent suboptimal decision-
making by the model. However, an enhancement is noted 
as the average reward increases, eventually reaching a 
plateau, demonstrating significant learning and policy 
improvement throughout the training process. 

Figure 2. Training Loss Over Time 
 

Figure 3. Evaluation of Average Reward 
 

7 Validation 

7.1 Single Environment Validation  
In assessing the performance of our PPO-based RL 

model, we employed a quantitative validation strategy 
that entailed a comprehensive analysis of reward 
distributions. This strategy involved executing a random 
policy across 100,000 episodes within a consistent 
environmental setting of FactoryEnv. The objective was 
to establish a baseline distribution of rewards that could 
be leveraged as a comparative measure against the 
deterministic output of our trained RL model. 
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The histogram depicted in Figure 4 illustrates the 
frequency of total rewards obtained from the random 
policy across the 100,000 episodes. A dashed black line 
represents the reward achieved by our trained RL model, 
and a dashed red line denotes the maximum reward 
attained by the random policy throughout its trials. The 
RL model's reward, markedly higher than the random 
policy's mean and maximum reward, underscores the 
learning algorithm's success in optimizing decision-
making to enhance reward outcomes. 

 

 
Figure 4. Reward Distribution of Random Policy and 
Comparison with RL Policy over the Same Setting 

7.2 Diverse Environments Validation  
To validate the robustness of the trained RL model, a 

comparative study was conducted against a baseline 
random policy. The comparison was done across a set of 
100 diversified scenarios within a simulated environment, 
specifically designed to mimic a factory setting 
(FactoryEnv). Each scenario presented a unique 
configuration by varying the assembly rate, a critical 
parameter influencing the environment's dynamics. The 
assembly rates for each scenario were sampled from a 
normal distribution with a mean of 5 and a standard 
deviation of 1, ensuring a spectrum of operating 
conditions to challenge the robustness of the model. The 
trained RL model, developed using the PPO algorithm, 
was compared against the random policy in these 
scenarios to assess its adaptability and performance. The 
key metric for comparison was the total cumulative 
reward achieved by the end of each episode, serving as a 
proxy for the model's decision-making quality and 
efficiency. 

The resulting performance, as shown in Figure 5, 
indicates a significant and consistent outperformance of 
the trained RL model over the random policy across all 
tested scenarios. The RL model achieved higher 
cumulative rewards in each individual case, 
demonstrating not only the ability to generalize across 
different settings but also the robustness of its learned 
policy. 

 
Figure 5. Comparison of RL Model versus Random 

Policy over Different Settings 

8 Conclusion 
This study contributes a novel RL-based scheduling 

model for optimizing the operation of mobile factories in 
infrastructure projects. It encompasses a comprehensive 
method for considering an array of performance 
indicators at the project level, including production and 
inventory costs, project duration, and shipping 
expenditures. As such, the reward and penalty parameters 
are designed to encourage cost-effectiveness and timely 
delivery of prefabricated elements. This aligns with the 
very motivation for applying mobile factories in 
construction projects – on-demand production and just-
in-time delivery. Moreover, our approach exhibits 
remarkable flexibility, effectively adapting to a wide 
spectrum of production environments characterized by 
varying rates, the mobility of production facilities, and 
differing operational states such as idleness. Thus, the 
proposed method presents a holistic decision-making 
tool that can empower factory managers to optimize 
project execution strategies.  

However, this research has some limitations. The 
environmental and reward parameters employed within 
the simulated setting may not entirely capture the 
complexity of real-world projects. For example, the 
COMPLETION_REWARD value could include various 
dimensions like the effort required, the time to 
completion, resources needed, and the complexity of 
tasks. As a next step, the practical application and 
validation of our approach in a real-world project setting 
will be imperative to ascertain its effectiveness and to 
fine-tune the model parameters for enhanced realism and 
applicability. By bridging the gap between theoretical 
modeling and practical implementation, we anticipate 
that our RL-based approach will offer tangible benefits in 
the management of factory and construction operations. 
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Abstract – 

Valuable information is embedded in construction 
images which can be used for different construction 
engineering and management purposes. The 
availability of low-cost cameras and robust artificial 
intelligence methods has increased the use of imaging 
technology in construction sites. However, these rich 
data sources are not often used to their full potential 
due to subjective documentation, leading to 
potentially overlooking valuable content. This study 
proposes an ensemble approach that utilizes deep 
learning techniques for object recognition, pixel-level 
segmentation, and text classification to annotate 
images from outdoor construction scenes at medium 
(ongoing activities) and high (project type) levels. 
Experimental results demonstrate the potential of this 
approach by achieving a 70% overall recall rate. 
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Annotation; construction images; construction 
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1 Introduction 
The construction industry has vastly employed image and 
video recording technologies, and a growing number of 
research projects investigate methods for better 
utilization of this valuable data [1]. This trend has been 
facilitated by the emergence of low-cost capturing 
systems, robust computer vision methods, and the 
flexibility in imaging offered by the UAV systems [1], 
[2]. The resulting image databases, typically organized 
through manual labels and metadata, could serve various 
project management purposes, such as progress tracking, 
quality inspection, safety audits, and training [1]. 
However, the unrestrained accumulation of these visual 
data poses challenges in annotation and retrieval, which 
potentially results in underutilizing valuable information 
[3]. Unlike captioning of generic images, the technical 
complexities of construction images demand expert 
knowledge for a practical annotation [4]. Past research 
focused on feature extraction and object detection to 

enhance image annotation [5]. Some explored equipment 
poses [6] and interactions [7], while others provided 
semantic annotation for construction videos through 
spatiotemporal data interpretation of equipment motion 
[4]. However, current annotations mainly cover 
appearing resources and their interactions, lacking 
identification of ongoing activities without visible actors. 
For examples, methods were developed to caption an 
image as “a dozer is pushing the soil on the ground” [7] 
or “the excavator is loading dirt to the truck”. [14]. But 
there is a gap to provide useful annotation where there is 
no actor, i.e. equipment and workers, in the image. 

This research introduces an innovative ensemble 
method utilizing deep learning for low-level, medium-
level, and high-level annotations of outdoor construction 
images, defining objects and materials as low-level, 
activities as medium-level, and project types as high-
level annotations. The proposed approach integrates deep 
learning-based object detection, semantic segmentation, 
and text classification, focusing on outdoor construction 
images to demonstrate the potential advancements of this 
approach. Since indoor and outdoor construction scenery 
includes distinct elements and resources, this research 
only focuses on outdoor settings. 

2 Literature Review 
The construction industry has experienced widespread 
application of digital imaging since the 1990s, leading to 
a substantial increase in image-making rates [8]. Initial 
efforts focused on feature extraction for image retrieval 
based on material patterns and shapes, incorporating 
metadata like location and date [9]. Feature-based object 
detection techniques were used to detect construction 
equipment and workers, but they had mediocre 
performance and faced limitations in multiclass 
detections [10]. Deep convolutional neural networks 
(DCNN) addressed these limitations, offering multiclass 
recognition, automated feature extraction, and improved 
detection performance [11]. Some of the DCNN models, 
like Region-Based CNN (R-CNN) [12] and You Only 
Look Once (YOLO) [13], were employed in construction 
contexts for different tasks like progress monitoring [14] 
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and safety management [15]. DCNN models were also
employed for semantic segmentation at pixel-level 
recognition. Methods like Mask R-CNN [16] and 
DeepLab V3+ were used for progress estimation [17], 
and understanding of construction visual data [18]. 
Efforts were made to produce semantic annotations by 
combining object recognition and Bayesian belief 
networks [4]. Long Short-Term Memory (LSTM) 
architecture [19] could be employed in conjunction with 
a CNN model for extracting semantic information from 
images. This approach contributed to safety management
[20] and descriptive caption generation for equipment 
activities and interactions [7] by analyzing the interaction 
between two objects. Recent developments to caption 
construction images focus on actors and their action(s), 
and generally produce a caption as “an equipment/worker 
is doing something” [7, 14, 28]. Many construction 
images, however, do not contain equipment/workers and 
only capture a snapshot of the progressing construction 
work. This research seeks to address this gap by 
integrating detected objects and materials/surfaces to 
annotate construction images with ongoing activities and 
project types, even in cases where the main actors, such 
as equipment and workers, are not present in the images.

3 Research Methods
This study proposed an ensemble model, integrating 

three machine-learning models to predict general 
construction activities and project types in outdoor 
construction site images. The approach involved two 
deep-learning models for object detection and surface
segmentation, and a third text classifier using a neural 
network for predicting construction activities and project 
type/phase. In this approach, the results of object 
detection and semantic segmentation, i.e. low-level 
annotations, are fed to the text classifier to predict 
medium-level and high-level annotations. Each model 
was trained and tested on separate datasets. Figure 1
shows a flowchart of the developed approach with 
detailed steps outlined in the subsequent sections, 
including results, discussion, and conclusion.

Figure 1. Flowchart of the Proposed Framework

3.1 Data Collection
This study used images of diverse construction 

projects collected from open online platforms like 
Google Images, YouTube videos, Pexels, and Pixabay to 
train and test the developed models. Some of the images 
were taken by the authors from construction sites using 
smartphones. Separate datasets were created for each 
model, tailored to their specific objectives. For the object 
detection model, 5,260 images featuring various 
construction equipment were collected. A dataset of 321 
images was collected for the semantic segmentation 
model. The text classifier dataset comprised 545 images
representing different types and phases of outdoor 
construction projects.

3.2 Object Detection Module
The object detection module was trained using 4,990 

images (95% training and 5% validation) containing 
various construction equipment and workers. The 
training process involved preparing raw data, resizing 
images, and labelling objects using the Image Labeler 
tool by MATLAB [24]. Eleven classes were manually 
labelled with bounding boxes, including nine 
construction equipment types (excavator, bulldozer, 
scraper, off-road truck, truck, loader, compactor, grader, 
concrete mixer), in addition to two generic classes of
humans and regular cars. The YOLO v4 with DarkNet53 
as the backbone, pre-trained on the COCO public dataset, 
was chosen for its performance and processing time. The 
training was conducted on a desktop computer with 32 
GB RAM, a 4.7 GHz Intel Core CPU, and an NVIDIA 
GeForce RTX 3060 GPU. Hyperparameters included a 
gradient decay factor of 0.9, a learning rate 0.001, and 
data augmentation with random horizontal reflection and 
scaling. Batches of 8 images were processed over 85 
epochs using the MATLAB® 2022a software Deep 
Learning toolbox [24] for training and testing.

3.3 Semantic Segmentation Module
The second DCNN model employed semantic 

segmentation to classify image elements, like materials 
and construction surfaces, that might be impractical to be 
recognized by the object detection. This model classifies
objects at the pixel level, with training and test datasets 
manually annotated using the same Image Labeler tool
utilized for the object detection module. Twenty-one 
classes, including concrete, formwork, glass, tower crane, 
human, bin, dirt, equipment, lumber, asphalt, steel, rebar, 
scaffold, bitumen, aggregate, rail, waterproofing, pipe, 
curing blanket, brick, and other (such as sky, mountains, 
trees), were defined for labeling major elements in 
construction sites. The DeepLab V3+ ResNet50 [25]
model was retrained using a labeled dataset of 220 
images. The Deep Learning toolbox of MATLAB® 
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2022a software was used for training [24], adjusting 
stochastic gradient descent with a learning rate of 0.01 
and a momentum value of 0.9. Batches of six images and 
100 epochs were utilized, with data augmentation 
involving random X and Y translations and right/left 
pixel reflections. The training process was carried out on 
the same desktop computer mentioned earlier. 

3.4 Text Classification Module 
The last model in the system is the text classifier, 

which analyzes the outcomes of the object detection and 
semantic segmentation modules to predict medium-level 
(activities) and high-level (project types) annotations. 
This module was trained using a dataset of 385 images 
from a diverse set of construction projects. The objects, 
associated activities, and project phases/types were 
manually extracted from these images based on the 
authors' construction expertise. Then, these extracted 
textual data were manually converted into binary format, 
with 1 representing the presence and 0 indicating the 
absence of objects, surfaces, activities, or project types in 
the images. The dataset encompassed seven types of 
construction projects: building sub-structure, building 
super-structure, bridge construction, road construction, 
heavy construction (i.e., tunnel construction and subway 
construction), railway construction, and pipeline 
construction, and fifteen activities, including rebar 
installation, steel erection (structural), formwork 
shuttering and removal, concrete work, lumber work, 
earth hauling, paving work, material lifting, earthwork 
(i.e., loading, compacting, and removing dirt), excavation, 
masonry work, glazing, rail work, waterproofing, and 
pipework.  

Since the neural network (NN) method has shown 
promising results in various construction-related analysis, 
such forecasting labor productivity [21], analyzing 
accidents [22], and project delay risks [23], it was also 
used in this research.  NN models with multiple hidden 
layers and varying neuron numbers were developed using 
RapidMiner Studio [27], which offers various operators 
for data retrieval, model evaluation, and algorithms. The 
study trained and tested the model across nine 
configurations, with the most effective performance 
observed using two hidden layers, each with five neurons, 
and a Rectifier activation function over 100 epochs. The 
module training was conducted on a laptop with 16 GB 
RAM, 2.3 GHz Intel Core i7-11800H, and an NVIDIA 
GeForce RTX 3060 GPU. 

3.5 Ensemble Model 
The ensemble model combines all the mentioned 

modules, in which the trained object detection and 
semantic segmentation models extract low-level data, i.e. 
detected objects and material/surfaces, and pass them as 

input to the text classifier for medium-level and high-
level annotations. 

4 Experimental Results 
The developed modules and the ensemble model were 

assessed in four phases: 1) the object detection module 
evaluation, 2) the semantic segmentation module 
evaluation, 3) the text classifier evaluation, and 4) the 
ensemble model evaluation, which encompasses all the 
modules and possible propagation of errors. 

4.1 Object Detection Module Results 
The object detection module was evaluated with 270 

images from various construction site scenery gathered 
from the same sources as the training dataset. Model 
evaluation metrics included precision and recall rates. 
Precision is denoted as the proportion of correctly 
predicted positive instances (true positives) out of all 
predicted positives (true positives + false positives). 
Recall as the proportion of correctly predicted positive 
instances (true positives) out of all actual positive 
instances in the dataset. The 11 object classes were 
evaluated individually in addition to the overall 
performance. Table 1 presents the performance of each 
class by the trained YOLO V4 – DarkNet50 classifier. 

Table 1. Performance metrics for each class 

Classes Recall Precision 
Excavator 80.28% 93.44% 
Bulldozer 91.43% 87.67% 
Scraper 76.92% 78.95% 

Off truck 87.93% 72.86% 
Truck 71.83% 77.27% 
Loader 61.36% 57.45% 
Human 54.10% 94.29% 

Compactor 76.36% 66.67% 
Grader 91.43% 78.05% 

Car 84.00% 72.41% 
Concrete Mixer 78.57% 61.11% 

The precision rates for the human and excavator 
classes exceeded 90%, while other equipment classes like 
grader, truck, scraper, and bulldozer achieved precision 
rates higher than 75%. The object detection classifier 
demonstrated an overall recall rate of 77.7% and an 
overall precision rate of 76.4% in detecting construction 
equipment and workers. 

4.2 Semantic Segmentation Module Results 
The semantic segmentation model's performance was 

assessed using a test dataset of 101 images collected from 
open online sources for an outdoor construction setting. 
The test images were manually labeled with the 21 
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previously mentioned classes to develop the ground truth 
file for model evaluation. The mean Intersection over 
Union (mIoU) metric was the evaluation metric used, 
which calculates the overlap between the ground truth 
and the classifier output, divided by the area of their 
union. The Deeplab V3+ with ResNet50 has achieved a 
weighted mIoU of 54.3%. Table 2 presents the results for 
the 21 classes in test images. Some classes, such as tower 
crane, dirt, human, steel, curing blanket, and equipment, 
achieved mIoU rates higher than or equal to 50%. Others, 
including concrete, rebar, lumber, and brick, had mIoU 
rates ranging from 40% to 50%. Classes like formwork, 
glass, asphalt, pipe, scaffold, bitumen, aggregate, and bin 
exhibited mIoU values between 17% and 39%. However, 
the model exhibited poor performance in classes like rail 
and waterproofing, potentially due to their low number 
of sample pixels in the training dataset. These results 
show the model's strengths and limitations, which are 
further detailed in the discussion section.

Table 2. Semantic segmentation classes' mIoU

Classes mIoU Classes mIoU
Concrete 45% Steel 51.3%

Formwork 27.6% Rebar 46.6%
Glass 26.8% Scaffold 16.8%

Tower crane 56.2% Bitumen 13.1%
Human 50% Aggregate 25%
Other 69.3% Rail 10.6%
Bin 20.7% Brick 49.1%
Dirt 67.5% Waterproofing 2.9%

Equipment 60% Pipe 17%
Lumber 43.7% Curing_Blanket 68.2%
Asphalt 39% Steel 51.3%

Despite the varying mIoU rates across the 21 classes, 
the semantic segmentation model mainly aimed to 
identify major objects/surfaces in construction images for 
input to the text classifier. In this study, the top 7 detected 
classes were selected for the text classifier based on their 
pixels counts. A "commonality percentage" assessment 
method determined the accuracy of the top 7 segmented 
classes in representing the actual classes in test images. 
Figure 2 illustrates how the commonality percentage of 
actual classes was calculated among the top 7 detected 
classes. The average commonality percentage across 101 
test images was 85.9%.

Figure 2. Commonality percentage of existing 
actual classes

4.3 Text Classifier Module Results
The text classifier model was evaluated on 160 test 

images using precision and recall rates as performance 
metrics. The aim of this test setup was to assess the 
performance of the text classifier alone to assess how 
well it can annotate activities and project phase/type 
based on the correct appearing objects and surfaces. Thus,
the ground truth objects and surfaces were given to the 
models. In other words, the object detector and semantic 
segmentation classifiers were not used to feed the text 
classifier. The text classifier achieved an overall
precision rate of 92.1% and an overall recall rate of 
86.7%. Table 3 and Table 4 present the results for 
medium-level and high-level predictions of the NN text 
classifier. Most activity predictions achieved high 
precision and recall rates exceeding 90%. Road, rail, and 
pipe construction showed higher results than other 
project types among the high-level predictions.

Table 3. Medium-level (activities) prediction results

Class Precision Recall
Rebar Installation 98.1% 100%

Steel Erection 88.2% 93.8%
Formwork Shuttering and 

Removal
98.2% 100%

Concrete Work 95.3% 99%
Lumber Work 75% 81.8%
Earth hauling 100% 86%
Paving work 75% 60%

Material Lifting 100% 100%
Earthwork 100% 86.5%
Excavation 100% 100%

Masonry Work 66.7% 100%
Glazing 80% 57.1%

Rail Work 100% 86.7%
Waterproofing 100% 87.5%

Pipework 92.9% 100%
Overall Medium-Level 95.9% 94.6%
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Table 4 High-level (project type) prediction results

Class Precision Recall
Building Sub-structure 51.6% 53.3%

Building Super-structure 86.5% 59.3%
Bridge Construction 33.3% 8.3%
Road Construction 90.3% 96.6%

Heavy Construction 83% 50%
Railway Construction 100% 93.3%
Pipeline Construction 100% 90%
Overall High-Level 80.2% 65.6%

4.4 Ensemble Model Results
The same 160 images were used to test the NN text 

classifier to evaluate the entire system (ensemble model). 
The object detection and segmentation classifiers 
processed the images, and their results were passed to the 
text classifier. The ensemble model achieved an overall 
precision of 60.23% and a recall of 70%. Table 5 and 
Table 6 detail the medium-level and high-level prediction
results. Figure 3 shows a sample image from the test 
dataset. It encompasses a building superstructure project,
formwork activity, concrete work, lumber, earth hauling, 
and material lifting. The model correctly predicted the 
project type and four activities. However, rebar 
installation was also classified, while lumber work was 
missed, resulting in 5 true positive instances, 1 false 
positive instance, and 1 false negative. Thus, the 
ensemble model had a precision and recall rates of 83.33%
in this sample.

Figure 3. Ensemble model test image sample

Among the medium-level classifications, there were 
different performance trends. Concrete work, material 
lifting, and earthwork exhibited high-performance rates. 
Some activities, such as rail work, paving work, 
pipework, and earth hauling, demonstrated higher 
precision than recall, meaning that the model made fewer 
predictions than the activities in the ground truth dataset, 
although most were correct. On the contrary, rebar 
installation, steel erection, formwork shuttering and 

removal, and lumber exhibited recall rates surpassing 
precision, which means that the model made many 
predictions for these activities; however, not all were 
correct. Waterproofing and glazing showed lower 
performance, with precision and recall rates below 33%, 
and masonry work was not detected. Among high-level 
classifications, railway and pipeline constructions 
demonstrated precision values of 100%, yet their recall 
values were only 33.3% and 10%, respectively. Road 
construction and building super-structure followed, 
achieving precision rates of 95.65% and 63.89%, 
respectively. Building sub-structure, bridge, and heavy 
construction obtained less than 36% precision values, 
indicating a lower performance than other project types.

Table 5. Medium-level (activities) prediction results

Class Precision Recall
Rebar Installation 60.98% 94.34%

Steel Erection 40% 75%
Formwork Shuttering and 

Removal
51.85% 100%

Concrete Work 78.57% 97.1%
Lumber Work 30.95% 59.1%
Earth hauling 76.92% 47.62%
Paving work 60% 30%

Material Lifting 80.85% 95%
Earthwork 87.1% 72.97%
Excavation 66.67% 51.28%

Masonry Work 0.00% 0.00%
Glazing 28.57% 28.57%

Rail Work 100% 46.67%
Waterproofing 33% 25%

Pipework 85.71% 46.15%
Overall Medium-Level 63.77% 78.2%

Table 6 High-level (project type) prediction results

Class Precision Recall
Building Sub-structure 35.59% 70%

Building Super-structure 63.89% 42.59%
Bridge Construction 11.54% 25%
Road Construction 95.65% 75.9%

Heavy Construction 12.5% 10%
Railway Construction 100% 33.33%
Pipeline Construction 100% 10%
Overall High-Level 48.1% 47.5%

The ensemble model exhibited a noticeable
performance reduction due to errors from the object 
detector and semantic segmentation compared to 
standalone text classifier. A sensitivity analysis was 
conducted in two scenarios to assess the impact of each 
DCNN module. In the first scenario, only the object 
detection classifier was used with the ground truth 
segmentations, while in the second scenario, only the 
semantic segmentation classifier processed images.
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Based on the ground truth dataset for the text classifier, 
the analysis revealed that semantic segmentation had a 
more pronounced effect on the performance of the overall 
system than the object detection. Scenario two exhibited 
a 6% drop in precision and a 19.38% drop in recall 
compared to scenario one, as shown in Figure 4.

Figure 4. The difference between the two 
scenarios and the base scenario

5 Discussion
The outcomes obtained from the three modules 
showed promising results in improving the annotation 
of outdoor construction images, by providing
appearing objects, ongoing activities, and project 
types. However, these results also showed challenges 
and limitations encountered by the classifiers in 
specific instances. The subsequent four subsections 
discuss these challenges and propose potential 
solutions to enhance the practical application of the 
proposed approach.

5.1 Object Detection Module
The object detection classifier resulted in recall and 

precision rates of 77.7% and 76.6% across 11 object 
classes, respectively. Despite this promising performance, 
there were instances of missed or misclassified objects. 
For example, truck, off-truck, and concrete mixer classes 
exhibited lower precision rates than major equipment like 
excavators and bulldozers. Some misclassifications 
included regular dump trucks identified as off-road dump 
trucks and concrete mixers classified as regular trucks. 
Similarities in the front view of this equipment from 
different manufacturers contributed to such 
misclassifications. Misclassifications were observed for 
loaders, roller compactors, and graders due to visual 
similarities, specifically from their rearview. Moreover,
image quality factors, such as resolution and occlusion, 
which are common in busy construction sites, contributed 
to increased false negatives, notably in the human class. 
Enhancing the training dataset with more images 
featuring diverse equipment types and poses could 
potentially improve recall and precision.

5.2 Semantic Segmentation
The mIoU metric was utilized to evaluate the

performance of the semantic segmentation classifier in
detecting elements in outdoor construction sites. Across 
101 test images, the model achieved an mIoU rate of 54.3% 
in segmenting 21 classes. However, misclassifications 
occurred, especially when elements shared similar visual 
features. The model confused lumber, formwork, and 
wooden scaffolding systems due to material and texture 
similarities. Waterproofing was misclassified as asphalt 
or bitumen, and rail was often detected as steel due to 
similarities in their material composition. Additional 
misclassifications included aggregate as dirt and bitumen 
as asphalt. Pipe was detected as dirt or equipment. This 
module's performance relies highly on the training 
dataset; thus, it is suggested to expand the training dataset 
and enhance image quality.

5.3 Text Classifier
The standalone NN classifier achieved an overall 

precision rate of 92.1% and a recall rate of 86.7%. 
However, among high-level classifications, heavy 
construction, building sub-structure, and bridge 
construction exhibited lower precision and recall rates
than other project types. These misclassifications are due 
to visual element similarities with other project types, as 
illustrated in Figure 5 (a) and Figure 5 (b), where a heavy 
construction project (road underpass) and a sub-structure 
construction of a high-rise shared visual elements like 
excavators, concrete, and dirt, leading to confusion 
during classification. The text classifier faced challenges 
in differentiating instances of these classes, leading to 
higher classification error rates. Heavy construction was 
frequently misclassified as building sub-structure, 
building super-structure, or road construction. Similarly, 
building sub-structure was often confused with bridge 
construction, heavy construction, building super-
structure, and road construction. Moreover, bridge 
construction was mixed up with building super-structure 
and building sub-structure classes.

Figure 5. (a) Heavy Construction (underpass 
construction) and (b) Building sub-structure

The model struggled to predict paving, masonry, and 
lumber work in the medium-level classification. For 
example, the classifier tended to overpredict lumber work, 
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particularly when lumber was stored on the construction 
site (e.g., for formwork or lagging) without apparent 
lumber work in the image. Paving work was mainly 
classified when bitumen or asphalt was present in road 
project images. However, when a road made of asphalt 
appears in the background of a project, as seen in Figure 
6 in a building sub-structure project, the classifier 
predicts paving work. Furthermore, the presence of 
common road construction equipment, including an 
excavator and dump trucks, in this image further 
confused the classifier. Similarly, some images included 
adjacent buildings made of bricks (and other building 
elements) in the project's background, which is not part 
of the project. The classifier could mistakenly identify 
masonry work in such cases, leading to more false 
positives and reducing the precision rate. 

 
Figure 6. Asphalt roads beside a building sub-
structure project 

5.4 Ensemble Model 
The integration of the three modules had impacted the 

overall performance of the ensemble model. For example, 
it struggled to predict pipeline construction projects, 
achieving a 10% recall rate, due to the poor performance 
of semantic segmentation in classifying "pipes" which 
achieved an mIoU of 16.9%. Consequently, the text 
classifier could not classify a pipeline project type due to 
the inaccurate low-level classification. Similarly, 
masonry work predictions were affected as the text 
classifier predicted masonry work where the "brick" class 
was present among the data, but buildings made of bricks 
in the project surroundings led to such misclassifications. 
Thus, the precision rate for masonry work was 
consequently impacted. The semantic segmentation 
modules also achieved mIoU of 49.1% for "brick" 
detection, further contributing to the ensemble model's 
overall low performance.  

The sensitivity analysis highlighted the substantial 
impact of semantic segmentation on the ensemble 
model's performance; however, developing a robust 
semantic segmentation model was not the primary goal 
of this study. It should be mentioned that a properly 
trained model can result in mIoUs of up to 65%, as shown 

in recent studies [18]. Inherent issues in annotating 
project types in images exist, as an image may include 
limited visual information, making it challenging even 
for experts to accurately determine the project type 
without additional context, as shown in Figure 7. 

 
Figure 7. A retaining wall under construction with 
an unclear project type 

6 Conclusion 
This study introduces an ensemble model utilizing 

computer vision and machine learning to annotate 
outdoor construction images with activities and project 
types. Two DCNN classifiers for object detection and 
semantic segmentation were trained to detect key 
elements and surfaces in outdoor construction scenes. 
These classifiers initially process construction images to 
detect various construction elements, materials, and 
equipment. The identified objects and surfaces are then 
fed to a trained NN text classifier to predict construction 
activities and project phases/types. The results showed 
promising performance, achieving a precision rate of 
60.23% and a recall rate of 70% for predicting 15 
construction activities and seven project types. The 
ensemble model offers potential improvements in 
automating image documentation and retrieval in the 
construction industry, with suggestions to enhance 
performance by increasing training datasets. However, 
one of the limitations of this study is to predict detailed 
activities due to the absence of a temporal dimension, 
relying on still images only. Future research may explore 
dynamic datasets, such as videos, to address this 
limitation. Additionally, a multitask vision language pre-
training approach, such as Bootstrapping Language-
Image Pre-training (BLIP) [27], could be explored to 
develop image and text classifiers simultaneously in 
future work. 
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Abstract –  

Digital Twins (DT) represent a technology that 
provides a way to encompass useful information of 
built assets for the sake of productivity enhancement 
in the AECO sector. Its adoption in the industry is still 
at early developmental stages. Significant strides have 
been made in establishing frameworks and workflows 
for effective DT implementation. This paper analyzes 
a case study in which a DT of a built bridge is 
developed during the particular episode of a load test, 
to understand how structural design can benefit (and 
potentially adapt) to the specific demands this 
innovative technology may generate. The bridge 
under twinning was already built and its design was 
neither determined nor influenced by the fact that 
load testing procedures were meant to be twinned. By 
identifying the link between the development of the 
DT of the bridge and its design, a conceptual diagram 
illustrates the key components to consider during the 
structural design phase. The main objective of this 
diagram is to present an encompassed vision of design 
that already accounts for the future existence of the 
DT of the asset, beyond the delivery of a BIM model. 
The implementation of the proposed diagram for the 
case study is described. As a result, it is observed that 
the proactive integration of structural engineers' 
specialized knowledge holds promise for enhancing 
the efficiency of DTs for construction and 
maintenance tasks. 

 
Keywords – 

Digital Twins; Structural Design; FEM; BIM; IFC 
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1 Introduction 
The AECO (Architecture, Engineering, Construction 

and Operation) sector has presented lower productivity 
indexes compared with other industries [1]. This can be 
attributed to the reluctance of a traditional sector to adopt 
technologies that can genuinely help enhancing 
capabilities. The involvement of diverse stakeholders in 
infrastructure projects and the dynamic environment of 
the construction sites with constant variations in site 
layout, equipment, materials, and other components, 

contribute to the complexity of delivering projects 
avoiding unforeseen issues, delays, or cost overruns [2]. 

Recent years have witnessed the extensive adoption 
of Building Information Modeling (BIM), elevating the 
efficiency of data generation and exchange within 
collaborative environments. Nevertheless, as 
digitalization and process automation, fueled by 
technologies like Internet of Things (IoT) and Artificial 
Intelligence, continue to advance, the BIM path 
encounters new hurdles in adapting to a broader 
interconnected context for delivering more sophisticated 
construction services [3][4]. Digital Twins (DTs), 
defined as a sophisticated information construct that 
enables a timely and useful connection between real and 
virtual assets, hold the potential to effectively address 
digitization and smart management needs within the 
sector [5]. 

Recent research concerning DTs has been focused on 
proposing frameworks and workflows for a successful 
application of the technology [6][7][8]. It can be 
observed that during the last years, several assets in 
construction and maintenance stages have been fully (but 
mostly partially) twinned. However, these assets may not 
have been designed consciously with the knowledge of 
the potential of their twinning. A gap regarding the role 
of the structural design phase in meeting the specific 
requirements of a DT in subsequent stages is identified. 
In addition, structural design is not directly connected to 
long term assessment of the asset (for instance, a direct 
connection with risk assessment involving structural 
components or structures).  Structural engineers have the 
specialized knowledge to identify critical construction or 
maintenance processes that may need monitoring to 
ensure quality or enhance the management of an 
infrastructure. During the design phase, engineers 
consistently grapple with uncertainties. It is of interest to 
track these uncertainties during subsequent stages. 
Numerical models require calibration, and this holds 
particular significance in assessing the structural 
performance of infrastructures. Over the design stage, 
defining expected physical values at critical locations 
within a monitoring plan, and seamlessly integrating 
them, along with sensors and simulations data into a 
centralized digital system, can boost the potential of a DT, 
simultaneously reducing working hours for validation 
and verification.  Risk assessment procedures used on the 
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long run can also benefit from early identification of 
crucial aspects of the structure.   

In this paper, an example of a twinned infrastructure 
(a bridge) is provided. In this example, the bridge is 
twinned after the asset is designed and constructed. It 
represents a common procedure for the new generation 
of digitally twinned assets. However, structural 
engineering design offices may contribute to more 
sophisticated twinning by providing crucial insights at 
early design stages. Through a conceptual diagram, four 
key components are depicted: (1) Monitoring plan, (2) 
Sensors-data processing (3) Verification and validation, 
and (4) Simulations data exchange. Afterward, the 
applications of the conceptual diagram are showcased for 
the case study. 

The practices presented in this research presumes the 
existence of a CDE (Common Data Environment) 
framework that enables access and updates of 
simulations for validation and verification during the 
lifecycle of an asset within a user-friendly interface, 
supporting risk management and decision-making. 
Section 6 outlines the work-in-progress associated with 
this topic. 

2 Structural Analysis and Digital Twins 
A DT as a virtual representation of a physical asset 

requires constant updates to the state and conditions of 
that real infrastructure. Therefore, varied simulations and 
predictions must be performed to match with on-site 
collected data. Ideally, this process can be infused into 
centralized digital systems where the collection of 
information of structural models and sensors data allows 
the validation and verification at both, construction and 
maintenance stages. This provides valuable information 
in the form of performance indicators that can support 
data-driven decision-making [9]. 

The key challenge lies in effectively bridging the gap 
between, BIM models, on-site physical data, assessment 
and structural analysis simulations. This integration 
should be completed within a flexible framework 
ensuring the unified use of information while upholding 
interoperability and maintainability over the 
infrastructure lifecycle [10].  

Literature on the integration of BIM and structural 
simulations is increasingly growing [11][12][13]. 
Primarily, the existing research concentrates on 
facilitating interoperability between structural analysis 
and BIM software, and on enhancing the workflow for 
generating a structural analysis model from an 
architectural model, thereby minimizing the need for 
rework during initial design cycles. 

For instance, Zhao Xu et al. [14] have proposed a new 
method to transform a BIM model into a connection 
model using the Brep graphic representation. Then, a 

discretization of filaments is done to obtain a refined 
finite element analysis. Additionally, they achieved the 
visualization of FEM (Finite Element Method) results on 
an OpenBIM environment following the IFC (Industry 
Foundation Classes) schema.  

The primary goal of this paper is to align the 
structural design phase as a way to provide crucial 
information for subsequent DTs. Thus, facilitating the 
gathering of BIM models, measurements, processing, 
assessment, and structural analysis simulations in a 
centralized digital system.  

3 The Case Study 
This research is performed within the frame of a 

H2020 European project called Ashvin [15]. Its main 
goal is to pull out methodologies and cohesive solutions 
for many kinds of data flows to implement DTs during 
the design, construction, and maintenance phases. One of 
the demo cases of the project is La Plata viaduct (see Fig. 
1), which belongs to a high-speed train network in 
Extremadura, Spain. The bridge is a 4-spanned post-
tensioned slab with a total length of 114 meters and 
represents the case study of this research. 

 
Figure 1. Viaduct La Plata during the load test 

An IFC-based BIM model was generated from 
existing 2D drawings. The administration provided 
access during the load test of the bridge. Accelerations, 
displacements, and strains were acquired for dynamic 
and static tests. The collected data was synced and 
uploaded to an IoT (Internet of Things) platform. 
Mechanical properties of the materials were defined from 
the original design reports. Information regarding the 
construction process was not provided. Structural 
analysis models were generated to match expected 
against measured values, validating the structural 
performance of the bridge. The DT paradigm was 
approach through the integration of multiple layers of 
information. BIM, FEM models, measures, and related 
standards (see Fig. 2), were knitted together to generate a 
virtual asset within a CDE, encompassing information 
pipelines from on-site measurements to risk assessment 
applications. Extended details about the procedure are 
described in [16]. 
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Figure 2. DT information layers of the case study 

From the lessons learned in the digital twinning of the 
case study, which involved dealing with an existing asset 
without construction procedure data and the participation 
of the bridge structural designers, the proposed 
conceptual diagram displays key components for the 
design stage as a way to anticipate the development of its 
DT. As a result, singularities about the structural 
behavior of an infrastructure can be considered a priori 
incorporating the technical knowledge of the designers. 
In section 5, the application of the conceptual diagram is 
described for the case study, guiding future 
implementation. 

4 The Conceptual Diagram 
Anticipating a DT during the structural design stage 

of an infrastructure is crucial for meeting technical 

requirements and effectively monitoring key 
construction or maintenance tasks.  

To address this procedure, a conceptual diagram is 
presented in Fig. 3. Within the diagram, beyond the 
deliver of a BIM model, four main components should be 
integrated into the DT: 1) A comprehensive Monitoring 
Plan delineating critical construction or maintenance 
activities, defining physical values for measurement, 
specifying the location and scale of the measures, 
recommending the type of sensors, and generating a 
schedule for data collection. 2) Code-based Sensors Data 
Processing techniques for each physical magnitude, to 
convert raw sensor-based data into meaningful 
information. 3) Verification and Validation processes 
identifying Key Performance Indicators (KPIs) aligned 
with standards or quality control requirements. These 
KPIs must be converted into machine-readable formats 
such as JSON or XML for seamless integration into a DT. 
4) A Simulation Data Exchange to the target CDE, 
meeting its framework requirements for exporting 
structural analysis models facilitating accessibility and 
updates of simulations. 

The integration of these components into a CDE will 
ensure a robust foundation for the implementation of DTs 
over the construction and maintenance phases. 

  
Figure 3. The conceptual diagram 

5 Application to the Case Study 
As the access to the bridge was provided during the 

load test, the actions executed for developing the DT of 
the bridge were directed on digitizing the components 
and processes for checking structural performance [16]. 
From the results and the lessons learned over the 

developments, in this section a knowledge transfer is 
done by applying the proposed conceptual diagram, 
considering a scenario where the structural design 
anticipates the digital twinning of the load test. 
Procedures were carried out following the Spanish 
national standard NAP 2-4-2.0 [17], which regulates the 
load testing of railway bridges. 
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5.1 Monitoring Plan 
For the case study, the critical construction procedure 

to monitor was the validation of the structural 
performance to approve the start of the operation. The 
physical magnitudes to measure were accelerations, 
displacements and strains at mid-span and supports. The 
sensors and their description were added to the IFC-BIM 
model at the required locations employing the IfcSensor 
entity. The schedule of the measures was generated 
within the IFC-BIM model as metadata using the entities 
IfcWorkPlan, IfcWorkSchedule, IfcWorkCalendar, and 
IfcTask. The entities and relations of the IFC schema to 
perform this procedure are depicted in Fig. 4. 

  
Figure 4. IFC entities and relationships to 
generate a Monitoring Plan 

By generating an IFC-based Monitoring Plan, the 
digitization of the information is achieved, and its 
integration into a CDE is facilitated, given that the IFC 
schema is a well-known open standard. 

5.2 Sensors Data Processing 
To calculate the values of interest for displacements 

and strains, it was required to develop Python scripts for 
processing the collected data from LVDTs and strain 
gauges, considering the characteristics of the sensors. On 
the other hand, for accelerometers, an application able to 
identify vibration modes of a structure has also been 
implemented. This Python-based application estimates 
the vibration modes of a structure based on synced 
accelerometers data [18].  

Furthermore, scripts were developed following the 
cloud computing framework of an IoT platform [19] to 
upload and retrieve sensors data. 

5.3 Verification and Validation 
To decide whether the structural performance of the 

bridge is satisfactory to initiate operation, the NAP 2-4-

2.0 standard defines parameters and limits that must be 
within acceptable ranges. In this sense, the results of the 
load test should be available in the form of indicators.  

To achieve the digitization of the validation and 
verification for the case study, the formulas to estimate 
the parameters established by the national standard, were 
integrated into the CDE using python scripts. Moreover, 
the results of the load test were parametrized and 
consigned into JSON machine-readable dictionaries to 
enable the display of indicators for end-users. Fig. 5 
presents the JSON defined to verify displacements. These 
procedures allow the automation of verification by 
digitizing the national standard. This information can be 
retrieved at any moment during the lifespan of the asset, 
reducing working hours and the waiting period to get the 
results of validations.   

 
Figure 5. JSON schema for displacements 
validation 

5.4 Simulation Data Exchange 
One of the main challenges of digital twinning is 

embedding simulations of various kinds within a CDE. 
Usually, the commercial software for performing 
structural analysis require development of APIs and 
expertise to package information, which increases the 
complexity of exchanging data. 

For the case study, JSON dictionaries were generated 
to include the results of a proprietary license Software 
package called MIDAS [20] within the target CDE, as 
shown in Fig. 6. 

However, due to the absence of automation, the 
process was time-consuming. In addition, it would be 
inefficient in enabling future updates. In section 6, a 
work-in-progress research project that aims to develop an 
open-source data model for exchanging structural 
analysis models is described (O-SAM). The data model 
will facilitate the delivery of structural analysis 
simulations to target CDEs, helping to perform a 
seamless Simulation Data Exchange facilitating 
accessibility and updates.   
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Figure 6. Structural Analysis results within the target CDE 

6 Work-In-Progress: The O-SAM Data 
Model 

A DT that pretends to hold various simulations of a 
real asset must be capable of flexibly exchanging 
structural analysis models to enable access and updates 
of these simulations. On the other hand, to perform 
structural analysis calculations there is a considerable 
variety of options available in the market. Each of these 
software generates simulation models and results in its 
format, hindering interoperability.  

The IFC 4x3 schema [21] have tried to cover this 
issue by its IfcStructuralAnalysisDomain. Nevertheless, 
the standard is limited as it is not possible to properly 
define structural analysis results and entities such as 
finite element meshes and 3D solids. 

Authors’ current research is focused on developing 
O-SAM data model. It is possible to break down this 
open-source data model into two parts: Firstly, a unified 
JSON-based structural simulation model schema. The 
schema is accompanied by a set of converters that allows 
multiple FEM software to upload simulation information 
to the DT. Secondly, the incorporation of a graph-based 
representation into the existing model will seamlessly 
unite simulations with other data and models in the DT 
using knowledge graphs. These graphs streamline the 
integration and contextualization of information from 
disparate systems into a cohesive and semantically rich 
model, characterized by a flexible and intuitive structure 
that aligns seamlessly with the demands of a DT [22]. 

7 Conclusions 
Through a conceptual diagram, this paper presents the 

components to consider over the structural design phase 
for anticipating to a DT. The development of the 
proposed diagram was executed by transferring the 
knowledge of digital twinning the load test of a railway 
bridge.  

The purpose of the study was to include the 
specialized knowledge of structural engineers in planning 
and preparing the framework for monitoring construction 
or maintenance procedures within a DT. If these 
procedures are digitized during the design stage, costs 
and working hours are reduced. For instance, to check the 
structural performance of the case study it was necessary 
to generate new structural models to define the expected 
physical values. Furthermore, the time gap between data 
collection and the validation process was significant as 
there was no automation in processes. 

On the other hand, the information provided from the 
collaborator to develop the digital twin of the case study 
was limited and delivered as isolated silos. A centralized 
system which gathers the structural design information 
will facilitates the execution of construction or 
monitoring tasks. 

There are still obstacles to overcome for DT adoption 
in the structural engineering domain. There is a lack of 
civil engineers with expertise in Information 
Technologies. Moreover, structural design offices may 
hesitate to share project information, concerned about 
overexposing their design procedures. Finally, owners or 
public administrations must include in the infrastructure 
design contracts the digitization of Monitoring Plans and 
Verification and Validation procedures, the development 
of Sensors Data Processing techniques, and the delivery 
of simulation models and results into a target CDE.             
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Abstract –  

This study introduces an innovative method for 
enhancing digital modeling accuracy in construction 
site monitoring by integrating UAV imaging with 
advanced machine learning and computer vision 
algorithms. It focuses on removing temporary 
elements like construction machinery from images. 
The method involves two steps: first, using deep 
learning algorithms, for instance, segmentation to 
detect and segment construction machinery from 
UAV images trained on the Aerial Image Dataset for 
Construction (AIDCON); second, employing image 
inpainting techniques, utilizing the Places2 dataset 
and the LaMa algorithm, to fill in the areas left vacant 
by the removed machinery. Demonstrated on a 
parking garage construction site in Ankara, Türkiye, 
the results show high accuracy in machinery 
segmentation and effective image inpainting, as 
evidenced by metrics like Normalized Root Mean 
Square Error (NRMSE), Peak Signal-to-Noise Ratio 
(PSNR) and Structural Similarity Index (SSIM). This 
approach contributes significantly to the field of 
construction site monitoring by refining digital 
models and shows potential for broader application in 
the industry. Future research directions include 
developing a specialized image inpainting dataset for 
construction scenarios and extending the 
methodology to encompass more types of temporary 
site elements, paving the way for more efficient and 
accurate project management in construction. 
Keywords –  

Image segmentation, image inpainting, UAV, 
point cloud, progress tracking 

1 Introduction 
In the construction industry, digital modeling of job 

sites is essential for efficient project management and 
execution. Automated monitoring systems, frequently 
incorporating advanced technologies such as UAVs, 
LiDAR, and machine learning, require accurate data to 

monitor and compare ongoing construction activities 
with planned ones. These systems also play a crucial role 
by enabling the detection of deviations or potential delays. 
Such systems offer a proactive approach to project 
management, allowing project managers to address 
issues promptly and keep the project on track. 

In practice, challenges arise due to temporary objects 
such as machinery, equipment, and materials on the 
construction site. Such objects can create occlusion in the 
digital model, obscuring the actual progress of the project. 
Their presence in the digital representation can lead to 
inaccuracies in assessing the extent of the completed 
structure, potentially resulting in misguided decisions 
and inefficiencies. Therefore, they need to be extracted 
from the digital models in an automated manner. 

Researchers in the field of UAV-based 
photogrammetry pointed out significant challenges in 
accurate mapping and calculations due to moving objects 
such as cars, construction equipment, and temporary 
facilities [1,2]. These obstacles notably affect 
computations, leading to the erroneous generation of 
height differential maps. Their findings underline the 
necessity for enhanced methods to overcome the 
inaccuracies introduced by non-terrain objects. 
Automated monitoring systems can gain a clearer and 
more accurate view of the construction progress by 
eliminating these objects from the digital model. This 
practice is crucial as it allows for a more precise 
comparison between the current site condition and the 
project plan. It ensures that the progress tracking is 
focused solely on the permanent structural developments 
rather than being skewed by temporary site elements. 
This leads to enhanced overall efficiency and 
productivity of the construction project, ensuring it is 
completed on time and within budget. 

Building on the critical need for accurate digital site 
representation, particularly in light of the challenges 
posed by temporary objects, it becomes clear that vision-
based technological solutions are essential. Image 
segmentation and image inpainting emerge as crucial 
techniques in this context. Image segmentation involves 
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dividing a digital image into different segments to 
distinguish between various elements, such as separating 
temporary objects like machinery and equipment from 
permanent structural components [3]. On the other hand, 
image inpainting is reconstructing missing or obscured 
parts of images [4]. This technique becomes particularly 
valuable in construction for filling areas from which 
temporary objects have been removed, thereby providing 
a more precise and accurate representation of the actual 
site conditions. 

This study proposes a method that combines image 
segmentation and inpainting to produce well-represented 
digital models of construction sites such as point clouds. 
Initially, image segmentation is utilized to identify and 
isolate temporary objects within the site images. 
Following their removal, image inpainting is applied to 
fill in the resultant gaps, effectively recreating the 
obscured parts of the construction site. The inpainted 
images serve as an accurate base for the 3D 
reconstruction process. By utilizing refined images, point 
clouds can be generated to accurately reflect the actual 
state of the construction site, free from distortions caused 
by temporary objects. This approach significantly 
benefits the automated monitoring systems, providing 
them with a more reliable data source for tracking the 
project's progress. It enables precise tracking and 
assessment of construction activities, leading to better 
resource allocation, decision-making, and, ultimately, 
more efficient and timely completion of construction 
projects. 

2 Background 
Eliminating occlusion is notably challenging due to 

the variable geometry of construction surfaces. Various 
traditional terrain filtering methods have been developed 
for digital terrain generation, which can also be applied 
to point clouds of construction. They can be classified 
based on geometric principles: slope-based, morphology-
based, and surface-based methods. 

Slope-based approaches [5,6] focus on evaluating the 
slope in a localized area and categorizing points as 
ground and non-ground based on a predefined slope 
threshold. Morphology-based methods [7,8] employ 
mathematical morphology techniques to effectively 
identify and remove points that do not correspond to 
ground surfaces. Surface-based methods take a different 
approach by gradually selecting points from raw point 
clouds to construct a ground surface model. This is 
commonly achieved through the Triangulated Irregular 
Network (TIN) [9]. Other notable research methods in 
recent years are the Simple Morphological Filter (SMRF) 
[10] and the Cloth Simulation Filter (CSF) [11]. 

While these algorithms have proven effective in 
various scenarios, they also share certain limitations. 

Their successful application requires users to thoroughly 
understand the algorithms and the specific characteristics 
of the sampled regions. This necessity for specialized 
knowledge makes these methods more challenging to 
apply. Moreover, in cases where the sampled region is 
extensive and features complex terrain relief, the 
parameters chosen for one site may not be applicable 
across the entire area without leading to errors in 
classification. Numerous classical machine learning 
algorithms have been introduced to enhance the 
robustness and level of automation in terrain generation. 
These algorithms aim to provide more adaptable 
solutions for terrain filtering in varied and complex 
construction environments. 

In computer vision, deep learning has risen 
significantly in recent years. Deep learning techniques in 
image inpainting are adept at extracting semantic details 
from images, making more accurate predictions about 
missing content. Techniques such as Convolutional 
Neural Networks (CNNs) and Generative Adversarial 
Networks (GANs) have proven highly effective in 
capturing nuanced image data. Many studies have 
successfully employed CNNs to refine image inpainting 
processes, leading to notable progress [12, 13]. Among 
the notable variations of CNNs are Fully Convolutional 
Networks (FCN) [14] and U-Nets [15]. Additionally, the 
introduction of GANs has been influential, as they are 
particularly well-suited for image inpainting tasks due to 
their strong data generation capabilities [16]. 

To support these advancements, researchers have 
developed a variety of image inpainting datasets and 
applications, each specifically designed for different 
types of images, scenarios, or inpainting challenges. Key 
datasets such as ImageNet [17], Places2 [18], Paris 
StreetView [19], and CelebA-HQ [20] have been 
instrumental in the progress and assessment of image 
inpainting algorithms. These datasets have provided the 
necessary diversity and complexity for refining and 
evaluating inpainting techniques. 

Advances in deep learning-based inpainting methods 
have been significant and widespread, impacting areas 
including urban modeling, shadow manipulation, 
construction management, and infrastructure planning. 
For instance, Kapoor et al. [21] utilized these techniques 
to create Nostalgin, a tool designed for reconstructing 3D 
city models from historical photographs by filling in 
missing data, thus offering a reasonable representation of 
the past. Similarly, Wei et al.  [22] developed a dual-stage 
GAN method specifically for shadow inpainting and 
removal, notably improving color retention in shaded 
areas. In the realm of construction, Bang et al. [23] 
applied GANs for enhanced detection and reconstruction 
of construction resources in UAV imagery. Further, 
Angah and Chen [24] proposed a context inpainting 
method to eliminate obstructions in construction site 
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images, facilitating the creation of Building Information 
Models. W. J. Kim et al. [2] enhanced the detection of 
moving objects by improving background details at a 
pixel level. 

J. Park et al. [25] also introduced a technique to 
generate vehicle-free ortho-mosaics from UAV images, 
thereby improving transportation infrastructure 
management. These diverse applications highlight the 
adaptability and efficiency of inpainting in tackling 
complex challenges across various fields. In this study, 
the objective is to utilize deep learning-based image 
inpainting techniques to identify and remove 
construction machinery from images. This approach aims 
to represent the construction field accurately, which is 
crucial for the subsequent steps in 3D reconstruction.  

3 Method 
The study introduces a comprehensive method for 

enhancing the accuracy of digital models in construction 
sites by removing temporary elements, such as 
construction machinery, from UAV-captured images. 
This methodology unfolds the parts mainly: 
segmentation of construction machinery through instance 
segmentation, followed by applying image inpainting 
techniques to refill the absence of these objects from the 
images (Figure 1). 

 

 
Figure 1. Flowchart of the method 

The first stage aims to detect and segment 
prominent construction machines like excavators, 
bulldozers, and trucks from the aerial images. Deep 
learning algorithms, tailored explicitly for instance 
segmentation, are deployed for this purpose. Instance 
segmentation offers a more detailed mapping of an image 
compared to traditional methods. It partitions an image 
into regions or pixels corresponding to individual objects, 
producing an exact "mask" for each object. This 
heightened level of detail in segmentation is essential in 

accurately identifying and subsequently removing 
objects from images.  

The deep learning model trained by the AIDCON - 
Aerial Image Dataset for Construction [26] was used to 
facilitate this process. The AIDCON dataset includes 
2155 images captured by UAVs. It provides bird's-eye 
views of various construction environments annotated at 
the pixel level, featuring nine categories of construction 
machinery like dump trucks, excavators, loaders, and 
dozers. This model smoothly detects and segments 
construction machinery in the UAV imagery. 
Subsequently, the identified objects are converted into 
binary image masks, which are used in the image 
inpainting process to eliminate these objects from the 
images.  

The second stage involves the application of image 
inpainting methods. It utilizes the masks generated in the 
previous stage. The inpainting algorithm effectively fills 
the pixels previously occupied by the machinery with 
pixels suitable for the construction site environment. A 
pre-trained model on the Places2 dataset [18], renowned 
for its vast collection of diverse images across numerous 
unique scene categories, is employed. This dataset 
provides a robust and varied training environment for the 
model, significantly improving its capability to detect 
and remove construction machinery in many scenarios. 
After evaluating various inpainting techniques 
mentioned in the literature, the Large Mask Inpainting 
(LaMa) algorithm [27] is used. This algorithm is 
particularly adept at handling large missing regions, 
complex geometric structures, and high-resolution 
images, making it an ideal choice for the study. 
Combining the pre-trained Places2 dataset and the LaMa 
algorithm allows us to achieve robust and visually 
consistent inpainting results. 

By merging the strengths of instance segmentation 
and advanced image inpainting techniques, the method is 
designed to produce digital models that accurately reflect 
the actual state of construction sites, devoid of distortions 
caused by temporary construction machinery. Building 
on the success of removing temporary construction 
machinery from UAV images, the study advances into 
the phase of 3D reconstruction of the current construction 
sites. Structure from Motion (SfM) [28] and Multi-View 
Stereo (MVS) [29] techniques are employed to create 
detailed point clouds. This integration of advanced image 
processing with 3D reconstruction technologies ensures 
that the final digital models accurately represent the 
actual state of the construction sites, significantly 
enhancing project management and planning capabilities. 

4 Results 
This section outlines the experiments conducted to 

assess the effectiveness of the proposed system in 

UAV Imaging

Image 
Segmentation

Image 
Inpainting

3D 
Reconstruction
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construction environments. It offers a detailed 
examination of how image segmentation, inpainting, and 
3D reconstruction techniques can be applied to track 
construction progress in real-world scenarios. 

4.1 Study Area 
The field study was conducted at a job site in Ankara, 

Türkiye, where a parking garage covering more than 
9,000 square meters is being constructed beneath a 
courtyard. This site was selected for its suitability for 
progress monitoring due to the variety of machinery 
present. 

4.2 Data Collection 
This study conducted UAV imaging during two site 

visits, T1 and T2, offering a detailed overview of the 
construction progress. Aerial views of the construction 
site are illustrated in Figure 2 and Figure 3. To enhance 
the quality of the 3D point cloud and ensure accurate 
positioning in the 3D reconstruction process, Ground 
Control Points (GCPs) were measured around the 
perimeter of the construction site.  

 
Figure 2. Aerial View of Construction Site at T1 
Site Visit 
 

The DJI Mavic Pro drone was chosen for the imaging 
process due to its several beneficial features. Its compact 
size, prolonged flight capability, and precise positioning 
make it well-suited for such tasks. The drone flights were 
maintained at a consistent altitude of 40 meters, which 
was crucial for ensuring data uniformity and enabling a 
comparison between different flights. The imaging 
strategy involved maintaining an 80% overlap for both 
front and side images, greatly enhancing the data quality 
and enabling accurate data analysis. This standardized 
approach to data collection was crucial in facilitating 
reliable comparisons and drawing meaningful 
conclusions from the data gathered. 

 
Figure 3. Aerial View of Construction Site at T2 
Site Visit 

4.3 Data Processing 
During the T1 and T2 timeframes, the construction 

site featured a variety of equipment, including dump 
trucks, excavators, backhoe loaders, and cars. 
Additionally, a category termed "other" encompassed 
drilling machines, anchor installation machines, and 
concrete mixers. The deep learning model previously 
mentioned was employed to segment construction 
machinery in both T1 and T2 datasets. The model's 
performance, measured by the mean Average Precision 
(mAP) COCO Metrics [30], is detailed for both datasets 
in Table 1. Additionally, it presents a breakdown of the 
Average Precision (AP) results, categorized by each type 
of equipment. AP of the backhoe loader was not present, 
as it was not visible in the images during the T2 
timeframe.  

Table 1. Segmentation Results 

Dataset mAP mAP50 mAP75 
T1 67.6 87.3 82.3 
T2 64.5 87.2 78.7 

Table 2. Classwise AP Results (IoU=50%) (D.T: Dump 
Truck, Exc: Excavator, B.L.: Backhoe Loader) 

Data D.T. Exc. B.L. Car Other 
T1 97.8 98.9 96.3 97.5 45.9 
T2 92.8 96.4 - 96.5 63.1 

The outcomes of the segmentation stage lay the 
groundwork for advancing to the subsequent phases, 
which involve the removal of construction machinery 
and the creation of 3D surface models. Following the 
segmentation stage, image masks were created (Figure 4). 
These masks accurately define the boundaries of each 
piece of machinery detected in the images, preparing 
them for the next phase of the process. The LaMa 
inpainting algorithm, which has been trained using the 
Places2 dataset, was then employed on these images.  
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The effectiveness of the inpainting process was 
assessed using several established image comparison 
metrics. These include the Normalized Root Mean 
Square Error (NRMSE) [31], Peak Signal-to-Noise Ratio 
(PSNR) [31], and Structural Similarity Index (SSIM) 
[32]. The results of these evaluations are detailed in Table 
3.  

Table 3. Inpainting Results 

Dataset NRMSE PSNR SSIM 
T1 0.019 37.628 0.900 
T2 0.018 32.595 0.901 

  
(a) Segmentation of Machinery from Images 

  
(b) Creation of Image Masks 

  
(c) Inpainting image masks 

Figure 4. Eliminating Occlusion from the Images 
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Table 4. 3D Reconstruction Results 

 T1 T2 
Processed Images 230 of 230 230 of 230 
Sparse P. Cloud 314,299  313,065  
Dense P. Cloud 32,491,933  32,012,587  

GSD 1.3 cm 1.3 cm 
GCP Error 16.7 cm 14.4 cm 

Once these construction machines were digitally 
eliminated from the images, the next step involved 
converting the 2D images into a 3D point cloud. This 
transformation required using the SfM-MVS technique 
to achieve a three-dimensional site representation. 
SiteEye, a robust photogrammetry software [33], was 
chosen to manage UAV photogrammetry in this study. 
SiteEye was selected from a range of available software 
known for its comprehensive capabilities in 
photogrammetry. The results of the photogrammetric 
process using SiteEye are visualized in Figure 5 and 
summarized in  
Table 4. The table indicates that all 230 images from each 
image set were processed successfully, demonstrating the 
effectiveness of this approach in creating accurate 3D 
models of the construction site. 

5 Discussion 
The current research introduces a novel approach for 

monitoring construction site progress, fusing UAV 
imaging with advanced machine learning and computer 
vision algorithms. This innovative method addresses 
several limitations in traditional techniques for 
generating point clouds at construction sites. The 
discussion will highlight the significant contributions of 
the study, the challenges faced, and potential avenues for 
future research.  

• Performance of the Construction Machine 
Segmentation Model: A pivotal success of the 
proposed approach is the performance of the deep 
learning model in segmenting construction 
machinery. This model exhibited reasonable 
accuracy, especially for frequently encountered 
construction vehicles like dump trucks, excavators, 
backhoe loaders, and cars. The AP scores, often 
surpassing 90%, attest to the efficacy of deep 
learning algorithms in machinery segmentation 
within construction site imagery. This achievement 
is vital to integrating machine learning technologies 
into construction site monitoring. It is essential to 
acknowledge that flight parameters such as height, 
overlap, and camera angle substantially impact the 
resolution, coverage, and geometric accuracy of 
UAV images. These factors significantly influence 

the detectability of construction machinery and the 
quality of the areas inpainted subsequently. For 
example, flying at a higher altitude may lead to low-
resolution images, complicating fine-grained 
segmentation tasks. In the study, a flight altitude of 
40 meters resulted in a ground sampling distance of 
1.3 cm, sufficiently identifying the construction 
machinery targeted in the images. 

• Advancements in the Automation of 
Construction Machine Removal: The study 
marked a significant stride in the automated 
removal of construction machinery using image 
inpainting techniques. The encouraging results 
from the evaluation metrics—NRMSE, PSNR, and 
SSIM—underscore this success. For instance, 
dataset T1 showed an NRMSE of just 0.019 and an 
SSIM score of 0.900, indicating good structural 
similarity in the inpainting process. These results 
were closely mirrored in dataset T2. These metrics 
validate the effective implementation of image 
inpainting algorithms for removing construction 
machinery, thus aiding in the precise generation of 
digital terrain models. 

• Interoperability and Versatility of the Method: 
A noteworthy aspect of the method is its 
compatibility with various photogrammetry 
software. The construction machine-removed 
images are designed to be georeferenced and 
processed independently, making the output of the 
proposed method adaptable for integration with 
different third-party photogrammetry applications. 
This flexibility enhances the method's potential for 
widespread adoption, particularly in automated 
progress monitoring for construction sites. 

• Potential for Future Research - Specialized 
Image Inpainting Dataset and Removal of More 
Types of Site Occlusion:  Looking ahead, 
developing a dedicated image inpainting dataset 
tailored to scenarios commonly encountered in 
automated construction site monitoring presents a 
research opportunity. Such a specialized dataset 
could enhance the performance of image inpainting 
algorithms, a critical component of the proposed 
method. Improved algorithms will further refine 
automated progress monitoring, making it more 
efficient and reliable. Future research also offers the 
potential to expand current methodologies by 
removing various site occlusion types. While the 
current focus is on construction machinery, 
extending this to elements like workers, unused 
materials, and temporary structures could greatly 
enhance site management. This would improve the 
digital representation of construction sites, 
providing a clearer view of progress and conditions, 
thereby facilitating more efficient and accurate 
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project management. Developing comprehensive 
models and datasets is crucial to advancing 
automated monitoring in the construction industry. 

6 Conclusions and Future Work 
This study introduces a method combining UAV 

imaging, machine learning, and computer vision 
algorithms to improve the digital modeling of 
construction sites. The focus was on removing temporary 
elements like construction machinery from images to 
enhance the accuracy of these models. The approach was 
tested in a real-world setting on a construction site, 
demonstrating its practical application. Key findings 
include the effective use of deep learning for segmenting 
construction machinery, resulting in high AP scores. This 
success illustrates the potential of deep learning in 
construction site monitoring. Additionally, image 
inpainting proved valuable in creating accurate digital 
representations of the site after removing temporary 
objects. 

The method's compatibility with various 
photogrammetry software suggests its potential for 
broader application in the construction industry. Future 
research directions could involve developing a 
specialized image inpainting dataset for construction 
scenarios and extending the methodology to include 
more types of temporary site elements. In conclusion, this 
research contributes to the field of construction site 
monitoring by offering an innovative method for 
improving the precision of digital models, with 
implications for more efficient and accurate project 
management in the construction industry. 

Acknowledgments 
This research is funded by a grant from the Scientific 

and Technological Research Council of Türkiye 
(TUBITAK), Grant No.  122M055. TUBITAK's support 
is gratefully acknowledged. 

  
(a) 3D Reconstruction with Original Images 

  
(b) 3D Reconstruction with Inpainted Images 

Figure 5. Resultant Point Clouds 
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Abstract -
PPE items, including hardhats, hooks, harnesses, and

straps, are critical for fall prevention. Ongoing research in
construction safety has focused on using deep learning mod-
els to detect Personal Protective Equipment (PPE) worn by
high-altitude workers. Despite efforts using computer vision-
based models for safety monitoring, small object detection,
such as hooks and straps, remains challenging due to image
resolution issues. This study introduces a novel technique
using mobile CCTV cameras controlled by an automated
Pan-Tilt-Zoom (PTZ) algorithm to enhance the detection of
small-sized PPE. The method leverages the size gap between
worker and PPE. In a zoomed-out state with a short focal
length, the system identifies the worker’s bounding box (b-
box), then zooms in with a longer focal length for precise
PPE detection. When encountering multiple workers, the
system applies predetermined zoom-in rules. Experimental
results demonstrated a significant increase in detection accu-
racy for the small PPE: hook detection improved from 39.8%
to 88.3%, and strap detection from 49.4% to 71.8%, as mea-
sured by an mAP of 50. This encouraging performance im-
provement suggests that automated PTZ control technology
could enhance the effectiveness of safety monitoring

Keywords -
Construction safety; PTZ CCTV control; monitoring;

PPE detection; Small object detection

1 Introduction
Construction industry, notorious for the highest number

of accident victims, experiences most fatalities due to falls,
according to the U.S. Bureau of Labor Statistics [1]. In
South Korea, the most common type of industrial accidents
is also falls, leading to a significant number of injuries
[2]. Falls typically occur from high workspaces due to
slipping or structural failures. Despite attempts to install
safety nets and personal airbags, their high costs and spatial
constraints limit widespread usage in construction sites.
Therefore, proper attachment and usage of Safety Hooks
and Safety Straps to fixed structures such as scaffolding
are crucial to prevent falling from height position.

To increase the use of PPE, construction companies
globally, including in South Korea, are employing con-
struction site safety managers to monitor workers’ com-
pliance with PPE usage, with some regions enforcing this
as a legal requirement. However, this manual method
is labor-intensive, costly, and prone to human error. Re-
cent advancements have seen the integration of CCTV and
cutting-edge deep learning for automated safety monitor-
ing in construction sites. These systems use deep learning-
based object detection or instance segmentation models to
identify workers and PPE from video frame, automatically
determining proper PPE usage. This automated safety
monitoring tries to aid or replace human managers, re-
ducing errors, cutting costs, and increasing efficiency in
construction projects.

Figure 1. Video captured by CCTV installed at an
actual construction site.

While automated safety monitoring technology has
been continually developing, achieving significant suc-
cess in certain areas such as recognizing workers’ behav-
iors, detecting hardhats, or differentiating between high-
altitude and ground-level workers, it still faces substantial
challenges in recognizing small PPE items such as safety
hooks and straps. This difficulty arises because these PPE
items are often captured as only a few to several pixels
in size, making it hard for object recognition models to
identify their features. For example, Figure 1 shows this
challenge. It is easy to recognize five workers in ground
and high-altitude, but hard to find their hooks and straps,
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even if human eyes.

Figure 2. Results of applying Super-Resolution (SR)
to construction site image. (a,b) show before SR
application, and (c,d) are after applying SR. (b) and
(d) specifically provide enlarged views of a worker
in the top right area.

Several software-based solutions have been proposed
to address low-resolution issues in images. For exam-
ple, Super Resolution (SR) technology, aimed at enhanc-
ing image resolution software-wise, has been evolving for
decades [3][4] and now focuses on deep learning-based
methods [5]. Despite its advancements, SR’s application
in identifying small PPE at construction sites often doesn’t
meet expectations. Figure 2 shows the use of a contempo-
rary deep learning-based SR method [6] on construction
videos. Overall image clarity improves from (a) before SR
to (c) after SR application. However, there are limitations
when comparing (b) and (d), where despite clearer worker
visibility, finding small PPE remains problematic. Thus,
the approach of only using post-processing on already cap-
tured video frame has limitations in effectively detecting
small PPE.

This study tackles the issue of small object detection,
such as PPE detection in far-field monitoring. The goal
is to overcome problems with low-resolution images by
first taking larger pictures of PPE. The study leverages
PTZ CCTV cameras with remote control capabilities, em-
ploying a worker-centric approach for zooming in to fill
video frames, thus enlarging small PPE for better visibil-
ity. This research is potentially pioneering in proposing
an automated system for adjusting PTZ cameras specifi-
cally for PPE detection in construction workers. It utilizes
the size different between a typical 180cm worker and
20cm PPE, prioritizing worker detection in a zoomed-
out state, then calculating center coordinates for targeted

zoom-in, enhancing focused on the PPE detection. To
evaluate the effectiveness of the suggested system, ex-
periments were carried out in a laboratory environment,
capturing both zoomed-in and zoomed-out videos target-
ing a worker. Performance of the PPE detection model
was compared between two scenarios. The feasibility of
implementing automatic PTZ control was examined in an
indoor setting. The integration of automated PTZ CCTV
control with safety monitoring in this study is expected
to demonstrate utility and facilitate precise safety moni-
toring. Moreover, the system’s design to operate without
the need for personnel to control the CCTV leads to a
more efficient monitoring system, reduces human error in
surveillance, and is anticipated to improve the accuracy of
monitoring.

2 Related works
2.1 Construction safety monitoring with computer vi-

sion

In recent years, continuous research has utilized ad-
vanced computer vision technology for safety monitor-
ing in construction sites [7]. Studies include training
Region-based fully convolutional networks to recognize
construction equipment [8], installing CCTV on cranes
for worker safety monitoring in complex construction en-
vironments [9], and combining computer vision models
with IoT sensors for accurate fall hazard detection [10].
Additionally, depth estimation on single-lens captured im-
ages has been proposed for improved safety monitoring
[11], and optimizing loss functions in deep learning mod-
els has been shown to enhance PPE detection [12]. These
studies indicate widespread use of computer vision in con-
struction safety monitoring and support the suitability of
instance segmentation and object detection for PPE detec-
tion. However, they primarily focus on recognition per-
formance in already captured footage, with less discussion
on the methods of capturing the footage itself.

2.2 Autonomous PTZ control

Automating PTZ control has been extensively re-
searched. Maximizing PTZ CCTV’s object tracking and
zooming capabilities is key. Attempts include using classi-
cal computer vision methods such as KLT feature trackers
for PTZ operation [13]. Efforts to reduce or mitigate de-
lays between video and PTZ control have been made for
successful zooming and tracking [14]. Studies on opti-
mally operating multiple PTZ cameras in a space, con-
sidering field of view and concurrent tracking, have been
conducted [15]. Research on inspection robots for contin-
uous object monitoring [16] and integrating PTZ control
with neural networks for end-to-end solutions [17] have
also been explored. Previous research on PTZ cameras
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typically involved wired connections, enabling detection
without significant delays, which differs from this study.
Here, the CCTV is wirelessly connected, resulting in a
delay of about 3 seconds for video reception and motor
control. This delay was factored into the design of the au-
tomated PTZ control system. The interval between PTZ
control commands had to be longer than this delay to pre-
vent malfunctioning.

3 Methodology

Figure 3. Simplified flowchart of the automated PTZ
CCTV system

Figure 4. Top view of the PTZ CCTV’s PAN coor-
dinates

Figure 3 illustrates the automated PTZ CCTV system,
which consists of a hardware control unit for operat-
ing the PTZ and an analyzer unit that processes footage
from the CCTV. The CCTV continuously captures frames
and broadcasts it using the Real-Time Streaming Protocol
(RTSP), a standard protocol commonly used in CCTV sys-
tems for transmitting live video. The analyzer receives this
video via RTSP for analysis. Deep learning models em-

Figure 5. Side view of the PTZ CCTV’s TILT coor-
dinates

ployed for analysis include object detection and instance
segmentation models such as YOLOv8m-seg [18]. These
models are trained to identify workers and PPE, with their
training process described later in 3.2. The system calcu-
lates the actual coordinates on the CCTV camera from the
pixel coordinates of objects detected by the model Figure 4
and Figure 5.
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The detailed method for coordinate calculation follows
equations 1 and 2. � and � represent the width and height
pixel values of the image, also � and � mean the pixel co-
ordinates of target object in the image. ���� and ���ℎ

refer to the Field of View (FOV) of the camera in the width
direction and height direction. ������� and ������� repre-
sent the Pan and tilt coordinates of target object. �������

and ������� represent the center coordinates of image.
Based on the estimated coordinate information, the PTZ

motor is activated through a Open Network Video Inter-
face Forum(ONVIF) protocol which is a global standard
for the interface of IP-based physical security products,
such as network cameras. This processes are repeated,
continuously capturing and analyzing footage and oper-
ating the PTZ control. The performance of the proposed
system is validated by the improved mask-AP(Average Pre-
cision) of the deep learning model.

3.1 States and transitions

A Finite State Machine (FSM) is a design method where
a device can only exist in one of a finite number of states
at a time [19]. The FSM allows a system to operate within
predictable states, enabling stable control. The proposed
system’s PTZ control algorithm is designed as an FSM,
as shown in Figure 6. The diamond in the figure repre-
sents the starting state, while the circles represent other
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Figure 6. Flow chart of proposed auto PTZ control system using finite state machine

states. The lines between states indicate possible transi-
tions. The system transitions from one state to another
based on predefined procedures. Details on actions and
transition definitions for each state will be discussed in the
subsequent sections.

3.1.1 initCCTV

The ’initCCTV’ state activates when the system starts.
It has no inward transition since it’s the initial state. In this
state, the system checks the CCTV power, initiates the ON-
VIF protocol, positions Pan-Tilt-Zoom to zero, and creates
shared memory between states. These operations prepare
the system for action, initialize hardware, and stabilize the
system. It also checks communication status, attempting
reconnection if issues arise. Transition to the next state
is based on predefined user instructions: it transitions to
’Find site’ if commanded, or ’Do zoom out’ otherwise.

3.1.2 Site finding

The ’Site Finding’ state enables a PTZ CCTV to au-
tomatically detect and orient towards the direction of on-
going construction work, allowing it to start filming inde-
pendently without remote assistance via human. Figure 7
illustrates how this feature operates. Initially, it performs
’Heading to zero position,’ returning pan and tilt to po-
sitions 0 and 1. To anticipate network delays, a refresh
function clears any buffer backlog. Then, it captures a
single frame from the CCTV. ’n’ represents the number of
captures, dividing 360º by ’n’ to determine the pan angle
per capture. The deep learning model identifies workers
in each frame, storing their locations. This process repeats
until a full rotation is completed. Afterwards, the num-
ber of detected workers at each rotation point is averaged
to identify the current work site, and the camera is ori-
ented accordingly. Once complete, the system transitions
to ’Zoom out’ state.

3.1.3 Zoom out

In the ’Zoom out’ state, the system receives RTSP and
searches for workers or, if possible, PPE in the video.
This state manages the overall schedule, alternating every
5 seconds to the ’Heading adjustment’ state or switching
to the ’Zoom in’ state every 30 seconds.

3.1.4 Heading adjustment

The ’Heading adjustment’ state involves receiving real-
time RTSP video to locate workers and automatically ad-
just the camera’s direction towards them. Once this action
is completed, the system reverts back to the ’Zoom out’
state.

3.1.5 Zoom in

The ’Zoom in’ state uses the PTZ’s zoom feature to
select a worker for closer observation. After detecting a
worker and calculating their PTZ coordinates, it zooms
in on a certain worker based on a pre-chosen policy: (1)
smallest area worker, (2) no PPE, or (3) from left to right
sides. The extent of zooming is until the worker’s bound-
ing box (b-box) fills the video frame. If the setting for
’Tracking a target’ is enabled, it activates the ’Tracking a
target’ state every 3 seconds. The ’Zoom in’ state operates
for 15 seconds, after which it returns to the ’Zoom out’
state.

3.1.6 Tracking a target

In the ’Tracking a target’ state, the system continuously
follows the magnified individual. It calculates the neces-
sary pan and tilt adjustments considering the focal length
changes due to zooming. This process lasts for 5 seconds,
after which the system reverts back to the ’Zoom in’ state.

3.2 PPE detection model

Accurately and rapidly detecting workers and PPE is
crucial for effective safety monitoring. For this, YOLOv8,
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Figure 7. Algorithm of the Site Finding

known for its accuracy and detection speed, was employed.
YOLOv8 introduced an anchor-free detection system, en-
hancing performance with faster computation and better
accuracy. Mosaic augmentation, used until 10 epochs be-
fore training completion, prevented overfitting, ensuring
general detection capabilities. YOLOv8’s versatility al-
lows easy modification or addition of features to its head,
if needed. Thus, the study adopted YOLOv8m-seg, using
transfer learning on data labeled in instance segmentation
format from a construction site video collected during
2022-2023 in Korea.

4 Experiment

4.1 Experimental Settings

Figure 8. The PTZ CCTV is mounted on a module
equipped with a router and battery.

The PTZ CCTV camera used in this study is the Hikvi-
sion ’DS-2DE4A225IW-DE 2MP’ model, capable of up
to 25x zoom and providing a 57.6º FOV at 1x zoom shown
in Figure 8. The RTSP video streams at a resolution of
1280x720 at 10 frames per second (FPS). The computer
used for training and inference employs an RTX3090 GPU.

4.2 Image dataset for PPE detection model

Figure 9. Example: (Left) Images and (Right) GT
masks

The dataset used for training the model consists of
videos collected from 65 construction sites, including
apartment and road projects in South Korea, labeled for
instance segmentation with four classes: worker, hardhat,
strap, and hook (as shown in Figure 9). It comprises a
total of 6,523 images, divided into training, validation,
and testing subsets in a ratio of 5,877:600:46 for use in
training.

4.3 Train the model

The training of the YOLOv8m-seg model followed the
default settings suggested in [18], with the only modifi-
cation being an increase in the maximum epochs to 300.
This model pretrained on the MS COCO dataset, and uti-
lized transfer learning in this research to develop a fast and
high-performing model. The dataset used was the one in-
troduced in 4.2, focusing on learning and locating features
of workers, hardhats, straps, and hooks.

4.4 Evaluation matric

The evaluation metric used was the mask AP. It as-
sesses instance segmentation by calculating the Intersec-
tion over Union (IoU) between the predicted mask and the
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true mask, considering instances with IoU over 50% as
True Positives (TP). This method of evaluating instance
segmentation performance centered on masks incorpo-
rates both recall and precision of predictions, offering a
comprehensive evaluation of the segmentation’s accuracy.

4.5 Lab test of developted PTZ control

Figure 10. (Left) Zoom-out view and (Right) Zoom-
in view

Video data of workers and PPE was collected from tem-
porary structures at Yonsei University. This data com-
prises 230 images, simulating zoomed-in and zoomed-out
states as shown in Figure 10. The images were polygon
labeled for the same four classes as mentioned in 4.2. This
dataset is utilized to assess the practical effectiveness of
the zoom-in.

5 Results and Discussion
5.1 Performance of the PPE instance segmentation

model

The training results on the dataset from 4.2 showed
outcomes as in Table1. High mask mAP performances
of 97.1% for ’Worker’ and 95.2% for ’Hardhat’ were
achieved, whereas ’Strap’ and ’Hook’ exhibited lower per-
formances at 60% and 48.2%, respectively. This reaffirms
the difficulty in recognizing small PPE in far field situa-
tions.

Table 1. Performance of the model
Class mask mAP@50

Worker 97.1
Hardhat 95.2

Strap 60.0
Hook 48.2

The developed model was applied to the small-scale
dataset of zoomed-in and zoomed-out images in 4.5, and
its performance was evaluated. As seen in Table2, sig-
nificant performance improvements were noted for ’Strap’
and ’Hook’. In zoomed-out situations, ’Strap’ and ’Hook’
showed lower performances of 49.4% and 39.8%, respec-
tively, while zoomed-in, they exhibited remarkable im-
provements with 71.8% and 88.3%.

Table 2. Performance of the model between zoom-in
and zoom-out

Class mask mAP@50
Zoom-out Zoom-in

Worker 99.5 99.5
Hardhat 99.5 99.5

Strap 49.4 71.8
Hook 39.8 88.3

5.2 Qualitative results of automated PTZ system

It was observed that according to the pre-determined
rules of the finite state machine, the transition from the
Zoom-out state to Zoom-in and Tracking a target occurs
as illustrated in Figure 11. With each activation of the
zoom, making small PPE more detectable by eye becomes
apparent. In contrast, without PTZ control, detection is
limited to workers or hardhats only.

Figure 11. Comparison of situations with and with-
out automated PTZ peration

Applying these experimental findings to real construc-
tion sites could greatly improve the accuracy of detecting
whether PPE is worn, thereby significantly boosting site
safety. Moreover, the capability to automatically track
workers from a distance allows for effective monitoring of
the site, regardless of CCTV camera placement.

6 Conclusion
This study presented a comprehensive examination of

the implementation and efficacy of an automated PTZ
CCTV system for enhancing safety monitoring on con-
struction sites. Our research found that zooming in on
small objects such as hooks or straps significantly en-
hances detection capabilities. Laboratory experiments
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with zoomed-in and zoomed-out footage, analyzed using
the same model, indicated a substantial improvement in
performance—by approximately 1.6 to 2 times. More-
over, the zoom-in and tracking states proved effective in
detecting small PPE items previously undetectable.

Still, there are limitations to be addressed for further
advancement of the proposed PTZ control method:

1. Need for Field Data Validation: Testing in real
construction environments is necessary to validate
the PTZ control system’s efficacy, thereby revealing
unknown issues that hamper the reliable monitoring
system.

2. Improvement in Coordinate Calculation at Lower
Tilt Values: Future study should focus on enhancing
the accuracy of coordinate calculations, especially at
lower Tilt angles which are the error sources reducing
the current system’s precision.

3. Delays in Video Transmission Over Wireless Net-
works: Future study should explore the integration
of edge computing and the PTZ CCTV. These efforts
are intended to reduce the data transmission time,
improving the system’s responsiveness.

4. Efficient Zoom-In Target Selection: Additionally,
identifying a systematic and efficient method for de-
termining zoom-in targets will be essential. This will
ensure the PTZ control system can focus on relevant
areas quickly and accurately, enhancing its utility in
monitoring safety equipment on construction sites.

By addressing these issues and possible solutions, fu-
ture study aims to significantly improve the PTZ control
method’s reliability and effectiveness.

The research contributes valuable insights into the field
of construction safety and lays the groundwork for future
innovations that could potentially automate and improve
safety measures, thereby reducing the risk of accidents
and enhancing worker protection in construction environ-
ments.

Acknowledgment

This research was conducted by the support of the “2023
Yonsei University Future-Leading Research Initiative (No.
2023-22-0114)” and the “National R&D Project for Smart
Construction Technology (No. RS-2020-KA156488)”
funded by the Korea Agency for Infrastructure Technology
Advancement under the Ministry of Land, Infrastructure
and Transport, and managed by the Korea Expressway
Corporation.

References

[1] U.S. BUREAU OF LABOR STATISTICS. Con-
struction deaths due to falls, slips, and trips
increased 5.9 percent in 2021. On-line: https://
www.bls.gov/opub/ted/2023/construction-

deaths-due-to-falls-slips-and-trips-

increased-5-9-percent-in-2021.htm, Ac-
cessed: 25/12/2023.

[2] Ministry of Employment and Labor. 2022
industrial accident statistics: Results of ’inves-
tigation of fatal accidents’ released. On-line:
https://www.moel.go.kr/news/enews/report/

enewsView.do?news_seq=14546, Accessed:
25/12/2023.

[3] Sung Cheol Park, Min Kyu Park, and Moon Gi Kang.
Super-resolution image reconstruction: a technical
overview. IEEE Signal Processing Magazine, 20(3):
21–36, 2003. doi:10.1109/MSP.2003.1203207.

[4] Daniel Glasner, Shai Bagon, and Michal Irani. Super-
resolution from a single image. In 2009 IEEE 12th
International Conference on Computer Vision, pages
349–356, 2009. doi:10.1109/ICCV.2009.5459271.

[5] Dawa Chyophel Lepcha, Bhawna Goyal, Ayush Do-
gra, and Vishal Goyal. Image super-resolution: A
comprehensive review, recent trends, challenges and
applications. Information Fusion, 91:230–260, 2023.
doi:https://doi.org/10.1016/j.inffus.2022.10.007.

[6] Shuwei Shi, Jinjin Gu, Liangbin Xie, Xintao
Wang, Yujiu Yang, and Chao Dong. Rethink-
ing alignment in video super-resolution transform-
ers. In Advances in Neural Information Process-
ing Systems, volume 35, pages 36081–36093, 2022.
doi:https://doi.org/10.48550/arXiv.2207.08494.

[7] Weili Fang, Lieyun Ding, Peter ED Love, Han-
bin Luo, Heng Li, Feniosky Pena-Mora, Bo-
tao Zhong, and Cheng Zhou. Computer vi-
sion applications in construction safety assurance.
Automation in Construction, 110:103013, 2020.
doi:https://doi.org/10.1016/j.autcon.2019.103013.

[8] Hongjo Kim, Hyoungkwan Kim, Yong Won
Hong, and Hyeran Byun. Detecting construc-
tion equipment using a region-based fully convo-
lutional network and transfer learning. Journal of
computing in Civil Engineering, 32(2):04017082,
2018. doi:https://doi.org/10.1061/(ASCE)CP.1943-
5487.0000731.

[9] Gelayol Golcarenarenji, Ignacio Martinez-Alpiste,
Qi Wang, and Jose Maria Alcaraz-Calero. Machine-
learning-based top-view safety monitoring of ground
workforce on complex industrial sites. Neural
Computing and Applications, pages 1–14, 2022.
doi:https://doi.org/10.1007/s00521-021-06489-3.

[10] Muhammad Khan, Rabia Khalid, Sharjeel Anjum,

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

774

https://www.bls.gov/opub/ted/2023/construction-deaths-due-to-falls-slips-and-trips-increased-5-9-percent-in-2021.htm
https://www.bls.gov/opub/ted/2023/construction-deaths-due-to-falls-slips-and-trips-increased-5-9-percent-in-2021.htm
https://www.bls.gov/opub/ted/2023/construction-deaths-due-to-falls-slips-and-trips-increased-5-9-percent-in-2021.htm
https://www.bls.gov/opub/ted/2023/construction-deaths-due-to-falls-slips-and-trips-increased-5-9-percent-in-2021.htm
https://www.moel.go.kr/news/enews/report/enewsView.do?news_seq=14546
https://www.moel.go.kr/news/enews/report/enewsView.do?news_seq=14546
https://doi.org/10.1109/MSP.2003.1203207
https://doi.org/10.1109/ICCV.2009.5459271
https://doi.org/https://doi.org/10.1016/j.inffus.2022.10.007
https://doi.org/https://doi.org/10.48550/arXiv.2207.08494
https://doi.org/https://doi.org/10.1016/j.autcon.2019.103013
https://doi.org/https://doi.org/10.1061/(ASCE)CP.1943-5487.0000731
https://doi.org/https://doi.org/10.1061/(ASCE)CP.1943-5487.0000731
https://doi.org/https://doi.org/10.1007/s00521-021-06489-3


Si Van-Tien Tran, and Chansik Park. Fall pre-
vention from scaffolding using computer vision
and iot-based monitoring. Journal of Construction
Engineering and Management, 148(7):04022051,
2022. doi:https://doi.org/10.1061/(ASCE)CO.1943-
7862.0002278.

[11] Wei-Chih Chern, Jeongho Hyeon, Tam V Nguyen,
Vijayan K Asari, and Hongjo Kim. Context-aware
safety assessment system for far-field monitoring.
Automation in Construction, 149:104779, 2023.
doi:https://doi.org/10.1016/j.autcon.2023.104779.

[12] Wei-Chih Chern, Tam V Nguyen, Vijayan K
Asari, and Hongjo Kim. Impact of loss
functions on semantic segmentation in far-field
monitoring. Computer-Aided Civil and In-
frastructure Engineering, 38(3):372–390, 2023.
doi:https://doi.org/10.1111/mice.12832.

[13] Keni Bernardin, Florian van de Camp, and
Rainer Stiefelhagen. Automatic person detection
and tracking using fuzzy controlled active cam-
eras. In 2007 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 1–8, 2007.
doi:10.1109/CVPR.2007.383502.

[14] Gengjie Chen, Pierre-Luc St-Charles, Wassim
Bouachir, Guillaume-Alexandre Bilodeau, and
Robert Bergevin. Reproducible evaluation of pan-
tilt-zoom tracking. In 2015 IEEE International Con-
ference on Image Processing (ICIP), pages 2055–
2059, 2015. doi:10.1109/ICIP.2015.7351162.

[15] Samer Hanoun, James Zhang, Vu Le, Burhan
Khan, Michael Johnstone, Michael Fielding, Asim
Bhatti, Doug Creighton, and Saeid Nahavandi.
A framework for designing active pan-tilt-zoom
(ptz) camera networks for surveillance applica-
tions. In 2017 Annual IEEE International Sys-
tems Conference (SysCon), pages 1–6, 2017.
doi:10.1109/SYSCON.2017.7934744.

[16] Yong Li, Liang Pan, and Tao Cheng. A camera ptz
control algorithm for autonomous mobile inspection
robot. In 2021 IEEE 2nd International Conference
on Big Data, Artificial Intelligence and Internet of
Things Engineering (ICBAIE), pages 962–967, 2021.
doi:10.1109/ICBAIE52039.2021.9389970.

[17] Sandeep Singh Sandha, Bharathan Balaji, Luis Gar-
cia, and Mani Srivastava. Eagle: End-to-end deep
reinforcement learning based autonomous control of
ptz cameras. arXiv preprint arXiv:2304.04356, 2023.
doi:https://doi.org/10.48550/arXiv.2304.04356.

[18] Glenn Jocher, Ayush Chaurasia, and Jing Qiu.
YOLO by Ultralytics. On-line: https:

//github.com/ultralytics/ultralytics, Ac-
cessed: 25/12/2023.

[19] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner,

and Peter Wolstenholme. Modeling software with fi-
nite state machines: a practical approach, volume 1.
CRC Press, 2006.

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

775

https://doi.org/https://doi.org/10.1061/(ASCE)CO.1943-7862.0002278
https://doi.org/https://doi.org/10.1061/(ASCE)CO.1943-7862.0002278
https://doi.org/https://doi.org/10.1016/j.autcon.2023.104779
https://doi.org/https://doi.org/10.1111/mice.12832
https://doi.org/10.1109/CVPR.2007.383502
https://doi.org/10.1109/ICIP.2015.7351162
https://doi.org/10.1109/SYSCON.2017.7934744
https://doi.org/10.1109/ICBAIE52039.2021.9389970
https://doi.org/https://doi.org/10.48550/arXiv.2304.04356
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics


Smart Automatic Mixed Reality-Based Construction
Inspection Framework

Boan Tao1, Jiajun Li1 and Frédéric Bosché 1
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Abstract -
With increasingly complex construction projects, im-

proving inspection efficiency and accuracy is an important
challenge. This paper proposes a novel MR-based con-
struction inspection framework that integrates BIM, MR,
and AI technologies to achieve automatic inspection tasks.
The framework comprises object detection, 2D to 3D pro-
jection, and digital twin-based object recognition and MR-
based visualisation to provide an efficient inspection pro-
cess. The framework is evaluated in an indoor construction
environment with common elements like electrical sockets
and switches as a typical example to validate our approach
in real-world applications.
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1 Introduction
In the construction industry, the importance of ef-

ficiency and precision in construction inspection pro-
cesses cannot be overstated. Traditional inspection ap-
proaches, predominantly manual and reliant on 2D draw-
ings and physical presence, are increasingly challenged
by the complexity and scale of modern construction
projects [1]. Therefore, exploration of digital technolo-
gies for enhancing efficiency in these steps is necessary.

Building Information Modeling (BIM), and now Dig-
ital Twinning (DT), have emerged as a foundational
element in the evolution of construction technologies,
offering detailed 3D representations and facilitating ef-
fective planning and management. Mixed Reality (MR)
blends digital information with the physical environ-
ment, which offers an immersive platform that enhances
the visualisation of BIM model directly on construction
sites. Concurrently, computer Vision (CV) technolo-
gies leveraging Artificial Intelligence (AI) are emerging
as transformative tools for automating the detection and
analysis of site elements and anomalies. Thus, an inte-
grated approach that synergises the detailed visualisa-
tion of BIM, the immersive experience of MR, and the
analytical capabilities of CV could address the current
limitations of traditional inspection methods, including

issues with accuracy, efficiency, and safety.
This paper proposes a smart and automatic construc-

tion inspection framework that integrates the strengths
of BIM, MR, and AI. In the framework, construction
inspectors use MR glasses that autonomously perform
inspection tasks based on the inspector’s location. This
system is uniquely optimised to work in a automatic way
and with computational efficiency, ensuring effective
performance with minimal power consumption during
site inspections.

The rest of the paper is organised as follows. Section 2
reviews the relevant literature on BIM, MR and AI in
the context of construction inspection applications. Sec-
tion 3 introduces our automatic inspection framework,
detailing its design specifically for integration with BIM,
MR and AI technologies. Section 4 illustrates and eval-
uates the performance of this framework. Section 5
discusses performance and limitations of our method.
Section 6 proposes current challenges and future devel-
opments. The paper concludes in section 7.

2 Related work
The potential of combining BIM and MR for real-time

data processing in construction site inspections is exem-
plified in Feng and Chen [2]. They propose a system
combining BIM and MR, specifically using the head-
mounted MR device HoloLens. This system allows con-
struction engineers to visualise the BIM model overlaid
at the actual construction site, facilitating real-time com-
parison between planned and actual work, and enabling
efficient inspection. Riedlinger et al. [3] demonstrate the
potential benefits of the combination of BIM and MR
for bridge inspection, including increased precision in
locating damages and time-saving potential in damage
recording. Ammari and Hammad [4] further extend this
integration to multisource facilities information, BIM
models, and feature-based tracking in an MR-based set-
ting to enhance collaboration and visual communication
between field workers and managers. Similarly, Nguyen
et al. [5] design a MR-based system for bridge inspec-
tion and maintenance. The system is designed to overlay
relevant data and information directly onto the physical
bridge structure as viewed through MR devices. This
feature enables inspectors to see and assess real-time
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information about the bridge’s condition, maintenance
requirements, and other critical data in situ.

The incorporation of AI into MR marks a signif-
icant step towards automating inspection processes.
Karaaslan et al. [6] and Zakaria et al. [7] discuss the
integration of MR and real-time machine learning to
enhance structural inspections, particularly for concrete
infrastructures like bridges. They use deep learning
models that can localise and quantify concrete defects
in real-time using MR device. These studies under-
score AI’s role in analysing BIM data to detect defects
and predict maintenance needs, showcasing the potential
for more intelligent and proactive construction manage-
ment.

The existing research primarily focuses on the pair-
wise combination of these technologies, such as BIM
with MR or MR with AI, without fully harnessing the
synergistic potential of combining all three. Moreover,
current systems still largely depend on manual user in-
put for tasks like locating specific areas or activating the
system, which undermines efficiency. There is a need
to develop a more autonomous MR system, empowered
by BIM and AI, that can independently, automatically
and passively identify and process construction site data
without extensive user intervention.

3 Method
3.1 Method overview

Our proposed system architecture encompasses two
primary components: MR device, specifically chosen as
the Hololens2 (HL2), and a Computation Centre (CC),
which can be either a local computer or a cloud-based
platform. This framework is notably effective in two
key use cases within a fully developed BIM context:
Facilities Management (FM) inventory and construc-
tion project progress and quality monitoring. Firstly,
for FM inventory, it enables dynamic interaction with
the facility’s digital twin, allowing managers to visu-
alise, track, and manage assets efficiently. Secondly, for
project progress and quality monitoring, it provides a
real-time inspection tool for ensuring construction ad-
heres to planned works. This aids in identifying and
rectifying deviations, thus maintaining project integrity
and facilitating quality control.

The comprehensive workflow of our proposed frame-
work is depicted in fig. 1. In operation, users equipped
with HL2 navigate the construction site. The HL2 (red
rectangle) maintains real-time communication with the
computation centre, continuously transmitting spatial
data regarding the user’s position and orientation. Upon
receiving this spatial data, the CC (blue rectangle) ini-
tiates a series of processes, and send result back to the
HL2. Key stages include:

1. Detection zone analysis. The system first evaluates

whether the user is situated within a specially pre-
defined detection zone for each element in the BIM
model that needs to be controlled, thereby facilitat-
ing a focused and efficient inspection process. The
design of the zone is discussed in Section 3.2. It
is completed in an offline setting, with the zones
stored in the database of CC.

2. Camera activation and data acquisition. If the user
is within the detection zone, the computation cen-
tre sends an activation command to the HL2, which
then starts capturing video frames in real-time and
transmits them and the camera’s intrinsic parame-
ters back to the centre.

3. Object detection. The object detector runs in real-
time on camera frames to detect target objects (e.g.
building components or defects) within that detec-
tion zone.

4. Orientation validation. The system ensures that
user faces the target objects and incident angles
between user orientation and wall are within ac-
ceptable thresholds, to increase the accuracy of the
subsequent camera projection and matching calcu-
lations (see next step).

5. 2D to 3D Projection. Utilising the 2D detection
boxes coordinates, the system computes their pro-
jected coordinates in the BIM model (or Digital
Twin), through 3D projection using the pinhole
camera model.

6. Deviation assessment. The projected 3D coordi-
nates are then compared against the as-planned ob-
ject positions. Compliance is determined based
on predefined deviation thresholds, and the results
recorded and linked to the project BIM model.

7. Visualisation. The inspection results are simulta-
neously reported to the user visually, highlighting
non-compliant from compliant objects, providing
an intuitive and immediate visual cue for inspec-
tion outcomes.

The following sub-sections provide mode details
about the whole process.

3.2 Detection zone analysis

The detection zones are created to focus on specific
areas that need inspection or monitoring. When setting
up these zones for electrical elements like switches and
sockets (which are the focus of the validation presented
later), walls are used as primary reference points, with
the zones defined as bounding boxes extending from the
walls. Parameters for each detection zone are estab-
lished based on the inspection requirements. Here, the
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Figure 1. Real time workflow of the system

primary parameter is the distance between the inspector
and the target element. We set the maximum distance
at 2 meters, aligning with the optimal range of the HL2
front camera. This distance ensures that the camera cap-
tures images of sufficient quality for the computer vision
algorithm to perform reliable object detection.

Each detection zone stores their essential information,
including: the precise locations and categories of target
elements and relevant geometrical data, such as targets’
surface normal lines. By pre-storing this data, the sys-
tem can rapidly process and analyse the images captured
by the inspector, significantly speeding up the inspection
process.

3.3 Camera activation and data acquisition

HL2 is equipped with an array of sensors that capture
spatial and visual data [8]. This includes a depth sen-
sor, an RGB camera, and sensors dedicated to tracking
head, hand, and eye movements. Spatial sensors capture
spatial information like position, orientation, and move-
ment of the user’s head and hands. The front-facing RGB
camera captures conventional colour imagery. This can
be used for applications requiring visual data from the
user’s perspective.

Zaccardi et al. [9] provides insights into using Unity’s
Barracuda on HoloLens 2 for real-time medical AR sys-
tems. They found that simpler models like Lenet5 can
achieve over 30 fps. In contrast, more complex models

like EfficientNetB0 result in a much lower frame rate,
highlighting the balance between model complexity and
performance. Therefore, in theory, the computational
capabilities of current MR hardware are sufficient to
support the execution of deep learning models, includ-
ing the projection of 3D objects. However, for more
effective communication with digital twins and to assess
the framework’s performance more accurately, we per-
form both the detection and projection processes in CC.
Dibene and Dunn [10] propose a HL2 server application
to facilitate the real-time streaming of sensor data over
TCP (Transmission Control Protocol). This protocol
ensures reliable, ordered, and error-checked delivery of
a stream of bytes between applications running on hosts
communicating via an IP network. In this project, we
implement a multiprocessing approach to efficiently di-
rect the streams of front camera and spatial input data
towards a centralised computational hub. This approach
facilitates the concurrent processing of diverse data in-
puts, enhancing the overall efficiency and throughput of
the system.

3.4 Object detection

In this study, the overall system is illustrated using
the inspection of sockets and switches as an example.
But, the method is naturally adaptable to other objects
(e.g. fire safety equipment [11]). To detect sockets
and switches in images captured by the HL2 camera, a
deep learning model is developed, based on YOLOv5m
[12], noted for its rapid and precise performance. The
pre-trained YOLOv5m model is then retrained (transfer
learning) using a dataset comprising 2,026 indoor im-
ages featuring sockets and switches, enhanced through
various augmentation techniques such as rotation, shear-
ing, and mosaic effects to mimic lens distortion and
complex indoor scenarios. The evaluation of the system
involved the analysis of 73 images, incorporating 163
instances, and yielded a precision rate of 95% and a re-
call rate of 86.6%. The system has an inference time
of 8.4 milliseconds, and a Non-Maximum Suppression
(NMS) time of 2.5 milliseconds per image for an image
dimension of (32, 3, 640, 640). This processing speed
is particularly advantageous for real-time applications in
construction inspection, highlighting the system’s capa-
bility in both accuracy and efficiency in object detection
tasks.

3.5 Real-time position and orientation

In the HL2, image and video streams undergo distor-
tion correction within the image-processing framework
prior to application accessibility [13]. Thus we assume
that the transmitted image frames conform to a perfect
pinhole camera model without distortion. It satisfies the
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perspective projection equation [14]:

𝑝𝑖 = 𝐾 [R|t]𝑃𝑖 (1)

The value of camera’s intrinsic matrix 𝐾 , which en-
capsulates the camera’s focal length and the principal
point offset, is computed in real-time by the HL2 auto
focus-length system and communicated to the computa-
tion centre. The extrinsic matrix E = [R|t], encapsu-
lating the rotation and translation vectors of the camera,
represents the camera’s pose relative to the world co-
ordinates. It undergoes real-time updates to reflect the
changes in the camera’s position and orientation as the
user navigates through the site.

3.5.1 Initialisation

The camera’s initial pose E0 = [R0 |t0] can be mea-
sured by various methods, including QR code scan-
ning [15], or visual analysis of recognisable structures or
features [16]. In this study, the initialisation of the cam-
era’s pose is conducted through the scanning of a QR
code, strategically affixed to a predetermined location (a
wall in the case of the experiments reported below).

The QR code is identified, and the coordinates of
its corners are extracted, denoted as 𝑞𝑖 in the image
coordinates. Their corresponding 3D coordinates in a
local world coordinate system, designated as 𝑄𝑖 , are
known from the pose of the matching twin QR code in
the BIM model.

Using the 2D-3D point correspondences (𝑞𝑖 and 𝑄𝑖),
the rotation vector (R) and translation vector (t) of the
camera coordinate relative to the world coordinate is cal-
culated. This computation is grounded in the principles
outlined in eq. (1).

3.5.2 Real-time updating

HL2 transmits real-time orientation (ΔR) and position
(ΔT) changes relative to the initial pose. This data is
used to update the user’s pose and the camera’s extrinsic
matrix.

Rotation update: The new orientation matrix Rnew is
computed by multiplying the initial orientation R0 with
the change in orientation ΔR:

Rnew = R0 · ΔR (2)

Position update: The new position vector Pnew is up-
dated by applying the change in position ΔT relative
to the initial orientation R0, and adding it to the initial
position P0:

Pnew = R0 · ΔT + P0 (3)
Extrinsic matrix update: The extrinsic matrix Enew

of the camera, which transforms points from the world
coordinates to the camera coordinates, is updated using
the new orientation and position:

Enew =
[
Rnew

�� −Rnew · Pnew
]

(4)

3.6 2D to 3D projection

Given the 2D image coordinates set (𝑢, 𝑣) of the ver-
tices of the bounding box enclosing the detected object
from section 3.4, the first step is to normalise these
coordinates to the camera’s coordinate system. The nor-
malised camera coordinates (𝑥, 𝑦) are obtained by:

𝑥

𝑦

1

 = 𝐾−1 ·

𝑢

𝑣

1

 , (7)

In each frame, the detection target is identified based
on the camera-object angle, defined as the angle formed
between the camera’s line of sight and the normal to the
object’s surface. This process involves measuring the
camera-object angle for every object within the desig-
nated detection zone. The object exhibiting the smallest
such angle is then selected as the primary detection tar-
get for that specific frame. The orthogonal distance,
represented as 𝑑, between this selected object and the
camera, is effectively the z-coordinate value of the object
within the camera’s coordinate system.

Subsequently, the camera coordinates are transformed
by applying a scaling factor equal to 𝑑. This step trans-
lates the 2D coordinates into 3D camera coordinates
(𝑋𝑐, 𝑌𝑐, 𝑍𝑐):

𝑋𝑐 = 𝑥 · 𝑑, 𝑌𝑐 = 𝑦 · 𝑑, 𝑍𝑐 = 𝑑. (8)

The final step involves transforming these camera co-
ordinates into 3D world coordinates. This transforma-
tion is accomplished using the camera’s extrinsic matrix
Enew obtained in section 3.5.2:

𝑋𝑤

𝑌𝑤
𝑍𝑤
1

 = Enew ·


𝑋𝑐

𝑌𝑐
𝑍𝑐
1

 . (9)

3.7 Deviation assessment and Visualisation

Section 3.6 calculates in real-time the projection of
3D bounding boxes that captures the ‘as-is’ location
of elements within the detection zone. For each de-
tected ‘as-is’ element, we compute the centroid of its 3D
bounding box. This centroid serves as a representative
point for comparing the ‘as-is’ element with correspond-
ing ‘as-designed’ elements of the same category within
the detection zone. The comparison process involves
identifying the ‘as-designed’ element whose centroid is
closest to that of the ‘as-is’ element. This proximity-
based selection aims to match each ‘as-is’ element to
the most relevant ‘as-designed’ counterpart.

Given the dynamic and continuous operation of the
camera, multiple 3D bounding boxes are projected for
the same target over time. These projections may ex-
hibit variations due to factors such as noise, distortion,
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and limitations inherent to the sensing equipment. To
account for these variations, we compute an average cen-
troid for the ‘as-is’ element across all captured frames.
This averaged centroid is then compared to the centroid
of the closest ‘as-designed’ element.

The spatial deviation between the averaged ‘as-is’ cen-
troid and the ‘as-designed’ centroid is quantitatively as-
sessed against a predefined threshold. This assessment
determines whether the ‘as-is’ element conforms to the
planned design specifications.

The detection and conformance checking results are
recorded in the Digital Twin as the average of the pro-
jected bounding boxes.

Finally, the result is sent back to the HL2 where the
detected bounding box are shown coloured in:

• green, if the element is matched and found con-
forming;

• red, if the element is matched and found non-
conforming;

• grey, if the element is not matched.

4 Experimental result

4.1 Result visualisation

Figure 2 and fig. 3 show the digital twin as updated
in real time in the CC. The grey mesh is the BIM of
room. Within this virtual representation of the room,
four different coloured squares are observable; these are
designated as detection zones. The HL2 in its current
pose (updated in real time) is shown in black. As in-
troduced in section 3.1, the front camera on the HL2
is only activated when the HL2 is situated within these
coloured detection zones. If the target object is detected
and checked as conforming, the target object is shown
with a small green sphere, representing the ‘as-is’ posi-
tion. In the digital twin screenshot in fig. 2, three green
spheres can be seen on the wall next to the blue detec-
tion zone, representing three detected and conforming
objects.

The HL2 screen interface, shown in fig. 4 and fig. 5,
reports essential information to the user during the in-
spection process. It reports when the user enters a de-
tection zone and the designated targets for inspection.
Objects that align with the as-planned design are ex-
plicitly listed on the screen, and for enhanced visual
clarity, these compliant objects are highlighted within
green bounding boxes. Conversely, objects detected but
found to deviate from the as-planned design are enclosed
within grey boxes, indicating that their projected 3D po-
sitions do not match any element’s as-planned position.

4.2 Performance analysis

4.2.1 Initialisation

Using scanning QR codes for determining camera
position and orientation is a cost-effective and accessi-
ble method. However, this approach has its limitations.
The accuracy can be significantly affected by factors
such as poor lighting, low camera resolution, and en-
vironmental interference. To enhance the accuracy of
the initialisation of the camera’s position and orienta-
tion, we continuous scan the QR code for a duration of 5
seconds while remaining stationary. Then we calculate
the mean value of the position and orientation collected
during this period. Therefore, transient errors caused
by sudden changes in the environment or by the initial
positioning of the camera can be averaged out.

In our experiment, a comparative evaluation is con-
ducted between the computed camera position derived
from the pin hole model and the position obtained
through manual measurements. This comparison re-
vealed that the average position deviation in this initial-
isation step is approximately 3.49 cm.

This discrepancy can be attributed to two significant
factors. Firstly, lens distortion, particularly in the form
of radial and tangential distortions, can alter the per-
ceived geometry of the scanned QR code, leading to in-
accuracies in the calculation of the camera’s position and
orientation. Secondly, during the process of breathing,
subtle but impactful body movements occur, which can
inadvertently shift the camera’s position, albeit slightly.

4.3 Real-time projection

During 2D to 3D projection, the method casts rays
from the camera’s origin through the image plane and
into the 3D world. The precision of the projection pro-
cess is subject to variation due to several factors, includ-
ing the camera-object angle, the distance between the
camera and the object, and the camera’s incidence an-
gle, which is defined as the angle between the camera’s
optical axis and the normal of the surface. To eluci-
date the correlation between these factors and projec-
tion errors, we conducted an experimental study using
a single socket target. The experiment is initialised by
scanning QR code and then detection and projection are
performed at varying angles and distances

We define deviation as the spatial distance calculated
from the centre point of the ’as-designed’ socket to the
centroid of the 3D projected bounding box. In total
12,507 data points are acquired for analysis. In the
analysis, the controlled variable method is utilised to
ensure rigour and accuracy in the interpretation of the
data.

Initially, we fix the camera incidence angles at 0◦ or
5◦, given that the majority of the data fall within this
range. Additionally, these angles are chosen due to their
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Figure 2. Screenshot of the Digital Twin
(switch#1, socket#1, socket#2)

Figure 3. Screenshot of the Digital Twin 2
(socket#4)

Figure 4. HL2 Screen Interface 1
(switch#1, socket#1)

Figure 5. HL2 Screen Interface 2
(socket#4)

minimal distortion impact on the projection, ensuring
they did not significantly affect the analysis of other
parameters. Employing the set parameter of camera in-
cidence angle to select the test subdataset( 4,586 data),
we analyse the relationship between the camera-object
distance and the observed deviations. The results are
summarised in the 2D scatter plot shown in fig. 6. Our
findings indicate that the deviation maintains a consis-
tent level of stability, remaining below 0.25 m, up to a
camera-object distance of 1.1 m. Beyond this threshold,
the deviation increases significantly and becomes more
erratic. This phenomenon can be attributed primarily
to two factors: (1) the amplification of errors in pre-
ceding stages, such as sensor measurement or QR code
initialisation, due to longer distances; and (2) the in-
herent limitations of the camera’s capabilities adversely
affecting detection at extended ranges.

Setting the specified range, where the camera-object
distance is less than 1.1 m, result in minimal deviation,
as evidenced by prior findings. Then, we investigate
the relationship between camera-object incidence angle
and deviation, as illustrated in Figure 7. The analysis
demonstrates that there is a direct correlation between
the deviation and camera-object incidence angle within
a range of less than 10◦ . As this angle surpasses 10◦,
we observe that the deviation becomes both unstable
and significantly higher. Within the angle range of 0◦
to 5◦, deviation remains below 0.22 m, with an average

Figure 6. Relationship between the camera-object
distance and 3D projection deviation.

deviation of 0.16 m. This can be attributed to two pos-
sible reasons: (1) camera-object incidence angle affects
image distortion and perspective projection, leading to
greater deviations at wider angles; and (2) the Inertial
Measurement Unit (IMU) sensor measurement inside
HL2 is not accurate and stable and thus accumulates
errors during calculations.

5 Discussion
In light of the aforementioned findings, it can be de-

duced that optimal system performance is attained when
the camera-object incidence angle is less than 5◦ and
camera-object distance is under 1.1 m. Under these spe-
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Figure 7. Relationship between the camera-object
incidence angle and 3D projection deviation.

cific conditions, the system demonstrates enhanced effi-
cacy, as evidenced by a mean deviation of approximately
16 cm. That deviation can be ascribed to the following
factors.

First, there is an inherent error in the process of ini-
tialising the camera’s location and orientation using QR
code scanning. As discussed in section 4.2.1, this error
results in a positional deviation of approximately 3.5 cm.
Additionally, a deviation in orientation has been iden-
tified, further investigation into which is considered for
future research endeavours.

Second, several types of distortions can affect the
outcome. Firstly, perspective and lens distortions im-
pact how the sizes and shapes in an image are seen,
which can lead to errors in the final 3D model. Then,
the way lighting and shadows appear in the image can
also change how accurately objects are detected and rep-
resented. Additionally, sensor errors, particularly from
devices like inertial measurement units (IMUs), intro-
duce further errors. These sensors sometimes struggle
to track the exact position and movement of the camera,
especially during quick motions.

Considering the various challenges inherent in the
process of 2D to 3D projection, and the technological
capability of HL2, it appears that using that system,
construction positioning conformance can only be con-
firmed with a threshold of 16 cm. To improve the ac-
curacy of our object detection and projection, two main
strategies can be employed. First, we can train our object
detection model with images taken in different lighting
conditions. This approach would make the model more
versatile and accurate in varying lighting environments.
Second, we can use additional tools like external sen-
sors to support and enhance the initialisation of camera
position and orientation.

6 Future development
It is important to note that our methodology currently

assumes a singular detection object per frame. In scenar-

ios involving multiple objects, the projection outcomes
for objects other than the primary target are prone to de-
viations. To address this issue, our future research will
develop and integrate an algorithm capable of filtering
outliers and averaging projection results.

In construction site management, accurately identify-
ing complex elements like multifunctional media sockets
is challenging due to their diverse designs and the need
to distinguish their specific types and orientations. A
strategy to address this would be to utilise sophisticated
object detection technologies, trained on an extensive
array of socket designs and configurations.

Besides, construction sites often involve situations
where materials and equipment that partially occlude
crucial elements. The compact placement of items on
sites complicates the identification process. To over-
come these obstacles, applying data augmentation meth-
ods such as cutout and mosaic in the training phase can
enhance the model’s ability to handle occlusions. Ad-
ditionally, enhancing the network design with attention
mechanisms enables the model to pinpoint more nu-
anced features, boosting its detection performance.

The proposed system is designed to automate the pro-
cess of (progress and) quality control in construction
projects, ensuring that all installed components, such
as sockets, switches, and structural elements, adhere to
the project’s specifications and quality standards. This
application can significantly reduce human error and
increase the efficiency of the inspection process. The
system holds potential for other applications, such as
monitoring and ensuring compliance with safety reg-
ulations on construction sites. By detecting potential
hazards or non-compliance with safety standards (e.g.,
improper installation of safety equipment, obstruction
of emergency exits), the system can contribute to a safer
work environment.

7 Conclusion

This paper presents a novel MR-based construction
inspection framework. The framework integrates AI-
based object detection with 2D to 3D projection tech-
niques and matching against the facility’s DT to achieve
automatic and passive inspection work, facilitated by
the communication system between the MR device and
computation centre. The results are stored in the DT and
can be reviewed in an interactive, and user-friendly way
by the MR user on site. The framework’s practicality
and effectiveness were evaluated in an indoor construc-
tion environment. The results from these tests demon-
strate the system’s feasibility in real-world inspection
processes, albeit with limitations on the quality of the
results that can reasonably be achieved.
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Abstract 
The accurate segmentation of tile peeling on building 
facades holds considerable significance for effective 
building maintenance, particularly in regions like 
Taiwan, where tiles are the predominant facade 
protection. This research introduces YOLOM, a 
novel deep-learning-based segmentation model 
designed to address this challenge. YOLOM 
harnesses the capabilities of You Only Look Once 
version 7 (YOLOv7) and incorporates the 
BlendMask-based segmentation technique, further 
augmented by the Efficient Layer Aggregation 
Network (ELAN) to enhance feature discrimination 
and extraction capabilities specifically tailored for 
scenarios involving tile peeling. Employing a dataset 
comprising 400 images featuring 758 instances of 
peeling and 525 instances of sealed tiles observed 
during on-site surveys of public buildings, YOLOM 
exhibits outstanding segmentation performance. It 
outperforms the Resnet-BlendMask50 FPN with 
improvements of 7.1% of mean average percentage 
(mAP) and 0.4% of the average precision (AP) at the 
intersection over union (IoU) of 50%. Remarkably, 
YOLOM consistently surpasses other models, 
showcasing a 19.5% and 2.2% lead in AP for small 
and large objects, respectively. In a noteworthy 
advancement, YOLOM seamlessly integrates with 
drone technology, enhancing its capabilities for aerial 
surveying of building facades. This integrated 
approach proves invaluable for building maintenance 
teams, enabling proactive and cost-effective 
interventions. The study introduces a distinctive 
framework seamlessly integrating cutting-edge 
backbone and neck modules, particularly 
emphasizing the ALAN. The innovative YOLOM 
model establishes a new standard in artificial 
intelligence (AI) techniques for building maintenance, 
contributing significantly to academic discussions 
surrounding AI-enhanced image segmentation. 
 

Keywords – 
Tile peeling; Building façade; Building 

maintenance; Computer vision; YOLOv7; Deep 
learning; BlendMask technique; ALAN. 

1 Introduction 
While tile peeling may initially seem like a cosmetic 

concern in aging buildings, its ramifications are far-
reaching. Beyond aesthetics, the detachment of tiles 
poses a direct threat to residents, risking falling accidents 
and compromising structural stability. The erosion of 
safety extends to the building's core, disrupting 
waterproofing and insulation capabilities. Exposed areas 
become susceptible to rainwater and humidity, 
accelerating material degradation and jeopardizing the 
adhesion between tiles and the structure. Recognizing tile 
peeling as more than a visual issue is crucial; it's a 
fundamental step in safeguarding both the safety and 
longevity of the built environment. 

Routine inspections of building facades are 
imperative to address these risks. However, traditional 
inspection methods, involving manual surveys, 
photographic documentation, and physical condition 
recording, are labor-intensive and expensive and pose 
safety hazards for surveyors—particularly when 
navigating precarious sections of buildings such as high-
rise rooftops and sidewalls [1]. Given the many buildings 
necessitating inspection, there is an urgent need to refine 
traditional methods to mitigate prolonged risks to 
structures and residents. 

In response to the challenges inherent in 
infrastructure inspection, researchers and industry 
professionals are collaborating to explore innovative 
solutions. They are turning to advanced image analysis 
techniques, driven by the synergy of computer vision and 
artificial intelligence (AI), as a promising avenue for 
automating the assessment of damaged components in 
buildings and infrastructure [2-5]. Various models, 
including Faster R-CNN, SSD, SSD_Lite, and different 
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iterations of You Only Look Once (YOLO), have proven 
successful in detecting and categorizing damage on 
surfaces such as concrete structures, metro tunnels, 
bridges [6, 7] and road surfaces [8]. 

Despite numerous studies on defect survey work, a 
literature gap exists regarding advanced deep learning 
(DL) methods for identifying damage to architectural 
components, such as tile peeling on building facades. 
Existing methodologies lack practical modifications, 
potentially compromising accuracy or processing time. 
Additionally, the intricate context of captured images and 
constraints in drone-to-building surface access pose 
challenges in feature extraction for recognizing areas 
with peeling. The synergy between potent segmentation 
models and drone-powered technologies holds immense 
potential for revolutionizing building facade 
maintenance practices. 

Addressing these literature gaps in problem-solving 
and methodology, this study introduces YOLOM, a 
pioneering segmentation model meticulously crafted to 
address the challenge of segmenting tile peeling areas on 
building facades. YOLOM leverages the strengths of 
YOLO version 7 [9] and integrates the segmentation 
framework of the BlendMask technique [10, augmented 
by efficient layer aggregation network (ELAN) blocks 
[10]. These ELAN blocks enhance feature discrimination 
and counteract gradual convergence deterioration, 
bolstering the model's performance in identifying and 
delineating tile peeling instances. Operating within a one-
stage framework for pixel-wise segmentation, YOLOM 
capitalizes on the BlendMask-based segmentation 
mechanism, offering a robust solution to overcome 
identified limitations in the literature. By synergistically 
combining YOLOv7 with BlendMask, our aim is to 
establish a resilient segmentation model that significantly 
enhances the effectiveness and comprehensiveness of tile 
peeling inspection on building facades. 

2 Literature review 
In contemporary scholarly discourse, a discernible 

focus exists on harnessing AI and computer vision 
methodologies to facilitate scrutinizing structural 
components within buildings. These advancements have 
yielded significant benefits by furnishing tools 
identifying nuanced features such as subtle cracks, 
deformations, and structural irregularities. These 
imperceptible nuances might elude the human eye or 
escape manual inspections, making technological 
interventions indispensable for transforming the efficacy, 
precision, and inclusivity of inspections of building 
structures [11]. 

Despite the predominant emphasis on structural 
elements, a noticeable lack of attention has been directed 
towards architectural components, specifically facades 

and exterior wall cladding. This oversight is significant 
considering that, similar to their structural counterparts, 
architectural elements are vulnerable to wear, damage, 
and degradation as time progresses. The consequences of 
their decline extend beyond aesthetic considerations, 
influencing the overall functionality of a building and 
contributing to heightened maintenance expenses [12]. It 
becomes imperative to customize AI and computer vision 
techniques for architectural inspections, presenting a 
more comprehensive strategy to ensure the optimal 
condition of every aspect of a building, encompassing 
both structural and architectural facets. 

Within the domain of computer vision applications 
for building inspections, especially in examining 
architectural components, enduring challenges persist 
despite recent advancements. A notable example is 
illustrated in the study undertaken by Kung, Pan [13], 
where a VGG-16 classifier [14] successfully classified 
damage on exterior wall tiles, attaining commendable 
accuracy. However, practical apprehensions regarding 
the viability of such a system emerge, particularly 
concerning capturing images at elevated heights and 
acquiring detailed images encompassing entire wall 
spans. 

Expanding upon the initial research efforts, Guo, 
Wang [15] delved into applying a semi-supervised 
convolutional neural network (CNN) to classify façade 
damage, particularly under constraints of limited training 
datasets. Subsequent advancements were realized by Guo, 
Wang [11], who employed the Mask Region-based 
Convolutional Neural Network (Mask R-CNN) model to 
delineate plastered and painted façades. This application 
exhibited promising segmentation accuracy, with a mean 
average precision (mAP) of 58.4%. In a more 
comprehensive inquiry, Lee, Hong [16] scrutinized the 
efficacy of a Faster R-CNN architecture in the 
segmentation and categorization of defects on building 
facades. Notably, an average precision (AP) of 62.7% 
was achieved across all trained defects, employing an 
intersection over union (IoU) threshold of 0.5. Despite 
the laudable predictive performance, it is pertinent to 
acknowledge a significant limitation inherent in the Mask 
R-CNN model—its protracted inference time. 

In recent research endeavors, Junior, Ferreira [17] 
made notable contributions by introducing the U-net, 
coupled with diverse Residual networks as the backbone 
architectures, to track crack lines in ceramic tiles. 
Extending the application of computer vision to address 
issues related to building facades, scholars have 
employed Faster R-CNN and Mask R-CNN models to 
identify and segment scratches on building glass panels 
[18]. The experimental results presented by Dais, Bal [19] 
compellingly support the effectiveness of DL on the 
crack segmentation on masonry surfaces. These findings, 
in conjunction with the previously mentioned studies, 
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underscore the growing potential of computer vision and 
DL in advancing methodologies for assessing facade 
defects. 

The knowledge extracted from existing literature 
emphasizes that DL methods for detecting or segmenting 
defects on building facades largely align with 
conventional approaches. This observation underscores a 
notable gap, indicating an urgent necessity to innovate 
and enhance advanced DL models tailored to the intricate 
challenges of detecting building facade defects, including 
issues like tile peeling. Models prioritizing speed, 
robustness, and user-friendliness are essential to address 
practical concerns faced by building maintenance 
agencies. Beyond the immediacy of pragmatic 
considerations, the prospective trajectory and widespread 
integration of sophisticated DL-based computer vision 
models hold transformative potential for the building 
engineering sector. This paradigm shift can endow 
professionals with heightened levels of precision, 
efficiency, and comprehensiveness in the realm of facade 
inspections and the formulation of intervention strategies. 

3 BlendMask-based YOLOv7 model 

3.1 BlendMask-based image segmentation 
procedure 

Introduced by Chen, Sun [20], BlendMask is a one-
stage instance segmentation model within the Fully 
Convolutional One-Stage Object Detection (FCOS) 
framework. Its departure from the pre-defined anchor 
boxes employed in YOLO family models or region 
proposals like Mask R-CNN sets it apart, contributing to 
BlendMask's notably swift inference time. The 
architecture of the BlendMask model is composed of a 
feature extraction network and a mask prediction branch. 
The feature extraction network integrates a fusion of a 
residual network (Resnet) and a feature pyramid network 
(FPN). Concurrently, the mask branch incorporates three 
crucial components: 1) a bottom module determining the 
relative position of object instances, denoted as score 
maps; 2) a top layer generating specific attention maps 
for a detected region, concentrating on relationships 
between pixel pairs within the same instance by learning 
an embedding space, and 3) a blender module aligning 
the score maps with attention tensors (refer to Figure 1). 

The bottom module, known as a "score map," predicts 
the location of a target object. Consequently, the output 
of the bottom module comprises bases (𝐵) with a shape 
of 𝑏 × 𝑛 × 𝐻

𝑠⁄ × 𝑊
𝑠⁄ , where b represents the batch size, 

n is the number of bases, and s is the output stride. The 
feature pyramid network output, including P3, P4, and 
P5, serves as the input for the bottom module. P4 and P5 
undergo interpolation using the DeepLabV3+ decoder to 
match the size of P3, followed by concatenation through 

stacking. The loss function in this phase, termed semantic 
segmentation loss, is computed using the cross-entropy 
function. 

Obtaining the feature pyramid network output (P3 ~ 
P7) involves applying a convolutional layer to the tower's 
output. The tower is then expanded with a solitary 
convolutional layer, responsible for producing the 
bounding box size, center coordinates of the bounding 
box (center-nest), and determining the object class 
confined within the bounding box. Additionally, 
attention A is provided as the bounding box score, where 
the shape of this attention is 𝑛 × 𝑀 × 𝑀 , with 𝑀 × 𝑀 
denoting the resolution set at 14×14 in this study, and 
n=4. To finalize the bounding boxes for subsequent steps, 
the post-processing technique of FCOS [21] is applied to 
refine the bounding boxes 𝑃 = {𝑝𝑑 ∈ ℝ+

0 |𝑑 = 1, … , 𝐷|} 
with the highest scores 𝐴 = {𝑎𝑑 ∈ ℝ+

𝐾×𝑀×𝑀|𝑑 =
1, … , 𝐷|} . Two components contribute to the loss 
function in this phase, namely focal loss (𝐿𝑐𝑙𝑠) and IoU 
regression loss (𝐿𝑟𝑒𝑔). 

𝐿({𝑝𝑥,𝑦}, {𝑡𝑥,𝑦})

=
1

𝑁𝑝𝑜𝑠

∑ 𝐿𝑐𝑙𝑠(𝑝𝑥,𝑦, 𝑐𝑥,𝑦
∗ )

𝑥,𝑦

+
𝜆

𝑁𝑝𝑜𝑠

∑ 𝕝{𝑐𝑥,𝑦
∗ >0}𝐿𝑟𝑒𝑔(𝑡𝑥,𝑦 , 𝑡𝑥,𝑦

∗ )

𝑥,𝑦

 

(1) 

where 𝑁𝑝𝑜𝑠  is positive samples, 𝜆  is the weight of 
regression loss (𝐿𝑟𝑒𝑔)  term, 𝕝 = 1 𝑖𝑓 𝑐𝑥,𝑦

∗ > 0 , and 𝕝 =

0 𝑖𝑓 𝑐𝑥,𝑦
∗ ≤ 0 

Classification
HxWxC

Center-ness
HxWx1

Bbox regression
HxWx4

Conv block

Received 
Feature map 

 
Figure 1. Content of tower block 

The pivotal element within BlendMask is the blender 
module, which plays a crucial role in assimilating 
information from the bottom-level bases (B) and region 
proposals accompanied by corresponding top attention 
(A). During the training process, ground truth boxes serve 
as the region proposals, while in the prediction process, 
the bounding box is deduced. Given the varying sizes of 
the proposals, the Blender module employs the 
RoIPooler function to extract the area of the K bases 
associated with each proposal (𝑝𝑑 ). Subsequently, this 
area is resized to a fixed size (R×R) with the feature shape 
denoted as 𝑟𝑑, as outlined in Equation (2). In executing 
this task, the RoIAlign technique was adopted, 
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implementing bilinear poolers.

𝑟𝑑 = 𝑅𝑜𝐼𝑃𝑜𝑜𝑙𝑅×𝑅(𝐵, 𝑝𝑑), ∀𝑑 ∈ {1, … , 𝐷} (2)

The attention resolution, denoted as 𝑀 × 𝑀 ,
undergoes interpolation to match the size of the proposals 
(R×R), forming a shape set 𝑅 = {𝑟𝑑|𝑑 = 1, … , 𝐷} .
Subsequently, 𝑎𝑑

′ is subjected to normalization using the 
SoftMax function across the K bases, yielding the score 
map set 𝑆 = {𝑠𝑑|𝑑 = 1, … , 𝐷} . The next step involves 
the element-wise product between each entity 𝑟𝑑of the 
region proposal set R and the corresponding 𝑠𝑑 of the 
score set S. This operation is performed for each of the K
bases, and the results are summed to determine the mask 
logit (𝑚𝑑), as outlined in Equation (3). The parameter K
is consistently set at a value of 4, while R assumes values 
of 28 and 56, as proposed by Chen, Sun [20].

𝑎𝑑
′ = 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑀×𝑀→𝑅×𝑅(𝑎𝑑),

∀𝑑 ∈ {1, … , 𝐷}
(3)

𝑠𝑑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑑
′ ), ∀𝑑 ∈ {1, … , 𝐷} (4)

𝑚𝑑 = ∑ 𝑠𝑑
𝑘

𝐾

𝑘=1

°𝑟𝑑
𝑘, ∀𝑑 ∈ {1, … , 𝐷} (5)

3.2 ELAN-backbone and CSP-SPP + ELAN-
PAN integration

Effective extraction and processing of features hold a 
central role in the analysis of image data. The advent of 
big data and advancements in convolutional neural 
networks (CNNs) and high-performance computers have
facilitated the practicality of analyzing extensive image 
datasets. Using random trials is deemed impractical for 
developing efficient CNN networks tailored to extract 
specific task-related features. Therefore, a meticulous 
analysis of the particular task, incorporating intricate 
adjustments, becomes imperative.
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Figure 2. BlendMask with ELAN-base backbone and CSP-SPP+ELAN-PAN
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After the YOLOv7 operations are completed, 
applying the SiLU activation function follows all batch 
normalizations. In a departure from conventional 
methods, this study introduces a unique network based 
on the ELAN [10]. ELAN, designed to counteract 
gradient deterioration in larger networks, combines 
elements from VoVNet [22] and CSPNet [23] to optimize 
the gradient length within a computational block. 
Notably, the layer aggregation network is trainable 
independently of the backbone network, facilitating 
faster training and experimentation, rendering it highly 
efficient for real-time operations.

Concerning the construction of the backbone, the 
ELAN is strategically incorporated between the 
downsampling blocks, as depicted in Figure 2. Diverging 
from YOLOv7, a deviation occurs by splitting two 
adjacent Cross-Stage Partial (CSP) blocks, and the output 
of all six CSP blocks in ELAN is directly concatenated, 
forming a structure referred to as ELAN-6. This ELAN-
6 output, spanning C2 to C5, serves as the input at the 
forefront of the network. Moreover, ELAN-6 is 
employed at the head of the network to enhance feature 
extraction in CSP-SPP + ELAN-PAN, with PAN 
representing the Path Aggregation Network.

In this investigation, the Feature Pyramid Network 
(FPN) is substituted with the Pyramid Attention Network 
based on the Efficient Layer Aggregation Network 
(ELAN-PAN). ELAN is integrated into the layer scaling 
of PAN, processing backbone features before entering 
ELAN-PAN. In contrast to BlendMask, ELAN-PAN's 
scaling progresses from P2 to P7, as opposed to P7 to P2. 
ELAN is introduced into the transformation between the 
layers of ELAN-PAN. Due to a significant increase in the 
number of parameters in the P6 and P7 generations 
without substantially enhancing the segmentation 
model's inference power, ELAN avoids the downscaling 
task for P6 and P7. To align with the foundational 
structure of the BlendMask operating system, the channel 
number for each layer in ELAN-PAN is standardized. As 
a result, this study designates the proposed model as 
YOLOM.

4 Data collection and processing
Emphasizing the concern for public safety posed by 

peeling tiles, the surveyed buildings were strategically 
selected in high pedestrian-traffic zones. These 
encompassed various structures such as university 
campus buildings, apartment complexes, hospitals,
government offices, and activity centers. Image data 
collection employed a Nikon D3200 digital camera, 
Autel Robotic EVO Lite+ unmanned aerial vehicle 
(UAV), Canon EOS M10, and iPhone 12 Pro, capturing 
photos across different seasons, times of day, and lighting 
conditions (e.g., cloudy days, shadows, high and low 
light, and reflected light). Over a year, the survey team 

conducted fieldwork, ensuring diverse images with 
complex backgrounds to enhance the model's 
applicability in real-world scenarios. Each object was 
documented from various angles and within randomly 
sized rooms, contributing to the model's adaptability. The 
survey team utilized maximum zoom settings, especially 
for images capturing tile peeling at elevated heights. 
Following model training, an Autel Robotic EVO Lite+ 
unmanned aerial vehicle (UAV) was deployed to survey 
tile peeling in high-rise buildings.

A dataset comprising 400 surveyed images was 
employed in developing the tile peeling segmentation 
model, encompassing 758 instances of peeling and 529 
instances of sealed tiles (refer to Figure 3 for 
representative samples). Upholding the quality of the 
dataset was a meticulous process involving labeling and 
verification by two additional members of the research 
team to annotate object instances. This rigorous approach 
ensured that the DL models were trained on a dataset of 
superior quality. Table 1 details the number of images 
and instances at each survey location for a 
comprehensive overview of the dataset. The primary 
survey locations across northern Taiwan are visually 
represented in Figure 4, accompanied by image samples 
collected from these regions.

Tile peeling

Sealed area

Figure 3. Surveying locations in the northern Taiwan

Figure 4. Surveying locations in northern Taiwan
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Table 1. Experimental dataset  

Location Images Phase 
instances 

Peeling Sealed 

8 400 
Training 638 410 

Test 120 119 

5 Experimental results and discussions 
In object segmentation, the assessment of model 

performance extends to metrics such as AP across 
varying IoU thresholds and mAP considering different 
object sizes. These metrics are pivotal for gaining a 
nuanced comprehension of the capabilities inherent in an 
object segmentation model. IoU is a critical gauge, 
elucidating the accuracy with which the predicted 
bounding box aligns with the actual object. The 
exploration of diverse thresholds, including AP50 (IoU > 
0.5) and AP75 (IoU > 0.75), for small (APs), medium 
(APm), and large (APl) objects enables a nuanced 
evaluation of the model's precision across distinct levels. 

The models in this comparative analysis underwent 
training on a sophisticated computing setup featuring an 
NVIDIA GeForce RTX 4090 24G GDDR6, RAM DDR5 
5600MHz (2x32G), SSD Samsung 970 EVO Plus NVMe 
M.2, and an Intel CPU i7-13700-Core Processor. 
Hardware selection plays a substantial role in influencing 
training outcomes, particularly in DL models where GPU 
capabilities are paramount. A standardized image input 
size of 640x640 was maintained, and batch sizes of six 
were employed during the training process. Each model 
underwent an extensive training regimen encompassing 
10,000 iterations, with meticulous fine-tuning to ensure 
optimal segmentation precision. These values were 

empirically chosen to yield the most favorable outcomes 
in the experiments, enhancing the model's proficiency in 
accurately segmenting tile peeling. 

The experimental results of comparative models are 
presented in Table 2. Regarding segmentation, YOLOM 
stands out as the dominant model because it achieves the 
greatest values of all evaluation metrics. 
The YOLOM obtained at least a 7.1% improvement 
compared with the second-best model, BlendMask–
Resnet50 FPN, in terms of increasing the strictest AP 
value. The segmentation difference between the 
proposed model and other models incrementally 
increases as the complex challenge increases from large 
to small objects. As seen in Table 2, the YOLOM attained 
2.2%, 11,9%, and 19.5% improvements in segmenting 
small, medium, and large objects compared with the 
remaining models, respectively. 

YOLOM dominates the YOLOv7 mask that was 
published along with the YOLOv7 detection model by 
Wang et al. [25], boosting the AP50 and mAP values by 
4.6% and 14.0% improvements. YOLOMASK is 
established by integrating CSP-SPP + ELAN-PAN and 
substituting the Resnet backbone with the YOLOv7 
backbone while preserving the FPN found in BlendMask. 
This model structure was not streamlined, which is 
proven by the large segmentation accuracy drop of 16.7% 
and 14.0% of AP50 and mAP values. However, there is 
still an appraisal for its performance in segmenting small 
objects compared with BlendMask–Resnet50 FPN 
because it is supported by ELAN blocks. This study also 
uses BlendMask–CSPDarknet FPN to compare with the 
proposed model by substituting the YOLOv7 backbone 
with CSP Darknet. This model does not work efficiently, 
as proven by yielding much lower AP values than 
YOLOM and BlendMask-Resnet50 FPN with different 
IoU challenges.

Table 2. Experimental results of comparative models  

 Model AP50 AP75 𝑚𝐴𝑃 𝐴𝑃𝑠 𝐴𝑃𝑚 𝐴𝑃𝑙  

Se
gm

en
ta

tio
n 

re
su

lts
 

BlendMask–Resnet50 FPN 0.799 0.537 0.496 0.181 0.399 0.652 

BlendMask–CSPDarknet FPN 0.639 0.386 0.367 0.107 0.385 0.471 

YOLOv7 mask by Wang, Bochkovskiy [24] 0.757 NA 0.427 NA NA NA 

YOLOMASK 0.636 0.348 0.352 0.125 0.307 0.473 

YOLOM 0.803 0.699 0.567 0.376 0.518 0.674 

B
ou

nd
in

g 
bo

x 
re

su
lts

 

BlendMask–Resnet50 FPN 0.811 0.611 0.543 0.334 0.475 0.662 

BlendMask–CSPDarknet FPN 0.650 0.433 0.402 0.187 0.431 0.475 

YOLOv7 mask by Wang, Bochkovskiy [24] NA NA NA NA NA NA 

YOLOMASK 0.650 0.420 0.387 0.162 0.366 0.476 

YOLOM 0.807 0.736 0.622 0.540 0.583 0.702 
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6 Conclusions 
In the realm of building façade recognition, the early 

identification and precise delineation of issues emerge as 
pivotal factors. This study introduces a cutting-edge 
deep-learning-based segmentation tool named the 
YOLOM model, meticulously crafted to discern 
instances of tile peeling on building exteriors. Its 
application extends valuable support to building owners, 
aiding in proactive maintenance and resource 
conservation endeavors. 

The YOLOM model has set a performance 
benchmark by incorporating state-of-the-art backbone 
and neck modules. A comparison with the BlendMask–
Resnet50 FPN underscores its superiority, boasting a 
remarkable 7.1% increase in superior mean (mAP) and a 
notable 16.2% enhancement in AP75 values. 
Furthermore, it exhibits substantial leads in various 
precision metrics—APs, APm, and APl—with 
improvements of 19.5%, 11.9%, and 2.2%, respectively. 
These outcomes stem from a diligently curated dataset 
featuring 400 building façade images containing 1287 
instances of peeling and sealed tiles. These validations 
affirm the model's robustness and propel academic and 
practical advancements. 

Future endeavors will focus on integrating global 
building visuals and collecting tile-peeling images with 
diverse resolutions, enhancing the adaptability of 
YOLOM for improved training dynamics without 
compromising accuracy. Subsequent research will 
involve an ablation analysis to comprehensively assess 
the impact of various model components on the 
performance of the YOLOM, offering valuable insights 
for future enhancements. 

Future studies could explore how variations in 
photographic datasets, including facade-distance, camera 
angle, lighting conditions, and image resolution, affect 
the performance of YOLOM, with a focus on strategies 
to mitigate challenges and optimize model performance 
across diverse real-world scenarios. Integration of 
augmented and synthetic data could augment dataset 
diversity and size, enhancing the model's generalization 
capabilities. Additionally, investigating transfer learning 
and domain adaptation techniques could improve 
YOLOM's adaptability to different datasets and mitigate 
domain shift issues. Evaluation of real-world deployment 
challenges should also be conducted to ensure successful 
implementation and adoption of YOLOM in building 
facade maintenance workflows, advancing its 
effectiveness and impact in practical applications. 

Beyond its role as a mere model, this research 
contributes a robust framework to the academic 
community, accentuated by the ELAN-based structure. 
This foundation encourages researchers to explore 
advanced segmentation models. In conclusion, YOLOM 
is a guiding light in academic exploration, symbolizing 

AI's transformative potential in practical spheres, 
particularly building façade maintenance. As the journey 
forward unfolds with an array of improvements and 
expansions, collective efforts hold the potential to 
reshape façade maintenance narratives. 
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Abstract -
In recent years, there has been a growing interest in au-

tomated indoor construction progress monitoring (ICPM) to
maximize precision and reduce human intervention. Com-
puter vision approaches, especially based on deep learning
(DL) methods, have shown great potential in this task. How-
ever, training DL models require large-scale datasets, which
are often costly and laborious to obtain, specifically for in-
door construction environments. This study proposes an
automated approach to generate real-world-like synthetic
data of indoor construction by combining building informa-
tion modeling (BIM) and a photorealistic graphics engine.
The approach was validated by efficiently producing anno-
tated synthetic datasets of mechanical, electrical, and plumb-
ing components from various BIM models. A state-of-the-
art instance segmentation network was trained using those
datasets alongside real manually annotated data and transfer
learning methods to assess the results. Preliminary experi-
ments using an on-site augmented reality device demonstrate
the promising efficiency of DL for ICPM.

Keywords -
Building Information Modeling; Computer Vision; Deep

Learning; Progress Monitoring; Indoor Construction; Aug-
mented Reality.

1 Introduction
Progress monitoring of construction sites is essential

because it gives managers the information needed to act
quickly and wisely. Ineffective progress monitoring leads
to a loss of control, causing time and cost overruns. The
manual data entry required by conventional progress moni-
toring techniques is laborious, time-consuming and prone
to human error [1]. Inspections of interior work — for
example, mechanical, electrical, and plumbing (MEP) in-
stallation — can be even more difficult for inspectors due
to the level of detail and interdependence of tasks [2].
Therefore, it becomes desirable to automate these tasks.

The use of computer vision (CV) has been studied on a
wide range of construction applications, such as site safety
inspection [3], localization, navigation [4], and 3D recon-

struction [5, 6], among others. Several studies on vision-
based construction progress monitoring have also been
reported [7]. Deep learning (DL) techniques excel in nu-
merous CV tasks and is increasingly used in this field [8].
Although DL models are capable of powerful feature rep-
resentation, they rely heavily on large-scale, high-quality
training datasets. Three methods can be found commonly
in the literature to acquire such datasets (1) using pre-
existing datasets, (2) using web crawling techniques, and
(3) by capturing the data manually [9].

Regarding (1), the CV community has produced a num-
ber of publicly available datasets, including ImageNet
[10], S3DIS [11], MS COCO [12], and ADE20K [13].
Although a handful of datasets such as MOCS (moving
objects in construction sites) [14] and CIS (construction
instance segmentation) [15], targets the construction do-
main, they mainly focus on outdoor environments, leaving
indoor environments underexplored.

The second and third data collection techniques present
a unique set of challenges that hinder the creation of large-
scale, high-quality real-world datasets. On one hand,
data collection through web crawling requires manual re-
view for quality, privacy regulations, intellectual property
rights, and consistency. On the other hand, capturing data
in the real world involves tedious work, access to con-
struction sites, and specialized expertise [16]. The data
annotation step, arguably the most time-consuming task
due to the dataset’s large scale, follows the data collection
process. Crowdsourcing services like Amazon SageMaker
and Google Cloud Vertex AI can significantly reduce the
manual labor involved, but they remain costly and prone
to error [17].

Because the acquisition of real-world datasets is a chal-
lenging and resource-intensive endeavor, researchers have
also explored the generation of synthetic data from con-
trollable and computable virtual environments as a cost-
effective and efficient alternative [18]. In the realm of
synthetic image data generation in construction, there have
been a number of virtual environments constructed using
3D modeling and computer graphics software such as Re-
vit, Blender, Unreal and Unity [19, 20, 21]. DL models
trained on synthetic or mixed datasets have been shown to
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outperform or achieve comparable performance to models
trained solely on real images [22].

One emerging source of data over the past decade comes
from the building information modeling (BIM). BIM is
a set of interacting policies, processes and technologies
aimed at managing the essential data of a construction
site, in digital form, throughout its life cycle [23]. BIM
models have become an appropriate data source for gen-
erating synthetic images of indoor building scenes due to
the inclusion of accurate geometry and sometimes appear-
ance information (i.e., material and texture). BIM author-
ing tools can provide virtual cameras and several studies
have leveraged their capabilities to generate synthetic data
[24, 25]. However, the potential of BIM models combined
with computer graphics software has not been fully ex-
plored and there is no universal approach to generate data
automatically.

This paper proposes a procedural approach to generate
synthetic datasets from BIM models to address the data
collection and availability drawbacks mentioned above.
To test this approach, three synthetic datasets were gener-
ated from three different BIM models (i.e. Figure 1) and
used to train and test a state-of-the-art instance segmen-
tation model. Lastly, a preliminary approach is presented
that compares the prediction of the trained neural network
model with the BIM model view through an augmented
reality (AR) device.

Figure 1. Snapshots of three BIM projects imported
in the graphic engine.

This article is structured as follows: Section 2 delves
into the technical aspects of synthetic image generation
and annotation. Section 3 presents an experimental pro-
cedure to evaluate the framework performance, followed
by a concise experimental study showcasing its practical

application. Finally, Section 4 summarizes the findings
and outline directions for future research.

2 Methodology
The objective of this study is to develop an automated

approach that generates photorealistic synthetic RGB im-
ages of indoor building scenes with comprehensive anno-
tations using BIM and a computer graphics engine. Figure
2 illustrates the workflow of the approach, each step is fur-
ther described in the following.

Figure 2. Framework to generate annotated
photorealistic images from a BIM model.

2.1 Synthetic image generation

Since the study focuses on indoor construction sites,
the first step is to acquire BIM models of such projects. A
BIM model for a building is typically created by a team of
professionals from various trades, each contributing their
expertise to the development of the model. These trades
can be broadly categorized into the following groups: ar-
chitecture, structural engineering, MEP and interior de-
sign. The MEP trade, representing the construction phase
with the most dynamic and complex changes throughout
a project’s life cycle, is a critical area for progress mon-
itoring automation. Therefore, we focus on generating a
synthetic dataset in this field.

NVIDIA Isaac Sim is a robotics simulation toolkit for
the NVIDIA Omniverse platform that provides researchers
and practitioners with the tools and workflows they need
to create robust, physically accurate simulations and syn-
thetic datasets. With the use of a Revit plugin, one can
directly import construction projects into Isaac Sim, mak-
ing it a viable tool for synthetic dataset generation using
BIM. For each physical object, the following information
is obtained: object class, instance ID, and triangular mesh.
However, the projects lack materials and textures, which
we need to add through Isaac Sim to create a photorealistic
environment.

The application of true-to-life textures to each object
class within the BIM environment can be achieved through
the utilization of the application programming interface
(API) and the Omniverse material library. By leveraging
the unique IDs associated with each object instance, it is
possible to efficiently apply a variety of textures to specific
object classes, such as pipes, for enhanced realism. For
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example, red and blue metal textures can be applied to rep-
resent warm and cold currents, respectively, while black
foam textures can be used to depict insulation. Addition-
ally, the ability to create or import custom texture packs
from external platforms, along with the incorporation of
3D models of specific elements, such as fan coils, further
enhances the realism of the BIM environment. Moreover,
the accurate representation of lighting, including both in-
door and natural illumination, is crucial for achieving a re-
alistic virtual representation. Artificial lighting should be
meticulously tailored to match the lighting fixtures speci-
fied within the BIM model, while additional light sources
may need to be strategically placed to compensate for the
absence or non-functional state of lighting fixtures at the
actual construction site. Various rendering parameters
can be adjusted to optimize the depiction of light behav-
ior, its interaction with objects, their reflectivity, colors,
and transparency/absorption of materials. To achieve the
highest level of fidelity, we use the interactive path trac-
ing mode instead of approximation methods that prioritize
performance while sacrificing accuracy.

The camera sensor simulation provides granular control
over parameters like lens properties, aperture, shutter, clip-
ping, and fisheye distortion, replicating real-world camera
behavior. Key parameters include focal length, field of
view, output resolution, and focus distances. It is impor-
tant to note that digital cameras may produce radial and
tangential distortions due to manufacturing imperfections
in their lenses. The virtual camera supports various dis-
tortion models, with popular options including rational
polynomial, brown conrady, and fisheye. Post-processing
enhancements, including exposure adjustment, tone map-
ping, color grading, color correction, depth of field, mo-
tion blur, bloom, and others, further refine the simulated
camera feed. We target a low-end camera simulation mim-
icking a laptop webcam for embedding compatibility.

After configuring the virtual camera, the next step is to
determine its possible positions within each scene. This
involves defining routes that mimic the movement of a
worker inspecting the construction site. The API provides
a tool for manually creating these routes. While grid-based
viewpoints could be used, manually drawn routes provide
a more natural representation of an inspector’s movement.

2.2 Instance segmentation annotation

We use the semantics schema API to associate semantic
data to each object class in our dataset. The synthetic data
recorder options are RGB, depth, semantic and instance
segmentation, 2D tight and loose bounding box. For this
dataset, we only select RGB and instance segmentation
data, capturing one image per half second along the pre-
defined route.

So far, valid photorealistic synthetic images have been

generated. We now need to translate the semantic data
to a DL model annotation format. We chose to use the
Darknet text format compatible with the YOLOv8 in-
stance segmentation model, one of the latest iteration of
the popular YOLO model [26] released in January 2023
by Ultralytics. The architecture of YOLOv8 combines a
convolutional neural network (CNN) backbone with a self-
attention mechanism to achieve high accuracy and speed
for object detection. This CNN model’s high-speed in-
ference makes it ideal for real-time applications on edge
devices. Additionally, a segmentation head is added to
predict the binary segmentation masks for each object de-
tected.

Each line in a Darknet text file corresponds to a sin-
gle object annotation. We create a Python script to at-
tribute to each pair of RGB and semantic image a text
file containing each object’s class IDs, bounding box co-
ordinates, and the mask coordinates, determined using
the Ramer–Douglas–Peucker (RDP) algorithm. The RDP
algorithm is a curve-fitting algorithm that simplifies the
contours of an object by reducing the number of points
that describe it while preserving its shape. By configuring
the spatial resolution, minimum surface, and the number
of points describing a contour, we can eliminate objects
that are too small.

3 Experimental study
3.1 The generated synthetic dataset

We perform a series of experiments to evaluate the
proposed approach. All experiments are run on a lap-
top equipped with an Intel Core i7-10750H CPU, 32 GB
of RAM, and a NVIDIA Quadro RTX 3000 GPU. SPIE
Building Solutions, a subsidiary of SPIE, provides access
to three construction projects for the experiment (see Fig-
ure 1). The first project is an eight-story tower that will be
used as an office, the second is an extension to a scientific
university laboratory, and the third is a completely new
site for a business school, making them an excellent sam-
ple of tertiary construction projects. Prior to importing
the geometry into Isaac Sim, filters are applied to the BIM
model in Revit to eliminate all interior design elements and
architectural components that obstruct the MEP compo-
nents. A route is created within each building, traversing
each floor and alternating the viewpoints.

The dataset generated in this study is named MEP-SEG.
By capturing one image every half a second of the created
route, we collected 8,751 samples from the BIM projects,
with a rendering time of approximately 9 hours. The
distribution of assets for each of the 13 classes is shown
in Table 1. Examples of the generated samples are
depicted in Figure 3. As shown, some classes are
severely under-represented compared to others. This
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Table 1. Distribution of assets among the 13 classes
in the generated dataset.

Class No. of assets
Wall 90801
Pipe 44998
Floor 44266
Circular duct 34973
Rectangular duct 26227
Framework 11627
Air vent 8585
Pole 5131
Fan coil 4286
Radiant panel 3031
Ceiling 2431
Pipe accessory 1449
Climatic equipment 1309

will have to be taken into account when using this
dataset. The entierety of the data is publicly available at
: https://datasets.liris.cnrs.fr/mep-seg-dataset-synthetic-
images-generated-building-information-modeling-bim-
v1.

Figure 3. Three synthetic images generated on the
left column and their corresponding semantic

segmentation image on the right column.

3.2 Evaluation procedure

3.2.1 Evaluation of synthetic pre-trained models on
small real datasets

For this initial evaluation, we compare transfer learning
(TL) using two different pre-trained models of the same
YOLOv8 architecture. The first model is pre-trained on
the COCO image dataset [12], the second model on our
MEP-SEG dataset. The objective is to determine whether

using a synthetic dataset in the targeted domain can yield
better performance compared to a generic but more com-
prehensive public dataset. We focused on detecting only
three classes: circular ducts, rectangular ducts, and pipes.
These objects are among the most challenging to detect in
images of the MEP domain due to their various shapes,
textures, and sizes. We extracted these three classes from
our MEP-SEG dataset, resulting in a duct and pipe dataset
named D&P-SEG. A blank YOLOv8 neural network was
trained using the API of YOLOv8. All available images
are distributed 70% for training, 20% for validation and
10% for testing. The training strategy included a batch
size of 6, learning momentum of 0.937, weight decay of
0.0005, learning rate (LR) of 0.01, width and height of 640
for 1000 epochs. Training took approximately 8 hours on
an RTX 3000 GPU.

Real-world images were collected from inside five con-
struction sites: the three used for the MEP-SEG dataset
and two new projects: a residential building for Olympic
athletes and a new corporate headquarters. Two distinct
devices were used for data collection: a smartphone and
the Microsoft HoloLens 2 AR glasses. A total of 217
images were acquired and manually labeled. Then, two
datasets of varying dimensions are created: (1) the first
small (S) dataset included 45 images for training and 19
images for validation. (2) The second medium (M) dataset
contained 131 images for training and 43 images for val-
idation. Both pre-trained models are fine-tuned on those
real-world datasets with the same strategy, adding a pa-
tience of 50 for early stopping. The two models obtained
their lowest validation loss in around 200 epochs, for a
training time of 20 minutes. For testing, 40 additional
images are selected. Table 2 summarizes the test results.

Table 2. Performances on COCO vs. synthetic TL
on small (S) and medium (M) real datasets.

Metrics COCO TL Synthetic TL
S dataset box mask box mask
Precision (%) 43 51 66 64
Recall (%) 43 34 47 46
mAP50 (%) 42 38 53 49
mAP50 95 (%) 26 19 37 30
M dataset box mask box mask
Precision (%) 52 52 69 63
Recall (%) 45 42 40 38
mAP50 (%) 43 41 47 43
mAP50 95 (%) 29 24 30 24

The performance metrics used on both the predicted
boxes and masks are precision, recall, mean average pre-
cision at an intersection-over-union (IoU) threshold of 0.5
(mAP50), and mean average precision at IoU thresholds
ranging from 0.5 to 0.95 (mAP50 95). As we can see on
the S dataset, the pre-trained model on our synthetic data
outperforms the one pre-trained on COCO in every metric.
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Additionally, the gap between box and mask on precision
and recall is lower using the synthetic TL method, sug-
gesting that the model better detects the edges of objects.
Looking at the results on the M dataset, we observe a less
significant difference between the two methods, indicating
that the more real data available, the less relevant is using
a synthetic dataset for a pre-trained model. In conclusion,
using a synthetic pre-trained model showed promising re-
sults for transferring knowledge onto a small real dataset.

3.2.2 Evaluation of augmented datasets for MEP ob-
ject detection

For the second evaluation, we constructed two sets of
training datasets, one comprising 142 real images and the
other 500 synthetic images. Secondly, we prepared a real
test dataset containing 50 real images. This time, we fo-
cused on five classes: duct (encompassing circular and
rectangular ducts), pipe, radiant panels, fan coil, and dif-
fuser. The real training images were carefully selected
from the MEP-SEG dataset to ensure they were the most
representative. Thirdly, to explore the effectiveness of
augmenting synthetic data with a small amount of real
data, we prepared two additional training datasets:

• A mixed training dataset with 550 images, containing
90% synthetic images and 10% real images.

• A mixed training dataset with 600 images, containing
80% synthetic images and 20% real images.

In each training dataset, 80% of the images were used
for training, and the remaining 20% were used for val-
idation. The YOLOv8 model pretrained on the COCO
image dataset served as the foundation and the same train-
ing strategy as in the previous evaluation was employed.
The evaluation on the 50 real test images of the precision
metric across all training datasets is provided in Table 3.

Table 3. Performance of the YOLOv8 model trained
on different datasets.

Training dataset Precision (%)
box mask

Real 77 75
Synthetic 30 29
Synthetic +10% real 71 69
Synthetic +20% real 80 79

The purely synthetic dataset exhibited inferior perfor-
mance compared to the same dataset enhanced with 10%
real images, which itself performed less effectively than
that augmented with 20% real images. To achieve perfor-
mance that is comparable or even superior to that of the
real image dataset, it appears that at least 20% of real im-
ages are needed. This indicates that augmenting a dataset
of real images with synthetic images holds promise for
effectiveness and efficiency.

3.3 Preliminary validation of effectiveness.

This section presents a preliminary work towards the
automation of progress monitoring in the construction in-
dustry using the Hololens 2 AR glasses. The work in-
volves the use of an YOLOv8 model, pre-trained on our
MEP-SEG dataset and fine-tuned on a real dataset to ac-
curately detect and segment diverse MEP objects within
images. The NEXT-BIM application serves as a founda-
tion for this work, which already enables the visualiza-
tion of BIM models using AR glasses as well as a semi-
automatic alignment of the user view. Post-alignment,
the BIM view is superimposed onto the real-world view
in real-time, enabling a seamless comparison between the
two. A prototype tool for visual progress monitoring has
been developed on top of NEXT-BIM’s application. The
tool is capable of assessing the MEP work progress in a
real on-site scenario.

Figure 4 provides an example of the method used to
assess MEP work progress.

Figure 4. Captured versus BIM comparison.

The process starts with the capture of the real-world
scene (1) using the integrated webcam. Subsequently, the
corresponding view within the BIM model (2) is extracted
based on the webcam sensor’s coordinates and orienta-
tion. The captured on-site image is run through our in-
stance segmentation model (3), resulting in a prediction
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mask that categorizes and labels each pixel with a unique
color corresponding to its respective class. For instance,
ventilation ducts are represented in cyan, while piping is
depicted in green. In parallel, semantic extraction is ap-
plied to the BIM model image (4) to generate the ground
truth mask. This involves transforming each material com-
ponent within the view frustum to its corresponding class,
followed by color filtering and shape estimation. The
two generated segmentation masks, namely the prediction
mask and the ground truth mask, are then superimposed
(5), with adjustments made to ensure alignment. Finally, a
comparison of the superimposed masks yields the result-
ing discrepancy mask (6), where red represents the ground
truth, blue represents the prediction, and green represents
the overlapping pixels.

To ensure the robustness of our AR-based progress mon-
itoring system, a rigorous validation methodology will be
employed. Success criteria for detection, segmentation,
alignment, and processing speed will be defined first. The
next step involves using the Hololens glasses to collect
diverse pairs of real-world images and ground truth seg-
mentation masks, deliberately targeting challenging edge
cases. Iterative evaluation metrics will be utilized to pin-
point weaknesses, which will guide the refinement of our
model and data. The final stage involves designing a real-
life progress assessment scenario, where the efficiency
and user experience of our method will be compared to
traditional alternatives.

This innovative approach, enabled by AR technology,
will empowers inspectors to visualize and interact with the
BIM model in real time, enhancing their understanding of
the physical environment and enlighten informed decision-
making. This automatic segmentation makes it easier to
assess the presence or absence of MEP objects, calculate
the possible difference between the as-planned and as-
built, and facilitate ICPM in the end.

4 Conclusion and future work
We presented a promising solution towards the automa-

tion of indoor construction progress monitoring (ICPM)
using synthetic data and deep learning (DL). We proposed
a procedural building information modeling (BIM) based
synthetic image generation approach to address the data
scarcity of real-world data, particularly for indoor con-
struction environments. Our experimental study show-
cases the successful implementation of the proposed ap-
proach in three real-world construction projects, and the
preliminary validation of effectiveness using augmented
reality (AR) glasses further demonstrates the potential
practical applications of the developed tool.

However, our current method has limitations related
to the differences between the real and synthetic worlds.
Building scenes represented by BIM models are often

cleaner or more well organized than real-world scenes,
where random objects can be found, and the locations of
movable objects can be arbitrary. Also, it relies heavily on
the quality of the BIM models, which frequently contain
labeling errors, geometric clashes, or an absence of object
geometry.

Future work will address these limitations to make the
captured images more scene-realistic. Furthermore, we
now focus on exploiting instance segmentation models for
ICPM. We investigate comparison methods to compute
more information between as-planned and as-built seg-
mentation masks. Additionally, to improve the model per-
formance, we consider running it through a live video feed
instead of a still image and adding temporal and tracking
methods to reduce the imprecision of the model.
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Abstract -  

Manual excavator activity monitoring to evaluate 
their performance and productivity is laborious, 
time-consuming, and error-prone. To address these 
problems, many automated computer vision-based 
frameworks have been developed for the detection of 
excavators and the classification of their activities. 
Most of the current methods consist of several 
separately optimized modules that are applied to the 
input video sequentially. Recently, single-stage 
spatiotemporal activity recognition methods are 
gaining more popularity in the construction 
community. You Only Watch Once (YOWO) network 
and its variation (i.e., YOWO53) have proved to be 
superior to the three-stage approaches for activity 
recognition of construction workers. This paper 
investigates the benefits of using YOWO and 
YOWO53 over the three-stage methods for the 
activity recognition of excavators, by utilizing a large 
custom dataset of 1,060 video clips collected from 
both local construction sites and YouTube, with 
different camera angles, illuminations, occlusions, 
weather conditions, and video resolutions. The results 
demonstrate 88.9 and 88.7% classification accuracy 
and F1-score, respectively for the YOWO method 
compared to 70.4% and 69.8% classification 
accuracy and F1-score for the three-stage method. 
This indicates the feasibility and benefits of deploying 
the single-stage methods to near real-time 
applications. 

 
Keywords – 

Site monitoring, Activity recognition, Computer 
vision 

1 Introduction 

Nowadays, the growing demand for the completion 
of construction projects within schedule and under 
budget has resulted in the development of automated, 

continuous monitoring routines to provide project 
managers with vital productivity and safety information 
[2]. Traditionally, monitoring the activities of excavators 
and other earthmoving equipment is performed manually 
by superintendents on the site. However, such methods 
can be very time-consuming, labor-intensive, and error-
prone especially on large construction sites [1, 2]. 
Considering that excavators are at the core of 
earthmoving operations [3], monitoring their activities 
can provide information about work cycle duration and 
consequently productivity. This information in turn 
enables site managers to make more informed project-
related decisions, such as adjusting resource allocations. 
Considering that excavators are at the core of 
earthmoving operations [3], monitoring their activities 
can provide productivity and work cycle duration 
information, which in turn enables site managers to make 
more informed project-related decisions, such as 
resource allocations and scheduling [4, 5]. Videos can 
provide detailed information about the visual features 
and physical motions of equipment, and therefore 
increase the interpretability of the results and their 
shortcomings by viewing the recorded video and the 
detected activities [2, 6]. Before the rise of deep learning, 
vision-based methods generally relied on hand-crafted 
features to extract useful information for activity 
recognition from images and videos [7]. However, 
advances in deep learning methods demonstrated their 
superiority over traditional hand-crafted methods in 
different applications such as object detection [8] and 
activity recognition [9], which resulted in a 
corresponding change in the use of vision-based methods 
in the construction domain. 

Convolutional Neural Networks (CNN) are the main 
building blocks in all vision-based deep learning 
methods, and in the past few years, many 2D CNN-based 
construction equipment activity recognition methods 
have been proposed. For instance, Roberts et al. [1] used 
a combination of 2D CNN with Hidden Markov Models 
to detect, track, and identify the activities of excavators 
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and dump trucks. Luo et al. [10] used a combination of 
2D CNNs and relevance networks for detecting various 
construction-related objects and their associated set of 
interactive activities by exploiting the two-dimensional 
pixel proximity of the detected objects. Kim and Chi [11] 
also performed interaction analysis to identify the 
activities and operation cycles of excavators and dump 
trucks by combining 2D CNN and Long Short-Term 
Memory (LSTM) architectures. Similar combinations of 
2D CNNs and LSTMs, were also used by Slaton et al. 
[12] to detect the routine tasks of excavators and roller 
compactors, and by Kim et al. [6] to detect excavator 
activities via exploiting their sequential working patterns 
for automatic productivity analysis. 

While 2D CNN-based methods try to combine the 
spatial and temporal information using different 
methods, 3D CNN-based methods incorporate the 
spatiotemporal data extraction into a single architecture, 
which allows the deep learning models to extract relevant 
spatiotemporal data. Chen et al. [2, 13] proposed a three-
stage method in which excavators are first detected in the 
input frames. Then, the detected excavators are fed into a 
tracking algorithm, and finally, the tracked results are 
input to a 3D CNN network to classify the activities. A 
similar three-stage framework was also proposed by Lou 
et al. [14] in which workers were first detected using the 
You Only Look Once (YOLOv3) network. The detected 
workers were then tracked, and the activities performed 
by them were classified using a 3D CNN architecture. 
Although these frameworks can potentially extract more 
informative spatiotemporal features using 3D CNN 
architectures, their three-stage approach still limits their 
accuracy. The main limitations of three-stage methods 
are: (1) not being fully optimized, and (2) the propagation 
of errors from earlier stages to the later ones, which 
results in the degradation of the performance of the entire 
framework [14,15]. For example, if an equipment is not 
detected in a few frames or if it is not tracked properly 
through the frames in which an activity is occurring, the 
final 3D CNN stage cannot correctly classify the 
underlying activity. 

The benefits of using a single-stage method over the 
three-stage methods were studied for the case of 
detecting activities of construction workers by Torabi et 
al. [16]. They proposed a network called You Only 
Watch Once 53 (YOWO53) to jointly detect construction 
workers that appeared small in the video frames and 
classify their activities. YOWO53 is based on a general 
human activity recognition network called YOWO [17]. 
The results showed YOWO53 improves the detection 
recall of YOWO for small objects (e.g., workers) by at 
least 2%, and both single-stage networks (i.e., YOWO 
and YOWO53) improved the activity classification 
accuracy of one of the state-of-the-art three-stage 
methods [2] by at least 16%. Jung et al. [15] also 

proposed a single-stage architecture for detecting the 
activities of multiple construction equipment 
simultaneously. This framework uses a 3D CNN 
architecture and performs equipment detection and 
activity recognition in one stage to alleviate the 
limitations of the three-stage methods. However, 39% of 
the video clips in the reported dataset of seven activities 
correspond to the idling state of the equipment. Such a 
dataset, in addition to being unbalanced, limits the real-
world applicability of the trained model. 

The aim of this paper is to investigate whether the 
same improvement achieved by single-stage YOWO53 
method for workers [16] is achievable for the case of 
excavators. Furthermore, another important factor in the 
final performance and applicability of a developed 
activity recognition model is the size and variability of 
the data included in a dataset. To this end, a large 
balanced dataset of excavator activities with more than 
1,060 video clips, collected both from local construction 
sites and YouTube, has been gathered. The prepared 
dataset contains the three common excavator activities of 
digging, swinging, and loading the trucks under various 
camera angles, illuminations, occlusions, weather 
conditions, and video resolutions. Thus, enabling a 
thorough evaluation of the YOWO and YOWO53 
methods under various real-world conditions. 

2 Methods Used in The Case Study 

The single-stage YOWO [17] and YOWO53 [16] 
methods are compared in this study with a state-of-the-
art three-stage method proposed by Chen et al. [2]. The 
general architectures of the selected methods are shown 
in Figure 1, and a more detailed description of these 
methods is presented in the following sections. 

2.1 YOWO 

YOWO [17] is a spatiotemporal activity recognition 
method, which uses two branches in its architecture. One 
branch extracts 2D features from the current frame while 
the second branch extracts 3D features from a stack of 
successive frames. Afterwards, the outputs of the two 
branches are combined using a channel fusion and 
attention mechanism (CFAM), which provides the 
essential performance boost.  

The 3D CNN branch is utilized for extracting the 
spatiotemporal features. In this work, the 
ShuffleNetV2_2x [18] 3D CNN is chosen for this branch 
for comparison with the activity recognition results of 
workers [16]. The input to this network is a video clip 
comprised of a sequence of frames with the dimension of 
[𝐶 × 𝐷 × 𝐻 × 𝑊], with 𝐶 being equal to 3 (RGB 
channels), 𝐷 representing the number of input frames, 
and 𝐻 and 𝑤 representing the height and width of the 
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(a) Single-stage Methods 

 
(b) Three-stage Method 

Figure 1. The general architecture of the selected methods 

frames, respectively. The shape of the output is 
[𝐶′ × 𝐷′ × 𝐻′ × 𝑊′], with 𝐶ᇱ being the number of output 
channels, 𝐷ᇱ = 1, 𝐻ᇱ = 𝐻/32 , and 𝑊ᇱ =  𝑊/32. By 
default, the output of the 3D CNN branch is 4-
dimensional, while the output of the 2D CNN branch is 
3-dimensional. To make the output of these two branches 
compatible before combining, the output of the 3D CNN 
branch is designed to have a reduced depth component 
(𝐷ᇱ = 1), which can be dropped, hence becoming three-
dimensional in effect.  

While some studies only rely on a single 3D CNN 
network for simultaneous activity recognition and 
localization (e.g., [15]), the YOWO model also uses a 2D 
CNN branch in parallel to provide more accurate spatial 
information. YOWO uses the Darknet19 [19] network in 
the 2D CNN branch for object detection, which takes 
images of the form [𝐶 × 𝐻 × 𝑊] as input, while the 
shape of the output feature map is of the form of 
[𝐶" × 𝐻ᇱ × 𝑊ᇱ], where 𝐶" is the number of output 
channels.  

Afterwards, the output of the two branches is input 
into the CFAM module, which fuses the two 2D CNN 
and 3D CNN extracted information. Since the two 
branches are designed to have the same shape for their 
output feature maps, they can be easily concatenated 

along the channel dimension. The CFAM module then 
utilizes the fused feature maps to generate a combination 
of both motion and appearance data. Finally, the loss 
function used to train the YOWO model, is inspired by 
the losses defined in YOLO [19] and Fast R-CNN [20] 
models, and is comprised of the activity classification 
loss, and the localization loss between the bounding box 
predicted by the model and the ground truth bounding 
box. 

2.2 YOWO53  

The YOWO method has a modular architecture in 
which the networks in the 2D CNN branch and the 3D 
CNN branch can be replaced by other corresponding 
networks. The YOWO53 model exploits this architecture 
by applying the following modifications. As stated in 
Section 2.1, the YOWO method uses the Darknet19 
network in the 2D CNN branch for extracting spatial 
features from the current frame. While the Darknet19 
network is fast, its detection accuracy for small objects is 
not very high. To address this problem, the Darknet53 
network [21] is utilized in the YOWO53 method, which 
although slower, provides more accuracy for detecting 
small objects and hence is more suitable for applications 
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in the construction domain. Particularly, considering that 
most of the surveillance cameras on construction sites are 
installed at high altitudes and consequently, workers and 
construction equipment at a distance can appear very 
small in the recorded site videos. Following the above 
change in the 2D CNN branch, to keep the output shape 
of the 2D and the 3D branches consistent for fusion in 
CFAM, a single max-pooling layer is removed from the 
architecture of the network used in the 3D branch. Thus, 
doubling the size of the output feature maps of the two 
branches (𝐻ᇱ =  𝐻/16, and 𝑊ᇱ =  𝑊/16). This 
modification not only allows the concatenation of the two 
feature maps but also decreases the receptive field of 
YOWO53, which helps with the detection of small 
objects.  

The receptive field of a particular feature in the output 
feature map of a CNN is the region in the input image 
that this feature encodes. The size of this region depends 
on the depth of the feature as well as the combination of 
the previous layers. Usually as the size of the output 
feature map is reduced, its receptive field increases. For 
example, if an image is reduced to a single feature by a 
CNN, this feature encodes the important information of 
the entire input image. In object detection, the size of the 
object that can be detected by the network depends on the 
receptive field of the last layer (detection layer). If the 
size of the object is larger than the receptive field of a 
layer, it may not be correctly detected using the output 
feature map of that layer. Larger feature maps have 
smaller receptive fields and can be used to detect smaller 
objects.  

2.3 Three-stage method 

To investigate the benefits of using single-stage 
methods over the three-stage method for the activity 
recognition of excavators, YOWO and YOWO53 
methods are compared with the state-of-the-art three-
stage method proposed by Chen et al. [2]. This method is 
composed of detection using the YOLOv3 method, 
tracking using the Simple Online and Real-time Tracking 
(Deep SORT) method [22], and activity recognition 
using the 3D-ResNext-101 [23] network, with each stage 
optimized separately. The previous studies (e.g., [2,15]) 
did not fine-tune the Deep SORT module since it is one 
of the state-of-the-art methods capable of tracking 
multiple objects at the same time. The detection module 
can be trained using simple frame-level bounding box 
annotations. However, the activity recognition module 
used in the three-stage method requires the input video 
clip to contain only a single excavator performing a 
single activity. Thus, the detected and tracked excavators 
should be cropped before being input into the 3D CNN 
network for activity recognition. 

3 Dataset description 

Considering that the majority of publicly available 
datasets for the task of activity recognition are focused 
on human activities in various environments [24, 25], the 
first step in excavator activity recognition is to create a 
proper dataset. The video clips used in creating the 
dataset were manually collected from various sources 
including local construction sites and videos posted 
online on websites such as YouTube. Each video clip 
contains one or more excavators performing three types 
of activities: digging, swinging, and loading the trucks. 
To add to the diversity of the collected dataset and enable 
a thorough analysis of the selected methods, the videos 
are collected from 25 different construction sites, 
incorporating various site conditions, such as different 
camera angles, illuminations, occlusions, weather 
conditions, and video resolutions. The detailed statistics 
of the collected dataset are presented in Table 3. For 
labeling the collected dataset, the Computer Vision 
Annotation Toolbox (CVAT) [35], which is a free web-
based video and image annotation toolbox [35], was used 
in this paper. The ground truth for each labeled frame 
includes the type of the occurring activity and the top left 
and bottom right coordinates of the encompassing 
bounding box.  

4 Implementation details 

All of the models are trained on three RTX A6000 
GPUs in Ubuntu 20.04 and Python 3.7 environment and 
PyTorch 1.8, with 80% of the video clips randomly 
selected for training and the remaining 20% used for 
testing. The ShuffleNetV2_2x 3D CNN network was pre-
trained on the large-scale Kinetics-600 [26] dataset. Only 
the last layer of this network is fine-tuned on the collected 
excavator dataset. The 2D CNN networks, i.e., 
Darknet19 and Darknet53, are pre-trained on the COCO 
[27] dataset and only their last two layers are fine-tuned 
in this work. The models are trained for 20 epochs using 
the Adam optimizer [28] and their best results are saved. 

5 Experimental results 

Table 1 provides a comparative performance of the 
YOWO, YOWO53, and the three-stage methods. It can 
be seen that both YOWO and YOWO53 methods 
significantly outperform the three-stage method. The 
results in Table 1 show that the YOWO53 method 
obtains 15% improvement in classification accuracy and 
15.6% improvement in F1-score over the three-stage 
method, which aligns closely with the results reported in 
[16]. However, in contrast to the performance 
improvements of YOWO53 over YOWO for worker 
activity recognition [16], Table 1 shows that the YOWO 
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method obtains 3.5% improvement in classification 
accuracy and 3.3% improvement in F1-score over the 
YOWO53 method for excavator activity recognition.  

Table 1. Comparing YOWO, YOWO53, and the three-
stage method 

 
Classification 
accuracy (%) 

F1-score (%) 

YOWO 88.9 88.7 
YOWO53 85.4 85.4 

Three-stage method 70.4 69.8 

To further examine the difference in the performance 
of the YOWO and YOWO53 methods, Table 2 shows the 
classification accuracy, localization recall, overall 
precision, overall recall, and F1-score obtained by 
training and evaluating YOWO and YOWO53 methods 
on three different input sizes. The results for the smallest 
frame size (i.e., 128×128) agree with what was reported 
for workers in [16], with YOWO53 achieving better 
performance than YOWO in all of the metrics.  However, 
as the size of the input frame increases, the performance 
of YOWO53 drops lower than YOWO. Additionally, 
after the second smallest input size (i.e., 256×256), the 
performance of YOWO53 drops by around 1% in all 
metrics. This indicates that the smaller receptive field of 
the YOWO53 method (as stated in Section 2.2), while 
efficient for detecting workers, is not capable of covering 
big equipment such as excavators and consequently, 
adversely affects the model performance. Finally, the 
overall best result is obtained by the YOWO method 
using the largest input size (i.e., 448×448), with 88.9% 
classification accuracy, and 88.7% F1-score.  

To evaluate the real-world applicability of the 
YOWO and YOWO53 methods, the number of 
parameters of both methods, as well as the speed of 
processing each input size along with the highest batch 
size that can fit in the three RTX A6000 GPUs are 
presented in Table 2. It can be seen that the YOWO 
method processes 448×448 frames at 10.7 FPS, which is 
comparable to the processing speed of the YOWO53 
methods for the same frame size. However, it should be 
noted that YOWO is a smaller network compared to 
YOWO53 with 79 million parameters compared to 90 
million parameters, allowing higher batches to be 
processed at the same time by the network. 

5.1 Sensitivity analysis  

To further investigate the performance of the best 
YOWO model under various conditions, a sensitivity 

analysis was performed with different video conditions 
such as camera angles, illumination, occlusion, weather 
conditions, and video resolution. The results are 
presented in Table 3, demonstrating the high 
performance and applicability of the model for various 
real-world conditions.  

As mentioned in Section 4, 80% of the total number 
of video clips in the dataset was selected randomly for 
training, while the remaining 20% was used for testing 
the performance of the model. A consequence of this 
division strategy is the varying ratio between training and 
testing data for each of the considered sensitivity analysis 
cases, especially for cases in which the total amount of 
data in the dataset is relatively small. For example, for 
the high occlusion category there are 455 frames for 
testing compared to 1,493 frames for training, a ratio of 
almost 1:3, while for the snowfield category, the amount 
of training data is even less than that of testing, with 421 
frames available for training while 780 frames are used 
for testing. However, it should be noted that even in the 
snowfield category with such a train/test data imbalance, 
the model still achieves 94.7% activity classification 
accuracy and recall, showing its high accuracy even for 
cases with low training data, as long as the image quality 
is not severely degraded (e.g., high occlusion category).  

Another interesting example is the “Below ground 
level” category, with only 143 frames from one video clip 
for testing, for which due to the high quality of the input 
video clip, the performance is still high (82.6% activity 
classification accuracy and 82.5% recall). Another effect 
of the low amount of training data for some cases can be 
seen in the apparent performance contradiction for the 
low-resolution video clips only with 13,056 training and 
3,226 testing frames, which seems to outperform the 
high-resolution cases with 117,173 training and 29,840 
testing frames (about nine times more frames). However, 
after further investigation, the lower performance for 
high resolution video clips is found to be due to the 
inclusion of most other difficult cases, which resulted in 
almost the same performance for this category as the full 
dataset reported in Table 2. 

Finally, it can be seen from Table 3 that the worst 
performance of the model (66.4% activity classification 
accuracy) is in the high occlusion category, which is 
generally one of the biggest limitations of single-camera 
CV-based methods. However, considering that in these 
cases more than half of the excavator is not visible due to 
occlusion by other equipment, self-occlusion, or not 
being fully in the camera’s field of view, the results show 
the impressive performance of the model. 
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Table 2. Performance comparison for variants of YOWO and YOWO53 methods 

Model Input size Classification 
accuracy (%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

Speed 
(FPS) 

Batch 
size 

#param 

YOWO 448 × 448 88.9 88.7 88.7 88.7 10.7 64 
~79M YOWO 256 × 256 88.0 87.2 87.4 87.3 12 256 

YOWO 128 × 128 84.3 82.5 82.8 82.7 12.6 256 
YOWO53 448 × 448 85.4 85.4 85.4 85.4 10.4 32 

~90M YOWO53 256 × 256 86.8 86.3 86.3 86.3 10.9 32 
YOWO53 128 × 128 86.3 85.2 85.5 85.3 11.0 256 

Table 3. Results of the sensitivity analysis for the YOWO model 

Video clip condition 
Training Testing Classification 

accuracy (%) 
Precision 

(%) 
Recall 
(%) 

F1-score 
(%) #clips #frames #clips #frames 

Camera 
angle 

High altitude 41 5,872 12 1,288 76.5 75.8 75.8 75.8 
Mid altitude 520 80,571 130 21,601 89.3 89.2 89.2 89.2 
Ground level 284 43,296 68 10,034 76.5 75.8 75.8 75.8 

Below ground level 4 490 1 143 82.6 82.5 82.5 82.5 

Illumination 

Low 54 7,160 20 2,471 78.3 77.7 77.7 77.7 
Mid 562 91,784 133 22,469 93.6 93.6 93.6 93.6 
High 233 31,285 58 8,126 83.3 83.0 83.0 83.0 

Contre-jour 15 2,399 5 691 92.9 92.9 92.9 92.0 

Occlusion 
Low 221 31,875 62 10,445 87.6 87.6 87.6 87.6 
Mid 58 8,995 13 1,891 75.8 75.8 75.8 75.8 
High 11 1,493 2 455 66.4 66.4 66.4 66.4 

Weather 
condition 

Cloudy 117 12,870 35 4,316 80.9 80.3 80.3 80.3 
Sunny 714 114,539 170 27,279 90.2 90.1 90.1 90.1 

Snow field 3 421 1 780 94.7 94.7 94.7 94.7 

Resolution 
Low 96 13,056 22 3,226 96.4 96.4 96.4 96.4 
High 753 117,173 189 29,840 88.2 87.9 87.9 87.9 

6 Conclusions and future work 

This paper investigates the benefits of using YOWO 
and YOWO53 methods over the state-of-the-art three-
stage method for the activity recognition of excavators. 
The performance is evaluated using a custom dataset of 
1060 videos collected from local construction sites and 
YouTube videos. The obtained results show that the joint 
optimization of single-stage methods (i.e., YOWO, 
YOWO53), provides significant performance 
improvement over the three-stage method, in which each 
stage is optimized separately. In particular, the YOWO 
model achieved an activity classification accuracy of 
88.9% and an F1-score of 88.7%. In comparison, the 
YOWO53 model recorded slightly lower metrics, with 
both activity classification accuracy and F1-score at 
85.4%. However, the best performance of the three-stage 
method was the activity classification accuracy, and F1-
score of 70.4% and 69.8%, respectively. 

Although both single-stage methods proved to be 
superior to the three-stage method, however, in contrast 

to the results obtained in a previous study for workers 
[16], the performance of the YOWO53 method was 
lower than that of the YOWO method when increasing 
the input size. Considering that the YOWO53 method 
was developed to improve the detection performance for 
small objects (i.e., workers), the performance gain over 
the YOWO method is only for the cases where either the 
object of interest or the input size is small, while the 
opposite behavior is seen for excavators. Hence, 
indicating to a possible shortcoming of the current single-
stage methods and a possible future approach which is 
able to simultaneously recognize the activities of 
equipment and workers at different scales, especially for 
the interactive activities, which involve both workers and 
equipment. Therefore, a single network should be able to 
recognize both small (e.g., workers) as well as large (e.g., 
excavators) objects.  
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Abstract – 

Digital Twin (DT) has been widely adopted in 
construction and infrastructure projects to focus on 
the management and control of physical systems and 
assets responsively to meet the users’ requirements. 
When integrating immersion functions with the 
digital and wireless transformation models, the DT 
applications can further allow users to interact with 
and experience the model information in a more 
engaging and intuitive way. To add new perspectives 
to DT applications, this research gave reality 
functions to develop an immersive DT framework and 
presented a case study of VR- and AR-based bridge 
health monitoring and twining systems to 
demonstrate the functionalities. The case study was 
focused on the Structural Health Monitoring (SHM) 
processes for a newly constructed extradosed bridge, 
facilitated by the integration of Building Information 
Modeling (BIM), Virtual Reality (VR), Augmented 
Reality, 3D game engines, and Internet of Things (IoT) 
technologies. The bridge’s geometric and property 
information was modeled in BIM parametric design 
software as a basis for VR model development and 
was used to develop the BIM-based sensory model in 
the 3D game engine according to the on-site 
conditions of the physically installed system. The 
integrated virtual model was further deployed to the 
AR device via a VR-to-AR workflow and was 
presented through the immersive DT dashboard. 
Project stakeholders can perform bridge damage 
detection using the information available from the 
dashboard. In this dashboard the IoT tools were used 
for the multi-source data integration process by 
storing, processing, and transforming the monitoring 
data, lending opportunities for predictive simulations 
of bridge condition states. 

 
Keywords –  

Augmented Reality (AR), Structural Health 
Monitoring (SHM), Virtual Reality (VR), Digital 
Twin (DT), data fusion. 

1 Introduction 
Technological advancement has continuously 

challenged the way of managing, monitoring, and 
maintaining the infrastructure assets' structural health [1]. 
The application of “digital twin” systems has been a 
game-changer that substantially revamped the processes 
of bridge health monitoring and management [2][3]. DT 
applications assist stakeholders in making reliable and 
quick decisions by automatically diagnosing the faults 
which leads to improved bridge performance and 
enhanced service life, which in turn reduces the 
maintenance and operation costs of the infrastructure 
[3][4]. 

Developing a DT prototype requires a complex and 
comprehensive approach to address the problem of 
inadequate resources at the network level while 
appropriately taking a bridge's health data into account 
[5]. A DT of a bridge comprises a connectivity module 
that enables synchronization of the physical and virtual 
assets along the asset's life cycle stages [6], as well as a 
virtual duplication of an actual bridge [7]. To deal with 
this complexity, this research proposes the Immersive DT 
framework (‘Figure 1’). A structural twin can be built 
using the Finite Element (FE) model [8], whereas the 
bridge's 3D geometry and properties can be produced 
using the BIM technique [9]. Though the FE model is not 
perfectly interoperable with BIM data schema, data 
regarding environmental conditions, loads, and the 
structure's response to those loads can be obtained from 
sensors installed during a SHM procedure and be semi-
automatically integrated with BIM designs [10]. The 
virtual assets produced as a result of the BIM model, can 
be used as a replica of the physical system and simulate 
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the actual bridge’s condition electronically which can be  
remotely visualized by the applications of AR [1][11]. 
This integration facilitates the remote and on-site 
monitoring of bridge health by visualizing and 
interpreting the data under both "normal" and "damaged" 
conditions. This data is then used to train AI data-driven 
models, which can instantly identify damages [12]. By 
using the information produced, the bridge management 
team and other interested parties can maximize the 
resources at their disposal for predictive decision-making 
[13]. 

 The proposed immersive DT based on AR/VR 
technology not only visualizes the bridge health data but 
also helps to manage and process this data for predictive 
decision-making [14]. This way the wireless link 
between the digital and physical SHM system can be  
developed which controls the interface for the physical 
model including AR capability and represents real-time 
data fusion on the digital model (3D) of the bridge [15].  

Considering these benefits, this study aims to develop 
an Integrated Bridge Digital Twin immersed in the AR 
environment to assist the infrastructure management and 
monitoring. This immersive DT explains the conception, 
development, and implementation of an Integrated 
Bridge Digital Twin, and how predictive analytics can be 
performed for intervention planning. This research 
explores the many facets of the implementation of the 
proposed framework, from the designing, initial data 
collection, and visualization of bridge SHM data using 
the applications of 3D game engines and simulation 
approaches. It also emphasizes how this digital twin 

 supports predictive decision-making, allowing 

authorities to anticipate possible structural problems, 
maximize maintenance plans, and schedule interventions 
ahead of time. 

2 Description of the bridge project case 
study and bridge SHM modeling 

To test the usefulness of the proposed DT framework, 
the case study of a newly constructed bridge on Poland's 
National Highway 75 was chosen. This bridge has a 
continuous, four-span (100.0, 200.0, 200.0, and 100.0 m) 
extradosed structure with a C60/75 concrete box girder 
superstructure. The Load Model (LM1) according to  
Eurocode (EC)-1 standard [16], was utilized in the 
bridge's design, with adaptation coefficients of α = 1.00. 
For class A, the Polish Norms (PN) 85/S standard [17] 
was followed. The span cross-section (‘Figure 2’) 
measures 17.68 m in width, while the intermediate 
supports are 23.0 m wide. The bridge is traversed by a 
dual carriageway road that is 8.60 m wide (between curbs) 
and has a 4.0 m wide pedestrian and bicycle lane. 

To identify the possible damages and the expected 
location of monitoring devices, the Finite Element 
Analysis of the bridge was carried out. Based on that the 
bridge monitoring system that reflects the real-time 
condition states of the bridge assets was designed [18]. 
The FEA parameters of investigation include internal 
forces and span displacement. The possible cracking of 
the bridge surfaces was observed from this analysis but 
no prominent abnormalities were found. The bridge was 
verified for ULS and SLS as required by EC, and it was 

Figure 1 – The proposed immersive DT framework focusing on information flows between virtual and 
reality models. 
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found to be satisfactory. The deflected shape of the cables 
was considered to evaluate their deformations for the 
identification of monitoring points. For numerical 
analysis, only the parameters that have a direct impact on 
the bridge health and whose monitoring is critical were 
modeled including the stresses, strains, internal forces, 
crack widths, temperature, and humidity variations. 
Based on the FEA parameters, we proposed an integrated 
SHM system equipped with various IoT sensors, 
including Wired Strain Gauges (WSG), Liquid Levelling 
Sensors (LLS), MEMS accelerometers, and a Weather 
Monitoring Station (WMS) to monitor concrete 
deformations, vertical displacements, structural 
vibrations, and weather conditions. As a basis of the 
Digital Twin of the SHM model, the BIM design of the 
bridge was developed to include geometry and properties 
information (‘Figure 2’). All the families of structural 
elements were developed by importing actual details of 
materials and accessory elements. 

The developed BIM model is further used in the 3D 
game engine to develop the DT model which can perform 
automated bridge health monitoring. 

3 Case study demonstration of the 
immersive DT 

Using the bridge case study, the immersive DT was 
demonstrated on the bridge health monitoring processes 
by automatically identifying the damages. The whole 

process of digital twinning involves three different states, 
Physical State (PS) (reality state), Virtual State (VS), and 
Hybrid State (HS) for simulations. 

The physical or reality state involves the physical 
model of the bridge, where the real sensors are installed 
on the bridge along with the network of monitoring 
systems. The PS defines the base of the DT framework 
where the SHM system collects the data and sends it to 
web servers or web platforms which then communicate 
with the VS. The VS involves the development of the 
BIM design and DT dashboard which replicates the 
physical model and SHM system in the virtual 
environment and each element of the bridge and SHM 
system is designed as an individual entity to 
communicate with the PS. The HS of DT involves the 
data streaming from the physically installed sensors to 
the virtual system to provide accurate information about 
bridge health. The DT dashboard was developed based 
on the integration of the gamification approach of the 3D 
game engine (UNITY 3D). All the parameters are 
automated by the relevant C# codes to formulate a data-
centric mode of bridge SHM system. The novelty of this 
research provides the framework of the bridge SHM 
system, its integration with AR devices, and automated 
data-processing workflows which help the authorities in 
predictive decision-making.  

The first step of DT generation involves the 
development of the BIM model using any of the BIM 
software (e.g. Autodesk Revit). This model is then 

Figure 2 – The BIM design of the bridge case study 
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imported to the 3D game engine using the Revit plugin 
directly. It can also be done by using the Industry 
Foundation Class (IFC) file format but importing models 
with all the native properties makes them heavy and 
inefficient thus requiring some extra manual work to 
import all the design data. Therefore, direct import is 
preferred and recommended in such cases. 

After importing the BIM model, the virtual replicas 
of all the sensors are developed at their exact installation 
locations in the, where they are installed in the PS. All 
these replicas virtually represent the actual sensors giving 
birth to the sensory model of the bridge in the VS.  

The next workflow lies under the DT where each 
sensor is provided with several functions. For embedding 
any function in the DT dashboard, canvases are used to 
mesh the virtual model which develops the regenerative 
algorithms and links them with the sensory model. These 
meshes control the automation of the generated virtual 
elements and directly call the web platform connected to 
the sensory model. To automate the connection between 
the sensory model and the canvas, a proprietary C# script 
is developed in the visual studio and then embedded in 
the canvas. This automatically starts the communication 
between the PS and VS of the SHM system. Inside the 
canvas, a special button is generated which can give 
clickable features. This button is then embedded into the 
virtual replicas of the sensors, enabling communication 

with the actual sensors.  
The data processing is automatically done using the 

AI tools on the web platform of the provided SHM 
system. As the SHM system is provided, installed, and 
developed by our industrial partners under a Non-
Disclosure Agreement, detailed decision information 
about the smart sensors, and their Internet of Things 
(IoT)-based web platform are not discussed in this 
research. The dashboard of the DT model and the 
different states of the process are shown in ‘Figure 3’. 

4 VR-to-AR flow of bridge SHM data 
using Immersive DT 

To demonstrate the VR-to-AR workflows for the case 
study, the VS of the model is transformed from VR to AR 
using the proprietary AR application. The development 
of this application is supported by the Mixed Reality Tool 
Kit (MRKT) and Universal Window Platform (UWP) in 
the UNITY game engine. These computing platforms 
help to develop applications that can run on the Windows 
system and AR platforms. DT model is used as the base 
3D model for this application and transformed to 
immersive DT by importing all assets to this application. 
The real-time functionality of the application is 
developed using the virtual buttons as a connection 

between the PS and VS. To import the reality, an AR 

Figure 3 – Defining the three states in the proposed immersive DT framework. 
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development plugin is used (Vuforia) [19][20]. This 
plugin enables its own camera to convert the static DT 
model into an immersive DT model. So, when the game 
mode of UNITY is turned on, the VR system connects to 
the AR system in real time. Thus, the DT model can be 
used as an immersive AR application in the gaming 
environment as shown in ‘Figure 4’. After this, the 
application is deployed to an AR headset (Microsoft 
HoloLens (HL)) using Visual Studio (ViS). Debugging is 
initiated in ViS, and the DT model is visualized in the HL 
app menu, allowing the immersive DT to function in an 
AR environment.  

The successful testing of the deployed DT involved 
data integration and onsite bridge damage detection in the 
AR environment. Data integration in the developed DT 
application uses the IoT platform to gather, consolidate, 
and transform data from the installed IoT sensors, and 
systems into the web platform. The data on the web 
platform is available in graphical and tabulated formats 
so it can be transferred from the system to the users even 
when working on AR devices. As the data from different 
sensors is collected with different frequencies, data 
fusion methodology is adopted to integrate multiple 
sensor’s data and produce a more consistent, accurate, 
and useful dataset for meaningful analysis. The outcomes 
of the measured data are then compared with the 
outcomes of numerical analysis (Finite Element Analysis) 
and the damages are identified in the system. 

 

 
Figure 4 – VR to AR workflow for the proposed 
immersive DT framework 

5 Conclusions 
The use of Digital Twin applications for bridge 
monitoring processes has become a growing trend in 
construction and infrastructure projects. This research 
implemented the DT concept on the bridge health 
monitoring system by designing an immersive DT 
framework, which took the major step to tackle the 
research challenges in the integration of the DT model 

with VR/AR technologies to provide a holistic 
technologically available framework. 

The proposed immersive DT model was 
demonstrated using the existing bridge project in Poland. 
As a basis of the DT model, the Physical State (PS), the 
Virtual State, and the Hybrid State of the bridge assets 
were defined for the SHM processes. The Virtual State 
(VS) is in the form of a BIM model and virtual replica of 
installed sensors and involves the data streaming from the 
physical system to the virtual system to provide accurate 
information about bridge health. Using such state 
definitions, the DT model of the bridge was developed in 
the UNITY game engine and deployed to the AR device 
(Microsoft HoloLens). The developed DT model is then 
successfully tested in its immersive nature and successful 
integration of measured data is observed in the AR 
environment. The case study shows that the AR-
enhanced DT of bridge SHM systems not only helps the 
real-time monitoring of bridge health but also performs 
predictive decision-making regarding bridge health. This 
integrated system has turned the conceptual designs into 
a matured BIM framework that is taking the BIM 
implementation to a new dimension. 

6 Practical implications 
The developed framework is practical in nature as it 
achieved the integration of the conceptual designs of 
BIM workflows in the AR/VR domain to digitize the 
physically installed SHM system. Therefore, the 
application of the developed methodology on this bridge 
is already planned. The authors have already contacted 
the authorities to practically implement the research 
results so in case of the approval, the research findings 
will be practically implemented on the subject bridge, 
which could also involve the professional training of the 
working staff. Also, once the research is implemented in 
the real life, it could be possible to calculate the cost 
details and the comparison of installation and 
maintenance costs. 
Moreover, the core information extracted from the 
framework can help to define the future development of 
bridge immersive DT applications to aid the monitoring 
strategies of infrastructure assets. This way a detailed 
comparison of the performance of the immersive DT of 
SHM system with the use of traditional methods can be 
performed.  
Further, this paper reinforces the understanding of 
immersive digital twins and contributes to their practical 
adaptability, showcasing the DT applications as an 
extension of BIM tools integrated with monitoring 
technologies for the management and monitoring of 
infrastructural assets. 
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Abstract – 

Conceptual cost estimation plays an important 
role in construction projects since it is the basis for 
stakeholders to produce financial plans (e.g., 
establishing project budgets). The current practice, 
heavily dependent on cost engineers' subjective 
judgment and manual work, tends to be error-prone 
and labor-intensive. In response, this paper 
introduces a Graph Neural Network (GNN) approach 
to accurate and efficient conceptual cost estimation. 
Firstly, cost factors impacting construction costs, as 
well as their relationships, are identified based on 
literature review to form a graph representation. 
Afterwards, a GNN model is deployed to predict the 
construction cost. A real-world dataset from school 
projects is used for validation. The results show that 
the proposed approach achieved high accuracy, 
demonstrating the potential of graph neural networks 
in conceptual cost estimation.    

 
Keywords – 

Conceptual cost estimation; Deep learning; Graph 
neural network 

1 Introduction 
Conceptual cost estimation predicts the construction 

cost at the early stages of the project (e.g., conceptual 
design, budget setup) [1]. The estimation result is vital 
for the success of the project since stakeholders rely on it 
to set project budgets and make cost management plans 
before and during construction [2]. However, design 
information at project early stages is limited and full of 
uncertainties, which leads to low level of confidence on 
the estimation [3]. Traditional methods are heavily 
dependent on the experience and subjective assessments 
of cost engineers [4]. Such subjective evaluations, 
however, can vary and be unreliable, often resulting in 
inaccurate estimations and potential financial losses in 
the project [5]. Moreover, the dependence on the 
expertise of cost engineers makes the estimation process 

laborious and time-consuming, which is problematic for 
construction projects that typically operate on tight 
timelines [6]. 

To this end, deep learning, as a data-driven approach, 
presents an appealing alternative. It refines its accuracy 
autonomously by learning from historical data, and has 
demonstrated its reliability in data analysis and 
prediction within the construction sector [7]. Yet, 
standard deep learning models fall short in expressing the 
nuances of construction cost estimation. Specifically, 
construction projects exhibit intricate interrelations 
among cost factors (e.g., influence of contract type on 
project duration), highlighting their complex 
dependencies [8]. Traditional deep learning models, 
which typically use isolated factors to form tabular inputs, 
fail to account for these real-world characteristics of 
construction cost factors [9], missing out on capturing the 
interactive effects crucial for accurate construction cost 
estimation. 

Graph deep learning, a branch of deep learning adept 
at representing intricate interrelations among input 
variables, offers a solution for encapsulating the 
complexity of construction cost factors. In this method, 
data is represented in a graph format where the edges in 
the graph provide linkage between the nodes, thereby 
depicting the impact relationships between them [9]. A 
number of studies have recognized the effectiveness of 
graph deep learning in representing input data in an 
expressive way for accurate predictions in the 
construction domain [10]. Nevertheless, its application in 
construction cost estimation is still in its infancy. 

Thus, this research targets at developing a graph deep 
learning-based approach for accurate and efficient 
conceptual cost estimation for construction projects. A 
graph representation that integrates various construction 
cost factors and their relationships will be established, 
enabling expressive input data modeling. Then, a Graph 
Neural Network (GNN) will be developed and deployed 
using the graph representation to conduct data-driven 
conceptual cost estimation.  
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2 Related Work 
Numerous studies have been conducted for accurate 

and efficient conceptual cost estimation. Early research 
leveraged statistical models to fit historical project data. 
For instance, Williams employed a univariate linear 
regression model to predict construction costs of 
highway projects [11]. In contrast, Stoy et al. used 
regression analysis with various factors (e.g., floor height, 
project type) to estimate construction costs for residential 
buildings [12]. The traditional statistical models have 
highlighted the dependency between the construction 
costs and their influential factors. However, they can be 
complex to implement and may lack robustness to 
intricate nonlinearity [13]. 

As a result, researchers began exploring the use of 
machine learning, known for its automatic pattern 
recognition and good prediction capabilities, to facilitate 
conceptual cost estimation. Fang et al. developed a 
Support Vector Machine (SVM) model with design 
information as the inputs to predict construction costs of 
building projects [14]. Based on the gradient boosting 
model, Chakraborty et al. used information structure and 
material design for construction cost estimation at the 
value engineering stage [15]. Although the majority of 
studies using conventional machine learning models for 
conceptual cost estimation yielded credible outcomes, 
they encounter limitations associated with shallow 
learning [16]. This limits their ability to discern more 
intricate patterns that could enhance estimation accuracy. 

To address the limitations of traditional machine 
learning models, deep learning, a branch of machine 
learning renowned for its advanced capability to 
autonomously extract features and provide state-of-the-
art accuracy, has been investigated in recent years. 
Saeidloua and Ghadiminia implemented a Deep Neural 
Network (DNN) to estimate construction costs of 
buildings and found that DNN outperformed traditional 
machine learning models, such as SVM, in terms of 
estimation accuracy [17]. Similarly, Kim and Cha 
applied a DNN model to predict construction costs of 
data-scarce renovation projects, with the consideration of 
probability distributions of cost factors [18]. The deep 
learning methods have advanced conceptual cost 
estimation models regarding accuracy and efficiency. 
However, they rely on structured tabular inputs and tend 
to overlook the intricate relationships between cost 
factors in construction projects, which can lead to 
unreliability in real-world applications [9]. Therefore, to 
bridge the research gap, this paper introduces a graph 
deep learning approach, including a graph representation 
for modeling interrelated cost factors, and a GNN model 
for accurate conceptual cost estimation in a data-driven 
manner.   

3 Proposed Method  
Figure 1 provides an overview of the proposed graph 

neural network-based approach. Firstly, a thorough 
literature review is undertaken to identify factors 
influencing construction costs and their relationships. 
The identified results are validated by professionals 
specializing in construction cost estimation. 
Subsequently, a graph representation is established to 
effectively express the cost factors and relationships. A 
GNN model is then developed to conduct model training 
based on the formulated graph data representation. With 
the trained GNN model, the construction cost is predicted 
in an end-to-end manner. The main focus of this research 
is building projects, given their applicability to a diverse 
range of stakeholders, including public/private 
developers and contractors of various sizes. Detailed 
explanations of the proposed method are presented in 
subsequent subsections. 

 
Figure 1. Overview of the proposed GNN-based 
approach 

3.1 Graph Formulation 
A comprehensive review of existing literature on 

construction cost estimation was carried out to pinpoint 
various factors that influence the construction costs, 
along with how these factors interrelate. Professionals in 
construction cost estimation then validated the findings. 
For inclusion in the graph deep learning model, these 
factors should meet specific criteria relevant to the focus 
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and approach of this research, as follows:

• The factors should be those influencing the overall 
construction cost, rather than cost indices or unit 
rates.

• The factors should be relevant and easily obtainable 
in conceptual cost estimation (i.e., project early 
stages).

• The factors should be quantifiable for inputting into 
deep learning models.

Table 1 Description of the cost factors

Cost factor Description

Design 
information

Construction 
floor area

Construction floor 
area. A numerical 
variable in 𝑚2.

Building 
height

Height of the 
building. A 
numerical variable 
in 𝑚.

Soil 
condition

Geology condition 
type based on the 
geological map. A 
categorical 
variable.

Project 
characteristics

Project type
Project type. A 
categorical 
variable.

Project 
duration

Planned duration of 
the construction 
works. A numerical 
variable in 𝑚𝑜𝑛𝑡ℎ.

Project 
location

Location of the 
project by region. 
A categorical 
variable.

Contract type
Contract type. A 
categorical 
variable.

Figure 2 displays the identified cost factors and their 
relationships, with Table 1 providing the descriptions of 
the factors. As shown in Figure 2, there are three levels 
of the identified hierarchy of cost factors. The first level 
is the target of the estimation, i.e., the construction cost. 
The second level represents the influential aspects. The 
third level consists of specific cost factors in each aspect. 
In general, design information and project characteristics 
are two major aspects that impact construction costs. The 
design information aspect refers to construction floor 
area [19], building height [20], and soil condition [21].
As for the project characteristics aspect, it covers project 
type [1], project duration [1], project location [22], and 
contract type [23].

Moreover, there are relationships between these cost 

factors. The dotted lines among the specific cost factors 
represent their impact relationships. In terms of design 
information, the soil condition plays a pivotal role in 
determining the building height [24]. Besides, there is a 
notable relationship between the height of a building and 
its construction floor area, since taller buildings may
have larger floor areas, and vice versa. Regarding project 
characteristics, the project type has impacts on the choice 
of contract type [8]. Furthermore, both the contract type 
and project location can influence the duration of the 
project [25]. In addition, the project location often 
decides the soil condition according to geological maps.

Drawing from the identified cost factors and the 
relationships between them, Figure 3 illustrated the 
formulated graph representation. The nodes in the graph 
denote the identified cost factors, while the arrows 
describe the impact relationships between them (i.e., the 
dotted lines shown in Figure 2). The unidirectional 
arrows represent the certain impact from one factor to the 
other, while the bidirectional arrows denote the fuzzy 
interactions between two factors. Consequently, the 
graph representation encapsulates the cost factors and 
their correlations. This forms the foundational input for 
the GNN model in the next step.

Figure 2. The identified cost factors and their 
relationships 

Figure 3. The formulated graph representation 
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3.2 Graph Neural Network Development 
After establishing the graph representation of cost 

factors, a GNN model is developed to take the formulated 
graph as the input, utilize the graph structure in the model 
learning, and predict the construction cost. Figure 4 
describes the architecture of the GNN model.  

 
Figure 4. The developed GNN model  

As shown in Figure 4, the developed model features 
graph convolutional layers to take advantage of the input 
graph structure in the neural network model training. The 
graph convolutional layer is a core component of Graph 
Convolutional Network (GCN), which is a mainstream 
GNN model and has demonstrated state-of-the-art 

accuracy performance in various graph-based prediction 
applications [26]. The graph convolution mechanism 
utilizes the graph structure to capture both node features 
and their topological relationships [26]. Equation (1) 
describes the operation in a graph convolutional layer as 
follows: 

𝐻(𝑙+1) = 𝜎(�̂�−
1
2�̂��̂�−

1
2𝐻(𝑙)𝑊(𝑙)) (1) 

Where: 

• 𝐻(𝑙)  stands for the node feature matrix at the 𝑙𝑡ℎ 
layer. 

• �̂� = 𝐴 + 𝐼  denotes the adjacency matrix of the 
graph, 𝐴, with added self-connections represented 
by the identity matrix 𝐼. 

• �̂� is the diagonal degree matrix of �̂� 
• 𝑊(𝑙)  means the trainable weight matrix at the 𝑙𝑡ℎ 

layer. 
• 𝜎 is the non-linear activation function 

Firstly, each node aggregates features from its 
neighbors, which learns contextual information in the 
graph. This is achieved by the multiplication of the 
adjacency matrix with the node feature matrix. The 
symmetric normalization, applied via �̂�−

1

2�̂��̂�−
1

2 , 
considers different node degrees to ensure balanced 
influences from each node's neighbors. Then, a linear 
transformation is performed for the aggregated features 
through the trainable weight matrix. By doing so, the 
features are projected to a higher-level feature space, 
which facilitates the learning of complex patterns in the 
graph. Afterwards, a non-linear activation function, such 
as Rectified Linear Unit (ReLU), is used to introduce 
non-linearity in the neural network model for capturing 
more complex data patterns. Multiple graph 
convolutional layers are stacked as the essential parts of 
the developed GNN model. An average graph readout 
operation is conducted to compile the features of all the 
nodes into a single feature vector as a graph-level 
representation. The operation is defined in Equation (2), 
where 𝑁 is the number of nodes in the graph, ℎ𝑖 stands 
for the feature vector of node 𝑖, and ℎ𝐺 denotes the graph 
readout feature vector to represent the entire graph. After 
producing the graph-level representation, fully connected 
layers are integrated to output the predicted construction 
costs.  

ℎ𝐺 =
1

𝑁
∑ ℎ𝑖

𝑁

𝑖=1
 

 (2) 

Upon training the developed GNN model, a 
prediction model is established for conceptual cost 
estimation. The trained model can autonomously 
generate construction cost predictions for new projects 
that have the same graph input information. Such an end-
to-end process helps to reduce the need for manual labor. 
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4 Experiments and Results  

4.1 Experimental Design 
The proposed method was implemented on a personal 

computer equipped with the Windows 10 operating 
system, an Intel(R) Core(TM) i7-11700KF @ 3.60GHz 
processor, an NVIDIA GTX 3060Ti GPU, and 32GB of 
RAM. The experiments were conducted with the Python 
3.9.7 [27] programming language. PyTorch 1.10.2 [28] 
and scikit-learn 1.0.2 [29] libraries are adopted as the 
development platforms.  

This study employs a dataset from school 
construction projects for validation. The dataset is from 
the Development Bureau of the Government of the Hong 
Kong Special Administrative Region, an authoritative 
organization overseeing building and infrastructure 
projects in Hong Kong. The dataset encompasses 50 
school projects in Hong Kong, including their actual 
construction costs and the cost factor values required for 
the graph representation described in Section 3.1. The 
project scope includes various school types: primary, 
secondary, secondary-cum-primary, and special schools. 
Secondary-cum-primary schools offer continuous 
education from primary through secondary levels, while 
special schools cater to students with physical or 
intellectual disabilities. 

The dataset undergoes min-max normalization as part 
of its preprocessing, a technique aimed at enhancing 
model performance and expediting convergence speed 
[30]. It is randomly split into training and testing sets in 
an 8:2 ratio. The training set is used to develop and train 
the GNN model as detailed in Section 3.2. For the 
training process, Adam optimizer, which is recognized 
for its superior performance over other common 
optimizers such as SGDNesterov and RMSprop [31], is 
used for model optimization. After training, the model is 
evaluated using the testing set to assess the model's 
prediction accuracy. 

4.2 Model Prediction Results 
Regarding the model evaluation, the widely used 

metric for regression problems, Mean Absolute 
Percentage Error (MAPE), is adopted to assess the 
performance of the model in predicting construction 
costs. MAPE is a straightforward and scale-invariant 
metric that measures the discrepancy between predicted 
and actual values. The calculation is defined in Equation 
(3), where 𝑛 represents the total number of projects being 
tested, 𝐴𝑖  and 𝑃𝑖  denote the actual and predicted 
construction costs, respectively. The MAPE indicates the 
percentage variance between predicted and actual costs, 
with a range from 0% to 100%.  A low MAPE value 
means that the prediction is close to the actual cost. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐴𝑖 − 𝑃𝑖

𝐴𝑖

|
𝑛

𝑖=1
  (3) 

Table 2 summarizes the prediction accuracy results of 
the developed GNN model and the comparison with 
common statistical, machine learning, and deep learning 
models in previous literature on conceptual cost 
estimation. The 5-fold cross-validation is conducted to 
thoroughly evaluate the performance of the GNN and 
other baseline models. The dataset is split into 5 folds, 
each of them is used for validation iteratively. The final 
performance is obtained by averaging the 5-fold cross-
validation results to reduce the risk of overfitting in a 
relatively small dataset and provide a more reliable 
performance comparison.  

The developed GNN model demonstrated superior 
accuracy in predicting construction costs when measured 
against other typical baseline models. More specifically, 
it achieved better accuracy results than the typical 
statistical model, Least Absolute Shrinkage and Selection 
Operator (LASSO), highlighting its enhanced 
performance over traditional statistical techniques. A 
comparison between the GNN model and a conventional 
machine learning model, Support Vector Regression 
(SVR), was conducted, and the results showed the 
advantage of the GNN model in improving the prediction 
accuracy. Both the DNN and GNN models belong to 
deep learning methods. The DNN refers to an artificial 
neural network with an input layer (i.e., the features), 
hidden layers, and an output layer (i.e., predicted cost). 
For a fair comparison, the DNN adopts the same number 
of hidden layers (i.e., 5) as the GNN. The grid search is 
used to decide other optimal hyperparameters (e.g., 
learning rate, batch size) for the DNN and GNN, 
respectively. The performance comparison between the 
formulated graph representation incorporating 
interrelationships in the GNN and normal flat tabular 
inputs in the DNN verifies whether the graph 
representation is more effective or not. The higher 
accuracy provided by the GNN model highlights the 
superiority of the proposed approach compared with 
typical deep learning models that adopt tabular input 
formats. This indicates the importance of considering the 
relationships between cost factors within the deep 
learning model. 

Table 2. Prediction performance of the developed GNN 
model and its comparison with other baseline models 

 LASSO SVR DNN The GNN 
model 

MAPE 25.5% 21.0% 22.4% 15.2% 

5 Conclusions 
Conceptual cost estimation is pivotal in establishing 
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the financial scale for ensuring the success of the project. 
This study introduces a graph neural network approach to 
predict construction costs accurately and efficiently. The 
contributions are twofold. Firstly, an expressive graph 
representation is established for cost data modeling based 
on identification of cost factors and their complex 
relationships. Secondly, a novel GNN-based deep 
learning model is developed to predict construction costs, 
which demonstrates the effectiveness and potential of 
graph deep learning in conceptual cost estimation.  

Of note is that while the proposed GNN-based 
method is more complex than simple techniques (e.g., 
regression, decision tress), the complexity is a response 
to the intricate nature of construction cost estimation 
where multiple cost factors are interrelated. Simple 
models fail to capture these interactions, which can lead 
to significant errors, as shown in the results. We argue 
that the proposed GNN-based approach provides a 
structured and systematic method for encapsulating the 
complex relationships while maintaining operational 
simplicity. The model's input requirements and the 
process flow remain straightforward in an end-to-end 
manner. In addition, the ability to handle non-structured 
data allows the proposed method to handle irregularities 
and maintain performance where simpler models might 
falter. 

Although the outcomes of this study are promising, 
several limitations exist. The formulated graph 
representation reflects the impact relationships among 
the specific cost factors, but does not comprehensively 
capture the hierarchical relationships in the identified 
two-level cost factor hierarchy shown in Figure 2. In the 
future, such relationships can be incorporated for more 
expressive modeling of cost factors. Besides, the black-
box nature of the neural networks raises concerns on the 
explainability of the cost estimation results. Future 
research is suggested to investigate and integrate 
advanced explainable artificial intelligence (XAI) 
techniques to reveal the hidden cost patterns learnt by the 
model to facilitate a trustable and reliable decision-
making process.   
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Abstract  

Construction projects significantly contribute to a 
nation’s economic development. However, the sector 
is synonymous with delays and disputes for various 
reasons, often due to non-productive work practices. 
Researchers and practitioners recommend applying 
lean construction principles to mitigate non-value 
addition activities and improve productivity and 
performance. However, existing contract forms may 
contain provisions that are counter-productive, 
thereby making lean implementation a challenge. 
Therefore, when planning to go lean, it becomes 
important to assess the extent to which a contract 
provision aids or hinders lean implementation, in 
other words, ‘leanness’ assessment. A manual 
analysis is possible but time-consuming and prone to 
subjective decision-making. Artificial Intelligence 
(AI)-backed Language Model (LM)-based tools can 
be potentially used to quickly and efficiently classify a 
contract clause based on lean implementation-
friendliness. Therefore, a dataset containing 734 
contract clauses is manually classified into 14 labels 
based on the literature review, and a part of this data 
is used to train Bidirectional Encoder 
Representations from Transformers (BERT)-LM. 
With an F1 score of 77%, the study shows that LM-
based solutions can be potentially employed for 
construction contract leanness assessment. The study, 
which is an initial attempt towards developing a 
reliable leanness prediction model in the future, also 
noted that the Bert-base-cased LM performs better 
than its ‘large’ counterpart under both the ‘cased’ 
and ‘uncased’ conditions. 

Keywords – 
Contracts; Lean; Language Models; Finetuning; 

Artificial Intelligence 

1 Introduction 
Lean construction principles can potentially help the 

construction industry enable timely project completion, 
thereby preventing expensive cost overruns and 
associated disputes. Lean construction principles also 
help make construction more sustainable by reducing 
process and material waste [1]. Having said that, 
construction projects are stakeholder-intensive, and 
without their buy-in, lean implementation may not yield 
results [2]. Stakeholder acceptance of such initiatives is 
not easy, especially for an industry less friendly to 
innovativeness than sectors like manufacturing and 
automobiles [3]. Nevertheless, there should be a start, 
and academicians, practitioners, and researchers are 
important in triggering the start.  

Over the last few decades, there has been a sustained 
effort by the research community to experiment with lean 
implementation in construction projects and disseminate 
the findings to the world at large. Construction firms, at 
least the leading ones from most developed and 
developing nations, have either implemented or shown 
interest in implementing lean construction practices [4]. 
However, there are still a large number of firms that are 
yet to realize the importance of lean implementation [5]. 
This difference in reaction times of various firms within 
the construction sector has triggered a separate research 
sub-domain studying the motivation for lean 
implementation in construction [6]. At the outset, it 
appears that some firms implement lean through a top-
down approach where the firm implements lean as a 
response to some diktat or directive that insists on lean 
implementation, and some others embrace lean through a 
bottom-up approach, leaving the implementation 
exercise a largely self-driven activity [7], [8]. While there 
is no single answer to the question of the “better” way to 
implement lean, it is clear that the role of a “trigger” is 
inevitable, and it is here that the role of stakeholder 
practices comes into the picture. 

In the construction industry, the demand for 
construction services is created by the developers and 
investors in infrastructure development belonging to the 
public or private sectors. When demand comes with the 
requirement to implement lean construction practices 
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while designing and executing projects, the supply is 
more or less assured. The suppliers, being construction 
contracting and sub-contracting firms, automatically 
adapt to deliver lean construction practices when they are 
asked to [9]. However, few researchers have pointed out 
that when lean is implemented as a reaction to a 
contractual or a policy requirement, it turns out to be 
superficial, merely to satisfy bare minimum requirements 
[6]. Nevertheless, the authors believe that when 
employers demand implementing lean practices through 
their contracts, it can at least serve as an initial trigger for 
firms that may not be self-motivated to embrace change. 
With this premise, this study attempts to develop a proof-
of-concept tool to automatically assess whether a given 
contractual provision promotes lean implementation in 
construction projects or does not. While this assessment 
can be manually performed, given the verbose 
contractual documents often running into hundreds of 
pages, it becomes time-consuming to assess document-
intensive construction contracts [10] for their lean-
friendliness or ‘leanness.’ Here, using artificial 
intelligence (AI) and machine learning (ML) can 
potentially be of immense help to researchers and 
practitioners to analyze contract documents quickly and 
efficiently. Building a classification model using the 
Language Model (LM) - Bidirectional Encoder 
Representations from Transformers (BERT) [11], the 
study recorded an F1 score of 77%, showing that AI-
based solutions can be potentially employed for 
construction contract leanness assessment. 

2 Background and Literature Review 
This study attempts to answer the research question, 

“Can LMs be used to assess the leanness of a contract 
clause?” Accordingly, the literature is reviewed for LM 
and lean construction studies. 

2.1 Language Models (LM) 
The LM (or its larger counterpart, Large LM or LLM), 

a text model pre-trained on a large corpus, typically from 
general domains, is at the core of text analytics. For 
example, the Generative Pre-trained Transformer or GPT 
is an LLM on which the “ChatGPT” application is 
created [12]. Essentially, ChatGPT is a “question-
answering” platform. However, LLMs can be useful in 
developing applications for tasks such as text 
summarization, topic modeling, and text classification, 
among other things [13]. As most of the base LMs and 
LLMs are pre-trained on a large corpus of publicly 
available data (like Wikipedia), they may have 
limitations when used in highly specialized or domain-
specific application development. For instance, in the 
instant case, where the objective is to classify a given 
contract clause based on its lean-friendliness, using a 

base LM for application development may not yield 
satisfactory results as the model’s training data may not 
have a sufficient concentration of lean-related 
information. In such cases, finetuning is one way to 
improve the model’s output accuracy.  

2.2 Finetuning 
Finetuning is a supervised training process wherein 

base LMs, or LLMs, are trained with a dataset containing 
sample question-answer pairs or classified or labeled 
paragraphs [14]. Through this process, the base LMs 
generally trained on generic datasets get trained to 
answer questions or classify as per user requirements, as 
the case may be, thereby improving the output quality by 
making it more specific to the domain requirements. 
During the process of finetuning, the model interprets the 
pattern in the input data such that the pre-trained machine 
learning model (in this case, Bert) adapts to a new 
specific task (in this case, leanness assessment). While it 
is possible to train models from scratch, full training is 
computationally intensive, and in such cases, fine-tuning 
proves helpful. While research has shown considerable 
improvement, the process of finetuning is as good as the 
quality and quantity of the training data [14]. 

2.3 Choice of Base Model 
The output accuracy (the extent to which the model 

helps assess the lean-friendliness of a contract clause) 
depends on the model size (the training data size and the 
number of parameters) and the application being 
developed. While some models like GPT are not open-
source beyond a limit, many are open-source models 
(BERT, FLANT5, etc.). Among the open-source models, 
depending on the transformer architecture, there are 
encoder-only models, encoder and decoder models, and 
decoder-only models. Given the constraints of the scope 
of the study, and without getting into the technicalities, it 
is observed by researchers that encoder-only models like 
BERT (Bidirectional Encoder Representations from 
Transformers), an open-source Language Model (LM) 
can perform well for applications aimed at text 
classification, especially in the context of construction 
contracts [10], [14]. Based on dataset size and parameters, 
BERT models have the “base” and “large” and “cased” 
and “uncased” models. In this study, the 'BERT-base-
cased” model is chosen for finetuning. The review 
undertaken to arrive at the finetuning data is explained 
next. 

2.4 Lean construction principles 
Worldwide, there is a push for embracing sustainable 

construction techniques with the United Nations, 
Sustainable Development Goal (SDGs) 9 (resilient 
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infrastructure and fostering innovation), specifically 
target 9.4, pushing for increased resource use efficiency. 
Here, lean construction principles take center stage in 
bringing sustainable practices into construction by 
minimising waste and increasing productivity.  

Fundamentally, lean implementation boils down to 
seven principles that advocate eliminating or reducing 
non-value-adding activities, in other words, ‘waste.’ 
Firstly, lean implementation involves stakeholders, 
leading to a collaborative decision-making process [15]. 
When decision-making is collaborative, it is more likely 
that the parties are committed to the decision. Secondly, 
lean implementation promotes open communication 
among stakeholders, thereby helping in the early 
resolution of conflicts [16]. Thirdly, in construction 
projects that are often known for an adversarial 
environment [17], a lean and a “no blame game” culture 
go hand-in-hand, improving the trust among the 
stakeholders [15], [18]. Fourthly, while long-term plans 
are definitely relevant, lean advocates focus on short-
term goals as they are within the reach of stakeholder 
control [16]. However, the proponents of lean 
construction also advocate that while retaining a greater 
focus on short-term goals, it was also important to get 
into details in the form of weekly plans and six-month or 
8-month lookahead schedules [16]. The fifth and sixth 
lean principles refer to identifying constraints through 
“pull planning” rather than the traditional “push” 
approach [16]. “Pull planning” refers to the process 
where the frontline engineers, the process owners, or 
“last planners” are encouraged to commit to what is 
achievable, given the resource constraints, rather than 
being blindly pushed by the top management to achieve 
unrealistic targets. If the commitment by the last planners 
is not aligned with the project requirements, the top 
management must ease the constraints so that the last 
planners can commit more. Through this, the last 
planners take ownership, improving productivity [16] 
and eliminating waste.  Finally, lean implementation is 
about continuous improvement, a process through which 
parties identify risks and evolve mitigation plans for 
future projects [16],  [19]. To summarise, any contract 
clause that promotes collaboration, timely decision-
making, dispute-prevention, and supports waste 
reduction can be considered ‘lean.’ 

A recent article reviews the studies presented at the 
annual conferences conducted by the International Group 
for Lean Construction (IGLC) for the synergies between 
lean construction and AI and observes that the LLM-
based question-answering application – “ChatGPT” – 
can potentially empower lean researchers and 
practitioners [20]. The study also further summarises 
IGLC articles that directly or indirectly discuss the 
potential benefits of AI in lean construction, and it is clear 
that a contract document’s lean-friendliness assessment 

is not explored [20]. Articles with keywords 
"Construction," "contract management," "classification," 
"AI," and "label" mostly dealt with classifying the 
provisions of a contract document based on risk 
management [14], requirements identification [21],  and 
scope and obligations identification [22], [23]. However, 
AI-based contract content classification to assess the 
‘leanness’ of the contents is not evidenced. To assess 
LM’s potential for leanness assessment, the study’s 
objective is to develop an automated classification model 
that classifies a contract clause into a “Lean” or “Not 
Lean.” The rationale for the classification labels is 
explained in Table 1. 

Table 1. Labels for contract clause classification 
(number in the parentheses indicates count under each 

label) 
Clause/Provision Ref. Label 
Clauses on Liquidated 
Damages drafted with clarity 
and certainty 

[24] Lean - 
Prevents 
Delay (11) 

Clauses that provide fair cost 
and time compensation in 
case of delays caused by the 
Employer 

[25] Lean - 
Prevents 
Disputes 
(61) 

A clause that is drafted with 
clear timelines for the 
fulfillment of certain 
obligations and mentions the 
implication of non-
compliance 

[26] Lean - 
Prevents 
Waiting (58) 

A clause that discourages a 
contractual party from 
reworking/material  
wastes by focusing on skills 
and training 

[27] Lean - 
Prevents 
Rework, 
Material 
Wastes (54) 

Clauses that enable early 
completion bonus 

[28] Lean - 
Promotes 
Early 
Completion 
(18) 

Clauses intended to check and 
approve the Contractor's 
submissions and activities but 
fail to specify the 
intent/liability of such 
approvals. Will the approver 
be liable, or is the check only 
limited to the review of 
conformance of the 
work/submission to 
specifications/contract 
requirements? Without such 
clarification, there will likely 
be a "blame game." 

[29] Not Lean – 
Liability 
undefined 
(24) 
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Clauses that contain 
provisions or terms that may 
have multiple meanings or are 
in contradiction with other 
provisions of the contract. 
Such provisions result in 
conflicts and non-
collaborative behavior, often 
leading to delays and 
disputes. 

[30] Not Lean – 
Misuse 
(ambiguous) 
(33) 

Clauses that protect a party 
from being held responsible 
for its shortcomings. 

[31] Not Lean – 
Misuse (No 
Waiver) (74) 

Clauses that provide one party 
with absolute powers can be 
potentially misused, leading 
to non-collaborative behavior 

[32] Not Lean – 
Misuse 
(one-sided) 
(122) 

Clauses, which are a kind of 
"disclaimers", in which one 
party expects the other to bear 
risks that may not be 
reasonable and/or foreseeable 
even after due diligence. In 
such cases, the affected party 
tends to approach arbitration 
or judiciary for relief, 
resulting in delays and the 
development of adversarial 
relationships. 

[33] Not Lean – 
Misuse 
(unfairness) 
(44) 

Clauses that prevent the non-
breaching party from seeking 
compensation for losses 
incurred due to the delays or 
breaches by the breaching 
party. While such clauses are 
common, they can often lead 
to disputes when the 
breaching party excessively 
relies on such "no damage" 
provisions to protect itself. 
This can lead to adversarial 
and non-collaborative 
behavior, preventing 
stakeholder involvement and 
delaying decision-making. 

[34]  Not Lean – 
No Damages 
Provision 
(38) 

Clauses with no clear 
timelines for action, and 
therefore there is a tendency 
for delayed decision-making, 
inducing "waiting." 

[26] Not lean – 
No 
Timelines 
(84) 

Clauses that do not explain 
the implication of not 
complying with the 
instructions/orders/contractual 
promises. In such cases, there 

[35] Not Lean – 
Non-
compliance 
Unaddressed 
(91) 

is no certainty on how the 
other party will react to the 
inaction of the non-complying 
party. This can lead to 
disagreements, non-
collaborative behavior, and 
breaking the stakeholder 
involvement (incompleteness) 
Clauses, when acted upon, 
can lead to unnecessary 
"waiting" at project sites. 

[36] Not Lean – 
Waiting (21) 

3 Methodology 
The study employs contract document content 

analysis using an LM-based classification technique. A 
three-step methodology is adopted to develop a proof-of-
concept model to assess the leanness of a given 
construction contract provision. 

3.1 Step 1: Developing Training Dataset 
The initial idea was to approach using a standard 

supervised classification method in which a training 
dataset is prepared to develop a classification model 
annotated with labels derived from the literature. 

3.2 Data Pre-processing, Classification 
Training, and Testing using LM 

In this step, as a prerequisite for data preprocessing, 
the developed file (in the .csv format) is ingested as a 
Pandas dataframe through the algorithm in the Python 
programming language. After setting up the environment 
with key libraries (Datasets, Transformer, Accelerate, 
sklearn metrics, Pandas, Torch), the data is pre-processed 
to enable its use in the LM, which, in this case, BERT.  

To enable training the language model, the input data 
will be split in an 80:20 ratio, with 80% of the data used 
for training and the rest for testing. Since there are more 
than two labels (14, in this case), the stratification 
technique is used for sampling the data.  

Stratification ensures dividing the labels into 
homogenous subgroups, called strata, and then applying 
simple random sampling within each subgroup. As a 
result, the test set is representative of the population since 
the percentage of each stratum is preserved. In this 
context, the stratification is performed on the “label” 
column with 14 groups. The key idea is to ensure that the 
train and test dataset has all 14 groups represented in 
complete. After formatting the current dictionary into a 
tokenizer-based dataset, the “Bert-base-cased” model is 
downloaded through the Auto model function and 
prepared for the training process. Regarding training 
arguments, 18 epochs are set up, meaning all the training 
records will run 18 training cycles. In each epoch, the size 
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of the batch will be 16.

3.3 Step 3: Model Evaluation
Lastly, since the evaluation process is also run 

simultaneously, the evaluation batch of 64 records will 
be used. In this experiment, “Accuracy” and “F1 score” 
are the primary metrics that will be evaluated. 
Considering that the input data is imbalanced, the F1 
score eliminates any anomalies in calculating model 
accuracy.

Figure 1. Label Histogram

4 Results

4.1 Step-1 – Developing a Training Dataset
As discussed earlier, 14 labels are considered to 

classify a contractual provision under lean/not lean. The 
initial list of clauses for training consisted of 307 clauses 
sourced from the General Conditions of Contract (GCC) 
of public sector contract documents from India. However, 
with the number of instances being low, it was decided to 
leverage the power of ChatGPT to generate multiple 
instances of ‘Not Lean’ provisions through paraphrasing. 
This helped create paraphrased clauses. After validating 
the meaning through a manual reading of the paraphrased 
text, such clauses were added to the original list. The final 
list consisted of 531 clauses labeled as ‘Not Lean’ and 
202 ‘Lean’ clauses, totaling 733 classified clauses with 
label count as indicated in the last column of Table 1 in 
parenthesis and in Figure 1.

4.2 Steps 2 and 3 – Classification and Testing 
Results

In the training process with 80 to 20 splits, it is 
observed that the accuracy and F1 score is a maximum of 
77%. On increasing the training size to 90% and then to 
95%, it is noted that the F1 score improved to 78% and 

85%. The results of trying with the Bert-base-uncased, 
Bert-large-cased, and uncased models are shown in Table 
2. In terms of the epoch standpoint, considering the 
mechanics of double descent, there was no improvement 
even with 50 epochs. In the above technique, all the 
weights of the original model are used. However, another 
technique called a Low-Rank Adoption [37] is used by 
which the original weights of the Bert model remain 
untouched, and a new set of weights is created based on 
the rank of the matrix, which is a user parameter. A 
snapshot of the finetuning results is shown in Figure 2.

Figure 2. A Snapshot of the Finetuning Result

Table 2. Results from different Bert Models
Model Name F1 Score (in percentage)

Bert-base-cased 77
Bert-base-uncased 71
Bert-large-cased 68

Bert-large-uncased 65
Bert-base-LoRA 45

4.3 Discussion
In this study, two different categories of Bert Models 

are used, namely, the Bert-base model and the Bert-large 
model. Bert-base has a total of 12 attention heads and 110 
million parameters. Meanwhile, Bert-large has 16 
attention heads with 340 million parameters. Although 
from the size standpoint, Bert-large models are 3 times 
the size of the Bert-base models, the performance of the 
Bert-base model is superior, indicating that model size 
parameters do not always matter and that smaller models 
like Bert-base are less prone to overfitting and more 
capable of generalizing to new data, making them 
dependable and robust in real-world settings. 
Nevertheless, larger models still outperform smaller ones 
in specific use cases. However, this study indicates that 
smaller models are often more useful for retraining with 
recent data or fine-tuning for specific tasks.

Regarding the choice between the cased and the 
uncased models, the results indicate that the cased 
model's performance outweighs its uncased counterpart 
(Table 2) in both large and small Bert models. Cased 
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models have separate vocabulary entries for differently-
cased words. For instance, the words “the” and “The” 
have distinct uses in English.  “Contractor” and 
“contractor” will typically have different meanings in 
construction contracts. While “Contractor” refers to the 
specific organization defined in the contract's definitions 
clause, “contractor” can refer to the word with the 
dictionary meaning. The cased models, sensitive to such 
differences, have performed better than the uncased 
models. 

Overall, recalling the research question, “Can LMs be 
used to assess the leanness of a contract clause?” the 
results inform the potential of language models to 
understand and assess the ‘leanness’ of a given contract 
clause. However, only the publicly available standard 
form contracts are used for analysis. The model needs 
further improvement by including more illustrative 
contract provisions from various contract documents 
worldwide. Illustrative provisions from internationally 
used contract forms like the International Federation of 
Consulting Engineers (FIDIC) can help generalise the 
model usage. However, in most cases, contract 
documents are considered confidential and may not be 
available to the researchers for analysis. While 
confidentiality is important, in the absence of relevant 
data, the power of AI techniques is severely underutilized. 
Therefore, it will be helpful if the industry worldwide 
works on a common platform to share anonymized 
contract provisions so academicians and researchers can 
help develop AI-based contract risk assessment tools. It 
is here that the role of industry-academia bodies such as 
the International Group for Lean Construction (IGLC), 
Lean Construction Institute (LCI), and Institute for Lean 
Construction Excellence (ILCE) (Indian lean body) 
becomes crucial as a bridge to connect industry, 
academia, and researchers. 

Adequately drafted contract documents can be crucial 
in bringing out lean adoption. However, to enable the 
catalyzing role of the contract, it is important that the 
contract documents are drafted in a manner that can 
promote lean principles in projects. It is here that this 
study, when fully ready, comes in handy to practitioners 
to assess the ‘leanness’ of their construction contracts. In 
the absence of such an assessment and if the contract 
provisions do not support lean implementation, attempts 
to bring a positive change in the project turn futile. In 
terms of its contribution to theory, the study exposes the 
power of AI to understand the underlying implicit 
features in contract provisions, a distinctive feature of AI 
that can be potentially used to assess many such 
underlying features in a contract document. Specifically, 
the differences in the performances of Bert-base and the 
large models, under both the cased and uncased 
conditions, are analyzed in the context of assessing a 
contract document. 

5 Limitations and Future Scope 
The inference window for this proof-of-concept 

model is available at the link: 
https://huggingface.co/RameshBal/LeanContractModel/
blob/main/README.md.  However, a major limitation 
of this model lies in the limited training dataset size, 
which comprises clauses only from Indian public sector 
contracts, which diminishes model reliability. Therefore, 
notwithstanding the reasonable F1 score, the model is not 
industry-ready at this stage. Future studies can consider 
contract forms from different jurisdictions to enrich the 
training data, making the model application-friendly to 
test the leanness of various contract forms. The model 
development is in a preliminary stage, and with 
additional data and specific expert validation, this proof-
of-concept can be developed to an application scale. 
Nevertheless, the study helps understand the adaptability 
of models to real-world situations in construction 
management tasks. Secondly, only the BERT LM is 
evaluated in this study, whereas there are other LMs and 
LLMs whose robustness for similar studies has not been 
explored. Accordingly, future studies can focus on 
improving the dataset with additional clauses. Secondly, 
researchers can attempt to use various LMs and LLMs 
and evaluate their performance; and lastly, develop lean 
domain-specific language models for the exclusive use of 
AI-based lean studies. 

6 Future Work 
Considering limited data sources, the number of 

clause illustrations per label is improved by reducing the 
label count yet retaining the essence. Roberta-Large, with 
LoRA, is being explored to develop the classification 
model. Initial trends show a promising improvement in 
the F1 score. However, the study will be reported after a 
detailed analysis of results, the role of model architecture, 
and model validation by industry experts.  

7 Conclusion 
The study's objective was to develop a proof-of-

concept AI-based tool to assess the leanness of 
contractual provisions in construction. A supervised 
algorithm-based approach was adopted, and a BERT-
base LLM was finetuned with contract provisions labeled 
as ‘lean’ or ‘not lean.’ The resulting model could predict 
the leanness of a given contract clause with an F1 score 
of 77%. However, at this stage, the model is just a proof-
of-concept to demonstrate the robustness of AI 
applications to understand the implicit meaning of 
contract provisions and can potentially be developed into 
an industry-ready assessment tool. Nevertheless, this 
study is a step closer to realizing the potential of data in 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

827



making lean implementation a reality. 

References 
[1]   Jamil, A. H. A. and Fathi, M. S.  The Integration of 

Lean Construction and Sustainable Construction: A 
Stakeholder Perspective in Analyzing Sustainable 
Lean Construction Strategies in Malaysia. Procedia 
Comput Sci, 100:634–643, 2016. 

[2]  Simon, S. M. and Varghese, K. Assessment of 
organizational culture in construction – A case 
study approach. In Proceedings of the 26th Annual 
Conference of the International Group for Lean 
Construction: Evolving Lean Construction 
Towards Mature Production Management Across 
Cultures and Frontiers, The International Group 
for Lean Construction, pages 348–357, Chennai, 
India, 2018. 

[3]   Nesensohn, C., Bryde D., Ochieng E., Fearon D. and 
Hackett V. Assessing lean construction maturity. In 
Proceedings of the 22nd Annual Conference of the 
International Group for Lean Construction: 
Understanding and Improving Project Based 
Production, International Group for Lean 
Construction, pages 1157–1168, Oslo, Norway, 
2014. 

[4]   Roy, D. and Jagannathan, M. Exploring the Reach 
of Lean Philosophy in Indian Construction Industry. 
In Proceedings of the fourth biennial conference of 
the Indian Lean Community - Indian Lean 
Construction Conference, pages 203–212, 
Ahmedabad, India, 2021. 

[5]  Ranadewa, K. A. T. O., Sandanayake, Y. G. and 
Siriwardena M. Enabling lean through human 
capacity building: an investigation of small and 
medium contractors. Built Environment Project and 
Asset Management, 11(4):594–610, 2021. 

[6]   Bygballe, L. E., Endresen, M. and Fålun, S. The role 
of formal and informal mechanisms in 
implementing lean principles in construction 
projects. Engineering, Construction and 
Architectural Management, 25(10):1322–1338, 
2018. 

[7]   Devkar, G.  Delhi, V.S.K. Enablers and inhibitors of 
lean construction in Indian construction projects. 
Proceedings of the second biennial conference of 
the Indian Lean Community - Indian Lean 
Construction Conference, pages. 179–185, Chennai, 
India, 2017. 

[8]  Narayanan, S. R. Adopting lean, cycle time got 
reduced from 15 days to 7 days. Construction World, 
pages 48–48, 2021. 

[9]  PMI&KPMG, Revamping Project Management. 
Project Management Institute, New Delhi, India, 
2019. 

[10] Eken, G. Using natural language processing for 
automated construction contract review during risk 
assessment at the bidding stage. Doctoral Thesis, 
Middle East Technical University, 2022. 

[11]  Devlin, J., Chang, M.-W., Lee, K. and Toutanova 
K. BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding. arXiv 
Preprint, 2018. 

[12] Brockman, G. Sutskever, I. and OpenAI, 
Introducing OpenAI. On-line: 
https://openai.com/blog/introducing-openai, 
Accessed 10/12/2023. 

[13] Ghimire, P. Kim, K. and Acharya M. Generative AI 
in the Construction Industry: Opportunities & 
Challenges. arXiv Preprint, 2023. 

[14] S. Moon, S. Chi, and S. B. Im, “Automated detection 
of contractual risk clauses from construction 
specifications using bidirectional encoder 
representations from transformers (BERT),” Autom 
Constr, vol. 142, Oct. 2022, doi: 
10.1016/j.autcon.2022.104465. 

[15] Lichtig, W. A. Sutter Health: Developing a 
Contracting Model to Support Lean Project 
Delivery. Lean Construction Journal, 2(1):105–112, 
2005. 

[16] Forbes, L. H. and Ahmed S. M., Modern 
Construction: Lean Delivery and Integrated 
Practices. CRC Press, New York, 2011. 

[17] Tazelaar, F. and Snijders, C. Dispute resolution and 
litigation in the construction industry. Evidence on 
conflicts and conflict resolution in The Netherlands 
and Germany. Journal of Purchasing and Supply 
Management, 16(4):221–229, 2010 

[18] Aidibi, H. I. Studying the effect of BIM on 
Construction Conflicts and Disputes using agent-
based modeling. Master Thesis, American 
University of Beirut, Lebanon, 2016. 

[19] LCI. Work Structuring. LCI White Paper, Lean 
Construction Institute, pages 1–15, 1999.  

[20] Hatoum, M. B. and Nassereddine, H. Unleashing the 
Power of ChatGPT for Lean Construction: An Early 
Outlook. In Proceedings of the 31st Annual 
Conference of the International Group for Lean 
Construction (IGLC31), International Group for 
Lean Construction, pages 208–219, Lille, France, 
2023. 

[21] Hassan, F. U. and Le, T. Automated Requirements 
Identification from Construction Contract 
Documents Using Natural Language Processing. 
Journal of Legal Affairs and Dispute Resolution in 
Engineering and Construction, 12(2):1-14, 2020. 

[22] Yang, J., Chen, Y., Yao, H. and Zhang, B. Machine 
Learning–Driven Model to Analyze Particular 
Conditions of Contracts: A Multifunctional and 
Risk Perspective. Journal of Management in 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

828



Engineering, 38(5):1-16, 2022. 
[23] Chalkidis, I. and Androutsopoulos, I. A Deep 

Learning Approach to Contract Element Extraction. 
JURIX, 2017:155–164, 2017. 

[24] Sweet, J. Liquidated Damages in California. 
California Law Review, 60(1):84–145, 1972. 

[25] Osama Jannadia, M., Assaf, S., Bubshait, A. A. and 
Naji A. Contractual methods for dispute avoidance 
and resolution (DAR). International Journal of 
Project Management, 18:41–49, 2000. 

[26] Jaeger, A.-V. and Hök, G.-S. FIDIC - A Guide for 
Practitioners, 1st ed. Springer, Berlin, Heidelberg, 
2010. 

[27] Mojahed, S. and Aghazadeh, F. Major factors 
influencing productivity of water and wastewater 
treatment plant construction: Evidence from the 
deep south USA. International Journal of Project 
Management, 26(2):195–202, 2008. 

[28] Bubshait, A. A. Incentive/disincentive contracts and 
its effects on industrial projects. International 
Journal of Project Management, 21:63–70, 2003.  

[29] Abu Dief, M. and Metwally, A. Construction Claims 
Mitigation in Design and Build Contracts. PM 
World Journal, IX:2330–4480, 2020. 

[30]  Anish, P. R., Sainani, A., Ramrakhiyani, N., Pawar, 
S, Palshikar, G. K. and Ghaisas, S. Towards 
Disambiguating Contracts for their Successful 
Execution-A Case from Finance Domain. In 
Proceedings of the First Workshop on Financial 
Technology and Natural Language Processing, 
pages 8-13, Macao, China, 2019. 

[31] Padhy, J., Jagannathan, M. and Delhi, V. S. K. 
Application of Natural Language Processing to 
Automatically Identify Exculpatory Clauses in 
Construction Contracts. Journal of Legal Affairs 
and Dispute Resolution in Engineering and 
Construction, 13(4):1–9, 2021. 

[32]  Agrawal, A. K., Jagannathan, M. and Delhi, V. S. 
K. Control Focus in Standard Forms: An 
Assessment through Text Mining and NLP. Journal 
of Legal Affairs and Dispute Resolution in 
Engineering and Construction, 13(1):1–11, 2021. 

[33] Thomas, H. R. Differing Site Conditions Indications 
and Disclaimers. Journal of Legal Affairs and 
Dispute Resolution in Engineering and 
Construction, 4(3):86–89, 2012. 

[34] Ramnath International Construction Ltd. v. Union of 
India, Appeal (civil) 3167-3168 of 2005, Court 
Judgement, Supreme Court of India, 2006. 

[35] Badenfelt, U. Fixing the contract after the contract 
is fixed: A study of incomplete contracts in IT and 
construction projects. International Journal of 
Project Management, 29(5):568–576, 2011. 

[36] Koskela, L., Bølviken, T. and Rooke, J. Which are 
the wastes of construction? 21st Annual Conference 

of the International Group for Lean Construction, 
pages 905–914, 2013. 

[37] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., 
Wang, S., Wang, L., Chen, W. LoRA: Low-Rank 
Adaptation of Large Language Models. arXiv 
Preprint, 2021. 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

829



BIM and IPA – Excerpt of an automated assessment system
for an autodidactic teaching concept

Christian Heins1 and Gregor Grunwald2

1,2Jade University of Applied Sciences, Department of Architecture, Germany

christian.heins@jade-hs.de, gregor.grunwald@jade-hs.de

Abstract -
This article introduces an innovative approach to assess-

ing and enhancing Building Information Modeling (BIM)
skills using Digital Process Automation (DPA) and Robotic
Process Automation (RPA) based on [1] [2]. Aimed at uni-
versity BIM courses, the study addresses the challenge of
evaluating students’ modelling proficiency. The autodidactic
teaching concept utilizes a Bizagi-based work portal, offer-
ing modules categorized by BIM roles. Learners engage in
application-specific tasks, assessed through automated eval-
uations facilitated by RPA bots. The integrated system suc-
cessfully combines DPA and RPA components, highlighting
challenges and prospects for an error-free portal.

Keywords -
Building Information Modeling (BIM); Intelligent Pro-

cess Automation (IPA); Digital Process Automation (DPA);
Robotic Process Automation (RPA); Information Manage-
ment System (IMS); Work portal; fully automated BIM-
based model checking (BMC); Education and training

1 Introduction
Robotic Process Automation (RPA) technology can

automate manual, repetitive and error-prone Computer
Aided Engineering (CAE) applications [1]. Particularly
in university courses in the field of “Building Information
Modeling” (BIM), lecturers are increasingly faced with
the challenge of assessing students’ modelling skills. For
grading purposes, lecturers need to assess not only the geo-
metric representation and causal relationships between the
component objects but also whether the associated com-
ponent information (so-called free characteristics, known
as property sets) has been correctly added to the 3D model
by the students in response to the client’s information re-
quirements. In the BIM Games [3] [4], a new teaching and
training format developed and implemented by Jade Uni-
versity of Applied Sciences (Jade-HS), the building model
check was previously carried out manually by download-
ing the Industry Foundation Classes (IFC) models [5] from
the work portal, checking them in a model checking appli-
cation and uploading the results back to the work portal.
Due to the limited duration of the BIM games developed by

the Jade-HS (usually three days [4]), checking the build-
ing models represented the greatest effort for the teachers.
To reduce this effort, RPA technology is used to activate
software robots from the central work portal, that fully au-
tomatically verify digital building models, provide initial
plausibility statements and check the model skills of the
participants. In addition to presenting a work portal based
on an information management system used as a Digital
Process Automation (DPA), this article presents RPA tech-
nology, and it is porting to the work portal to present a fully
automated assessment system based on a new autodidactic
teaching concept that checks modelling skills using RPA
bots and presents and document the learning progress in
the work portal in real-time.

2 Autodidactic teaching concept
The learning concept is accessible via a work portal and

is shown in principle in Figure 1. The module content
is divided into different roles (see Figure 1 (a)). Each
module consists of application-related tasks. For each
task, a unique example solution has been developed, which
is superimposed on the end-user for checking the results.
When it comes to acquiring modelling skills, e.g., to obtain
a certificate as a BIM author, the end-user logs in to the
work portal using any browser on a terminal device (see
Figure 1 (b)). After logging in, the user accesses his
personalized area, where he has access to his completed,
activated and running modules, his login credentials, and
the module overview. If the user wants to edit an already
running or a new module, he clicks on the corresponding
module and is forwarded to the user interface, another
front end of the work portal (see Figure 3).

The interaction between man and systems takes place
in the user interface. Here, the end-user is provided with
the corresponding learning objectives, tasks, and didactic
aids as well as input fields for his solutions and value fields
for reading the respective result check (cf. Figure 1 (b)
bottom right). The solutions uploaded to the work portal
are checked as soon as the end-user clicks the “Check
Solution” button. The check is fully automated by the
system, either by a tabular check using Microsoft Excel
or by a check of a third-party CAE application performed
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by an RPA bot. The principle of the autodidactic learning
concept thus offers the end-user the possibility to apply the
most common CAE applications and their interoperable
workflows in a standards-compliant manner based on the
interest-specific selected BIM roles (BIM Author, BIM
User, BIM Coordinator, BIM Manager) selected according
to their interests. Here is an example from the first task of
a BIM author in module 1.1 “Revit”, which an end-user
would have to process:

Scenario for Module 1.1 “Revit” – Task 1.1 [2]:
“Model the foundation of the single-family house shown
in Figure 5, using the general plan in Figure 6 and
the project origin specified. Note the orientation of the
project. You must model exactly within the predefined
reference plan and use the correct materials. Once you
have modelled the foundation, export the foundation as
an IFC file (using the didactic tools) and upload the IFC
file in the work portal under the appropriate input field
(see Figure 8 (a)). Once your IFC file has been uploaded,
click on the button “Check solution” to automatically
check your result. If your result is correct, you will be
notified that you have passed the task and the “Next”
button will be enabled to proceed to the next task. If your
result is incorrect, please read the result log carefully and
adjust your model. Then repeat the above procedure until
you have fully completed the task.”

If the first task is solved correctly, the following task
“Modeling the first floor” is unlocked. The tasks in this
module are repeated until the single-family house has com-
pletely been modelled according to the standard. In mod-
ule 1.2 “Allplan” the CAD program is changed, and the
task is repeated. In total, the user must select three CAD
programs to fully understand the differences between the
most common CAD programs. Provided that the user has
completed three modules, the person will receive a BIM
Author certificate. For the acquisition of modelling skills,
various CAD programs are provided (e.g. Revit, Archi-
CAD, Allplan, Tekla, Vektorworks) to independently ac-
quire BIM-compliant modelling skills using didactic tools
for topics such as modelling guidelines, input, and organi-
zation of property sets, IFC export settings, text files for
IFC mapping etc.

3 DPA-based work portal
For the teaching concept, the work portal of Bizagi, a

process-oriented information management system (IMS)
is used. For this purpose, Bizagi offers a low-code portal
which can be adapted to the needs of an autodidactic teach-
ing concept based on process and data models, business
rules, read and write permissions, software distribution
and an open integration layer [6, p. 779 ff.].

Case overview (stakeholder view)

Personalized area

Module 1.0 (completed)

Module 1.1 (in process: partial results incorrect; repetition required)

Module 1.n (unlocked)

Download area for certificates

Module-1.000

File-Attribut = uCertificate1.0

Boolean attribute = bCertificate1.0

Module 2.0 Module 2.1 Module 2.2 Module 2.3 Module 2.4 Module 2.n

Module 1.0 Module 1.1 Module 1.2 Module 1.3 Module 1.4 Module 1.n

General viewable area

BIM Author

BIM Users

Module 3.0 Module 3.1 Module 3.3 Module 3.4 Module 3.5 Module 3.n

BIM Coordinator

Module 4.0 Module 4.1 Module 4.3 Module 4.4 Module 4.5 Module 4.n

BIM Manager

Login data

BIM Author BIM Users BIM Coordinator BIM Manager

Included in the 
ribbon

(a)

• Admin
• Has the rights to modify images, videos and texts
• Is responsible for textual and visual representations
• As soon as the project goes online for the first time, 

the supervisor must have configured the images and 
texts beforehand.

Supervisor
Images module overview

Image Video Image Image

ArchiCAD Revit Allplan Tekla

Video Image Video Image

BIM+ BIM360 SimpleBIM Connect

Tasks

Module 1.n Module 2.n Module 3.n Module 4.n

Would like to acquire certified skills in BIM compliant 
modeling. Has supervisor read permissions and 
solution write permissions.

BIM Author

Would like to acquire certified skills in BIM compliant 
use of data. Has supervisor read permissions and 
solution write permissions.

BIM User

Would like to acquire certified skills in BIM compliant 
coordination. Has supervisor read privileges and 
solution write privileges. 

BIM Coordinator

Wants to acquire certified skills in the application of 
BIM compliant management. Has supervisor reading 
rights and solution writing rights. 

BIM Manager

Module n.n
Learning objectives

Didactic tools

--------------------------------
--------------------------
------------------------------
-------------------

--------------------------------
--------------------------
------------------------------
-------------------

Task n.n
---------------------------------------------------------
--------------------------    -------------  -------------
------------------------------- ----- ------------- ----
--------------------- ------- --------------------- ------
Solution n.n
-------------------------------- --- --------- --- ----
Result
--------------------------------

Certificate n.n

Images 
(not changeable)

Videos 
(not changeable)

RPA-Bot

Passed

Automatic 
control

End-User

(b)

Figure 1. Principle of the autodidactic teaching con-
cept: (a) Module concept; (b) Roles and rights of
the work portal

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

831



As shown in Figure 2, the Bizagi suite consists of the
Modeler, Studio and “Automation to Map” process flows
(Modeller) to develop process instances (Studio) and to
make the portal executable and persistent for end-users
via a browser (Automation) [6, p. 36 ff.]. For the work
portal presented here, Bizagi is used to provide the task
packages, request the solutions, activate the RPA bots and
display the achieved RPA results back to the end-user as
well as to document the learning success through inte-
grated reports. In terms of technical requirements, Bizagi
requires a database and an application server to host the
web server instance. Bizagi offers two ways to develop the
integrated runtime environment (a predefined work portal)
as a learning portal: Editing as a single user, for which
a quick start setup is provided, and editing in multi-user
mode, where further development as teamwork is sup-
ported [6, p. 324 ff.]. It should be noted that the Bizagi
work portal is also accessible via various mobile devices
running iOS (e.g. iPad, iPhone) or Android. The dif-
ferent user interfaces, shown as an example in Figure 3,
present the end-user with the modules as cases in an overall
overview (Figure 3 (a)) or the user interface in which the
interactions described in Chapter 2 take place. Learning
progress is displayed in the Reports ribbon (see Figure 3
(a) and (b) above).

Figure 2. Building blocks of the Bizagi Suite

3.1 Processes

The processes stored in the work portal are shown in
Figure 4 (a) – (extracts for modules 1.1 to 1.3 only). Once
the end-user has logged into the work portal and clicks
on module 1.1 in the general overview, he is taken to an
information page of the user interface. There he can inform
himself about the selected module and decide whether he
wants to edit the module or to look at another module. If
the user does not wish to edit the module or view another
module, the user interface is closed, and the user returns to
the general overview. If the user wishes to edit Module 1.1
for example, he will be taken to the tasks to be completed,
as shown in Figure 4 (b). Module 1.1 is completed as soon
as the end-user has completed all tasks.

3.2 Data models

To match the solutions to the requirements of the differ-
ent tasks, unique attributes must be stored in the process

(a)

(b)

Figure 3. Frontend of the work portal: (a) Stake-
holder view; (b) User interface

instances of the user interface. The attributes are listed in
different entities to store the information in data models
and to structure the information flow. A master process
entity combines all the individually extendable entities.
This ensures, among other things, that the RPA bots in-
tegrated into the work portal deliver their results in the
right place and the right order. For example, if the end-
user has finished modelling the foundation in Module 1.1,
he will upload the corresponding IFC model in the work
portal by inserting the IFC model into the “Solution 1.1”
input field (see Figure 8 (a)). This field stores the file
attribute <uSolution11> belonging to the master entity
<M11 Revit ModelFoundation>. The RPA bot receives
this information to execute the activities and to provide
the results to the end-user again in the value field “Result
1.1” with the file attribute <uResult11>. Following this
principle, the attributes of the work portal are migrated
with the attributes of the RPA bots [6, p. 3216 ff.].

4 Automated evaluation system
The evaluation system integrated into the work portal

consists of the third-party systems Microsoft Excel [7] and
an RPA bot from the company UiPath [8]. Both systems
are embedded in the integration layer of Bizagi (cf. [6, p.
2893 ff.], [6, p. 3216 ff.]), so that an automated evaluation
can take place at either tabular, based on alphanumeric
values (e.g. for the comparison of GUIDs to check the
one-time submission), or by any external third-party sys-
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Figure 4. Excerpt from the technical process model
of the work portal: (a) process model for modules
1.1 to 1.3; (b) sub-process 1.1

tems. In the course of the autodidactic learning concept,
the evaluation of content-related knowledge is done in tab-
ular, whereas the evaluation of modelling skills is done by
the RPA bot with the help of a model checker of the com-
pany Solibri [9]. For example, to check the modelling
capabilities of an end-user fully automatically, the RPA
bot takes the uploaded IFC file of the end-user, opens a
Solibri project – in which the corresponding IFC example
model already exists – and compares the two IFC models.
The RPA bot then saves the corresponding Solibri result
message and transfers the file to the work portal. The end-
user can then view the results in the work portal and, if
necessary, improve his IFC model until the task has been
fully solved.

4.1 BIM-based model checking (BMC)

Before RPA automation could be implemented, it was
first necessary to determine which rules should be used as
the basis for comparing the end-user’s IFC model with the
IFC example model. It was also necessary to determine
the behaviour of Solibri’s BMC system in the presence of
error-free and minor and major errors. For this purpose,
different IFC models with different errors were generated
and compared with the IFC example model. The following

cases were considered:

Case-1: IFC test model too small
Case-2: IFC test model too large (cf. Figure 7)
Case-3: IFC test model on the coordinate origin 0.0.0
Case-4: IFC test model rotated by 1 degree

For testing purposes, an automated test process was
carried out for the foundation of a single-family house (cf.
Figure 5). The test process is therefore initially focused
only on the geometric and alphanumeric modelling of the
foundation. Solibri’s BMC software is used as a test tool
for the scenario described in Chapter 2.

Figure 5. Example project for acquiring modelling
skills in the role of a BIM author [2]

In the case of Module 1.1, the strip footings in Revit
must be modelled as beams or walls, as shown in Figure
6, because Revit does not provide objects for strip foot-
ings without a direct connection to the wall above. For
example, since civil engineers focus primarily on shell
construction, and it is common to model wall openings
as individual walls connected by a lintel rather than walls
with door openings, a beam object should be used instead
of a strip footing object. This information is important for
the IFC export as the strip footing to be exported will not be
exported as IfcFooting as intended, but as IfcBeam (if
no adjustments are made), which could cause other third-
party systems to misinterpret e.g. the fabrication costs or
the load-bearing function.

In addition to the geometric checks, the alphanumeric
information to be added to the component objects must
be checked. Table 1 shows the required alphanumeric
information.

The results of the manual tests show that with modified
rules the modelling skills of the end-user can be checked
in an automated way, provided that the following require-
ments are met:
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Figure 6. Reference plan for post-modelling of the
foundation [2]

Figure 7. Example for the self-test error in Case-2

• During the automated verification, the BMC software
Solibri must always remain open with the predefined
classification.

• The IFC example model is never removed as an ar-
chitectural model

• The IFC model of the end-user is added to Solibri as
a static model (short name “B”)

• The static model is removed after each check and
added again before each check, as described above.

4.2 RPA-BIM-based model checking (RBMC)

For automated model checking, an attended bot from
the company UiPath is used for testing purposes [10].
This robot (RPA bot) mimics human software activity on

Table 1. Required property set
Name Mate-

rial
IFC en-
tity PSet

Base plate C20/25 IfcSlab Loadbearing = yes
Foundation C20/25 IfcFoot-

ing Loadbearing = yes

Insulation EPS IfcCov-
ering

Loadbearing = only un-
der foundation

the screen by reconstructing the corresponding actions
in a sequence. Once programmed, the RPA bot can be
activated at any time by pressing the “Check solution”
button via the work portal, as shown in Figure 8 (a). For
automated model checking, the sequence flow of the RPA
bot is shown in excerpt form in Figure 10.

Performing an automated check with Solibri is relatively
simple compared to report output, provided the above re-
quirements are met. With a detailed report output, the
RPA bot would now have to recognize the anomalies iden-
tified by Solibri, expand the corresponding categories, se-
lect the corresponding categories, select the correspond-
ing messages, recognize the number of error messages in
the results and create a presentation slide with predefined
content for each error message. This type of reporting
would be relatively complex for the RPA bot to program
and would result in high throughput times for the RPA bot.
Therefore, the initial focus is on the internal reporting of
the underlying rules. To do this, the independent rules are
combined into a rule set to create a summary report using
RPA click applications (see Figure 9).

5 IT-Infrastructure
Bizagi’s DPA can be hosted locally in an older version,

see Figure 8 (b). Among other things, Bizagi offers a
personalized space and can be accessed via an API or a
web service on external websites or portals. However, it
can be assumed that the field of view of the embedded user
interface remains limited by the design of the home page
during execution, so immersion in the learning process is
distracted by other information that may interfere with the
field of view. Furthermore, when embedding Bizagi into
a third-party system, it is necessary to run Bizagi as a web
service or an application integrated into the homepage.
For this integration, it is necessary to coordinate the data
models and clearly define the corresponding instructions
on the homepage via program code. Figure 8 (b) shows
the chosen IT infrastructure in which the learning portal
is executed separately from the home page [11]. The
learning portal is accessed via a link on the homepage. As
soon as the end-users want to complete a certified course,
a new, independent program is opened. There is therefore
no need to transfer data between the home page and the
IMS.
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Figure 8. Digital Process Automation for an automated modelling skills assessment system: (a) User interface
of the work portal (here is an excerpt for module 1.1) [2]; (b) IT infrastructure with linking via a landing page
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Figure 9. Results report of the automated model
check with Solibri: (a) Solibri report button; (b)
Results as Excel file

6 Results

The results show that Intelligent Process Automation
(IPA) with its individually composable components can
provide an automated evaluation system for the assess-
ment of modeling skills. In this work, the DPA and RPA
components have been migrated together to provide end-
users with tasks via a DPA-based work portal, to demand
solutions at a specified time and to display the learning
progress already achieved to the end-users in real-time.
Furthermore, the DPA was migrated with RPA technol-
ogy to provide fully automated model checks in addition
to the classic Excel evaluations. Especially concerning
an always-on portal that enables end-users to have a cus-
tomized learning experience regardless of time zones and
individual scheduling, RPA technology is necessary to
evaluate the submitted digital building models at any time.
However, it turns out that the RPA bots can only provide
their services without any problems if they use a recur-
ring screen layout. If the UI elements [12] (elements of
the graphical user interface) change, for example, due to
a smaller scaled toolbar, the RPA bot cannot find the UI
element to be accessed and the routine of the RPA bot
leads to a system abort.

(a)

(b)

Figure 10. Excerpt of the RPA bot automation as a
sequence flow: (a) UiPath Studio [2]; (b) Section of
the sequence flow
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In addition, Solibri issues system-related discrepancies
that do not clearly define whether a non-conformity exists.
For this error message, the end-user must decide whether
the reported comment represents a modelling error.
To exclude this room for interpretation, it is necessary
to further simplify and concretize the tasks and their
example models. For example, an insulation envelope in
the foundation should be omitted, as there are different
ways of modelling the insulation (e.g. in the case of
intersections of abutting components).

The preferred solution is unattended RPA bots that are
called up via an orchestrator, instantiated on a local server
and triggered via a work portal. This would have the
advantage that the software to be automated and installed
locally always uses the same screen layout. Furthermore,
the tasks and example models are iteratively adapted until
the results output by Solibri no longer leaves any room for
interpretation. As soon as this process, consisting of DPA
and RPA, has been tested several times without errors,
the DPA-based work portal is to be expanded to include
additional components such as artificial intelligence or
machine learning to intelligently check the plausibility of
the results achieved based on independent decisions in line
with IPA.

Acknowledgement
The results of this work are based on the results

of a cooperative doctorate between the University of
Wuppertal and the Jade University of Applied Sciences
[1] as well as the third-party project “AUFLADEN”
funded by Stiftung Innovation in der Hochschullehre [13].

References
[1] C. Heins. Entwicklung eines Statikportals für die par-

tizipative Bearbeitung von Tragwerksberechnungen
im Prozess des Vieraugenprinzips (Planen – Prüfen).
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Messtechnik – Beiträge der 21. Oldenburger

3D-Tage, Wichmann Verlag, Berlin/Offenbach,
2024.
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Abstract -
In the United States, the flatness and levelness of concrete

floors during construction is traditionally specified by amax-
imum allowable gap under a 3 meter straightedge. However,
the straightedge method is inexact and rarely representative
of the entire floor since the technician is free to choose any
location on the floor to perform the measurement. In cases
requiring a higher degree of precision and repeatability, con-
crete floor flatness and levelness can be measured using the
standard test method ASTM E1155. With the recent intro-
duction of advanced surveying instruments such as robotic
theodolites and terrestrial laser scanners (TLS), the means
now exist to modernize and expedite the measurement of
floor flatness and levelness. This paper details the develop-
ment and demonstration of a digital tool, named the Flat
and Level Analysis Tool (FLAT), to automate and expedite
the segmentation and analysis of flatness and levelness from
dense point cloud data of concrete floor slabs. Segmenta-
tion algorithms were developed using unsupervised machine
learning to extract the set of points belonging to the concrete
floor slab from a full 360◦ scan of a construction site. Af-
ter segmentation, automated analysis algorithms report the
results according to the standard method. The developed al-
gorithmswere demonstrated on a dense point cloud captured
from a concrete slab-on-grade at a construction site. Results
show that the digital tool can quickly provide estimates for
floor flatness and levelness with minimal human involvement
with comparable accuracy to manual methods.

Keywords -
concrete floor, flatness, levelness, automation, real-time

1 Introduction
In the United States, the flatness and levelness of con-

crete floors during construction is traditionally specified
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by amaximum allowable gap under a 3meter straightedge.
For example, when a 3 meter straightedge is placed on the
floor, a technician may measure a maximum distance of
6 mm between the floor and straightedge at any point for
the floor to be considered acceptable construction quality
(a specified flatness of 6 mm in 3 meters). However, the
straightedge method is inexact and rarely representative of
the entire floor since the technician is free to choose any
location on the floor to perform the measurement. Ad-
ditionally, this practice is not typically controlled using a
standard method and results may significantly vary based
on technician, tools, and methods.
In cases requiring a higher degree of precision and re-

peatability, concrete floor flatness and levelness can be
measured using the standard testmethodASTME1155 [1].
This standard method specifies the means to extract and
analyze data from a constructed floor to determine floor
flatness �� and floor levelness �! numbers. Additionally,
for concrete floors, ACI 302.1 specifies acceptable ranges
for �� and �! [2]. Different building applications require
varying degrees of �� and �! . For example, a warehouse
with high-stacking shelves requires a high degree of both
�� and �! to ensure a small risk of storage shelves over-
turning.
Even in the modern age of construction, the methods

and equipment used to measure �� and �! are largely the
same since the 1970s. With the recent introduction of ad-
vanced surveying instruments such as robotic theodolites
and terrestrial laser scanners (TLS), the means now exist
to modernize and expedite such measurements. For ex-
ample, modern commercial software eases the analysis of
3D point clouds for flatness and levelness [3]. However,
the process does not perform automated, real-time anal-
ysis. Instead, an experienced user is required to collect,
analyze, and report the data. Fully automated procedures
to analyze floor flatness and levelness would allow real-
time assessment and lower the user skill requirement for
assessment.
This paper details the development and demonstration

of the Flat and Level Analysis Tool (FLAT), a digital tool
to automate and expedite the segmentation and analysis of
flatness and levelness from dense point cloud data of con-
crete floor slabs. Segmentation algorithmswere developed
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using unsupervised ML to extract the set of points belong-
ing to the concrete floor slab from a full 360 ◦ scan of a
construction site. After segmentation, automated analysis
algorithms report �� and �! according to ASTM E1155.

1.1 Floor flatness and levelness control

Floor flatness (�� ) and levelness (�!) numbers are
quantitative measures of a floor’s smoothness and level-
ness [4]. In general, floor flatness is a measure of the local
smoothness of the floor. �� is a function of the change
in floor elevation between colinear points spaced at 60 cm
increments. The flatness of the floor affects the installa-
tion of flooring, ride quality, safety, and drainage. On the
other hand, the floor levelness number is a global measure
of the levelness of the floor. �! is a function of the change
in floor elevation between colinear points spaced at 3 m
increments. The floor’s levelness can impact drainage as
well as the placement and design of shelves. Many types
of buildings require a high degree of flatness and levelness
such as warehouses with stacking shelves, ice rinks, and
movie studios.
In the United States, the traditional method of consistent

measurement of concrete floor flatness and levelness is the
ASTM E1155 standard. This standard procedure consists
of subdividing the floor slab into test sections, marking
sample measurement lines, collecting measurements ev-
ery 30 cm, and calculating �� and �! along each line,
each aggregate test section, and the entire floor slab. ACI
302.1 specifies acceptable ranges for �� and �! based on
the building use case. Specified values for �� and �!
range from 15 to 50 for most applications. For example,
where flatness and levelness are noncritical such as me-
chanical rooms and nonpublic areas, local values of 15
�� and 10 �! and overall values of 20 �� and 15 �! are
acceptable. However, for applications requiring a high de-
gree of flatness and levelness such as movie studios, local
values of 35 �� /�! and overall values of 50 �� /�! are
required at the minimum.
The procedure to gather data to calculate �� and �! is

manually time-consuming. While the standard does allow
the use of manual instruments such as straightedges, laser
levels, and taut level wires to measure change in eleva-
tion, the fastest measurement tools allowed by the standard
are inclinometers or profilometers. These instruments are
"walked" or rolled along the surface of the slab to measure
the change in elevation between two points spaced apart by
30 cm. Depending on the size and complexity of the slab, it
may be necessary to collect 200 or more data points using
these instruments. After data collection, analysis must be
conducted to determine �� and �! from the acquired data.
The entire process can take anywhere from 2 - 12 hours
depending on the size and complexity of the concrete slab.
In most cases, the process is not fast enough to identify

issues in real-time to correct mistakes. Additionally, the
measurement process itself cannot be completed on con-
crete before setting because the operator must stand on the
concrete. Modern surveying instruments have the poten-
tial to complete the same data collection procedures in a
fraction of the time and enable real-time validation while
the concrete is still workable such that errors in flatness
can be corrected more easily.
When issues with flatness and levelness are detected by

traditional methods, the concrete has already hardened.
Additional testing must often be conducted to determine
where exactly the flatness or levelness issues are located.
After locating the issues, remediation efforts typically con-
sist of grinding, planing, surface repair, re-topping, or re-
moval and replacement [4]. These efforts are costly and
time-consuming to the concrete contractor. Additionally,
the concrete placement contract often stipulates that if flat-
ness and levelness specifications are not met on the first
attempt, a reduction in payment will occur. Thus, concrete
contractors have amajor interest in identifying flatness and
levelness issues in real-time such that costly mistakes can
be corrected while the concrete is still workable.

1.2 Laser scanning and point cloud segmentation

Recent developments in advanced surveying instru-
ments have yielded simple, easy-to-use laser scanning de-
vices that can measure more than 2 million points per
second at large distances. These modern instruments have
the potential to significantly expedite the calculation of
�� and �! for concrete slabs. Modern instruments are
accurate at long ranges with peak range accuracy of 2 mm
+ 2 ppm or better. With continued development, these
instruments are also becoming more affordable and ac-
cessible with easy-to-use interfaces. Additionally, most
modern laser scanners come prepackaged with software to
automate and simplify the process of registering multiple
scans into a single frame; a process which can require sev-
eral man-hours of effort from an experienced surveyor. As
a result, laser scanners have the potential to easily replace
handheld measurement devices such as the inclinometers
and profilometers that are used to measure �� and �! .
However, one aspect of laser scanning that currently

limits adoption is segmentation. Because scanners oper-
ate by spinning amirror or aperture and rotating, the fastest
method of scanning a site/object using a TLS is usually
performing a full 360◦ scan. During this process, the scan-
ner measures every object in sight. After completion, the
operator must import the data into software to separate the
points belonging to the object of interest (the concrete slab)
from the rest of the points. This process is called segmen-
tation. One of the major topics of research in construc-
tion automation is the automated segmentation of points
clouds for varying applications [5, 6]. In particular, au-
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tomated point cloud segmentation techniques exist to per-
form tasks ranging from automated digital twin generation
[7] to prefabricated tolerance compliance assessment [8].
By automating the segmentation process using artificial
intelligence, the process can be turned from a several-hour
manual process into a few second-long automated process,
increasing the accessibility of laser scanning technologies
to a wider array of applications and users.

2 Methodology
The primary research of this work details the develop-

ment of (1) an automated segmentation algorithm for con-
crete slabs and (2) an automated analysis algorithm to per-
form and report on �� and �! following the ASTME1155
standard. Other research efforts have focused on the devel-
opment of methods to automate the process of flatness and
levelness quality control for concrete slabs [9, 10, 11, 12].
However, no work exists to the authors’ knowledge that
combines bothmodel-free automatic segmentation and au-
tomatic analysis of �� and �! according to ASTME1155.
The proposed methods were developed to automatically
segment a concrete slab with no user interaction from a
360◦ dense point cloud and generate �� and �! according
to ASTM E1155.

2.1 Segmentation

The automated segmentation of points belonging to the
concrete slab is necessary to automate the analysis. The
segmentation process must fully isolate the points belong-
ing to the slab from the remainder of the point cloud data.
Concrete slabs can be separated into two types: slabs on-
grade and suspended slabs. Concrete slabs on-grade are
simply constructed to bear directly on foundations and the
soil beneath. Suspended slabs are constructed in multi-
story buildings at elevations above the ground. Suspended
slabs are significantly more difficult to construct in confor-
mance with stringent flatness and levelness requirements.
For both types of floor slabs, the slab is usually constructed
before the walls which presents a specific segmentation is-
sue. For full 360◦ scans, the entire construction site is
included in the point cloud. For suspended slabs, the
scanner will capture the floor on which it is set and the
structure above in multi-story constructions. As a result,
the automated algorithm must be able to identify what
points belong to the floor slab to analyze with potentially
multiple near-planar surfaces existing in the point cloud
data.
The proposed segmentation algorithm consists of sev-

eral steps to isolate the points belonging to the concrete
slab. Figure 1 illustrates the procedure. Each step in the
procedure will be further discussed in more detail.
The first step in the analysis is to reduce the data in the

point cloud so that the subsequent steps can be completed
more quickly. The goal is to reduce the data by at least
95%; however, the actual reduction will depend on several
factors including the original point density and scan area.
Data reduction is achieved by voxel-downsampling [13].
The process of voxel-downsampling generates a grid of
cubes of specified dimension. Within each cube, all points
are averaged, and the resulting voxel is reduced to a single
point located at the mean. For this work, a voxel size of
5 cm was determined to be effective in reducing the point
cloud while still accurately providing enough data for the
remaining steps in the procedure.
Next, plane segmentation is performed using a random

sample consensus (RANSAC) procedure [13] with some
modifications. This modified RANSAC is performed to
identify the near-level plane of the concrete slab. The
procedure iteratively selects three points in the cloud to
generate a plane. Valid points must be below the origin
of the point cloud (which is the location of the scanner)
to ensure that the identified plane is the intended plane
of the floor. A distance threshold specifies the normal
distance from the plane that points are selected as inliers.
A modification to the procedure eliminates planes that are
not within a specified threshold of level (i.e. for the plane
described by I = 0G + 1H + 2 where I is elevation, the
parameters 0 and 1 must be within a specified threshold
close to zero). After a fixed number of iterations, the plane
with the largest number of inlier points is returned as the
plane representing the concrete slab.
The points identified by the modified RANSAC fre-

quently include scattered miscellaneous points that do not
belong to the concrete slab’s point cloud. Such outliers
belong to parts of the surrounding area that fall within
the plane of the slab. Because the slab is often slightly
elevated from the adjacent soil, a gap most likely exists
between the point cloud of the slab and the other planar
outlier points. A density-based scan (DBSCAN) cluster-
ing method [13, 14] is performed to identify the largest
cluster of points which belong to the concrete slab.
After the slab is isolated, a principal component analysis

(PCA) [15] is conducted to align the edges of the slab to
the major axes. Before conducting PCA, the points are
projected to the GH-plane, removing the elevation, (I) axis.
The PCA determines the first primary component of the
points. The points are then rotated by the angle between
the first primary component vector and the G-axis, aligning
the slab with the major axes.
After alignment, edge optimization is performed to

cleanly delineate the edge of the slab from miscellaneous
features. Although the standard procedure requires that
measurements must be sufficiently far from the slab edges,
this process is necessary due to the possibility of miscel-
laneous features near the slab edges which could affect the
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Figure 1. Workflow for automated segmentation of concrete slab.

automated analysis algorithm if not removed. The edge
optimization is completed in the ��-plane. The median
(�) and median absolute deviation (MAD) are calculated
for all points projected onto the ��-plane. All points �

are normalized according to � = (� − �)/MAD. Con-
sider the probability density function (PDF) of the nor-
malized points on each axis, then the inlier points satisfy
|PDF(��) | < � and |PDF(��) | < �, where � and � are
specified thresholds. A bounding box is generated for the
inlier points. Points falling outside of the bounding box are
not considered part of the automated analysis, as shown in
Figure 2.

Figure 2. Edge optimization for trimming miscella-
neous points.

The bounding box generated from edge optimization is
used to crop the slab from the original point set before voxel
downsampling, rotated by the same angle determined by

the PCA. The points inside the bounding box are the re-
sulting point cloud which includes only the isolated points
belonging to the concrete slab. It is important to note that
the bounding box is used to crop the original, raw point
cloud before voxel-downsampling was performed which
retains the original accuracy of the collected point cloud.
Finally, the origin is set to the most negative point within
the cloud of the isolated concrete slab. After this step, the
resulting point cloud is ready for the automated analysis.

2.2 Analysis

After segmenting the point cloud to yield only the points
belonging to the concrete slab, an analysis can be per-
formed to automatically generate �� and �� according to
ASTM E1155. As part of the measurement procedure of
ASTM E1155, a series of lines are established from which
to measure elevation changes every 12 inches (≈0.3 m).

There are several rules for conducting the setup of mea-
surement lines according to the standard method. Some
general requirements apply to the overall procedure. No
portion of the entire test surface can be associated with
more than one test section, and no test section bound-
ary should cross any construction joint. Other standard
requirements are described where appropriate during the
algorithm descriptions.

Because the points belonging to the slab are segmented
in the prior step, many of these criteria can be tested as
part of the algorithm. First, the minimum and maximum
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bounds of the concrete slab are extracted from the point
cloud by the minimal oriented bounding box. From these
bounds, the slab dimensions are extracted, and the slab
area can be calculated. The slab dimensions and area are
checked against the approval criteria of ASTME1155 (i.e.,
the test section cannot measure less than 8 ft (2.4 meters)
on a side and the test section cannot have an area less than
320ft2 (29.7m2). If the slab is large enough, the algorithm
is allowed to proceed.
The standard procedure also requires that no part of any

sample measurement line fall within 2 ft (≈0.61 m) of any
slab boundary, construction joint, isolation joint, block-out
joint, penetration, or other similar discontinuity. However,
two exceptions are provided. First, shrinkage crack control
joints formed by either partial depth sawcuts or by partial
depth inserts can be ignored. Second, if the area to be
excluded from the measurement exceeds 25% of the test
section area, then the 2 ft (≈0.61 m) boundary exclusion
does not apply. The boundary exclusion area is calculated
and tested to determine if it exceeds 25% of the test area.
If the boundary exclusion area is not too large, then the
allowable samplemeasurement area is inset within the slab
perimeter; otherwise, the entire surface area of the slab is
treated as the allowable sample measurement area.
The standard methods provide conditions for sample

measurement lines within each test section. Each line
must be arranged to blind the test results by using one of
two methods: (1) orienting all lines at 45◦ to the longest
construction joint abutting the test section, or (2) plac-
ing equal numbers of lines of equal aggregate length both
parallel to and perpendicular to the longest test section
boundary. However, when the short dimension of the slab
being measured is less than 25 ft (7.62 m), all measure-
ment lines must be 45◦ diagonals. Sample measurement
line generation criteria allow lines to be placed at ±45◦
to the longest construction joint regardless of slab dimen-
sions. For this reason, the automated analysis procedure
will always generate measurement lines at 45◦ diagonal
to the longest dimension of the slab. As a reminder, the
most negative point on the slab was set as the origin for
the local slab coordinate system before automated anal-
ysis. Because the largest slab dimension is aligned with
the x-axis as part of the automated segmentation, each
measurement line can be described by the slope-intercept
formula, � = �� + �, where �, � are the coordinates of
a point along the line, � is the slope which is either −1
or 1, and � is the y-intercept which will vary in uniform
spacing to create lines that span across the entirety of the
allowable sample measurement area.
A series of lines are constructed to fill the area that is

generated from doubling the slab width and height. Points
are generated along each line, spaced at 12 inches (30.48
cm). Adjacent parallel lines are separated by a perpendic-

ular distance of 4 ft (1.22 m) as required by the standard
procedure. The construction of these lines and measure-
ment points are illustrated in Figure 3. Lines are con-
structed at angles of −45◦ and 45◦ from the x-axis (which
is aligned with the longest dimension of the slab). Lines
are trimmed such that all points fall within the allowable
sample measurement area. The length of each line is cal-
culated by determining the Euclidean distance between
the start and end points. The standard procedure requires
that no sample measurement line measure less than 11 ft
(3.35 m). If any line is shorter than the allowable 11 ft
(3.35 m), then the line is removed from the sample set.
Additionally, at the end of this step, the total number of
samplemeasurement points is determined according to the
standard calculations. The standard method details that a
minimum number of readings is required per test section
conforming to the following equations: �min = 2

√
� for

320 ≤ � ≤ 1600 or �min = �/30 for � > 1600 where
� is the test section area in square feet. If �min is larger
than the actual number of sampled points, the test results
will be deemed invalid and not reported; otherwise, the
algorithm is allowed to proceed.

Figure 3. Automated sample generation.

After sample line generation, the next step in the al-
gorithm is to iterate over each point within each line to
determine the closest point in the slab point cloud from
which to extract the height measurement. First, a kd-tree
is generated for the slab point cloud projected to the ��-
plane [16]. The kd-tree is queried with each point along a
sample measurement line, also projected to the ��-plane,
to determine the nearest neighbor within the slab point
cloud ignoring the elevation (�-axis). The elevation, �-
component, of the nearest neighbor in the slab point cloud
is recorded as the measured sample height of the queried
point of the sample measurement line. This process is
repeated iteratively for each point along each sample mea-
surement line. The result is the recorded elevations of the
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slab every 12 inches (30.48 cm) along the samplemeasure-
ment lines. After the collection of slab elevations along
each measurement line, the analyses detailed by ASTM
E1155 [1] are performed to determine �� and �� for each
sample measurement line and the overall slab (hereby re-
ferred to as composite). In summary, floor flatness is a
function of the standard deviation of curvature of differ-
ence in elevation between points separated by 24 inches
(60.96 cm). Floor levelness is a function of the standard
deviation of curvature of difference in elevation between
points separated by 10 ft (3.048 m). Composite floor flat-
ness and composite floor levelness numbers are calculated
by iteratively combining floor flatness or levelness num-
bers for each sample measurement line weighted by the
number of samples. The reader is referred to the ASTM
E1155 standard for complete details on how �� and ��

are calculated [1].

2.3 Limitations

As is, the automated segmentation and analysis algo-
rithms include some limitations. First, both algorithms
assume that the concrete slab is rectangular. For complex
shapes beyond rectangles, the edge optimization process
fails to cleanly extract the edge of the slab. Additionally,
the automated segmentation algorithm assumes that the
slab is subdivided into a single test area. If construction
joints are present, according to ASTM E1155, the slab
must be subdivided into multiple test areas. This subdi-
vision process is currently not automated within the algo-
rithm. Moreover, if the slab includes multiple elevations
(there are steps in elevation), then the automated analysis
will only identify a single elevation. In future work, these
limitations are planned to be addressed to allow the au-
tomated segmentation to analyze multiple elevations and
multiple combinations of rectangular slab areas.

3 Demonstration
The automated segmentation and analysis algorithms

were tested on an actual concrete slab located on the Oak
Ridge National Laboratory site. A concrete slab-on-grade
with design dimensions of 80 ft (24.4 m) by 50 ft (15.2
m) was scanned within 7 days of concrete placement. The
slab was designed to be noncritical in terms of flatness and
levelness requirements; as a result, flatness and levelness
numbers were expected to be on the low end. A Leica
MS60 was placed near the center of the concrete slab and
set to scan the entire surrounding area using a full-dome
scan setting with a maximum point resolution of 3 mm at
the furthest edge of the slab. All scanned points within the
perimeter of the concrete slab had a point spacing of less
than 3 mm. The laser scan included the full 360◦ view of
the construction site. Figure 4 shows the raw .pcd file of

the scan that was loaded into the FLAT digital tool.

Figure 4. A portion of the full-dome scan of the
construction site with concrete slab.

The automated segmentation and analysis algorithms of
FLAT were written in Python. The automated procedures
use several input parameters to perform various functions.
Table 1 shows the parameters used in the demonstration.
Voxel Size is the dimension of the voxel cube used for
downsampling. The Plane Distance Threshold is the min-
imum normal distance between the RANSAC plane and
points to be considered as inliers. Cluster Neighbor Radius
is the maximum distance between points to be considered
members of the same cluster. Cluster Minimum Points is
the minimum number of points that a cluster must contain.
Because only the largest cluster is taken, this parameter has
minimal effect on the overall algorithm. Edge Optimiza-
tion Bin Size controls the size of bins used to generate
the PDF(��) and PDF(��) for edge optimization. The
peak accuracy of slab dimensions is the same as this spec-
ified parameter. The Edge Optimization Threshold is the
minimum threshold (� and �) for the probability density
function for a bin to be considered an inlier (part of the
slab).

Table 1. Parameters for the demonstration.
Parameter Value
Voxel Size 5 cm
Plane Distance Threshold 5 cm
Cluster Neighbor Radius 30 cm
Cluster Minimum Points 50
Edge Optimization Bin Size 3 mm
Edge Optimization Threshold 0.10

One proposed feature of the FLAT digital tool is the
real-time evaluation of floor flatness and levelness which
enables measurement and correction of flatness and level-
ness issues while concrete is still workable. For the MS60
used in this study, the single-view dense point cloud with
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Table 2. Run times. 100 iterations.

Task Run Times (sec)
Min Max Mean Std

Downsample 1.03 1.60 1.17 0.11
Segment Plane 0.07 47.31 9.95 10.48
Cluster 0.92 1.71 1.17 0.11
Align 0.20 0.27 0.22 0.02
Optimize Edge 0.03 0.06 0.04 0.01
Crop 2.11 2.91 2.35 0.17
Generate 0.13 0.31 0.16 0.02
Measure 5.47 8.22 6.08 0.44
Calculate 0.001 0.02 0.002 0.002
Entire Procedure 10.63 58.21 21.13 10.51

a specified resolution was collected in approximately 30
minutes. However, many TLS boast faster scanning rates
and can capture point cloud data with higher resolution
in a fraction of the time. Initial running time targets for
the automated segmentation and analysis of FLAT were
proposed at 60 seconds per 1000 m2 of slab area. Table 2
shows the running times for each task of the FLAT digital
tool on a standard laptop computer. Tasks of the automated
segmentation process include, in order, Downsample by
voxel downsampling, Segment Plane by RANSAC level
plane segmentation, Cluster by density-based scan (DB-
SCAN) clustering, Align by principal component analysis
(PCA), Optimize Edge by the proposed method, and Crop
the original point cloud using the minimal oriented bound-
ing box determined from the algorithm. Tasks of the auto-
mated analysis process include, in order, Generate sample
measurement lines according to ASTM E1155, Measure
the elevation of the nearest neighbor point in the cloud
to sample measurements, and Calculate floor flatness and
levelness according to ASTM E1155.
The mean total run time was approximately 21 seconds.

Considering the surface area of the slab (370.88 m2), the
resulting average run time is 56.6 seconds per 1000 m2
of slab area. Most tasks within the algorithms have con-
sistent run time except for RANSAC. This variability in
execution time is expected due to the random nature of the
procedure. One option to reduce the time of this proce-
dure, which may be introduced in the future, is to change
to plane fitting of three user-specified points. Although
this change could reduce processing time variability and
improve repeatability, the resulting algorithm would have
vastly reduced autonomy.
The output of the algorithms was also assessed. Table 3

shows the output of algorithms for slab dimensions, com-
posite flatness, and composite levelness for 100 iterations
of the algorithm on the same dense point cloud. Compos-
ite flatness and composite levelness refer to the calculated
value by joining all flatness and levelness numbers for all
samplemeasurement lines. Of the 100 iterations, 5 yielded

Table 3. Reported output. 100 iterations.

Output Value
Min Max Mean Std

Slab Length (m) 24.258 24.553 24.419 0.025
Slab Width (m) 15.283 15.563 15.304 0.048
Composite �� 5.3 8.2 7.0 0.61
Composite �! 12.3 13.5 13.1 0.27

segmentation results that incorrectly identified the plane
of the concrete slab surface resulting in a failure rate of
5%. The results of failed runs were not included in the
statistical analysis of the output results.
As shown among the 100 iterations, there is some vari-

ability in the output results. The processes within the
algorithm that could induce the most variability include
plane segmentation, clustering, and alignment because
they use unsupervised machine learning methods which
can produce differing results between iterations. Since
these processes are stacked upon each other, the variabil-
ity increases further. For example, for the slab dimensions,
the range of extracted values is approximately 25 centime-
ters. Although this value is a small percentage of the
overall dimensions, the variability in dimensional output
is too large to accurately assess the slab’s dimension with
a single execution of the algorithm. Slab dimensional tol-
erances are commonly 0.75 in (19 mm) according to ACI
117-10 [17]. Ideally, the algorithm should produce results
with variation less than this tolerance.
Additionally, there is variability in the output for floor

flatness and floor levelness. Floor flatness numbers ranged
from 5.3 to 8.2. This variability is hypothesized to occur
within the plane segmentation, clustering, and edge op-
timization procedures. An intermediate step after plane
segmentation where the user confirms that the slab has
been correctly identified with near-perpendicular corners
could help minimize variability between iterations. In fu-
ture work, the source of variability will be addressed to
reduce the range of output.
To determine the true values for composite floor flatness

and floor levelness, ASTM E1155 was manually com-
pleted by extracting point elevations along sample mea-
surement lines from the point cloud data gathered from the
laser scan. Manually created sample measurement lines
were created at similar locations as sample measurement
lines automatically generated by the analysis algorithm.
This manual analysis yielded a composite floor flatness of
7.6 and composite floor levelness of 14.1. In future work,
the deviations between manual and automated method re-
sults will be investigated. The total run time of all 100
iterations was 35 minutes. Considering that 100 iterations
of the analysis take 35 minutes, which is a significantly
shorter amount of time compared to the traditionalmethod,
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it is still reasonable for the digital tool to reduce the amount
of time required to determine floor flatness and levelness
with a high degree of accuracy. Future work will include
a validation study to compare the digital tool output with
conventional methods to perform ASTM E1155.

3.1 Discussion

A major finding of this study is that ASTM E1155 has
several major shortcomings compared to modern survey-
ing methods. Although the standard method has been
clearly established for some time, it is not exhaustive even
when optimized using automated procedures. The stan-
dard procedure limits the placement of sample measure-
ment lines so that adjacent parallel lines are not closer
than 4 ft (1.22 m). The purpose of this limitation in the
standard is unclear to the authors and excludes a signifi-
cant portion of the slab surface area from measurement,
potentially hiding flatness defects. Modern surveying in-
struments can quickly capture sample elevations at high
density (3 mm or more). A better alternative is to generate
a topographic map of the slab topography to highlight the
degree and locations of imperfections in flatness.

4 Conclusions and next steps
A Flat and Level Analysis Tool (FLAT) was devel-

oped to automate the process of determining floor flat-
ness and levelness for concrete slabs according to ASTM
E1155. An automated segmentation algorithm and auto-
mated analysis algorithm were developed and tested on
a demonstration concrete slab on grade. Results of the
demonstration of the algorithms show that the digital tool
can quickly provide estimates for floor flatness and level-
ness with minimal human involvement.

In future work, FLAT will be optimized to minimize
the variability of output results to ensure consistent output
of slab dimensions and floor flatness/levelness numbers.
Additionally, the automated segmentation limitations on
slab shapes, dimensions, and complexity will be addressed
to extend applicability to more types of concrete floors.
The output results of FLAT must also be compared with
standard output from conventional methods to perform
ASTM E1155. Ultimately, additional point cloud data of
different slabs must be collected to test the algorithms.
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Abstract -
Over the past few years, research has focused on lever-

aging computer vision in construction progress monitoring,
particularly in comparing construction photologs to Build-
ing Information Modeling (BIM), with or without schedule
data. The practical application of these techniques and a
large number of startups that have brought hyper AI and
human-in-the-loop services around progress monitoring have
revealed several gaps: 1) Current BIM-driven projects do not
have model disciplines at the right level of maturity and Level
of Development; 2) definitions of states of work-in-progress
that are detectable from images are not formalized; 3) poor
schedule quality and lack of frequent progress update chal-
lenges the incorporation of detailed 4D BIM for progress
tracking. Such gaps are addressed in this work by exploring
the requirements for mapping modern computer vision tech-
niques for object segmentation with construction schedule
activities to automate progress monitoring applications using
computer vision without BIM as a baseline. The approach
utilizes reality mapping practices to offer time machines for
construction progress, organizing photologs over space and
time. Additionally, this work shows how Large Language
Models can structure schedule activity descriptions around
<Uniformat Object Classification, Location>, focusing on
how vision and language models can be trained separately
with limited annotated data. ASTM Uniformat classification
is utilized to map triangulated object segments from images
to color-coded 3D point clouds aligned with schedule activi-
ties without the need for image and language feature align-
ments. Exemplary results on tied new transformer-based
models with few-shot learning are shown, and the require-
ments for full-scale implementation are discussed.

Keywords -
Automated Progress Monitoring; Artificial Intelligence;

Computer Vision; Natural Language Processing

1 Introduction
The field of construction progress monitoring has wit-
nessed significant advancements in recent years, primarily
driven by the integration of computer vision techniques
and BIM. Specifically, leveraging devices such as LiDAR
(Light Detection and Ranging), 360-degree cameras, and
drones, a prevalent approach involves comparing gener-
ated as-built point clouds with the as-planned BIM model
to assess construction progress by identifying deviations
or discrepancies [1]. The integration between computer
vision and BIM has enabled stakeholders to gain compre-
hensive insights into the construction process, facilitating
improved decision-making, resource allocation, and offer-
ing real-time data analysis and project visualization [2].

However, despite these advancements, several critical
gaps persist, posing challenges to the effective implemen-
tation of computer vision-based progress monitoring ap-
plications:

• Lack of BIM model disciplines at the right level of ma-
turity and Level of Development (LoD): The current
computer vision-based progress monitoring relies
heavily on the quality and completeness of BIM mod-
els. Insufficient BIM LoD and maturity in model dis-
ciplines, particularly around work zones and ASTM
Codes, create discrepancies when attempting to align
as-built point clouds with the as-planned BIM model
[3, 4].

• The absence of formalized definitions for states of
work-in-progress detectable from images: The lack
of formalized definitions for work-in-progress states
detectable from images poses challenges, especially
in visually complex indoor environments with occlu-
sion complexities like wall layers. [5, 6]. Estab-
lishing clear and universally accepted definitions for
construction states is crucial for enhancing the ac-
curacy and comparability of progress assessments in
diverse project environments.

• Poor schedule quality and lack of frequent progress
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update: The effectiveness of 4D BIM, integrating the
temporal dimension, relies heavily on schedule qual-
ity and BIM LoD. However, the suboptimal schedule
quality, varying schedule granularity, and infrequent
progress updates impede the alignment of real-time
progress with the as-planned 4D BIM model [7].

This paper addresses these gaps by investigating the
requirements for mapping modern computer vision tech-
niques, specifically object segmentation, to construction
schedule activities. The focus is on automating progress
monitoring applications using computer vision as a stan-
dalone tool without relying on BIM as a baseline. To
achieve this, this work proposes leveraging reality map-
ping practices that effectively organize photologs over
space and time, providing time machines for construction
progress.

Furthermore, this work explores how Large Language
Models (LLMs) can play a pivotal role in structuring
schedule activity descriptions, emphasizing key elements
such as Action, Location with an emphasis on utilizing
the ASTM Uniformat classification to map triangulated
object segments from images to space. Exemplary results
from a novel transformer model, coupled with few-shot
learning, are presented, and the paper concludes by dis-
cussing the requirements for the full-scale implementation
of these proposed methodologies. Identified gaps and spe-
cific challenges and solutions are covered in detail in the
following sections.

2 Literature Review
This section reviews the current state-of-the-art in con-
struction for the creation of semantically rich point clouds,
and how both visual and text feature information have been
automatically aligned in different fronts of computer vi-
sion. Additionally, this section covers the main strategies
widely utilized for mapping progress against schedules,
specifically focusing on the challenges presented when
aligning progress information against construction sched-
ule documents. Lastly, BIM-based progress extraction
methods are explored and further discussed as a function
of their advantages and challenges.

2.1 Point cloud generation and segmentation

Point clouds, obtained via 3D laser scanning or similar
technologies, consist of data points in a three-dimensional
coordinate system. LiDAR, using laser beams, accurately
generates detailed 3D representations of structures and en-
vironments, capturing geometry and spatial information at
construction sites. Photogrammetry, another method, ex-
tracts 3D details from 2D images taken by cameras or
drones. The process involves estimating camera parame-

ters and correlating pixels between cameras to triangulate
depth information [8, 9].

After creating a 3D point cloud, machine learning algo-
rithms are used to classify individual points into categories
such as building components and Mechanical-Electrical-
Plumbing (MEP) systems[10]. However, existing detec-
tion systems often depend on complete object visualiza-
tions, making them sensitive to occlusions and capture
completeness. In the context of photogrammetry-based
point cloud reconstruction, classification to correlate 2D
information with the 3D point cloud is achieved through
numerous novel image-based classification and segmenta-
tion techniques, only using 2D features.

For example, [11] employs traditional vision-based
algorithms using shape and color information to in-
fer indoor partition wall progress. Others adopt deep-
learning approaches like MaskRCNN [12], YOLO [13],
and Transformer-based Swin [14] to directly detect con-
struction elements from 2D images [15, 16]. Despite
some photogrammetry approaches mapping camera pix-
els to real-world coordinates, the projection of semantic
information from 2D inputs onto point clouds remains un-
derexplored [16].

2.2 Image and Text Information Mapping

In the realm of Computer Science, significant progress has
been made in mapping information between images and
text as multimodal learning. Notable developments in-
clude pre-trained vision-language models like CLIP [17]
and mPLUG [18], which demonstrate the capability to
understand and associate textual descriptions with visual
content. However, construction projects involve unique
terminologies, specialized jargon, and context-specific in-
formation that may not be adequately addressed by generic
image-text mapping models. Addressing these limita-
tions is essential for creating effective tools that can as-
sist professionals in the construction industry, providing
them with streamlined access to information and enhanc-
ing communication between textual project descriptions
and visual project elements.

2.3 Progress Against Schedules in Construction

Proactive construction workflows rely on critical schedule
updates. Researchers have explored automated methods
for optimizing schedules based on underlying reasons of
sequencing logic [19], physical building component rela-
tionships [20, 21], aligning different levels of schedules
[22], and ensuring consistency with BIM, schedule, and
payment applications via ASTM Uniformat classifications
[7]. These approaches often involve natural language pro-
cessing and machine learning algorithms. However, the
usefulness of the ASTM Uniformat II to properly report
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visual progress information against construction schedules
is often ignored and poorly explored.

2.4 BIM-based Progress Monitoring Applications

Traditionally, progress monitoring has been based on com-
paring documented reality against plans, and through the
standardization of the usage of BIM, numerous research
have explored this data format for calculating construc-
tion progress. This is seen in BIM methods to drive
Earned Value Analysis (EVA) [23] through geometry and
time-based heuristics. Similarly, other works have relied
on geometry information from BIM models to compute
progress when compared against photogrammetry-based
point clouds and proximity-based heuristics [3, 4], eventu-
ally incorporating 4D BIM [24] to determine the presence
of built elements over time. More advanced implemen-
tations eventually considered detecting semantics from
images to increase the correct detection of construction
elements against BIM elements [25, 26].

While these lines of work pioneered one of the great
avenues of progress monitoring using BIM, they were ex-
posed to dependencies on the BIM LOD, leaving a wide
gap to properly comparing reality against plan given the
lack of 4D adoption that could connect progress against
construction documents and schedules or the incorrect
comparison between visible elements without semantics
in a point cloud cluster and their intersection against BIM
elements.

3 Method
The proposed methodology addresses one of the appli-
cations proposed in [27]. This method consists of a
four-step approach model ensemble to create connections
between vision and language features. At a high level,
this is achieved by aligning orthographic projections of
semantically rich photogrammetry point clouds against
quantity-take-off (QTO) construction drawings to detect
completed quantities of each classification of construc-
tion object classes based on the ASTM Uniformat II. Si-
multaneously, this method leverages corresponding logi-
cal sequences from a construction schedule to determine
the completeness constraints of overlapping construction
classes as part of the sequence logic, constrained to a spe-
cific location, generally denoted in a construction drawing.
Such imposed logical constraint allows for the correction
of observed quantities in segmented point clouds due to
occlusion and point cloud completeness issues, which are
present in most photogrammetry-based point cloud recon-
structions. Figure 1 presents a graphical representation of
the description presented above.

The first step leverages modern computer vision
Structure-from-Motion (SfM) [8] and Multi-View Stereo

(MVS) [9] algorithms to create unstructured three-
dimensional as-built representations of the construction
environment from video capture frames or cameras 𝐶𝑖 .
At this stage, and specifically during the depth estimation
for each pixel 𝑃 𝑗 of a registered and localized camera 𝐶𝑖 ,
mappings between pixel and three-dimensional point coor-
dinates are captured using camera matrix transformations
𝑀𝑖 for each camera𝐶𝑖 . For a more in-depth understanding
of the employed SfM with MVS approaches, readers are
recommended to read the work shown in [28].

In parallel, using the image inputs from the first step, the
second step leverages a few-shot trained Swin [14] trans-
former model, pretrained with synthetic data to create per-
pixel semantic classes or segmentations. The model train-
ing step considers a class structure based on the ASTM
Uniformat classification of construction objects to detect
partial construction of different construction elements. A
semantic label class 𝐿𝑘 is stored for each pixel 𝑃 𝑗 in cam-
era 𝐶𝑖 , and added to a general dictionary 𝐷 containing
tuples 𝐷 = [𝐶𝑖 , 𝑃 𝑗 , 𝐿𝑘 , 𝑝𝑜𝑖𝑛𝑡𝑥,𝑦,𝑧]. Such a dictionary is
used to create a semantically rich segmented point cloud
based on ASTM Uniformat II classes for each visible ob-
ject. By leveraging camera vectors and orientations, an
orthographic projection 𝑂 is automatically created and
overlayed against corresponding IFC drawings with QTOs
using a three-point aligning process.

Concurrently, during the third step, corresponding
schedules are parsed and classified Uniformat Level 2 &
3 instances using UniformatBridge [7], built on the pre-
trained BERT model. At this stage, for each activity line
item 𝐴𝑐𝑡𝑚, similar ASTM Uniformat classification labels
𝐿𝑘 as assigned, together with location-based constraints
𝐿𝑜𝑐𝑛 based on the schedule text usign PoAT [29]. At this
stage, using the schedule activity relationships, sequential
constraints are extracted for each detected Uniformat clas-
sification (i.e., [𝐹𝑙𝑜𝑜𝑟 > 𝑊𝑎𝑙𝑙 > 𝑊𝑖𝑛𝑑𝑜𝑤𝑠 > 𝐶𝑒𝑖𝑙𝑖𝑛𝑔]).
These extracted sequences provide the logical constraints
in which overlapping detected activity class orthographic
projections from a segmented point cloud.

The fourth step attempts to create a polygon-based com-
pletion coverage to extract current object quantities. For
each polygon 𝑃𝑜𝑙𝑢 from a QTO drawing containing con-
struction class label 𝐿𝑘 , its completeness is evaluated using
the overlapping segmented pixel class from the aligned or-
thographic point cloud projection as a function of the per-
cent complete of an object and its corresponding activity,
as shown in equations 1 and 2, respectively:

%𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑂𝑏 𝑗𝑚 =

𝐷𝑟𝑎𝑤𝑖𝑛𝑔𝑃𝑜𝑙𝑢 ∩ 𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑𝑃𝑜𝑙𝑢

|𝐷𝑟𝑎𝑤𝑖𝑛𝑔𝑃𝑜𝑙𝑢 ,𝐿𝑘
= 𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑𝑃𝑜𝑙𝑢 ,𝐿𝑘

(1)
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Figure 1. The proposed methodology of this work for automating progress monitoring using Images, IFC
Drawings with QTOs, and construction schedules.

%������������ = %���������� �� ∈ ����

|����,���� = ����������� ,��

(2)

Where %���������� �� is the estimated percentage
completion of a construction object, ����������� is the
IFC Drawing polygon object, and %������������ is the
estimated percentage completion of an activity ����, upon
constraining quantities to a location polygon ���� pro-
vided by the activity classification step, and extracting
locations from the IFC Drawing.

As part of the logical constraint imposed by the extracted
sequence in the second step of this method, quantities of
initial objects in such sequence are corrected to reflect
their completion imposed by constructability constraints
of subsequent dependent objects (i.e., floor slabs quan-
tities are corrected as a function of the detected ceiling
quantities), as defined in the expression of equation 3, and
the rules imposed by equation 4:

�� = �� 
�, �� 
�, �� 
� (3)

%���������� �� =

100%|%���������� �� > %���������� ��

(4)

4 Data and Experiment Settings
The experiment of this work evaluates a real-world sce-
nario in the construction of a high-rise hotel building. It

considers the utilization of an IFC drawing with computed
quantities, a construction schedule, and a set of images
encompassing five different ASTM Uniformat II classifi-
cations corresponding to floors, partition walls, windows,
ceilings, and pipe installation.

For the creation of dense reality point clouds, this work
makes use of the OpenSfM library [30] and a set of 120
images corresponding to a room area of the construction
to evaluate, as shown in Figure 2. The available IFC draw-
ings are manually scaled and annotated based on the Uni-
format II object classifications and stored as a rasterized
document, as shown in Figure 3.

Moreover, the detection of construction elements makes
use of a Swin model, pretrained with synthetically created
construction scene images, following the training strate-
gies from work presented in [31]. For visualization pur-
poses, the projected RGB values of the point cloud seman-
tics are set to differ from those from the IFC drawing.

Given the limited visibility of information when com-
paring the orthographic projection of a point cloud against
the rasterized IFC drawing, different elevations are consid-
ered to detect and measure objects properly. Specifically,
three elevation values – each at one-third (1/3) incremen-
tal of the total height – are selected to extract key ortho-
graphic projections from the point cloud to compare and
estimate detected quantities. To account for elements that
may be detected but outside of the designated point cloud
orthographic projection height slice, a sampling threshold
of one-sixth (1/6) in the vertical direction is utilized, as
shown in Figure 4.

To extract schedule sequential information, a pretrained
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Figure 2. Sample view of the point cloud reconstruc-
tion results. As made evident by using photogram-
metry in construction environments, common chal-
lenges include point cloud completion due to ho-
mogeneous surfaces and object occlusions due to
non-construction-related elements. The current re-
constructed elements in this view correspond to wall
aluminum framing, windows, gypsum board on ceil-
ings, and concrete floors.

Figure 3. An a) Issued for Construction (IFC) draw-
ing, along with b) polygon-based annotations for
computing construction object quantities (QTYs).
The scope of the experiment focuses on room areas
marked with a hash pattern.

BERT model following the work proposed in [7] is used.
A total of 1,700 construction activities are parsed and clas-
sified as a function of levels two and three of the ASTM
Uniformat II. Specifically for this experiment, the scope
of activities is focused on activities present in the room
shown in Figure 3, focusing on the scope of structural
and interior work. In addition to such classification, and
to account for the mapping between a visually detected
object and its correct activity line item, location informa-
tion is extracted following the work presented in [29] and
compared against the matched segmented point cloud seg-
ments, whose location information is extracted from the
overlapping annotated IFC drawing. Additionally, Unifor-
mat II sequences are created based on the extracted activity
relationships present in the schedule and stored as separate
recipes.

Lastly, the automatically detected progress quantities

are evaluated against ground-truth actual progress quanti-
ties, estimated from the project visual documentation and
available daily construction reports. The accuracy of the
detected progress quantities using the proposed method
is evaluated using the Mean Average Percentage Error
(MAPE) and reported against each schedule line item.

5 Result and Discussion
The following section focuses on the results pertaining to
the computation of actual quantities based on the compar-
ison between actual and planned orthographic projections,
the mapping accuracy against schedule line items via us-
ing Uniformat and Location information, and the ability to
correct detected quantities as a function of sequential in-
formation from a schedule’s Uniformat classifications and
relationships.

As evident in Figure 5, the sparsity of the mesh in a
point cloud may create inaccurate estimates of progress
values. Table 1 showcases how each detection is assigned
to the corresponding activity Uniformat code and location,
the results of comparing the estimated quantities based on
comparing a segmented mesh against the IFC drawing,
and the corrected completion estimates for each entry.

This case study shows the success of utilizing the ASTM
Uniformat II as the bridge to align schedules against de-
tected vision information. The contrast provided between
the results in Figure 5 and Table 1 shows how elements
with large pixel coverage (such as walls, floors, and ceil-
ings) contain more pixel-level information that allows for
dense point cloud reconstruction, improved feature seg-
mentation, and better heuristically-controlled calculations
due to corresponding to middle-sequence tasks, which can
make use of a predecessor and successor thresholds for
progress-based dependencies against other completed or
to-be-completed elements.

In contrast, having significant occlusions denotes how
the precision of the reality capture is less significant than
the strategies utilized for correcting or assuming com-
pleted quantities. Such a case becomes especially chal-
lenging for slender objects such as MEP components,
thus explaining the higher degrees of error in the exper-
iment. This is mainly attributed to the lower number of
pixels available for reconstructions and feature segmen-
tation. With fewer pixels, a reconstruction engine may
produce non-dense point clouds, decreasing the degree of
label projection against the point cloud. Moreover, fewer
pixels decrease the success rate of correctly classifying
pixel features against predetermined classes. Lastly, due
to MEP components being at the very last step of a se-
quence, the rule-based checking of the quantities becomes
less impactful compared to the middle steps of a sequence.

Nevertheless, occlusions are a phenomenon that would
similarly impact LiDAR-based scanning strategies. Still,
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Figure 4. Pixel-based mapped against the orthographic representation of a point cloud at three different heights,
where case a) shows the bottom projection, b) shows the middle height projection, and c) the top projection.
These projections are scaled to the mesh representation of the resulting point cloud.

Figure 5. Initial orthographic overlay between the segmented point cloud and an IFC drawing with annotated
quantities at three different heights. Different coverage is observed for each evaluated height, showcasing the
need for heuristics based on Uniformat II sequences.

Table 1. Reported quantities for each construction activity. Classification results are based on the Uniformat
Level 3, and Location information is automatically extracted from the Activity Name. Actual quantities (QTY)
correspond to the actual quantity takeoff for completed elements from the IFC drawing (ground truth), while
the Detected QTY comes from the area completeness ratio of the segmentation overlay against IFC drawings.
The Corrected QTY is determined based on the extracted sequence from the classified activities and their
relationships, and is compared against the ground truth to compute their mean average percentage error (MAPE).

Activity Name Uniformat Code Location Actual QTY Percentage Coverage (%) Detected QTY Corrected QTY MAPE (%)
5th Floor - Wall Covering C3010 Level 5 0 SQFT 0 0 0 0
5th Floor - Install Flooring C3020 Level 5 182.6 SQFT 45.8 83.6 SQFT 179.6 SQFT 1.6
N-E 5th Floor - Hang Gyp at Ceiling - NE C3030 Level 5 Zone NE 191.5 SQFT 93.8 179.6 SQFT 179.6 SQFT 6.2
5th Floor - Frame Walls C1010 Level 5 579.4 SQFT 100 579.4 SQFT 579.4 SQFT 0
Exterior Skin - Window Installation Complete - 5th Floor B2020 Level 5 1 EA 100 1 EA 1 EA 0
5th Floor - Plumbing Trim - Shower D2010 Level 5 0 LF 0 0 0 0
5th Floor - Start Final MEP Wall/Ceiling Rough-In D3050 Level 5 10.6 LF 4.6 0.5 LF 0.5 LF 95.3

using language models to extract sequential information
encoded through the ASTM Uniformat II allows for the
correction of certain construction elements that poor point
cloud reconstructions may impact.

6 Conclusion

This work presented an application of automated progress
monitoring, combining vision and language outputs only
(i.e., without the use of BIM), and a practical way for-
ward to creating automated progress monitoring appli-
cations, leveraging modern deep learning and computer
vision algorithms. The proposed method utilizes novel
transformer-based architectures such as Swin and BERT,
each trained to classify detected construction objects based

on the ASTM Uniformat II of Construction Objects from
reality capture images and construction schedules. Addi-
tionally, the proposed method introduces an approach and
heuristic to calculating the actual progress of construc-
tion. This approach is done by leveraging sequential and
location-based information extracted from classified ac-
tivity line items. Additionally, it imposes constraints on
computed quantities from comparing per-pixel construc-
tion semantics projected on orthographic point cloud rep-
resentations against IFC drawings with annotated QTOs.

The utilization of schedule-based-heuristics and se-
quential constraints addresses two types of limitations
from the utilization of photogrammetry for the detec-
tion of progress: 1) the miscalculation of percent com-
pleted due to occluded construction objects in typical
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scenes, and 2) the incomplete computed progress from
low-density reconstructions showcasing incomplete ob-
jects. This method is validated by a real-world case study,
which computes progress quantities for a high-rise ho-
tel as a function of provided reality captures, IFC draw-
ing QTOs, and construction schedules. In this study,
the detected pixel segmentations are projected against
point cloud reconstructions and compared against draw-
ing QTOs to compute actual progress. Such progress is
corrected based on the automatically extracted schedule
sequences and locations.

Given the current state of BIM standardization across
the industry, the applicability of this method in real-world
scenarios may fill the gap that low LOD in BIM mod-
els create by bringing an alternative to progress monitor-
ing based on globalized practices when working with IFC
drawings and QTOs. Future steps in this line of work will
evaluate the validity of the established heuristics for other
ASTM Construction Object categories.
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Abstract  
Due to the dynamic aspect of construction sites, 

constant implementation and removal of safety 
equipment is a required practice. This leads to 
frequent manual and time-consuming inspections to 
make sure the safety measures are in place. There is 
the potential to automate the inspection process using 
robots and Deep Learning. Such an approach can 
save time and cost while improving safety. Using 
images collected by an Autonomous Ground Vehicle, 
a Deep Learning model with Domain Adaptation 
techniques is trained to detect and segment safety 
guardrails. The results of the model indicate a 
promising method to assist in automating site safety 
inspection that can make construction sites safer. 
Further work is necessary to validate this effort under 
more realistic and harsh construction site conditions. 
 
Keywords –  

Construction safety measures, deep learning, 
domain adaptation, prevention through design and 
planning, site inspection, robot, YOLOv8. 

1. Introduction 
In the dynamic realm of construction safety, 

technological advancements are reshaping traditional 
practices. The construction industry stands out as one of 
the riskiest sectors due to the ever-changing work 
environment. Ensuring the safety of construction workers 
is a vital aspect of a construction business, leading to the 
development of comprehensive regulations and 
guidelines. These measures are designed to protect 
workers during construction activities. Given the 
demanding nature of crafting a secure construction plan, 
it remains a top priority. Consequently, substantial time 
and effort are dedicated to promoting the health and well-
being of workers, preventing fatalities, severe and minor 
injuries, and close-call incidents, also known as 
prevention through design (PtD) [1].  

An analysis of industries and their associated hazards 
in the UK [2] reveals that the private construction sector 
is the second leading sector in workplace injuries and 

fatalities. A recent report summarizing construction 
safety statistics for 2023 shows that falls make up 35% of 
fatalities in construction sites [3]. This underscores the 
significance of the focus on fall hazards and, more 
specifically, protective guardrails. 

Another critical aspect of ensuring safety in 
construction operations involves inspecting and 
pinpointing missing or subpar safety equipment, such as 
protective guardrails. Inspecting collective safety 
equipment is also a labor-intensive task, given the 
dynamic nature of construction sites. Therefore, 
inspections must occur frequently. Additionally, the 
actual installation of safety measures often deviates from 
the intended quality outlined in digital models. 

Hence, in this study we propose a preliminary stage 
of a more automated inspection that improves the current 
human-based solutions onsite. The data collection 
process is based on the work by Gopee et al. [4], which 
uses the existent BIM to generate waypoints of interest 
for the navigation of an Autonomous Ground Vehicle 
(AGV) to collect images (e.g., RGB information) as it 
traverses the designated areas. The collected data can be 
processed and used to train Deep Learning models 
designed for real-time object detection of the elements of 
interest, such as protective guardrails. In this study, a 
YOLOv8 network enhanced by a Domain Adaptation 
technique is used. The differences in construction sites 
due to factors like weather, sunlight, and location result 
in numerous scenarios for the deep learning model to 
analyze and predict outcomes. Each of these cases could 
be called a “Domain,” as the images from these cases 
could have different features for the model to identify and 
learn. Due to the lack of available data and time, the 
technique of domain adaptation has been used to achieve 
the maximum possible results in predicting the guardrails 
with less unlabeled data from any target domain. The 
presented model provides a binary classification (i.e., 
safe or unsafe) as an output for the guardrails detected. 
Evaluation metrics such as Precision, Recall and Mean 
Average Precision (mAP) are used to quantify the 
improvements in detection capabilities and choose the 
right model configuration. 

The rest of the paper is structured as follows. Section 
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2 provides a background on segmentation in the 
construction field. Section 3 presents the methodology 
used for this study. Section 4 uses a case study to 
illustrate the main elements of the methodology. Section 
5 summarizes key results from the case study and, finally, 
Section 6 includes the conclusions and future work. 

2. Background 
There have been many previous works on the usage 

of different methods and models for the detection of 
guardrails using data in the form of construction images, 
synthetic images, and point cloud data (from laser 
scanners or photogrammetry). 

Kolar et al. [5] used synthetic data for training a 
model with VGG16 as the feature extractor. The 
construction images with guardrails were used as the 
validation dataset, while augmented synthetic data was 
used for training the model. Their method had a 96.5% 
accuracy but failed in cases with low-light images of 
guardrails, which shows that the model would work 
poorly in domain change (i.e., changes in the physical 
conditions of the environment) situations. 

The lack of data available for training an effective and 
efficient Deep Learning model is challenging. The 
construction sector is widely diverse, with different types 
of visual features around the world, including different 
seasons and weather conditions. Each difference is a 
different domain of data, which presents an extra 
challenge to train Deep Learning models to work in all 
these different conditions. To overcome this, there is a 
need for a technique that could help to train a generalized 
Deep Learning model, to work in multiple domains and 
with low amounts of data by applying Transfer Learning. 
Ganin et al. [6] showed that domain adaptation could be 
used to learn Domain Invariant features, which could 
predict and segment objects across different domains 
with few or no labeled target domain data. Using the 
unlabeled target domain data in the training process is 
called “Unsupervised Domain Adaptation”. 

Li et al. [7] employed a Domain Adaptation 
Technique in combination with the YOLOv5 architecture 
[8], applying it separately to the source and target 
domains. In this approach, they used CSPDarknet-53 [9] 
as the feature extractor, which forms the backbone, neck, 
and head components of the YOLOv5 structure. In their 
study, a significant amount of source labeled data was 
used, along with small amounts of target labeled data, to 
train the YOLOv5 pipeline. Features from 3 different 
resolutions from the backbone of the source and target 
pipeline were used to calculate the transfer loss 
(Maximum Mean Loss). The transfer loss shows the 
distance between the features extracted by both the 
source and target data, which is added to the overall loss 
function as a regularization term. The drawback is that 
the sample target data that has been used for training has 
to be labeled, which is a labor-intensive task given the 

number of different domains. 
The performance of YOLOv8 on specific datasets [10] 

and its anchor-free detection technique that increases the 
model’s ability to detect objects of various shapes and 
sizes without the constraints imposed by predefined 
anchors has made it an ideal choice for our task. This 
work shows how the method of Unsupervised Domain 
Adaptation with backpropagation [6] can be used with a 
YOLOv8 [11] model to improve the detection and 
segmentation of objects with labeled source domain and 
unlabeled target domain datasets. 

3. Methodology 
The overall process used in this study is shown in 

Figure 1. It can be divided into two sections: (1) data 
collection and (2) data processing/model development. 
For the data collection, given a BIM of the environment, 
it is possible to extract a set of waypoints for an AGV to 
stop and collect data. While the AGV autonomously 
moves towards the waypoints, it can collect data with 
multiple sensors (i.e., an RGBD camera and a 360 
camera). This study focuses on data processing and 
model development. For more information about data 
collection, readers are referred to previous work by the 
authors (e.g., [12-14]). 

3.1 Data Pre-processing and Labeling 
To build a Deep Learning model, a set of training data 

needs to be used. Different labeling tools can be used for 
the collected data. 

3.1.1 Data Augmentation 

In the case when the amount of training data is not 
enough to ensure good results in the segmentation stage, 
data augmentation can be used to increase the size of the 
training dataset. Once the data has been labeled, various 
types of data augmentation are used during the training 
process, which greatly increases the chances for the 
model to explicitly learn the guardrail features. 

3.2 Build Deep Learning Model 
3.2.1 Deep Learning Network 

Deep-feedforward architectures have brought 
significant advances to state-of-the-art models across a 
wide variety of machine-learning tasks and applications. 

3.2.2 Deep Domain Adaptation 

A Deep Learning architecture trained on one to work 
for another domain with a shift in the distribution needs 
features that are common to both domains. Learning a 
label classifier in the presence of a shift between source 
and target distribution is known as domain adaptation. 
There are several methods to perform Domain 
Adaptation (DA). Here, we use DA by backpropagation.
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Yes

No

Figure 1: Main elements of the proposed methodology for data collection, processing, and model development.     
 

4. Case Study 
The proposed methodology has been tested on a 

condition with an abrupt change in elevation, 
representing conditions that could lead to fall hazards if 
proper protection was not in place during a construction 
project. The scenario used was a staircase on a university 
campus (Figure 2). A mock-up of a fall protection 
guardrail and an AGV equipped with different sensors 
were used to collect data.  

The outdoor experiment consisted of different case 
studies, considering all the possible cases that could be 
present in a real construction site. These cases consider 
the proper installation of the guardrail (with all the 
elements installed correctly), missing elements of the 
guardrail (i.e., missing mid and toe board), and the 
presence of clutter that could potentially be a trip hazard. 

  
(a) (b) 

Figure 2: (a) Overall view of the scenario used for 
the experimentation, and (b) view of the stairs 
representing the fall hazard. 

4.1 Fall Protection Guardrail Mock-up 
A wooden mock-up was built to resemble the most 

common safety guardrails typically used in construction 
sites as fall protection [15]. It was built according to the 
requirements specified by the Employer’s Liability 
Insurance Association for the Construction Industry in 
Germany (BG BAU) [16]. The mock-up consisted of a 

modular system with three vertical poles (1m height) 
with top, mid and toe boards (in total 6 horizontal boards 
of 20cm height and 1.5m width). An overview of the 
mock-up is shown in Figure 3. 

 
Figure 3: View of fall protection guardrail mock-
up developed and used for this study. 

4.2 Autonomous Ground Vehicle (AGV) 
The AGV used was a SUMMIT-XL platform by 

Robotnik Automation. The robot has holonomic 
locomotion (i.e., mecanum wheels). This allows the robot 
to move in all directions, providing a more accurate and 
reliable data collection in highly dynamic environments 
such as construction sites, where narrow passages are 
common. The AGV is shown in Figure 4, and a recording 
of the AGV collecting data can be watched in [17]. 

In terms of sensors for the data collection, the robot is 
equipped with a mid-range 3D scanner (BLK360) 
suitable for high-resolution dense point cloud acquisition, 
a long-range LiDAR (OUSTER OS1) suitable for low-
resolution point cloud acquisition used for the navigation, 
an RGB-D camera (Orbbec Astra) used to collect both 
RGB and depth information of the robot front view, and 
a 360 camera (GoPro MAX 360) aimed to collect extra 
RGB data surrounding the robot as it moves through the 
environment. Key characteristics of the different 
equipment used are summarized in Table 1. 
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Figure 4: AGV and related payload used. 

Table 1: Key specifications of the sensors used. 

Sensor Key specifications 
Leica Geosystems 
BLK360 
(Laser scanner) 

Accuracy: 6mm@10m 
Range: 60m 
Speed of capture: 360,000 pts/s 
FOV: 360ºH x 300ºV 

OUSTER OS1 
(LiDAR) 

Accuracy: 2.5cm@10m 
Range: 170m 
Speed of capture: 2,621,440 pts/s 
FOV: 360ºH x 45ºV 

Orbbec Astra 
(RGBD camera) 

Accuracy: 3mm@1m 
Range: 0.6m-8m 
Image resolution: 640x480 
@30fps 
FOV: 60°H x 49.5°V x 73°D 

GoPro MAX 
(Action camera) 

Image resolution: 4992 x 2496 x 
360º 

4.3 Conditions Evaluated 
4.3.1 Full Guardrail (Safe Condition) 

For this condition, the ideal scenario is tested. This 
means that the guardrail contains all the horizontal boards, 
fulfilling all the safety standards (Figure 5). 

  
(a) (b) 

Figure 5: (a) View of the mock-up placed on the 
stairs entrance, and (b) AGV collecting data. 

4.3.2 Missing Boards (Unsafe Condition) 

For this condition, multiple boards of the guardrail are 
missing. This reflects a potential fall hazard since the 
space between the top board and the floor is wide enough 
for a person to fall through (Figure 6). In addition, 
multiple objects (clutter) were added, presenting 

additional trip hazards that can potentially lead to a 
worker falling through the faulty installation. These 
elements also present occlusion for the Deep Learning 
detection algorithm, ensuring that the approach is tested 
under non-ideal conditions. 

  
(a) (b) 

Figure 6: (a) View of the scenario where the 
mock-up misses the mid and toe boards and has 
clutter on the floor, and (b) same condition with 
only vertical poles installed. 

4.4 Data Pre-processing and Labeling 
To train the Deep Learning model, RGB data was 

collected manually in an indoor environment with 
controlled lighting conditions (source domain). The 
training data was labeled using “Label Studio”, an open-
source data labeling tool [14]. For the specifics of a 
segmentation model, the labeled data needs to be in the 
form of masks (i.e., vertices of a polygon surrounding the 
segmented object). To further enhance the robustness and 
performance of the Deep Learning model under the 
dynamic conditions of the construction site, 
Unsupervised Deep Domain Adaptation is also used with 
indoor training images as the source domain and the 
outdoor collected images as the target domain. The target 
domain does not require any data processing or 
augmentation. 

4.4.1 Data Collection 

The data collected can be split into two categories: 
indoor and outdoor. To train the YOLOv8 network, a set 
of pictures of the fall protection guardrail taken in an 
indoor controlled environment was used. The source 
domain corresponds to the labeled training indoor data, 
and the target domain corresponds to the sample 
unlabeled data that needs to be classified. The scenarios 
were classified into safe (Figure 7 (a)) and unsafe (Figure 
7(b-d)). 

4.4.2 Source Data Collection 

A total of 56 images in the indoor setting were taken. 
The source images were split into training and validation 
images with a ratio of 3:1. The pictures were taken from 
different points of view and two sets of distances (Figure 
8) and different cases (i.e., all horizontal boards, only the 
top board, only the vertical poles, and with no guardrail) 
(Figure 7) to collect as many features as possible. 
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(a) (b) 

  
(c) (d) 

Figure 7: Source images used for training with 
guardrails: (a) full board, (b) top board and 
vertical poles, (c) poles only, and (d) none present. 

 
Figure 8: Setup for indoor data (images) collection. 

4.4.3 Target Data Collection 

The outdoor images, which correspond to the target 
domain, were collected with the AGV in different 
conditions. Examples of the collected data with the AGV 
are shown in Figure 9. 

4.4.4 Data Augmentation 

Since the amount of training data was not enough to 
train a robust object detection model, data augmentation 
was used to increase the training data tenfold. Continuous 
and random selection of various techniques of augmented 
data is used during the training of the Deep Learning 
segmentation model. The data augmentation techniques 
used in this study are summarized in Table 2. 

Table 2: Augmentation techniques used on the original 
training dataset. 

Type of augmentation Value 
Rotation [0-30] (+/- deg) 

Translation 0.1 (fraction) 
Scaling 0.5(+/- gain) 
Shear 0.5 (+/- deg) 

Flip left/right 0.5 (probability) 
Mosaic [0.1-0.9] (probability) 
Mix-up [0.1–0.9] (probability) 

 

   
(a) 

   
(b) 

   
(c) 

Figure 9: Target images: (a) Full board guardrail, 
(b) top board with and without clutter, and (c) only 
vertical poles, with and without clutter. 

4.5 Model Development (YOLOv8 Model) 
The main goal of this model is to classify images into 

safe and unsafe categories, as indicated in Section 4.3, by 
segmenting the presence (or lack of) and state (i.e., if all 
the components are present) of protection guardrails. For 
this study, we used YOLOv8 as the base model for the 
training, coupling it with other techniques, such as data 
augmentation and Unsupervised Deep Domain 
Adaptation (DA), to enhance guardrail detection in 
varying environments (i.e., indoor, outdoor, sunny, dark, 
etc.). We focus on DA using backpropagation. We use a 
feed-forward network or feature extractor to extract the 
domain invariant features and use them to train both the 
label classifier and Domain Adaptation Network. The 
label predictor uses the features to detect the guardrails 
and if it is a safe or unsafe condition. Whereas the domain 
classifier is used to predict whether the input belongs to 
the source or target domain. 

The YOLOv8 network can be built with different 
architecture configurations by modifying the amount and 
type of layers, and the different hyperparameters that 
affect the weights of the network. To properly choose the 
best architecture, several tests need to be performed to 
assess the performance of the network. The domain 
predictor uses the same features from the last layers of 
the network to predict whether the input belongs to the 
source or target domain. The domain predictor layer 
consists of the gradient reversal layer, which 
backpropagates the loss for the optimization of the 
weights of the network with a negative value. This makes 
the Domain Adaptation network and feature extractor 
(Deep Learning network backbone) oppose each other, 
making it possible to learn domain invariant features. 
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The weights of the underlying deep feature extractor 
(i.e., YOLOv8 network backbone) are optimized to 
minimize the loss of the label classifier and to maximize 
the loss of the domain classifier. The latter encourages 
domain-invariant features to emerge while training or 
optimization. The three different networks (namely the 
feature extractor, label predictor and domain classifier) 
can be embedded into a single deep feed-forward 
network using standard layers and loss functions and can 
be trained using standard backpropagation algorithm [6]. 
The crucial layer of this architecture for the task of 
domain adaptation is the gradient reversal layer, which 
leaves the input unchanged during forward propagation 
and reverses the gradient by multiplying it by a negative 
scalar (-1 × lambda) during backpropagation. 

To achieve the best possible results, different 
characteristics of the YOLOv8 model architecture, target 
data, and changes in hyperparameters, such as lambda in 
the Gradient Reversal layer, needed to be fine-tuned.  

A summary of the different tested models and their 
corresponding results can be seen in Table 3 and Figure 
10, respectively. The results include metrics: Precision, 
Recall, and Mean Average Precision (mAP) for the 
segmented guardrails in the images. These metrics show 
how well the model identifies the different configurations 
of guardrail elements in the images. 

As seen in Figure 10, the results from training the 
YOLOv8 only with the source images with and without 
augmentation (Model#1 and Model #2) are not good on 
the validation Target data. The training “Model #3” with 
only 1 layer Domain Adaptation Layer (P5) performs 
poorer than the previous training as it was given only 
very few variations in Target data for training. The 
training of “Model #4” (same as “Model #3” but with 
more variation in target data for training) performs much 
better than “Model #3”. This shows that even though the 
Target data are fed into training without the ground truth 
labels, the model can learn more Target domain features 
with the Domain Adaptation Network. The best model 
training was achieved with “Model 5,” built with 3-
Layers of DAN with features from P3, P4, P5 and more 
variation in the Target Training Data. “Model #6” is the 
same as “Model #5” except for the value of lambda for 
the Gradient reversal layer. “Model #5” was trained with 
lambda 1, and “Model #6” was trained with lambda 5, 
which has obtained slightly poor results. This shows that 
“Model #6” with lambda 5 punishes the rest of the model 
more to predict the correct domain class during 
backpropagation and yields worst results on label 
prediction. Hence, a better value of lambda for this 
training is 1, as it punishes the model the right amount 
during training. 

Table 3: Training Model description and parameters. 

Model Details 

#1 Training only source images without Data 
Augmentation 

#2 Training only source images with Data 
Augmentation 

#3 Training with source images and fewer target 
images and only the P5 DAN layer 

#4 Training with source images and more target 
images and only the P5 DAN layer 

#5 
Training with source images and more target 

images and P3, P4, P5 DAN layers and 
lambda=1 

#6 
Training with source images and more target 

images and P3, P4, P5 DAN layers and 
lambda=5 

 
Figure 10: Results for different metrics of each 
model. 

The selected YOLOv8-m architecture is configured 
with varying channel sizes for the P3, P4, and P5 layers, 
specifically 192, 384, and 576 channels, respectively. 
This configuration is dependent on the type of YOLOv8 
variant used, which includes n, s, m, l, x models. In this 
architecture, the extracted features from the training 
phase are employed by the up-sampling process in the 
YOLOv8 head. This up-sampling is crucial for 
reconstructing the image back to its original size, and it 
is particularly instrumental in the segmentation tasks, 
where maintaining image resolution and detail is 
essential. The overall network structure, with the 
YOLOv8 classifier network and the Domain Adaptation, 
can be seen in Figure 11. 
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Figure 11: YOLOv8 with domain adaptation network for selected model (Model #5). 

5. Results 

5.1 Classification Results 
The results show that Model #5, with a 3-layer 

Domain Adaptation Network, has achieved the highest 
accuracy on the validation target data. The values for 
the evaluation metrics for Model #5 are summarized in 
Table 4, and representative results to classify the target 
images are shown in Figure 12. 

Table 4. Evaluation metrics for Model #5. 

Precision Recall mAP50 mAP50-95 
0.947 0.868 0.909 0.818 

 
Figure 12: Validation results of Model #5. 

The Confusion matrix (Figure 13) shows that 
Model #5 performs well in identifying the ‘Unsafe’ 
class with a high number of true positives (14). This 
indicates that the model is effective at detecting 
‘Unsafe’ scenarios. There are no instances where ‘Safe’ 
is confused with ‘Unsafe’ or vice versa, which is 
positive as it suggests that the model can distinguish 
between these two classes effectively. 

Overall, it can be said that the model has a high 
precision for the ‘Unsafe’ class since there is only one 
false positive; however, its recall is affected by the five 
false negatives. The presence of false negatives for 
‘Unsafe’ (5 instances misclassified as ‘Background’) 

suggests that there may be room for improvement in 
distinguishing between ‘Unsafe’ and ‘Background’. 
This could be attributed to the debris occluding the 
view, dark shadows, or being far from the camera, 
which is acceptable as the model has not been trained 
enough for such harsh cases. This could be improved 
in the future by training with more diverse and harsher 
data so the model learns more features. 

 
Figure 13: Confusion matrix of Model #5. 

5.2 Failed cases 
The guardrail detection by the best model is not 

always accurate. The failed cases, as shown in Figure 
14, either have some debris lying in front of the 
guardrails, the guardrails are at a far distance, or the 
guardrails are too close and partially captured in the 
images. These are reasonable failed cases since the 
training data had no such cases and was not the 
objective of this work. The guardrails prediction with 
the AGV was designated to work with the guardrails 
being at a reasonable distance (i.e., from 2 meters to 4 
meters) as can be seen in Figure 8, showing the setup 
for indoor data collection. Therefore, the failed cases 
in the target images with guardrails at distances less 
than 2 meters or more than 4 meters are understandable. 
In addition, the training data did not contain guardrails 
with debris lying in front of them. In future work, we 
will solve these shortcomings with more data, 
capturing all these situations and using depth 
information to overcome these. 
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Figure 14: Failed predictions by Model #5. 

6. Conclusion and Future Work 
From this work, we have achieved detection and 

segmentation of guardrails with YOLOv8 trained on 
source domain (i.e., indoor training data) and predicted 
on target domain (i.e., outdoor collected data) using 
Domain Adaptation with Backpropagation. This 
indicates that the model, needing fewer target domain 
images, can be used for guardrail detection across 
different domains without having to label the ground 
truth for each one of the images. 

The model had some limitations that could be 
overcome by using images from failed cases in the 
target data during training, allowing the model to learn 
extra features. The significance of the unlabeled target 
training data is crucial, as it determines the 
performance of the model prediction on the target 
domain. The same method, along with transfer 
learning, can be effectively used to retrain the model 
repeatedly onto different domains with less unlabeled 
training data. This can save a significant amount of 
time while not sacrificing performance. 

Some challenges faced by a vision-based approach 
can be overcome by adapting the same techniques to 
RGB-D images or by using point cloud data. The use 
of depth information might lead to better results. 
Another future aspect of this work lies in the real-time 
use of safety information to deploy predictive models 
in an online Digital Twin. Further work can also target 
alternative data collection and inspection methods, for 
example, unmanned aerial vehicles [18] for tailored 
human-assisted safety management software [19]. 
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Abstract –  

The rule requirements of a building code are 
frequently violated to create financially viable designs. 
These deviations are subjected to condonation by the 
municipal commissioner if recognizable hardships 
are faced. The historical concession applications for 
similar cases are stored in an unstructured manner, 
creating a barrier to knowledge transfer. The 
subjective statements given by applicants are 
composed of logical structure, language, and 
embedded knowledge that requires years of 
experience from the domain expert to decipher. A 
knowledge graph (KG) representation of the problem 
can capture concepts and represent them visually, 
which is easy for novice stakeholders to understand. 
A Large Language Model (LLM)-based method is 
used in this study for ontology extraction in the form 
of concepts and relationships. Also, unstructured 
input preprocessing and entity disambiguation were 
performed to evaluate the applicability of KG in this 
domain. The performance of the proposed method 
was checked qualitatively in a case study from real-
life project examples. The limitations and scopes for 
improvements were also highlighted. The outcome of 
this study indicates KG as a potential candidate for 
knowledge generation from the unstructured archival 
data of compliance checking. The target audience for 
this application can be the new architects, reviewers, 
and programmers working on developing the end-to-
end automated compliance checking systems. Finally, 
applying these Artificial Intelligence (AI)-based 
knowledge transfer mechanisms can ignite future 
research on automated concession applications and 
approvals, laying a path to the digital transformation 
of the industry. 

 
Keywords – 

Code Compliance Checking; Knowledge Graphs; 
Artificial Intelligence 

 

1 Introduction 
The construction industry behaves in a fragmented 

manner where information is not transferred across a 
building lifecycle, projects, and stakeholders. The siloed 
data stored prohibits knowledge transfer even among 
stakeholders from similar domains. Post-design 
coordination code compliance checking emerges as an 
essential step for design information transfer. 
Communication happens between the liaison architects 
and the developers with government-authorized 
personnel at the local urban bodies (ULB). According to 
the literature, automated code compliance systems 
comprise four steps, i.e., rule interpretation, input model 
preparation, rule execution, and checking [1]. With the 
advent of Building Information Modeling (BIM), several 
commercial and academic research studies have been 
performed to verify design information at the 
compliance-checking stage [2]. However, the rule-based 
compliance checking process is not the end of the 
complete permit checking process.  

After rule checking, the architects apply to the 
municipal commissioner (MC) to condone several rules 
that were violated during the design stage. The hardships 
faced are stated in the form of subjective statements, 
cross-referencing intertwined concepts. In the Indian 
context, these problems are detailed in an unstructured 
manner through natural human languages. Furthermore, 
the logical reasoning given for achieving a concession in 
one of the violations can vary across projects. The new 
architects applying for new concessions or new reviewers 
looking at applications are deprived of such enriched data 
captured in a longitudinal timeframe. Even with the 
availability of the documents, it seems humanly 
impossible to summarize the tacit knowledge behind 
these submissions from thousands of documents. Thus, 
even with the focus on translating code clauses to 
machine-readable formats, the other half of the 
compliance checking process lacks the knowledge 
transfer aspect. Also, during knowledge transfer, an 
individual actor's own understanding can influence the 
successor's method of analyzing a present situation, thus 
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reinforcing the requirement of an artificially developed 
knowledge base. 

The system has to capture the unwritten implicit 
assumptions and complex causal relationships to capture 
the knowledge from documents prepared by the domain 
experts [3]. A graph-based framework was proposed in 
this study to facilitate the knowledge transfer process for 
compliance checking. The paper applies a Machine 
Learning (ML)-based graph generation technique to 
evaluate the applicability of knowledge graphs. Reports 
were gathered from real-life projects from the municipal 
corporation of Mumbai, India. Further, the knowledge 
graph's limitations and potential application areas in the 
automated code compliance checking domain are also 
discussed.  

2 Literature Review 
The literature review is divided into two sub-sections 

where the knowledge graph (KG) development and its 
working principle are initially discussed. The following 
section highlights KG's state-of-the-art applications in 
the construction industry. 

2.1 Knowledge Graphs 
Knowledge extraction methods were first developed 

to address the data available across the web in the forms 
of text or HTML. These human-created data are not in 
the form of machine-readable language, leading to the 
requirement of a system that can extract information from 
text. This action of extracting insights and inference from 
the information is knowledge extraction [4]. The steps for 
the method involve named entity and relationship 
recognition, entity disambiguation, and relation linking. 
These methods of knowledge extraction form syntactical 
relations but lack contextual relations within the 
knowledge graphs [5]. Knowledge graphs are used to 
overcome the limitation of contextual relationships 
among the entities. KG are representations of 
unstructured data in the form of graphs. It consists of 
nodes that store the entities, which are interconnected by 
embedded links, i.e., relationships. Google was the first 
to introduce its knowledge cloud in 2012, which 
converted literals to knowledge [6]. Subsequently, 
several knowledge graphs were developed, such as 
Wordnet for Natural Language Processing (NLP), 
YAGO, and DBnet trained over data from Wikipedia. 
Dbnet model stored data in the form of a Resource 
Description Framework (RDF) containing subject, 
predicate, and object triplets [7]. 

KGs created from unstructured data were indicated to 
have three components, i.e., ontology extraction, entity 
extraction, and relation extraction. Further, it was 
highlighted that relations are not created initially, as 
manual tagging is required for further training on the 

extractor network, essentially making it a supervised 
approach [8]. As KGs have different data formats, several 
methods are proposed for embeddings, such as - rule-
based [5], semantic-based cross-lingual [9], and more. 
This idea can also be extended to different input formats 
like text, images, and videos. Further, text and image 
KGs were combined for visual queries, and text-based 
embeddings on image data were illustrated, enhancing 
the visual understanding of the objects by describing 
them [10], [11]. 

A few limitations of knowledge graphs include their 
inability to find the semantic relations with less accuracy 
and the incapability to explain the relationships. Hence, 
several applications, such as financial investments, 
cannot be run based on it. Another limitation is the data's 
sparsity, especially when working with domain-specific 
knowledge graphs. As KG are static in nature, but the 
links or relationships may change over time, the 
temporality of data also adds to its inadequacy list [12]. 

2.2 KGs in the Construction Industry 
In construction, data is maintained in a siloed manner. 

Due to this, there is a lack of integration among the data, 
and engineers lack insights into the decision-making 
process. KG provides a knowledge management 
framework that holistically stores the information [13]. 
KG has various applications in the construction industry. 
In the case of pavement engineering, maintaining the data 
related to pavement materials, quality tests during the 
pavement construction, monitoring data, and updating it 
in the maintenance phase were identified to be difficult 
[14]. KG provides the platform to holistically store data 
in graph formats, with semantic enrichment, which helps 
project managers make data-driven decisions. A similar 
use case of the KG graph is explored in Bridge 
maintenance, where an ontology-based framework for 
knowledge creation and KG for knowledge storage is 
used [15]. It also helps in the project management for 
interoperability in the project teams and document 
management. A KG model was used with semantic web 
technologies to highlight the impact of changing design 
decisions [16]. 

KGs can also be used to build domain-specific 
knowledge graphs to analyze construction safety reports 
[17]. KGs were also used to automate the process of 
checking the fire safety drawings in combination with 
BIM. KGs were able to extract the specific information 
from the clause and match it with the information from 
the BIM document for the review process [18]. In the 
digitization of built assets, i.e., digital twins, various 
information comes in from BIM, IoT sensors, and legal 
documents [19]. In this scenario, KGs emerge as a 
valuable tool for project information management. It is 
based on the ifcOWL-based ontology, providing more 
openness to the project data [20]. 
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On the other hand, Modular construction, a widely 
applied technique in the construction of high-rise 
buildings, requires a high number of customizations, 
leading to difficulties in managing the work packages. 
Researchers use KG to manage the data for the extraction 
of work packages. It maps products to tasks based on 
granularity and tasks to work packages; subsequently, 
relationships are learned using the ML models [21]. 

Knowledge extraction from the video has also been 
targeted through KG. Computer Vision extracts the 
entities from the video input, subsequently updating the 
KG [22]. Similarly, the problem of extracting knowledge 
from images is also attempted with the ontology of 
humans, actions, and objects, and the relationships are 
extracted using ML and deep learning (DL) techniques 
[23]. Object detection techniques were also used at the 
construction site to capture the construction progress and 
derive insights based on the KG created from highly 
structured data [24]. 

KG has been applied to the Industry Foundation Class 
(IFC) graph structure to extract data from BIM models 
and transfer the knowledge across projects [25]. The 
BIM-based variants from KGs were retrieved through 
case-based reasoning and pattern matching for early-
stage designs to aid the architects [26], [27]. The BIM 
KGs were able to suggest alternative design decisions 
depending on local code restrictions, the similarity of 
design requirements, and cost-effectiveness [28], [29]. 
The interoperability among the different BIM authoring 
tools was also addressed through semantically enriched 
BIM knowledge graphs produced over the backbone of 
the IFC graph structure [30]. 

KGs were recommended for knowledge transfer from 
subject matter experts to programmers in the compliance 
checking domain. Researchers also proposed KG quality 
assessment parameters to generalize the KG application 
beyond the variations of building codes [31]. Conversely, 
in the case of unstructured archival data, the variation 
exists due to the different ways in which the user speaks. 
According to research, PDF documents hold the lowest 
rank in the 5-star linked data matrix [32]. Despite the 
drawbacks of a significant amount of archival data being 
PDF documents, it cannot be denied that knowledge 
graphs can be widely applied. The KGs can solve the 
complex problems of siloed data due to their adaptability 
in updating the knowledge and cognitive ability to get the 
semantic links. 

3 Application of KGs over Unstructured 
Data Used for Compliance Checking 

The Architecture, Engineering, and Construction 
(AEC) industry has a plethora of data stored in different 
formats across projects. The complexity of information 
increases as the project traverses through the planning to 

execution phases. A necessary process playing a pivotal 
role in this information transfer process is the code 
compliance check. In the Indian ULBs, the checking 
process is done through AUTODCR [33], which is an 
automated rule-checking engine for 2D CAD drawings. 
The information exchanged and reports generated are 
stored in PDF format, which loses applicability and 
automatability, thus restricting the transfer of knowledge 
generated across projects. Applying knowledge graphs to 
these data helps understand the hidden concepts in these 
documents and identifies the crucial concepts that need 
to be stored as a structured database for future use. Where 
the ULBs hold a large amount of unstructured data, KGs 
can be a starting point for discovering the paths to move 
forward. 

3.1 Subjective Inputs for Concession Reports 
According to the local code "Development Control 

and Promotional Regulations" (DCPR 2034) for the 
Greater Mumbai municipal region of India, architects can 
apply for a concession to the Municipal Commissioner 
(MC), even after failing to meet the code requirements. 
The allowable concessions document lists 35 special 
cases where the MC can provide leeway to the design 
deviations from the DCPR 2034 code. However, 
according to clause 6[b] of DCPR – "In specific cases 
where a clearly demonstrable hardship is caused, the 
Commissioner may, for reasons to be recorded in writing, 
by special permission permit any of the dimensions 
prescribed by these Regulations to be modified, …, 
provided that the relaxation will not affect the health, 
safety, fire safety, structural safety, and public safety of 
the inhabitants of the building and the neighborhood."  

The above requirements demanded by the regulation 
force the architects to demonstrate the hardship faced 
through writing. The logical reasonings provided under 
health, fire, structural, public, and neighborhood safety 
are thus expressed in natural languages through 
paragraphs explaining the necessity of concessions to 
make the project feasible. Depending on the arguments 
provided in the report, a group of concessions can be 
approved or rejected for that specific project. Rejection 
leads to a wastage of time for both designing firms and 
the ULBs in the form of reworks. Further, the knowledge 
gathered across these projects is stored as unstructured 
documents, making it impossible for designers to refer to 
the archival records for future reference.  

3.2 Methodology 
The unstructured PDF documents obtained from the 

ULBs of historical projects are used as input documents. 
These documents are assumed to consist of concepts or 
ideas that drive the acceptance or rejection of a 
concession by the MC. The methodology used aims to 
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extract these concepts and their intertwining relationships.
This combination of complex concepts might have been 
challenging to inculcate for the users across multiple 
projects.

The first step in the process is to preprocess the 
archival data. The concession pleadings are sometimes
presented in the form of paragraphs or nested tables. The 
headers of these tables also vary across projects, making 
the automation process challenging to generalize. Once 
the tables and nested tables are converted into paragraphs, 
the document is distributed in chunks for each concession 
type to maintain its inherent contextual proximity.
Contextual proximity is the indicator of concepts 
originating from the same concession type.

The generated chuck length is ensured to be within 
the capability limits of the Large Language Model (LLM) 
to be used. In the LLM model, it is prompted to generate 
concept and relationship pairs for each chunk. The 
prompt is engineered to instruct the LLM to extract 
ontology between key concepts. These key terms may 
include object, location, roles of person, entity, acronyms, 
documents, or conditions. However, the names of 
persons, units of measurement, and acronyms are to be 
excluded.

Further, it was clarified that the concepts can also 
have one-to-many relationships. The final output was a 
JSON object with 'node1', 'node2', and 'edge' parameters.
The concept nodes generated are further refined for entity 
disambiguation. In this study, the concepts were 
clustered manually. However, this step can also use NLPs, 
a second pass over LLMs, or graph-based models. In the 
next step, the contextual proximities and communities are 
created depending on the relationships' degree of 
centrality and edge weights through the Girvan-Newman 
method. Finally, the knowledge graph is generated from 
the acquired data. The methodology is also depicted in 
'Figure 1'.

Figure 1. Methodology for developing knowledge 
graphs from unstructured data

4 Case Study
On submission of designs for pre-construction 

permits to the ULBs, first rule-based checks on the 
designs are performed. However, in congested metro 
cities, many deviations are allowed depending on the 
planning constraints faced. These concessions are 
approved through the discretionary power of the MC by 
reading and understanding the hardships encountered by 
the architects. PDF reports containing arguments and 
decisions for these subjecting judgments are stored as 
archival data in the municipality.

The input data for knowledge graph generation were 
collected from real-life projects from the Municipal 
Corporation of Greater Mumbai (MCGM), a ULB from 
the state of Maharashtra, India. The inputs were 
concession reports submitted by architects to the 
Assistant Engineer (AE) of  MCGM. Hence, the critical 
comments from AE were also considered in the analysis. 
The archival data consisted of submissions that were 
approved for a set of concessions. Therefore, the entities 
generated from these reports can be considered as 
concepts leading to successful condonation.

The LLM used for this study was a quantized open-
source model that can be run on a local machine. An 
open-source model was preferred over a proprietary
'GPT-4' model for trial and error runs. These large 
models can be used once the basic nodes and 
relationships are saturated and prompt engineering is 
finalized. The LLMs used are Mistral-instruct-7b and 
Zephyr-7b models, where Zephyr generated more 
profound meaningful entities and relationship triplets 
than Mistral for this study. Hence, the results discussed 
in this paper will be output from the Zephyr model.

'Figure 2' depicts KGs generated from the full 
concession report for two projects with contextual 
proximities. Meanwhile, 'Figure 3' depicts KGs 
generated for a single concession case, 'Open Space 
Deficiency' (OSD). As this graph is based on the 
conceptual arguments for the condonation of a single 
concession, contextual proximities are not generated. The 
final KG' Figure 4' is an amalgamation of concepts 
generated across ten projects for the OSD concession. 
The outputs from this graph are further analyzed in the 
next section.

5 Discussion
The KGs generated from complete reports carry a 

higher number of relational connections due to 
contextual proximities. Contextual proximity helps 
identify the clusters of concepts employed for a specific 
type of concession. This graph also highlights the 
potential connections between different clusters. 
Concession reports are legal documents, so it is a 
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widespread practice to use cross-references to DCPR 
clauses and previous concession numbers. A central 
node's high density of sub-nodes also emphasizes the 
concession type's criticality. Different node clusters and 
connection patterns can be visualized in 'Figure 2', which 
points out the variability of the concession reports as an 
input document for automated code compliance. This 
finding indicates the complexity of new users /architects 
going across multiple project types and gathering the 
logical reasoning required to receive a condonation from 
the municipal commissioner for any violation in design.

Figure 2. Knowledge Graphs with contextual 
proximities from two different concession reports

Figure 3. KGs without contextual proximities for 
OSD Concession for two different projects

Figure 4. KG for OSD across ten different projects 

A specific concession of OSD was considered to 
identify and analyze the relationship between conceptual 
entities in detail. In a metropolitan city like Mumbai, with 
a population density of 73,000 people per square mile, 
the OSD application was found to be one of the most 
common concessions across projects. MCGM follows 
strict guidelines to prohibit the congested development of 
high-rises. However, after adding allowable fungible
floor space index (FSI) and incentive FSI (according to 
clauses 31(3) and 33(7)) over the basic FSI, the architects 
are not able to reach the maximum permissible FSI of the 
building considering the required setback distances. 
Therefore, the margin requirements are frequently not 
fulfilled by the design. The OSD application consists of 
explanations from the architects stating that the margin 
violation in the required open space will not violate the 
fire, health, and safety requirements of the inhabitants 
and the neighborhood. This explanation can vary 
between projects with a few critical common concepts. 
The KGs depicted in 'Figure 3' tries to tie these concepts 
together.

The concepts extracted in part (b) of 'Figure 3'
highlight rehabilitation of non-resident tenements, chief 
fire officer (CFO) requirements, odd plot shapes, 
placement of refuge area, and consumption of full 
permissible FSI as significant challenges. The liaison 
architects also ensured the use of Indian standards for the 
seismic resistivity of the building alongside the 
supervision of a registered structural engineer and site 
supervisor. In the case of project (a), similar hardship 
concepts were found in a different relationship pattern. 
The graph generated in project (b) seemed to enlist more 
concepts than in project (a). However, project (b) seemed
to lack connections between the concept nuclei. Due to 
the variation in the way the architects express, the LLMs 
failed to create a generalized concept-relationship 
ontology. OSD concession arguments across ten projects 
were concatenated to generate a master concept graph, as 
shown in 'Figure 4', to tackle this challenge.
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The KG generated for ten projects confronted 
challenges regarding concept name ambiguity. For 
example, different projects used different acronyms to 
mention the requirement of a no objection certificate 
(NOC) from the CFO. Hence, entity resolution became 
crucial for generating the merged concept graph. The 
likes of entities such as 'cfo', 'c.f.o', 'c.f.o.', 'cfo NOC', 
'NOC from cfo', and 'chief fire officer' were clustered 
under a single entity, 'CFO'. Post entity resolution, the 
KG developed a complex relationship among different 
concepts imitating the tacit knowledge, similar to liaison 
architects. A combination of concepts in the graph can 
generate an argument to receive condonation of the 
required OSD successfully. This graph can help 
architects decide where their design stands in the form of 
possibilities for concession application.

Figure 5. Interaction between concepts leading to 
hardship in achieving code requirements

The yellow box from 'Figure 4' is zoomed into 'Figure 
5' for better visibility. In part (a) of the diagram, an 
impact of the redevelopment project, whose financial 
viability is driven by the consumption of fungible 
compensatory FSI and transferrable development rights 
(TDR), is found. Furthermore, the interaction between 

redevelopment projects and public safety was also found.
The architects also emphasized planning constraints due 
to the requirement of clear open spaces and the 
requirement of existing rehabilitation tenants. Concepts 
like aesthetic beauty for the environment were an 
exciting finding, as such hidden concepts might be 
missed by the human mind while reading reports in the 
form of PDF documents. In the (b) part, the hardship 
driven by the plot can be found. On further analysis, the 
clearance required for existing roads, odd plot shapes, 
and narrow plot sizes can be identified as the driving 
factors.

Figure 6. Impact of roles of government personnel 
in concession acceptance

From the blue box in Figure 4, we derive Figure 6, 
which shows the role of the CFO in concession approval. 
With the CFO's NOC, the deficit open space can be 
condoned, which violates the DCPR 2034 requirements.
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Further, it highlights the CFO's decision to influence the 
completion and building of occupation certifications. 
Fire safety was also linked with Regulation 47, which 
indicates the number of fire protection clauses. Thus, the 
KG performs as a perfect amalgamation for interaction 
between concepts, government personnel roles, and code 
requirements.

A similar identification is found in the green box, 
which is enhanced in 'Figure 7', where the discretionary 
power of the municipal commissioner and chief engineer 
is detected. The KG also highlights historical data, such 
as the maximum joint deficiency approved without 
charging a premium. The joint deficiency applies to 
designs with more than one building/wing on a plot, 
which is correctly connected to neighborhood deficiency, 
where buildings already exist on the plot.

Figure 7. Edge feature and identification of hidden 
information

A few limitations of the LLM-based entity generation 
can be identified in 'Figure 8' and 'Figure 9'. In Figure 8, 
the height restrictions by the civil aviation department 
near the airport area are correctly identified. However, 
another entity identified as connected with the height 
node only summarizes building height, which was also 
influenced by the Airport Authority of India (AAI) 
regulations. Even though both these height restrictions 
indicate the same relationship, the non-standardized way 
of representing data influenced erroneous concept 
generation. On the other hand, the entities generated in 
'Figure 9' are disconnected from central KG. However, as 
the concepts identified are highly case-specific, they can 
get subdued when a large number of project entities are 
merged, as found in the red box in 'Figure 4'.

6 Conclusion
Deviations and subjective judgments to design 

hardships in a densely populated metro city are integral 
to the compliance verification process. The project 
characteristics leading to successful concession of 
deviations are often stored as unstructured reports in the 
ULBs. A method of knowledge transfer for these post-
rule-check concession applications is discussed in this 

paper. Facilitated by the concept graphs, meaningful tacit 
knowledge was expressed by combining entities and their 
relationships. The final graph represented complex 
relationships among concepts, all of which might not be 
manually extractable without years of domain knowledge. 
Thus, it can be concluded that, with directed prompt 
engineering, quantized LLMs can perform noticeably 
well in generating the node and edge triplets from 
unstructured data. However, the output suffers from 
entity disambiguation due to a lack of standardization 
among report formats and a natural way of expressing 
arguments. Language models with a significantly higher 
number of parameters, such as GPT-4, can be used to 
resolve erroneous results. 

Figure 8. Erroneous entity generation by LLM

Figure 9. Highly contextualized concepts in KG

The concept graphs generated with the concatenation 
of knowledge gathered across projects develop a master 
database. These KGs can be used by new architects, 
reviewers, or programmers who are likely to develop 
automated concession application systems in the near 
future. These systems can gather data for concept nodes 
identified in the KG from enriched BIM models and 
predict the acceptability of concession, given the design 
specifications through ML models. On the other hand, 
future research can also explore the possibility of 
generating enriched XML files from KG that can address 
complex relationships through multiple paths to improve 
machine readability. Further, the complex reasoning 
capabilities of KGs can be used across the construction 
project lifecycle, such as construction progress 
monitoring and constraint checking. Thus, applying AI-
based knowledge transfer mechanisms will only solidify 
the path for structured data acquisition protocols, leading 
to the industry's highly required automated compliance 
checking system.
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Abstract  
Physics-based simulations play a crucial role in 

the design and development of autonomous 
construction equipment. Currently, a key challenge in 
these simulations is the time-intensive task of 
preparing construction equipment models that 
accurately represent both the equipment's geometry 
and physics. Manual model creation for simulations 
becomes particularly laborious due to the integration 
of diverse mechanical data such as materials, joints, 
and drives with the geometric data. Extant methods 
for automatic physics-based modeling of standard 
modular robots are inadequate for addressing the 
complexities of construction equipment. Therefore, 
this paper investigates the feasibility of automating 
and streamlining the physics-based modeling process 
by fusing the construction equipment’s mechanical 
data into its 3D computer-aided design (CAD) model. 
The proposed method involves converting the 
construction equipment 3D CAD model into a 
universal scene description (USD) model for efficient 
data fusion. Subsequently, the method automatically 
configures material parameters, collision meshes, 
establishes component relations, and incorporates 
joints and drives for the USD model. To validate the 
efficacy of this approach, the proposed method is 
applied to create a physics-based model of a 
Caterpillar 390F LME excavator, and simulated in a 
scalable robotic simulator (NVIDIA Isaac Sim). The 
findings demonstrate that the proposed method 
significantly reduces the time required for physics-
based modeling compared to traditional manual 
methods.  
 
Keywords – 

Construction equipment modeling, Data fusion, 
Physics-based simulation  

1 Introduction  
Physics-based simulations play a pivotal role in 

facilitating the design and advancement of autonomous 
construction equipment such as automated excavators 
and trucks [1]. These simulations have provided an 
accelerated and safe approach to train, validate, and test 
the control algorithms and prototype designs of 
autonomous construction equipment before real-world 
implementation [1,2]. Moreover, in the quest to leverage 
deep learning for developing AI-enabled autonomous 
construction equipment, physics-based simulations can 
generate a wealth of annotated training data in a short 
amount of time [3]. This is particularly valuable in 
situations where data is difficult to obtain in the real 
world. In addition, physics-based simulations are 
increasingly employed by researchers to apply and refine 
reinforcement learning algorithms, thereby enhancing 
the operational intelligence of autonomous construction 
equipment [4,5]. 

Despite the advantages, a key challenge in utilizing 
physics-based simulations is the preparation and 
generation of construction equipment models that can 
accurately represent equipment geometry and physics. 
Inaccurate models can result in a sim-to-real gap, where 
algorithms and designs proven in simulations fail when 
applied in the real world [6]. Although simulation 
platforms such as Unity, Gazebo, and Isaac Sim offer 
environments to build these models, the physics-based 
modeling process is still time-consuming and requires 
modeling expertise [1,7]. This is because complex data 
required for the simulation, such as construction 
equipment materials, joints, drives, etc. need to be 
integrated during the modeling process, which requires a 
lot of manual work [2].  

Some studies have proposed the use of automatic 
physics-based modeling methods to reduce the manual 
effort in the context of modular robots. Modular robots 
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are systems composed of standardized modules, which 
can be combined in various ways to adapt to different 
tasks or environments [8]. Jace et. al [9] presented an 
automatic approach to model the robot kinematics and 
dynamics for modular robots, given only the module data 
and their arrangements. Maddalena et. al [7] proposed an 
algorithm that takes as input the Unified Robotics 
Description Format (URDF) files of the single modules 
with their desired arrangement and provides the final 
URDF of the assembled robot as a result. However, these 
methods still require manual configuration of modeling 
data such as materials and joints for each module. This is 
not a burden for modeling modular robots because only a 
few modules need to be configured and they can be 
reused for robot modeling. However, these methods are 
not effective in reducing the workload of physics-based 
modeling of construction equipment as they are far more 
complex and varied than standard modular robots.   

This paper introduces an automated physics-based 
modeling method through data fusion to streamline the 
process of creating equipment models for physics-based 
simulation. Inputs to this method include a construction 
equipment 3D CAD model along with required data for 
physics-based modeling, including materials, collision 
meshes, component relationships, joints, and drives. 
Initially, the 3D CAD model of construction equipment 
is converted into a universal scene description (USD) 
using Isaac Sim to facilitate data fusion. Then, our 
method automatically fuses the required data for 
simulation into the USD model. To demonstrate the 
effectiveness of our method, we created models of an 
excavator (Caterpillar 390F LME) using both the 
proposed method and the manual modeling method. Then 
we compared the time required by these two methods to 
complete the modeling. The results show that our method 
can greatly improve the modeling efficiency, and thereby 
can help promote the application of physics-based 
simulation in the development of autonomous 
construction equipment. 

2 Literature Review  

2.1 Physics-based Modeling and Simulation 
Platforms 

The evolution of simulation platforms such as Unity, 
Unreal Engine, Gazebo, Isaac Sim, and Webots has 
significantly impacted the field of robotics. These 
platforms offer diverse functionalities and environments 
for robot modeling, each with unique characteristics that 
distinguish them from one another [10]. 

Unity, primarily known for its widespread use in 
game development, has emerged as a versatile platform 
for robot simulation. Its user-friendly interface and robust 
physics engine make it an attractive choice for simulating 

complex robotic systems [11]. Unity's real-time 3D 
development capabilities enable the creation of detailed 
and dynamic environments, which are essential for 
testing the interaction of robots with their surroundings. 
The platform supports a wide range of robot models, 
from simple wheeled robots to more complex humanoid 
robots, allowing for extensive experimentation and 
research in robotics [10]. 

Unreal Engine stands out for its high-fidelity graphics 
and realistic simulation environments [12]. This platform 
is particularly favored for applications requiring 
photorealistic rendering, such as autonomous vehicle 
testing [13]. Unreal Engine's advanced lighting and 
shading capabilities contribute to creating highly 
immersive simulation scenarios. It is adept at simulating 
sophisticated robot models, including drones and 
autonomous vehicles, providing a realistic platform for 
testing sensors and navigation algorithms [14]. 

Gazebo, an open-source simulation platform, is 
renowned for its strong community support and extensive 
library of robot models and environments [15]. Its ability 
to simulate both indoor and outdoor environments with 
various physics engines makes it a versatile tool for 
robotics research. Gazebo is particularly popular for 
simulating multi-robot systems, such as swarm robots, 
and has been instrumental in numerous robotics 
competitions and research projects [16]. 

Webots is a user-friendly, cross-platform simulation 
software widely used in education and research. Its ease 
of use and comprehensive documentation make it 
accessible to both beginners and experienced users [17]. 
Webots support a broad range of robot models, from 
simple mobile robots to more advanced humanoid robots, 
making it versatile tool for various robotic applications. 

Isaac Sim, developed by NVIDIA, is tailored for 
robotics applications involving artificial intelligence (AI) 
and machine learning (ML). Its integration with 
NVIDIA's GPU technology enables high-performance 
simulations, crucial for training and testing AI algorithms 
[18]. Isaac Sim is adept at simulating complex robotic 
systems, such as robotic arms and mobile robots, and is 
particularly beneficial for scenarios involving ML and 
sensor processing. 

 

2.2 Physics-based Modeling of Construction 
Equipment 

Physics-based modeling has been widely used in 
autonomous construction equipment training and testing. 
To demonstrate control of large robots to perform 
construction tasks, Lei et al. [19] created a construction 
robot hand model in Isaac Sim, and trained it via 
reinforcement and imitation learning to conduct 
operations with 6 types of construction tools, such as 
power drill, flat screwdriver, adjustable wrench, etc. 
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Similarly, Sungjin et al. [20] employed Gazebo for 
dynamic modeling of spraying robots, evaluating their 
performance in construction tasks like indoor wall 
painting. Jaco et al., [21] built a wheeled robot model 
using Gazebo and then trained a map corner-based 
navigation model in a virtual world. Lofgren et al. [22] 
advanced this field by simulating an underground loader 
in Unity, training a deep reinforcement learning 
controller that autonomously adapts to varying terrains 
and soil conditions. Azulay and Shapiro [23] also used 
Gazebo for wheel loader modeling, achieving a controller 
adept at complex earthmoving tasks, and showcasing the 
potential for automation in construction. 

Furthermore, physics-based simulation is used for 
generating synthetic data. Wilfredo et al. [24] used Unity 
to simulate excavator postures, creating a dataset that 
bypasses the need for time-intensive manual annotation. 
Jia et al. [25] established a drone model in Unity for 
capturing simulated dam images, facilitating the training 
of dam defect detection algorithms. 

2.3 Automatic Physics-based Modeling 
Despite these available physics-based modeling and 

simulation platforms, manually building models in 

simulation platforms is still time-consuming and requires 
modeling expertise [7]. Some studies have proposed the 
use of automatic modeling methods to reduce manual 
modeling effort, and have investigated the automatic 
modeling process in the context of modular robots. For 
example, [9] introduced an automated approach for 
modeling robot kinematics and dynamics, requiring only 
module data such as joints, drives, etc. and their 
arrangements. Maddalena et. al [7] proposed an 
algorithm that takes as input the URDF files of the single 
modules with their desired arrangement and provides the 
final URDF of the assembled robot as a result.  

However, these methods have shortcomings that limit 
their use for modeling complex construction equipment. 
They require manual configuration of joints and 
additional data within the modeling software, obligating 
users to acquire proficiency in the software itself. 
Furthermore, for construction equipment lacking a 
substantial array of universal modules, these methods 
offer no advantage over direct manual modeling, thereby 
confining their applicability primarily to modular 
robotics. 

3 Methodology

 

 
 

Figure 1. Overview of the automatic physics-based modeling method
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The proposed method is designed to automate the 
physics-based modeling process of construction 
equipment. The inputs for the method include a 3D CAD 
model of construction equipment and other data required 
for physics-based modeling including materials, collision 
meshes, relations of components, joints, and drives. As 
shown in Figure 1, the 3D CAD model is initially 
converted into a universal scene description (USD) 
model using Isaac Sim to facilitate data fusion. Then, the 
various data are fused into the USD model. The overall 
fusion process comprises four steps: Firstly, the materials 
of components are set based on the materials data, which 
enables the components to have material information 
such as density and friction coefficient. Secondly, 
collision meshes are set to their corresponding 
components. This allows the components to emulate 
collision behaviors. Thirdly, motion dependencies 
between the components are established based on their 
relationships, which allows components to move with 
their dependent components accordingly. For example, 
bucket bolts will move with the bucket. Lastly, joints and 
drives are created based on their mechanical properties, 
which allows the components connected with the joints 
to move accordingly. At this point, the USD model 
integrated with the data is ready for simulation. 

3.1 Model Conversion 
To facilitate the fusion of data requisite for the 

simulation, the initial step involves converting the 3D 
CAD model of construction equipment into a USD model. 
USD is an open-source 3D scene description file format 
developed by Pixar. It can be used for 3D content creation 
and interchange among different tools [26,27].  

There are two reasons for choosing the USD format. 
The first is its dual support for both intricate construction 
equipment modeling and complex environmental 
constructs [28], thus facilitating the import of 
construction equipment models into its operating 
environment. Meanwhile, USD has a Python Application 
Programming Interface (API), and the USD model can be 
easily customized through Python script [29]. This 
conversion lays the groundwork for subsequent data 
fusion. Moreover, USD supports a variety of simulation 
platforms including Unity [30], Unreal [30], Isaac Sim 
[31], etc. 

3.2 Data Fusion 
Subsequent to the model conversion, data fusion can 

start. The first step of data fusion focuses on setting 
material properties to each component of the USD model. 
This involves a process where both the mechanical and 
aesthetic properties of materials are defined. Mechanical 
properties include aspects such as density, elasticity, and 
friction coefficients, which are crucial for accurate 

physical interactions in the simulation. These mechanical 
properties can be retrieved from technical specifications 
provided by construction equipment manufacturers. 
Aesthetic properties, on the other hand, involve visual 
characteristics like color, texture, and reflectivity, 
enhancing the visual realism of the model. Color codes 
and textures for construction equipment can be obtained 
through Internet search. Reflectivity can be determined 
by selecting the corresponding material from the 
rendering software, such as stainless steel, paint, etc. To 
organize and store these properties, a JavaScript Object 
Notation (JSON) document, designated as JSON-1, is 
compiled. This document serves as a comprehensive 
repository for the material attributes. Following this, an 
automated process retrieves the components and their 
material parameters from the document. The USD model 
is then systematically scanned, and the documented 
material parameters are applied to each respective 
component. This mapping ensures that each component 
of the USD model is a true-to-life representation of its 
physical counterpart, mirroring it in both functionality 
and appearance. 

The method then employs an automated process to 
parse JSON-1 and integrate the material properties into 
the USD model, ensuring each component reflects its 
real-world counterpart both in function and form. 

Following the materials setting, the second step 
focuses on setting collision meshes to components of the 
USD model. Collision meshes are simplified 
representations of the physical shape of each component. 
It provides an efficient way to detect and respond to 
collisions between robot components and/or their 
surrounding environment. The setting of collision 
meshes enables the construction equipment model to 
have realistic interaction within the simulation 
environment. Our method provides a range of collision 
mesh estimation methods for users to choose from, 
including triangle mesh, convex decomposition, convex 
hull, etc. In this step, JSON-2 document is created to 
encapsulate the collision mesh estimation method for 
each component in the USD model. The proposed 
method then systematically parses this document, 
extracting component names and their corresponding 
collision mesh estimation methods, and cataloging them 
into a Python dictionary structure where the component 
name is the key, and the collision mesh method is the 
value. Following this, all components in the USD model 
are traversed and collision meshes are set for the 
components listed in the dictionary accordingly. 

The third step involves setting up relationships 
between components. The mutual relationship amongst 
components determines which components can move 
together as a group. For example, the excavator bucket 
body and bolts on it move when the bucket moves, as the 
bolt and body are connected to the bucket, as shown in 
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Figure 1. In order to encapsulate the relationships among 
components, this method creates a relationship document 
JSON-3. This document employs a dictionary structure 
to chronicle the relationships among the various 
components. Keys are utilized to denote the names of 
dependent components, while values enumerate the 
associated followers. For example, the above relation is 
encoded as {“bucket”: [“bucket body”, “bucket bolt1”, 
“bucket bolt2” ... “bucket bolt6”]}. Within the USD 
model, these intercomponent relationships are depicted 
through parent-child hierarchies. All components that are 
children of a parent component are expected to move 
together when the parent component moves. Our 
technique proceeds to parse these relationships from the 
dictionary and then traverse all the components in the 
USD model hierarchically to check whether the current 
child-father relationship of each component is consistent 
with that in the dictionary. If any discrepancies are found, 
the parent and child designations are realigned 
accordingly. This iterative process continues until every 
component relationship in the USD model has been 
validated, guaranteeing an accurate representation of 
movement in the simulation environment. 

The last step is to add the joints and drives. In 
simulations, a joint refers to a functional connection 
between rigid bodies that facilitates a specific range of 
relative motion between them. This motion is typically 
enabled by a drive mechanism. For instance, the 
rotational movement of car wheels around an axle is 
attributed to revolute joints. If a wheel is designated as 
powered, a corresponding drive will be added to actuate 
it. In our approach, details pertaining to the joints and 
drives are stored in a document called JSON-4. This 
document includes the designation of the joint, the 
components it connects to, the associated drive 
mechanisms, and the physical parameters of the joint, 
such as damping coefficient, and stiffness, among others. 
These parameters can be obtained by from construction 
equipment manufacturers or by theoretical calculations. 
After obtaining this data, this method will add these joints 
and drives accordingly to the USD model. 

4 Implementation and Results  
To verify the effectiveness of the proposed method, 

we established the same excavator model on the Isaac 
Sim platform using both the manual modeling method 
and the proposed method. Then we compared the 
modeling time required by the two methods. 

4.1 Experimental Environment 
The experimental environment used in this study 

includes a server with an AMD Ryzen 9 5950X CPU 
running Ubuntu 20.04 system, NVIDIA GeForce RTX 
3090Ti GPU with 24G memory of a single graphics card, 

Nvidia Isaac Sim 23.01.  
The construction equipment selected for this 

experiment is a Caterpillar 390F LME excavator. Its 3D 
CAD model is downloaded from GRABCAD, as shown 
in Figure 2. This particular model is engineered with four 
hydraulic cylinders responsible for actuating the 
movement of its boom, arm, and bucket. Additionally, it 
features a swing joint that facilitates the rotation of its 
upper structure and two actuated sprockets that empower 
the excavator to advance, retreat, and turn. A breakdown 
of all the joints and drives incorporated in this model is 
systematically cataloged in Table 1. This excavator is 
composed of 142 joints, with a majority of 138 revolute 
joints that allow for rotational movements and 4 
prismatic joints that facilitate linear actions. In 
conjunction with this, the model incorporates 7 distinct 
drives, which are instrumental in actuating the various 
movements of this excavator. 

 
Figure 2. The 3D CAD model of Caterpillar 390F LME 

Table 1 Joints and drives statics 

Joint/drive type Number 
Revolute joint 138 
Prismatic joint 4 
Angular drive 3 
Linear drive 4 

4.2 Results 
Upon integrating the CAD model of the excavator 

with the JSON documents comprising the requisite data 
for physics-based modeling, we successfully generated 
an excavator model ready for simulation. Subsequently, 
in our evaluation conducted on the simulation platform, 
we tested an array of motion functions pertinent to the 
excavator. The outcomes of these tests demonstrated that 
our model is adept at replicating all the essential motion 
functions of the excavator. This is depicted in Figure 3, 
which showcases a sequence of video frames extracted 
from the simulation outcomes. These frames distinctly 
highlight the model's capability to accurately simulate the 
dynamic movements of critical components, including 
the boom, arm, bucket, track, and the excavator's upper 
body. 
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To determine the efficiency of our proposed method, 
we compared the modeling time required by the proposed 
method and the manual method. Before starting this 
modeling experiment, we had no experience in robot 
modeling. During the experiment, we recorded the time 
spent learning to model using Isaac Sim, which took a 
total of 28 hours. The duration of excavator modeling 
from start to completion was then recorded, which lasted 
72 hours. Finally, the time required for excavator 
modeling through the method proposed in this study was 
recorded, which was 8 hours. Almost all of these 8 hours 
were used to prepare the data required for modeling. The 
running time of the automatic modeling program was 
almost negligible, lasting less than 2 seconds. This 

comparison, shown in Table 2, reveals a stark contrast in 
time investment. The manual modeling process required 
approximately 100 hours. In contrast, our method needed 
only 8 hours to prepare documentation for materials, 
collision meshes, component relations, and joints and 
drives needed for physics-based modeling. Upon 
completion of this preparatory phase, the true efficacy of 
our approach becomes evident. It automatically fuses all 
the data from these documents into the final model, 
accomplishing this complex integration in an instant. 
This significant reduction in time, without compromising 
accuracy or detail, underscores the potential of our 
method to revolutionize the efficiency of physics-based 
modeling processes. 

 

 
Figure 3. Video frames of excavator simulation in Isaac Sim platform 

  
 

Table 2 Modeling time comparison 

Modeling method Time (hour) 
Manual modeling 100 

Our method 8 

5 Conclusion  
Physics-based simulations offer a rapid and secure 

platform for training, validating, and testing control 
algorithms, as well as prototyping designs for 
autonomous construction equipment. Our paper 
introduces an innovative method to automate the physics-
based modeling process using data fusion. This method 
transforms a 3D CAD model of construction equipment 
into a USD model, seamlessly integrating the necessary 
data for physics-based modeling through data fusion. 

When users apply the proposed method to build other 
construction equipment models for physics-based 
simulation, they only need to prepare the 3D CAD model 
of the construction equipment and the corresponding 
physical data. Our method can then be used to 
automatically integrate these data into the CAD model, 
enabling physics-based modeling. The study benchmarks 
the efficiency of this automated method against 
traditional manual modeling within an identical 
experimental setup, revealing marked enhancements in 
modeling efficiency.  

However, it is imperative to acknowledge certain 
limitations of our method. Firstly, it requires users to 
manually prepare the initial data required for physics-
based modeling. Additionally, as of now, the method 
does not possess the capability to incorporate sensors into 
the models. In the future, we will integrate a large 
language model such as ChatGPT, into the physics-based 
modeling pipeline. It will be used to extract and prepare 
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initial data from construction equipment technical 
specifications, eliminating the need for users to manually 
prepare this data. In addition, we will develop a function 
for adding sensors. Using this functions, users would 
only need to input the sensor type, location, and other 
parameters, and the sensor would be automatically 
integrated into the model. 
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Abstract 

This paper introduces a novel approach to crane 
path planning on construction sites through the 
utilization of Reinforcement Learning (RL) and 
Virtual Reality (VR) simulations. The strategy 
includes a comprehensive simulation model that 
incorporates an agent, actions, states, environment, 
and a reward system. After undergoing extensive 
training across millions of episodes, the crane agent 
has acquired optimal path-planning techniques that 
enhance lifting time, manage energy consumption, 
and improve collision detection. The results highlight 
the agent's impressive growth from initial exploration 
to peak efficiency, represented by cumulative rewards 
and evolving simulation times. The findings also 
demonstrate the effectiveness of RL-based path 
planning in maneuvering dynamic construction 
environments and optimizing crane operations.  

 
Keywords – 

Path Planning, Simulation, Reinforcement 
Learning, Virtual Reality. 

1 Introduction 
The construction industry constantly evolves, aiming 

to maximize efficiency and minimize costs. Over the past 
few years, off-site construction has gained traction due to 
its ability to save time and money. This approach 
involves transporting prefabricated modules to the 
construction site for installation, making cranes an 
essential component.  

Despite numerous attempts to improve crane 
operations, outdated tools and planning methodologies 
still need to be used. According to [1,2], current practices 
involve lift engineers generating CAD-based 2D and 3D 
simulations of various lift scenarios in a static and time-
consuming manner. The planning process is often trial 
and error, with better alternatives not being discovered 

until later stages.  
To address the path planning problem, many studies 

have explored using automated planning tools and 
information technology to enhance current practices. The 
initial works focused on using deterministic algorithms 
for path planning, as [3] outlined. To automate the path 
planning task, they employed two heuristic search 
methods, hill climbing and A*. Hill climbing involves an 
iterative approach of adjusting a solution to minimize the 
distance or any desired cost function. In comparison, A* 
uses a nodes approach, where it tries to find the shortest 
path between the start and end nodes using a cost function 
similar to hill climbing. However, these methods proved 
time-consuming and often stuck in local optima instead 
of finding the optimal solution.  

Several studies have explored using metaheuristic 
algorithms to improve crane path planning. [4] used an 
ant colony to achieve collision-free path planning for 
mobile cranes, while [5] employed genetic algorithms to 
plan lifts in complex environments. However, 
metaheuristic algorithms are only sometimes the optimal 
solution and can be heavily influenced by initial 
conditions. At the same time, other works, such as [6], 
attempted to use hybrid approaches to tackle the issue, 
with similar results as previous works. 

Recently, many researchers have turned to 3D/4D 
simulations and Building Information Modelling (BIM) 
to simulate and generate feasible solutions for lift 
planning. [1] integrated 4D crane simulation and BIM to 
manage operations on a construction site, while [7] 
presented a data-driven crane management system for 
industrial projects. Although BIM-based simulations 
offer detailed visualization, they may struggle to handle 
dynamic scenarios, making them less adaptable. [8] 
developed a methodology that enables automatic re-
planning of lifting paths for robotized tower cranes in 
dynamic BIM environments to address this issue. They 
used a GPU-based parallelization approach for discrete 
and continuous collision detection. However, the 
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methodology was built using a genetic algorithm, which 
may generate premature solutions.  

According to [9], Reinforcement Learning (RL) is a type 
of machine learning that relies on learning through 
experience without needing previous data. The learner is 
tasked with discovering which actions yield the highest 
rewards by experimenting with different approaches, as 
explained by [10]. RL has been applied successfully to 
challenging tasks, such as game-solving. AlphaGo was 
developed to solve the game of Go by Silver et al.2017 
[11], notably self-driving and robotics. As for the 
implementation of RL in construction projects, there 
have been some works using it to enhance the overall 
planning process. [12]explored RL applications during 
the design phase for decision-making purposes. As for 
crane operations, [9] used a hybrid greedy and RL 
approach for crane mat layout optimization. The same 
techniques used to tackle these complex issues can also 
be used to address the crane path planning issue. 

This study identifies several areas of improvement 
where further work is needed, including the following:  

1. Better tools must be provided for crane operators 
to develop practical and achievable lifting paths where 
less redundant and efficient lifts are desired.   

2. Current path planning methodologies often fail to 
account for the unique complexities of mobile crane 
operations and their planning procedures. These 
complexities relate to the congested nature of 
construction sites and the requirements needed to 
perform a successful lift effectively. 

3. A fully automated path planning process that 
explores all possible lifting approaches while considering 
the changing nature of construction sites needs to be 
developed. 

4. There is a need for better-optimized procedures that 
can learn from the built environment and adjust to 
changes that occur during construction. Therefore, a 
framework with an adaptive learning approach is 
required. 

This methodology combines VR simulations with RL 
to address previously mentioned research gaps. This 
work aims to address a need for developing a more 
comprehensive understanding of optimal solutions in 
complex and dynamic environments. By integrating 3D 
environmental elements, the methodology aims to 
identify precise solutions that consider aspects such as 
time, complex movement, and realistic scenarios that 
previous methods have overlooked. Furthermore, using 
RL, the methodology seeks to enhance exploration within 
construction sites, particularly in the automated path 
planning of mobile cranes, which can be complex and 
challenging to adapt to dynamic site conditions. This 
integration of VR simulations and RL allows a thorough 
evaluation of diverse alternatives, ultimately selecting 

the most optimal solutions. The methodology fills the gap 
left by the absence of fully automated path-planning 
methods tailored specifically for mobile cranes and 
dynamic construction settings. Ultimately, this 
methodology aims to enhance the understanding of 
adapting to changes in the built environment during the 
construction phase, leading to better solutions for 
complex and dynamic building projects. 

2 Methodology 
In this section, a brief description of the methodology 

followed in developing the RL-based path planning 
framework. Figure 1 displays the main steps followed; 
where after identifying the lack of a realistic solution 
based on a 3D environment is needed to optimize the lift 
planning resources, data was collected to develop a 
simulation model that would assess various lift 
alternatives, and based on the main KPI the best solution 
is suggested for the user. 

 
 

Figure 1. The overall research methodology. 
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2.1. Data Collection 
In order to realistically replicate the lifting planning 

process, the authors determined that three main types of 
data are necessary: Crane data, Lifting Module data, and 
Building data. 

2.1.1. Crane Model 

The crane model used in the simulation is a highly 
accurate replica of a crawler crane widely used in 
industry. The model boasts a boom length of 36.5 
78meters, for which the 36 meters configuration was 
selected, a track length of 10.0 meters and a width of 7.85 
meters, and a maximum capacity of 300 tons, making it 
a highly versatile and reliable piece of machinery for a 
wide range of construction projects. The 3D rendition of 
the crane model is presented in Figure 2, showcasing the 
equipment's intricate details and precise specifications. 

 
 

Figure 2. The crawler crane 3D model. 

2.1.2. Modules and Buildings 

Regarding the modules, a diverse array of payloads 
was brought into a 3D format, each possessing unique 
dimensions, weight, and physical attributes. Figure 3 
contains a sample of a payload. A commonly used type 
of construction trailer is used, with dimensions of 
6.01×2.34×2.69 cubic meters and a total weight of 
2850kg. The trailer is transported to provide a suitable 
workshop area for welders and is needed in the vicinity 
of the construction site.  

 
A) Construction trailer 3D 

model. 

 
B) 3D representation 

of the lifting task. 

Figure 3. The 3D model of payload and construction 
site. 

 
As for the buildings were imported via a BIM format, 
with the models' measurements and characteristics 
preserved, albeit with simplified component properties 
and reduced detail to optimize simulation performance. 
A traditional construction project is selected to display 
the efficiency of the developed tool. The crane agent is 
assigned a task of lifting a payload from its pick location, 
highlighted in red, and delivering said payload to its set 
location, highlighted in green, effectively performing a 
single lift. 

2.2. Objectives Definition 
The main focus of this framework is to provide a lift 

plan that enhances the following components: 

2.2.1. Lifting Time 

Crane operators are responsible for ensuring the safe 
and efficient transport of payloads. To achieve this, they 
rely on lifting times as a crucial factor. The longer the 
payload spends in the air, the higher the risk of accidents, 
which is why keeping the lifting time to a minimum is 
essential. Additionally, the operator must follow the 
shortest and safest paths during transport to reduce the 
risk of damage to the payload or any surrounding 
structures. Maintaining the payload's elevation level 
throughout the lift is also preferred, as sudden changes in 
height can cause instability and increase the risk of 
accidents. According to a recent study by [13], heavy lifts 
are often planned to remain low until they're close to their 
destination, ensuring maximum safety and efficiency 
during transportation. 

2.2.2. Energy consumption 

There exist three distinct alternatives to move a load 
in a more sustainable manner. The first one is walking, 
which involves transporting the object from point A to 
point B while the mobile crane moves. This type of 
movement is deemed suboptimal, primarily because it 
significantly increases planning costs. The need for crane 
mats for crane movement is a major contributor to the 
high costs. To mitigate mat costs, one of the most 
common measures is to plan the lifts in a project such that 
the crane does not need to walk while performing the 
lifting procedure. This is according to [13].  

The duration of the lifting process is critical in 
ensuring a safe and efficient transport of the payload 
when operating a crane. The primary objective of the 
crane operator is to move the load from one location to 
another using the shortest and safest route possible while 
minimizing lifting time. To further enhance safety 
measures, it is recommended to keep the payload at a low 
elevation until it reaches its destination. A recent study 
by [13] revealed that heavy lifts are often planned to 
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maintain a low elevation during transport.  
The equipment's Hook Movement feature is equipped 

with a primary hook that offers a singular degree of 
freedom in the vertical direction. This exceptional feature 
allows the hook to effortlessly lift or lower attached 
objects, making it an incredibly versatile and efficient 
tool suitable for a wide range of applications. 

2.2.3. Collision Detection 

Typically, construction sites implement numerous 
safety measures to prevent collisions. However, for this 
particular project, it was determined that five types of 
collisions would be of particular concern. Two of these 
occur before lifting the load, including collisions between 
the crane and humans and between the crane and the 
building. An additional three types of collisions are 
considered once the load has been lifted, including 
collisions between the payload and the crane, collisions 
between the payload and humans, and collisions between 
the payload and the building. 

3 Simulation Model Development 
In this section a brief description of the methodology 

used to develop the simulation model is presented.it 
consists of five main components which are the agent, the 
actions, the states, the environment, and the rewards. The 
interaction between the different components is 
represented in Figure 6. 

 

 
Figure 4. The reinforcement learning model. 

3.1. The Agent 
Initially, a crane agent is needed to take different 

actions to transport the payload from its original loading 
point to a predetermined set point. To achieve this task, a 
proper locomotion system is needed. 

A mobile crane’s locomotion system is more complex 
than that of a tower crane. Where the crane is made up of 
many parts that the crane operator needs to coordinate in 
order to perform a lift using the crane’s full capacity. For 
the purposes of this work, three components’ movements 
were modeled and are used in the training process, which 

is seen in Figure 5. 
The main boom, where the boom is capable of 

rotation around the central axis of the crane. Both 
movements were taken into consideration, and the impact 
the angle has on the loading capacity was considered as 
well. 

 
A) Crane Tracks  

B) Main hook 

 
C) Crane Boom 

Figure 5. The main Crane Components 

The second comes the crane’s tracks, which enable 
the crane to move forwards, backwards and rotate around 
the it’s center. 

Finally, the crane’s hook’s movement was considered. 
This component has a relatively simple movement, where 
it moves either up or down depending on the lift phase. 

3.2. The Actions 
Since the agent is comprised of three main 

components, each component was given a degree of 
freedom (DOF). 

 
A) Crane Tracks  

B) Main hook 

 
C) Crane Boom 

Figure 6. The degrees of freedom of the main crane 
components. 

The tracks are given two DOFs, one rotation around the 
Y axis, and one translation along the x-axis, as seen in 
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Figure 6A. For the agent; this constitutes four different 
actions that can be taken. 

The main hook was given one degree of freedom 
along the Y axis as seen in figure 6B, which allows the 
agent to take two different additional actions. 

Finally, the main boom was given two DOFs, two 
rotations, one rotation around the Y axis and one around 
the Z axis, as seen in Figure 6C. This constitutes four 
additional actions. 

3.3 The environment 
Once, the crane agent is instantiated in the 3D 

environment it starts interacting with the different 
environment components to explore it. In order to 
improve the agent’s interaction, a set of sensors are 
attached to it. The sensors use collisions in with the 
different 3D models and collects data about the 
geometrical properties of 3D component found in the 
simulation environment. In the following training 
episodes, the agent uses the data collected through 
sensors to avoid colliding with the different components 
of the environment. for instance, when a sensor collides 
with a building, it can identify physical dimensions, 
velocity, and its tag. Where there are four main tags 
Human, Obstacle, and Objective, Crane.  

3.4. The states 
The simulation is run for a predefined number of 

iterations/episodes. In each episode, the location of each 
major element is stored alongside the element’s velocity 
local rotation.  

In the initial runs of the simulation, and prior to 
adding a penalty to the collision of the crane model with 
the payload, the agent could move the payload by 
pushing it towards the set point to gain the final reward. 
To penalize the suboptimal behaviour, an additional 
variable was added for the payload, which is a Boolean 
variable. The Boolean value represents whether the 
object is being lifted; once the object is connected to the 
hook, the Boolean value is turned to true. 

Finally, the environment is reset to its initial 
configuration in three cases: 

1. The episode will end if the maximum number 
of steps has been attained and the payload is 
yet to be delivered. 

2. If the agent leaves the environment, the 
episode will end. 

3. If the payload is delivered to the set location, 
the final reward is given, and the episode is 
terminated. 

3.5. Reward signal selection 
While the agent is training, it is essential to select the 

appropriate reward; this task is perhaps the most critical. 
Moreover, selecting a reward that balances penalties and 
rewards is necessary. For instance, if the agent is being 
over-penalized, the behavior resulting from the training 
would be suboptimal. For this work, various rewarding 
strategies were explored, and the final selected strategy 
was selected based on its merits and final training results. 

The reward pseudo code. 
Input: 
  Crane initial location (Cl), Payload initial location 
(PL), Crane capacity (Cc), Payload weight (Pw) 
  for steps = 1 to Number of iterations 
    for steps = 1 to max steps 
        if PL is disconnected 
           Compute D 
           if D > 0.5m 
               Act from possible actions  
               Apply Move penalty × D.    
               check for collision. 
               if a collision is true 
                  Apply collision penalty. 
            else if D < 0.5m 
                Apply connection. 
                Add Lift reward. 
        if PL is connected 
            Compute Dps. 
            If Dps > 0.5m: 
                Act from possible actions 
                Apply Move penalty × Dps 
                check for collision. 
                If a collision is true: 
                    Apply collision penalty. 
             Else if Dps < 0.5m: 
                 Set payload. 
                 Add Final reward. 
     Reset environment. 

 
Where:  
D: distance between from crane to the object. 
DPS: Distance between payload and set point. 

In order to attain the previously determined objectives, 
which are the optimization of the lifting time, energy 
consumption, and collision detection, three different 
types of rewards were built into the training process. The 
first reward is related to the lifting time, which is highly 
affected by the number of actions taken and the overall 
time needed to deliver the payload to its set location. 
Furthermore, each action has its parameters, such as 
movement speed, damping ratio, and interaction with the 
previous movement. For instance, when the crane is 
moving, no other action can be taken until the crane is at 
a complete stop. All the previously mentioned parameters 
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are combined to calculate the time needed to perform the 
lift, and the subsequent reward signal associated with the 
movement is developed to penalize the agent for each 
time spent lifting and transporting the object. This 
penalty ensures that the resulting lift uses the shortest 
lifting time. The penalty amount was selected after 
multiple iterations, where the initial penalties were severe 
enough to disable the agent from moving.

The second reward signal used is related to collisions 
or leaving the training area. The objective of the training 
is to discover all of the possible alternatives that can be 
used to perform a lift. It was decided that the agent would 
leave to explore the whole construction site. However, in 
some instances, the agent would leave the training area; 
thus, in those instances, a significant penalty is used to 
prevent the agent from leaving the said area. Furthermore, 
the episode is instantly terminated since, based on the 
author's experience with the model, the agent does not 
find its way back to the payload once it has explored the 
extremities of the training area.

Additionally, using the same approach, the agent 
sometimes collides with the surrounding obstacles and 
buildings despite the built-in sensors. An additional 
penalty is added based on the collision tag in those 
instances. The episode is terminated in some instances 
where the agent either collides with a human or a building. 
The other collisions are only penalized to allow the agent 
to train for an extended period.

The third type of reward is related to the type of action 
taken, where specific actions are preferred. For instance, 
since pick-up and walk operations are less favorable due 
to their increased cost, crane movements are more 
penalized than boom and hook movements. Next, main 
boom movements are expected to consume more energy 
than hook movements. Thus, they penalized more than 
hook movements. Finally, hook movements are given the 
lowest penalty.

Finally, the main reward signals for the crane are 
those related to lifting and delivering the payload. The 
first portion of the reward is connecting the payload to 
the hook; once the agent lifts the payload, it receives an 
enormous reward. The second portion relates to the agent 
setting the payload in the set place where the final reward 
is given and the episode is terminated. If the agent lifts 
the payload and fails to deliver it, the episode is 
terminated, and the environment is reset.

4 Results
The following section sheds light on the initial 

findings of our research and emphasizes the efficacy of 
our methodology. To quantify the impact of our 
methodology, three main indicators are used: cumulative 
rewards, episode length, and curiosity value indicators. 
The cumulative rewards graph displays the agent’s 

improved training, which starts with negative outcomes 
(no solutions) and improves in value until it reaches a 
298-point solution. To understand the cumulative 
rewards graph efficiently, the episode length indicator is 
used, which displays the number of steps needed by the 
agent to achieve the task; a lower number of steps 
indicates a more optimized solution. In order for the 
agent to decrease the number of episodes to achieve the 
lifting task, it must have a significant focus on exploring 
the actions, space, and the environment; this exploration 
task is achieved through curiosity, where the agent’s 
focus on exploration in later episodes coincides with the 
decreased episode length and as a result of the latter 
higher cumulative rewards. To get a better understanding, 
you can refer to Figure 7, which displays the cumulative 
rewards achieved per episode and reveals some 
intriguing insights. In the first 500,000 episodes, the 
agent encountered a formidable challenge due to the 
task's complexity, leading to a high number of 
exploratory and negative rewards resulting in penalties 
for every action. However, the agent discovered a 
promising solution around the 550,000th episode, which 
significantly improved the outcomes. Nonetheless, 
further refinements were necessary to optimize the 
training process. In the subsequent episodes, the agent 
consistently improved its approach, gradually climbing 
towards the optimal policy. Eventually, it peaked at 298 
total rewards before stabilizing at approximately 4 
million episodes.

Figure 7. The cumulative reward value per episode.

The study conducted by the researchers involved a 
comprehensive examination of various factors that 
influence the efficiency of an agent in executing tasks 
proficiently. Amongst these factors, the duration of each 
episode was given special consideration, as it is a crucial 
parameter used to evaluate an agent's overall 
performance. The researchers analyzed the simulation 
time of the agent during its initial million episodes and 
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found that it ranged from 1900 to 800 seconds, which is 
significantly longer than the desired duration. This 
indicates that the agent was in the exploratory phase, 
trying to identify the best possible path to achieve the 
assigned task. The researchers observed a significant 
decrease in the simulation time as the simulation 
progressed, which continued until the 3.5 millionth 
episode. This trend indicates that the agent had identified 
an optimal path and slightly improved the discovered 
solution. This discovery led the agent to find the most 
efficient path, which could be completed within 17.8 
seconds in the simulation environment. The agent's 
continuous improvement and progress ultimately 
revealed the most efficient and effective way to complete 
the task. The episode length results are highlighted in 
Figure 8.

Figure 8. The episode length is in seconds per episode.

To assess an agent's learning progress, it's vital to analyze 
its level of curiosity and how it interacts with the 
environment. Curiosity value estimates provide valuable 
insights into the agent's learning patterns, reflecting its 
interest in exploring information. Higher values indicate 
strong engagement and a deep desire to learn, while 
lower values suggest a lack of enthusiasm for exploration 
and learning. By measuring curiosity-driven behavior, 
we can gain valuable insights into the agent's interest 
levels and learning patterns, which help us understand its 
progress. Figure 9 presents a graphical representation of 
the curiosity value estimates for behavior analysis. The 
results indicate a clear pattern of curiosity value 
progression that aligns with expected trends. At the 
beginning of the learning process, the agent exhibits 
minimal curiosity, but its curiosity level gradually 
increases to larger values in later episodes. 
This indicates a notable surge in engagement or interest 
as the agent continues to learn. Statistical mean and 

standard deviation measures support this progression, 
demonstrating a distinct shift from initial disinterest to 
intense curiosity. Evaluating the agent's curiosity-driven 
behavior is crucial for understanding its learning patterns 
and progress. This leads to more effective learning by 
ensuring the agent actively engages with the environment 
and explores new information. After the lift was 
developed, the authors assessed its validation using two 
approaches, which are face validation and VR lift 
assessment. 

In the first approach, the authors used the computer 
model in the virtual environment and analyzed the 
different steps used to lift and deliver the payload. 
However, the computer version, although a 3D approach 
was deemed insufficient due to the presence of certain 
blind spots that the users could miss, to that extent a VR,
the authors explored the lift using a gamified approach, 
where they moved along the environment during the lift’s 
execution and assessed the validity of the lift in the 
virtual environment.

Figure 9. The curiosity value estimate per episode.

5 Conclusion and Future Directions
This work was used to develop a new tool for the 

construction industry that helps with crane path planning. 
The tool is designed to create lifting paths that are more 
comprehensive and take into account the changes that 
occur on a construction site. This leads to a smoother 
lifting process, which reduces planning time and 
produces more accurate results. The tool helps to 
improve collision detection, decrease lift complexity, and 
lower energy consumption. In addition, we have 
incorporated RL and VR simulations to make the 
planning process more resilient to unforeseen changes on 
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the construction site. Using a virtual environment 
enhances the planning process, allowing for updates to be 
made to the crane agent training and lifting capabilities 
based on changes in the construction site, resulting in 
more reliable and efficient lifting schemes. 

The authors developed a comprehensive simulation 
model to achieve our goal. This model included an agent, 
actions, states, environment, and a reward system. By 
training the crane agent through numerous episodes, the 
agent could detect optimal path-planning strategies. The 
agent's learning journey was tracked through cumulative 
rewards, which progressed from exploratory phases to 
achieving peak efficiency after approximately 4 million 
episodes. Analysis of simulation times highlighted the 
agent's evolving learning patterns, ultimately identifying 
the most efficient path within the environment. Face 
validation and VR-based assessment were performed to 
validate the developed approach's results. The results 
demonstrated the agent's ability to navigate complex 
environments, optimize lifting processes, and minimize 
simulation times. The insights gained through the agent's 
learning patterns and performance metrics validated the 
effectiveness of RL-based path planning in dynamic 
construction scenarios.  

Future works will involve conducting a comparative 
analysis with real-life path planning scenarios by testing 
the developed model in live construction settings. By 
aligning simulated results with real-world scenarios, we 
aim to refine and validate our methodology for seamless 
integration into actual crane operations. Ultimately, our 
approach will contribute to safer, more efficient, and 
adaptable construction practices. 
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Abstract 

Temporary materials are stored in construction 
warehouses after and before they are used in 
construction sites. Most of these materials are made 
of steel tubular sections such as square, circular, and 
rectangular sections. However, due to frequent reuse 
and their storage conditions they become subject to 
defects such as rust and bend which affect their 
quality for use in construction projects. Since these 
materials are stored in stacks or batches, checking the 
materials individually for defects can be time 
consuming making end point surface defect detection 
more efficient for construction workers. Deep 
learning techniques have proven to be more efficient 
than manual inspection. However, quantification of 
materials with defects for decision making on reusing, 
repairing, and disposing actions and documentation 
is still a challenge for construction workers. Hence, 
this paper quantifies temporary tubular steel 
materials; square hollow section, circular hollow 
section and rectangular hollow section with common 
cross section area defects using deep learning 
technique connected to a web platform for decision 
making by construction quality circle workers. The 
proposed system achieved an average precision of 
84.9 percent with 105.2 GFLOPS and a speed of 20 
seconds per inference.  
 
Keywords – 

Deep Learning, Decision Support System, 
Temporary Materials, Defects, Quality Circles. 

1 Introduction 
Construction projects use temporary materials to 

provide support and safe working platforms for the 
workers. The dominant materials used for these 
structures are tubular steel materials such as square 
hollow sections, rectangular hollow sections, and steel 
pipes. However, with frequent reuse and storage 
conditions of these materials, they become subject to 
surface defects such as rust and bend which has the 
potential of causing accidents. These materials are 
stacked in batches as shown in figure 1 which makes end 
point surface defect detection faster and productive 
method of judging their quality.  

Monitoring these surface imperfections is done by 
quality circle workers. Quality control circles or simply 
quality circles encourages construction workers to 
actively participate in continuous improvement of 
material quality in construction [1]. However, these 
workers rely on manual inspection checklist and 
reporting which not only reduces productivity but also, is 
prone to human error.  Computer vision techniques such 
as object detection are being employed to replace manual 
inspection and identification of defects in areas such as 
concrete cracks and anomalies in dimensions and 
misalignment, however, there exist a gap on 
quantification of temporary tubular materials with 
surface defects for decision making by construction 
workers in quality circles for quality control.  

 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

888



 

 
Figure 1. End point surface of stacked steel 
sections. 

Hence, this paper proposes an automated decision 
support system based on quantified number of materials 
with surface defects; rust, bend and, rust and bend using 
deep learning object detection yoloV7 model. The model 
is deployed on flask web framework for visualization, 
with a rectification action and reporting of the results 
which can be used on mobile devices by quality circle 
construction workers. This is also visualized on local 
computer system by the management in real time.  

2 Background 

2.1 Tubular Steel Temporary Materials 
Temporary materials are very important for the 

erection of temporary structures such as scaffolding, 
falsework and formwork systems. Metal temporary 
materials such as steel and aluminium are frequently used 
in the construction industry for these temporary 
structures due to their guaranteed strength, rigidity, and 
the ability to erect and dismantle quickly. Additionally, 
they are easy to reuse which makes them much cheaper 
compared to other alternatives such as timber based 
temporary materials. However, due to frequent reuse and 
exposure to varied environmental conditions, these 
metal-based materials become subject to rust which 
undermine their structural strength creating unsafe 
working condition on construction sites. Additionally, 
hollow steel sections such as square hollow sections 
experience global and local deformation under excessive 
loading especially when stored in batches creating a warp 
or bend on the cross-section area. This undermines the 
hollow steel section’s aesthetic nature and their structural 
strength [2].  

2.2 Deep Learning-Based Inspection 
The quality inspection of these materials is mainly 

done manually, where workers or inspectors check these 
surface defects for quality control. However, use of deep 
learning techniques such convolutional neural networks 

(CNN) on identifying these surface defects have gained 
attention in the past decade. They involve extracting 
useful information from images and videos to reduce the 
involvement of human inspectors and construction 
workers. For instance, Hussein et al. [3] employed VGG-
16, a convolutional neural network on images to detect 
and localize defects such as mold and stains in buildings. 
Sergio et al. [4] used convolutional neural network to 
detect defects such as cracks on structural members of 
bridges through images. In terms of steel sections, 
Zhaoguo et al. [5] introduced new modules on the deep 
learning neural network such as multiscale feature 
extraction to improve extraction process of features on 
images and efficient feature fusion to improve the fusion 
mechanism on the neck layer for accurate detection and 
localization of surface defects such as crazing and 
patches. However, though there exists extensive research 
on detection of surface imperfections using computer 
vision techniques, quantification of materials with these 
defects is still lacking.  

2.3 Quality Control of Materials  
Checking the quality standard of individual materials 

in a batch can be expensive and time consuming, 
especially where the lot size is very large. This has led to 
the introduction of sampling plans to decide whether to 
accept or reject a lot based on a defined sample size 
which is a representative of the lot. The whole lot is either 
rejected or accepted based on whether a specific 
threshold of the number of defective items in the sample 
has been observed or not. The two main sampling 
techniques used to determine the acceptance of materials 
in a batch are sampling by attributes and sampling by 
variables. Sampling by attributes is based on whether 
there is presence or absence of a particular characteristic 
of a material, for example, whether a material contains 
defective patch or not. It is computed on the probability 
of accepting or rejecting a lot using the defective aspect 
of the batch. For instance, assuming we have a lot of N 
size, where the sample size is n, and the actual number of 
defective materials is M, the probability of getting x 
number of defective items in the sample is expressed as 
shown in equation (1) 

𝑝(𝑋 = 𝑥) =
!"# $%

& '			"
) '				#*

!&)$
                   (1) 

 
To compute the probability of accepting or rejecting 

the lot, we assume that the fraction of non-defective items 
in the lot to be q, and the fraction of defective items to be 
p. This is expressed in a binomial distribution equation as 
shown in equation (2).     

    

𝑔(𝑝) = ∑ 𝑝(𝑥 = 𝑥)!
"#$ =(
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Sampling by variables on the other hand is more 

quantitative in nature and is focused on measurement of 
actual values such as length, height, and weight. It is a 
continuous process used to determine the overall 
acceptability of the batch. The main goal of the two 
sampling techniques is to control quality of materials in 
the most economical and efficient way [6].  

However, this manual quality control system is prone 
to human errors and the documentation process is tedious 
for the workers especially when we have large number of 
materials.  

2.4 Normal Distribution 
Normal distribution or gaussian distribution is a 

probability distribution where an average distribution of 
random samples tends to converge towards the normal 
distribution creating a symmetric bell-shaped curve. This 
works under the concept of the central limit theorem. 
There are two broad techniques for monitoring quality in 
construction management: management techniques and 
statistical techniques. Management techniques involve 
quality control, quality assurance and total quality 
management concepts. Statistical techniques include 
gaussian distribution and hyperbolic distribution which 
use the 6-sigma concept on quality control. Gaussian 
distribution has been applied in many fields such as 
construction management, manufacturing, and civil 
engineering through estimation of statistical properties 
such as number of defects and defects per million 
opportunities [7]. For instance, Vivian et al. [7] compared 
the use of gaussian distribution and hyperbolic 
distribution on defect detection to improve the 
construction quality and the yield percentage. Diego and 
Peter [8] proposed gaussian process for predicting 
product quality based on defective products per unit 
(fault density). Silva et al. [9] employed the gaussian 
distribution to detect harmful conditions in aquatic life. 
The method used 2D image visualization on production 
of fish under three classifications: dangerous, warning, 
and normal conditions. Zhou et al. [10] solved the 
problem of clutters on 3D feature descriptors using 
histograms of gaussian normal distribution. This enabled 
capturing of conspicuous features creating a homogenous 
scene with the 3D model.  

2.5 Web Framework 
The era of information technology has seen a huge 

increase of data in the construction industry. However, 
the visualization of this data to help stakeholders make 
informed decision has always been a challenge. This is 
due to variations on the type of data produced which 
comes in different formats such as images, text and 
videos causing data driven decision making in the 

construction industry difficult. Additionally, the transfer 
of these data between project stakeholders has been slow 
affecting the project productivity. Hence, a cross 
integration platform such as a web framework system 
which can visualize and share construction information 
data in different formats rapidly has been of necessity.  

In order to improve access and sharing of integrated 
construction data, Chassiakos and Sakellaropoulos [11] 
proposed a web framework connected to a relational 
database for managing construction information. Gurmu 
et al. [12] developed a dashboard for visualization of 
building defects from inspection reports through data 
mining using python libraries and natural language 
toolkit. Changyoon et al. [13] made a construction 
management system for real time site monitoring and 
construction information sharing with the aim of 
visualizing on mobile devices. Do-Yeop et al. [14] used 
web system framework to link defective data with BIM 
environment for visualization. However, there is still a 
gap on a web framework which can visualize quantified 
defective materials from a deep learning algorithm 
through mobile devices and local computer and, report 
the output for documentation.  

3 Methodology 

3.1 Overview of the Proposed Methodology. 

Figure 2. 3-Stage overview of the methodology. 

The proposed methodology was divided into 3 main 
stages: computer vision, decision support and, reporting 
and visualization as shown in figure 2. 

3.2 Stage I: Computer Vision. 
3.2.1 Data Collection and Preprocessing  

The first stage was collection of tubular steel 
temporary materials image dataset from two storage sites. 
The data collected consisted of circular hollow sections 
hereby referred to as steel pipes, rectangular hollow 
sections, and square hollow sections. The images taken 
focused on the temporary materials in batches as shown 
in figure 3. In the process a total of 500 images were 
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collected for training the deep learning model.  

 
Figure 3. a). Square Hollow Sections, b). Steel 
Pipes, c). Rectangular Hollow Sections dataset 
collected in batches. 

The image dataset obtained had varied size in terms 
of the height and width pixel. Hence, before training the 
deep learning model, the data was preprocessed using a 
fixed height and width of 640 x 640 pixels. A custom 
labelling process using LabelMe software was adopted as 
shown in figure 4 employing a 2-tier naming 
nomenclature where the first part represented the 
material type: steel pipe, square hollow section, and 
rectangular hollow section, and the second part separated 
by the hyphen represented the state of the material: rust, 
bend, rust and bend, and non-defective state.  

 
Figure 3. Labelling nomenclature using LabelMe 
software. 

In the labelling process, occluded images such as 
those with concrete splatter on the cross-section area of 
hollow sections were included to make the model robust 
to occlusion. Additionally, before training, mosaic 
augmentation, mix-up augmentation and perspective 
transformation hyper parameters were adjusted to enable 
the model to generalize across various object 
configurations for occluded images. 

During inference of the deep learning model, an 
image output of the detected object and text output are 
generated. The text output contains the class label, x-
center, y-center, height and width of each detected box 
and confidence scores as shown in figure 4. A special 
python code was developed which converted the detected 
text results to python list. The listed results were 
separated using white spaces to extract the material type 
and the special hyphen character to extract the surface 
defect of the materials.  

 

 
Figure 4. Detection text results file. 
 

3.2.2 YoloV7 Deep Learning Model 

The dataset was then divided to a train set and 
validation set ratio of 4:1 and trained on the YoloV7 deep 
learning model. The model is typically made of three 
parts: backbone, neck and head as shown in figure 5. The 
backbone layer contains convolutional layers for feature 
extraction from an input image. Each convolutional layer 
has a kernel size, number of stride operation and the 
number of channels. The neck layer is used to fuse or 
connect the extracted features from the backbone layer 
while the head is used to make prediction using bounding 
boxes. The head is subdivided into 3 parts depending on 
the level of feature extraction on obtaining detection 
results for large, medium, or small objects [15]. 

Feature extraction process from the backbone layer is 
followed by a spatial pyramid pooling (SPP-net) layer in 
the neck layer. The SPP-net allows the use of input 
images with variable sizes which help maintain feature 
information from images without warping them. 
Additionally, the network contributes to improved 
accuracy on training [16]. There are additional plug-and-
play modules which can be used in place of the SPP-net 
such as the Ghost-net layer and the Bottleneck layer. The 
Ghost-net layer is aimed at reducing the computational 
cost of the deep learning model enabling a lighter model. 
This is achieved by stacking the ghost modules [17]. 
Bottleneck layer uses pointwise convolutions to make 
bottlenecks for reducing parameters and increasing the 
depth, enhancing efficiency and computational 
performance [18]. 

However, these layers still have the problem of heavy 
inference computation especially when deploying them 
on mobile devices and web platforms. To mitigate this 
problem the SPP-net, Ghost-net and Bottleneck layer are 
concatenated with Cross-Stage Partial network (CSP-net). 
This improves speed of inference and accuracy when 
deployed on various platforms. For instance, when using 
the Dense network, the base layer is concatenated with 
the subsequent layers directly to map the output assuming 
a network with k-layers of convolutional neural networks, 
with F as the mapping function using an input x0 to the 
target y, an equation can be derived as follows: 
 

y = F(x0) = Xk.                                                  (3) 
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Figure 5. Internal architecture of the YoloV7 
model. 

However, the cross stage partial network relies on 
optimization by dividing the F function for the base layer 
(x0 ) into two parts:  
 

x0 = [ x0’, x0” ]                                  (4) 

 
Figure 6. Cross stage partial network in the 
DenseNet. 

Hence, to map the target y, x0’ is connected to the end 
stage while the x0” undergoes the dense network 
operation under M transition function for combining the  
two separate parts of the network that is, F the mapping 
function and T the transition function from one layer in  

 
 

the dense network to another [19].   
 

y = M ([x0’, T(F(x0”))])                  (5) 
 
     Hence, to obtain a model which can perform inference 
fast with high accuracy, three networks with cross-stage 
partial networks were evaluated: SPPCSP-net, 
GhostCSP-net and BottleneckCSP-net. Their 
performances were assessed using Giga Floating Point 
per second, mean average precision and recall in order to 
determine the best network that could be integrated into 
the web framework. The training parameters were a batch 
size of 16, 150 epochs with a 0.01 initial learning rate. 
The model was trained on the pytorch framework, CuDA 
11.8, on the Tesla V100, 16GB graphical processing unit 
(GPU).  

3.3 Stage II: Decision Support System. 
To determine the threshold for different classification 

of batch materials based on whether to reuse, dispose or 
repair, a statistical distribution of the surface defects of 
different tubular steel materials in lots was performed on 
two storage sites. The equation for calculating 
distribution is normally based on two key parameters; 
mean ( 𝜇) 	 and standard deviation ( 𝜎)  with the 
normalization factor and natural logarithm base (e).  
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Figure 7. Normal distribution curves of different defective states of materials.  

 
Hence, the mean and standard deviation of different 
batches was computed for statistical distribution. 

 

									𝑓(𝑥Ι𝜇𝜎) = +
,-./!

𝑒'
(#$%)!

!'!                           (6) 
 

The normal distribution curve of different condition 
of materials was plotted as shown in figure 7 and an 
assumption was made where percentage values greater 
than the curve threshold line indicated that the cost of 
repair is more than the cost of disposing the defective 
materials hence the dispose decision should be employed 
on the defective materials in the batch. On the other hand, 
when the percentage value falls below the threshold line 
but is more than zero, the cost of repairing the defective 
material in the lot is cheaper compared to the cost of 
disposing. Hence, the repair decision is employed.  

Using the statistical distribution results, a degree of 
severity table was formulated to create a classification 
criterion as shown on table 1. The mean and standard 
deviation for the statistical distribution was based on the 
defective material count to total material count ratio 
expressed as a percentage. 

Table 1. Surface Imperfection Degree of Severity 
Criterion 

Defect Critical 
Imperfection 

(Dispose) 

Minor  
Imperfection 

(Repair) 

Perfect 
(Reuse) 

Rust >22% 0%<R≤22% 0% 
Bend >28% 0%<B≤28% 0% 

Rust and  
Bend 

>44% 0%<RB≤48% 0% 

*R – Rust, B – Bend, RB – Rust and Bend 

3.4 Stage III: Web Framework. 
The final phase connected the computer vision model 

with the classification criteria from the decision support 
stage using flask web framework. The web framework 
was used to visualize the detected image, the total count 
of materials for each individual lot, the count for detected 
materials with defects, the decision to reuse, dispose or 
repair the materials in the batch and reporting the 
information for documentation. The quality circle leader 
or the user is required to take an image of the temporary 
materials in a batch using a mobile device, the image is 
sent to the cloud server which runs inference based on the 
trained deep learning model. From the detected results a 
text file is generated as shown in figure 5 containing 
information on the type of material and their 
corresponding defective state. Python code embedded 
into the flask framework computes the total number of 
materials in a batch and the total number of materials 
with specific defective condition expressed as a 
percentage. The percentage obtained is then compared to 
the degree of severity criterion table 1 where a decision 
on whether to reuse, dispose or repair the materials in the 
lot is obtained. The results are rendered on an interactive 
webpage using hypertext mark- up language. The user 
interface has an input field for the quality circle leader to 
enable reporting and documentation.  The web 
framework plays a central role in connecting the front 
end which is the user interface and the back end which is 
the cloud server for hosting the deep learning model for 
inference and visualization on the actions to be applied 
on the defective materials. It ties almost all the nodes in 
the system which are illustrated in figure 8, creating a 
unified automated decision-making system for the 
management and the quality circle workers.  
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Table 2. Performance comparison of the selected deep learning neural network modules 
 
 
 

 
 

 
 

Figure 8. Web framework Concept. 

 

 
 

Figure 9. Visualization of the web framework user 
interface 

4  Results and Analysis 
Evaluation of the system was done based on average 

precision, precision, inference speed, Giga Floating Point 
per Second (GFLOPS) and the count accuracy of the 
materials. The spatial pyramid network with the cross 
stage partial network achieved the highest GFLOPS of 
105.2, mean precision of 82.9, precision of 84.9 with a 
speed of 20 seconds per inference. 

        
 
 
 
 
 

 

In terms of count accuracy, the material batches were 
divided into 3 classifications: 

1. Small batches – batches with materials in between 
1 to 100. 

2. Normal batch – batches with materials between 101 
to 250.  

3. Large batch – batches with materials over 250 

Different construction storage sites had specific 
number of materials to be stacked on an individual batch 
based on space availability. Hence, the classification was 
based on analysis of the stacking of materials at different 
temporary material warehouses and sites. Absolute error 
(Measured value – True Value) was calculated for each 
subgroup expressed as a percentage as shown in table 3.  

Table 3. Measure of absolute error of average count of 
different batch size.  

Batch 
Size 

Detected 
Count 

True 
Count 

Absolute 
Error 

Small 35 35 0% 
Normal 105 105 0% 
Large 300 500 40% 

 

5 Conclusion 
      This research proposed an automated decision 
support system which can be used to determine whether 
to dispose, reuse or repair of tubular steel materials based 
on their end point surface defects. Additionally, the study 
contributed to quantification of temporary steel tubular 
materials using deep learning and integration of the deep 
learning model to the web framework for management of 
materials. This can be further used to calculate the cost 
of repair and disposal of steel tubular temporary materials.  
     However, through the study, a very high absolute 
error was observed on large batch material sizes. This is 
because the target objects appear smaller during the 
detection process. In order to improve the accuracy on 
large batches, it is recommended to customize anchor 

Network Epochs GFLOPS Precision mAP@0.5 Recall F1 
Score 

SPPCSP-net 150 105.2 82.4 84.9 74.8 78 

GhostCSP-net 150 102.2 78.5 84.8 82.1 80 

BottleneckCSP-
net 

150 100.3 82.4 82 76.3 78 
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boxes responsible for detecting small objects in addition 
to adding dataset with large batches of materials. Hence, 
a robust deep learning model which is capable of 
accurately quantifying large batch size material is 
suggested as an area of further study.  
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Abstract -
The adoption of autonomous systems is a foreseeable ne-

cessity in the construction sector due to work hazards and
labor shortages. This paper presents a semantic 3D under-
standing module that creates 3D models of construction sites
with highlighted regions of interest for shotcrete application.
The approach uses YOLOv8m-seg and SiamMask for ro-
bust semantic segmentation together with RTAB-Map and
InfiniTAM for visual odometry and 3D reconstruction. Our
method is the first step towards a novel, autonomous robot
for shotcrete spraying and finishing. The effectiveness of our
approach is shown on a mock-up construction site and pro-
vides evidence for the applicability of robotic construction.

Keywords -
Construction Robotics, 3D Reconstruction, Semantic Seg-

mentation, Shotcrete Automation

1 Introduction
The construction sector is among the industries that have

not undergone a major digital transformation. Within the
European Union (EU), it stands out as one of the least
digitalized industries [1]. Furthermore, construction work
is skilled labor, posing demands on the labor market that
are not met today: A European Labor Authority report
shows that 13 out of 30 regions are reporting shortages of
Concrete Placers and Finishers [2]. Construction work is
also known to be highly hazardous with Eurostat reporting
the highest incidence of non-fatal work-related accidents
in the EU, reaching almost 3000 accidents per 100,000
employed persons [3].

Aiming to alleviate these challenges and enhance overall
efficiency, the construction industry is gradually embrac-
ing digital advancements [4]. In particular, the application
of semantic 3D reconstruction, through computer vision
systems and deep learning algorithms, plays a critical role
in enabling precise 3D digital models of the scene. This
advancement allows for the creation of rich Building and

Construction Information Models (BIM/CIM) and Me-
chanical, Electrical, and Plumbing (MEP) systems [5],
targeting the development of digital models of the con-
struction site to ensure time-sensitive decision-making and
streamline project progress monitoring.

Additionally, real-time 3D reconstruction featuring se-
mantic annotations can be used to measure the thickness
level of ground support walls. This is especially valu-
able in shotcrete tasks, where dry concrete is sprayed onto
the wall surface. Shotcrete processes subject workers to
health hazards due to concrete rebound and rely heavily on
the expertise of nozzlepeople to determine the amount of
concrete necessary for effective filling [6]. Consequently,
this method often leads to a substantial waste of concrete.
Enabling advanced imaging systems to monitor and con-
trol the procedure can significantly improve accuracy and
worker safety and reduce excess use of material [7].

This paper presents a robust real-time method for se-
mantic 3D reconstruction tailored for robotic construction
applications. It introduces a novel computer vision system
for the detection and reconstruction of shotcrete construc-
tion sites, using YOLOv8m-seg for semantic segmentation
and InfiniTAM for 3D reconstruction.

The main contributions of this paper are summarized as
follows:

• Compilation of a new semantic segmentation dataset
and training of a robust segmentation model.

• Introducing an integration strategy between 3D re-
construction and semantic segmentation, adapted for
robotic applications within construction sites.

The paper is organized as follows: In Section 2, the latest
advancements in semantic segmentation, 3D reconstruc-
tion, and computer vision datasets tailored to construction
sites are outlined. Section 3 provides a comprehensive
analysis of each proposed pipeline component and the in-
teraction between them. Section 4 demonstrates the exper-
imental assessment, and Section 5 concludes this paper.
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2 Related work
2.1 Semantic segmentation

Semantic segmentation is one of the key components
necessary for a robotic system to analyze its surroundings.
With the advent of deep learning, a boost in performance
gave the computer vision community momentum to re-
search new, deep-learning-based, methods for semantic
segmentation. These methods allow for parameter-less
inference methods and do not rely on extensive domain
knowledge. U-Net [8] is a popular, one of the first deep-
learning-based semantic segmentation models [9] with an
application in biomedicine. DeepLabV3 [10] is another
popular model for semantic segmentation. It made its
debut in 2017 and is the result of incremental develop-
ments based on the first [11] and second [12] versions
of DeepLab. The use of atrous convolutions and atrous
spatial pyramid pooling makes DeepLab have a larger re-
ceptive field and thus higher-resolution feature maps, re-
taining more information in deeper layers. This enables
the integration of both local and global contexts when ex-
tracting features. HRNet [13] was released in 2020 and
also addresses the issue of retrieving and maintaining high-
resolution representations from the input image. The main
contributions of HRNet are the so-called parallel multi-
resolution convolutions and repeated multi-resolution fu-
sions.

YOLO (You Only Look Once) [14] is a popular series
of Convlutional Neural Network (CNN)-based object de-
tection models, first released in 2016 and consequently
developed up to this date in various versions [15, 16, 17,
18]. Its latest version, YOLOv8, provides a unified frame-
work for image classification, object detection, instance
segmentation, object tracking, and pose estimation. Ar-
chitectural details concerning this model can be found in
[19]. It provides an easy-to-use interface for training the
various tasks and integrates well with experiment tracking
tools, ensuring quality control.

Other recent advancements like Segment Anything [20]
or BEiT-3 [21] are departing from CNN-based architec-
tures and use Transformer-based models trained on large-
scale datasets, providing foundation models capable of
tackling multiple downstream tasks.

In our work, we combine YOLOv8m-seg with a mask
tracking model to stabilize predictions obtained from a
low-data model.

2.2 3D reconstruction

Recently there has been a notable effort to integrate deep
learning techniques into 3D reconstruction approaches.
Specifically, this effort focuses on Neural Radiance Fields
(NeRF) [22], and its variants such as Instant-NGP NeRF
[23]. These methods are pivotal elements that boosted

3D reconstruction. Typically, NeRF-based methods use a
regression technique for opacity and color together with
numerical integration, predicting the real step of the vol-
umetric rendering function based on images with known
camera poses. Robotic applications of 3D reconstruction
in the construction industry include Inspection-NeRF [24]
as a method for capturing surface defects in the form of
RGB-D images, collected by a wall-climbing robot to cre-
ate a 3D model and its bounding box, aligning it with
the NeRF implicit boundary. In the work of [25], seman-
tic segmentation is applied to a 3D model generated by
Instant-NGP to construct BIM models from a sequence
of construction site images. Additionally, conventional
methods such as Clustering Multi-View Stereo (CMVS)
and Patch-based Multi-View Stereo (PMVS) [26], are de-
ployed for dense 3D reconstruction in construction sites.

Notwithstanding the advancements in NeRFs, these
techniques require absolute scale recovery and entail sig-
nificant computational time requirements, especially when
handling large-scale scenes such as construction sites [27].
More specifically, 3D reconstruction pipelines that inte-
grate camera pose estimation methods and dense mesh-
ing frameworks have demonstrated their superior feasi-
bility for 3D reconstruction in time-sensitive construc-
tion projects [28]. KinectFusion [29] paved the way for
approaches using real-time volumetric Truncated Signed
Distance Fields (TSDF), resulting in InfiniTAM [30]. This
method uses RGB-D input to perform real-time recon-
struction. To accomplish that, it enables a module for esti-
mating camera poses with a keyframe-based relocalization
system and provides globally consistent reconstruction,
using either TSDF or surfel methods. Additionally, most
recent RGB-D or stereo approaches are using real-time
TSDFs from Euclidean Signed Distance Fields (ESDFs)
to formulate implicit surfaces [31].

In this study, InfiniTAM is investigated as a real-
time modular method and its integration with the well-
established visual SLAM algorithm, namely RTAB-MAP
[32], is explored to achieve more accurate results.

2.3 Computer Vision datasets in construction

Examples of datasets focusing on computer vision
in construction include the Alberta Construction Image
Dataset [33], datasets for safety helmet detection [34, 35],
and the SODA dataset [36], designed for general-purpose
object detection in construction environments. For spe-
cific construction activities, datasets such as CODEBRIM
[37] address concrete inspection, while others like [38] fo-
cus on window installation. Regardless, publicly available
datasets captured in construction environments, specifi-
cally tailored for robotic application in construction areas,
remain a scarce resource. Consequently, we compiled
custom datasets for our application.
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Figure 1. System overview of the proposed and integrated methods

3 Methodology
The structure of our method is illustrated in Figure 1.

It is composed of several modules with their respective
submodules which are covered in detail in the following.

3.1 Semantic understanding

The proposed end-to-end deep-learning-based pipeline
consisting of YOLOv8 and SiamMask needs to be trained
to yield sensible results. YOLOv8 and SiamMask were
selected due to their state-of-the-art performance. Further-
more, YOLOv8 has a well-known architecture, ensuring
reliable and interpretable results. We use an unmodified,
pre-trained SiamMask model. Thus, the training efforts
concern YOLOv8m-seg. The following section describes
experiments carried out to obtain a well-performing se-
mantic segmentation module.

3.1.1 Training setup

The training goal is to teach the model how to segment
areas where shotcrete needs to be applied. We stipu-
late that such areas are easily identified by exposed re-
inforcement bars. The model is therefore trained to de-
tect exposed reinforcement bars. We compiled a small
dataset for this task: detecting exposed reinforcement bars
in wooden structures, without a significant presence of
other objects. The dataset restricts the appearance of ar-
eas in which shotcrete is applied, to rectangular areas with
a rather uniform, wooden background and good lighting
conditions. In real-life conditions, these areas are less reg-
ular in shape and have a bigger variety of backgrounds and
lighting conditions. The dataset consists of three splits:

• Training: 515 frames, 580 instances
• Validation: 191 frames, 167 instances
• Testing: 210 frames, 210 instances

We train the YOLOv8m-seg model for 100 epochs with
default hyperparameters recommended by [19].

3.1.2 Pre-training procedure

We perform a custom pre-training schedule as follows:

1. Train the YOLOv8m bounding box detection model
from COCO pre-trained weights provided by [19]
on the COCO dataset with augmented, synthetic re-
inforcement bars [39], for 100 epochs. All COCO
classes are used, plus an “ExposedBars” category.

2. Considering the epochs from step 1., we use the
weights that achieved the best bounding box mean
Average Precision (50-95) (mAP50-95) as a starting
point and train on the CODEBRIM dataset [37] with
CODEBRIM classes, as well as on an augmented
version of the dataset with synthetic reinforcement
bars.

3. Use weights from the last epoch of step 2. as the
custom pre-trained weights to start training the seg-
mentation model on the dataset described in 3.1.1.

Figure 2 shows the values of the segmentation loss (both
evaluated on the training and validation dataset split) and
the development of mask precision and recall (evaluated
on the validation dataset split) over training epochs. The
losses and metrics show no sign of overfitting, i.e., the vali-
dation loss increasing while the training loss is decreasing.
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Figure 2. Training and validation losses per epoch (left) and Mean Mask Precision and Mean Mask Recall per
epoch (right)

3.1.3 Robustness enhancement

Perturbations of the input image sequences, e.g., ro-
tations and distortions, which are often encountered from
cameras mounted on mobile robots can lead to cases where
the segmentation model cannot re-detect previously seen
areas with exposed reinforcement bars. To counteract this,
an object-tracking model is deployed. The semantic seg-
mentation model in combination with the tracking model
constitutes the complete semantic understanding module.
The tracking model used for this task is SiamMask [40],
using the default pre-trained model on the DAVIS dataset
[41] as well as the default configuration provided by the
developers.

When the segmentation model detects an object, the
tracker is initialized with the respective image and bound-
ing boxes. They are stored in a first in, first out (FIFO)
queue of images and bounding boxes. When the segmen-
tation model fails, the tracker pops a bounding box and the
corresponding image from the queue to find the content of
the bounding box in the current image.

We evaluate the effect of the tracking model on the se-
mantic understanding module. The module is tested on
the validation and testing sequence of the dataset, both
with disabled and enabled tracking. We use a FIFO queue
length of 1 and default confidence thresholds for both
the segmentation model and the tracker model. Figure 3
shows plots of the mean Intersection over Union (mIOU)
calculated on all available IOUs up to that frame. Both
plots indicate the superior performance of the semantic
understanding module when the tracking model is used as
an additional layer to recover false negatives. The bene-
fit is mainly pronounced on the test dataset split, as the
segmentation model fails and thus activates the tracking
submodule more often. A video showcasing the benefit

of the module can be found at [42]. In this video, frames
with red masks show the output of a tracked mask when
the segmentation module failed to produce an output.

In conclusion, the SiamMask tracking model can in-
crease robustness in the case of the segmentation model
failing on objects/areas it has detected once before.

3.1.4 Hyperparameter tuning

This section evaluates the influence of tracker and seg-
mentation model hyperparameters on the overall perfor-
mance measured in mean precision, mean recall, and
mIOU. We perform a grid search on these parameters,
to maximize mIOU on the test set:

1. Tracker FIFO queue length (QL), search range:
{1, 2, ..., 11}

2. Tracker Confidence Threshold (TCT), search range:
{0.1𝑘 |𝑘 ∈ {1, 2, ..., 9}}

3. Segmentation Confidence Threshold (SCT), search
range: {0.1𝑘 |𝑘 ∈ {1, 2, ..., 9}}

Contrary to common practice, the sweep is conducted on
the test split. This is due to the minimal effect of the
tracker on the validation split.

We found that the 10 best-performing runs exclusively
use a QL of 2 together with medium to high TCTs (0.6 –
0.8) and medium to low SCTs (0.1 – 0.4). The 10 worst-
performing runs tend to use medium to high QLs (6-10),
medium to high TCTs (0.6-0.9), and a high SCT (0.9).
This suggests the usage of a QL of 2 together with a low
SCT and a high TCT. We have chosen QL=2, SCT=0.4,
TCT=0.9, achieving a mIOU of 0.85 together with mean
Precision (mP)=0.96 and mean Recall (mR)=0.88 on the
test split.
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Figure 3. Temporal development of detections and mIOU, on the validation (left) and test (right) splits. Green
dashed line shows the current mIOU with tracking enabled, whereas the orange line indicates the scenario with
tracking disabled.

3.2 3D Reconstruction

The 3D reconstruction process uses RGB-D input, ob-
tained through a stereo-vision camera to infer a real-time
3D mesh. The 3D reconstruction module comprises the
subsequent submodules:

3.2.1 3D mesh creation

Aiming to develop an end-to-end modular pipeline, we
strategically applied the InfiniTAM algorithm. Its key ad-
vantage over recent approaches is the capability to synthe-
size accurate 3D surfaces in real-time, addressing absolute
scale recovery and long computational time issues com-
mon in other methods, as reported in [27], which is crucial
for dynamic and expansive scenes such as construction
sites. Furthermore, it seamlessly integrates with stereo
sensors, typically used for robotic vision applications.

In particular, InfiniTAM infers TSDF-based volumet-
ric reconstruction, using hash tables. It relies on RGB-D
input to segment the scene into rigid subscenes and re-
fines their relative poses to build a coherent overall map.
During the camera pose prediction, it adjusts the current
camera position to track the sensor frame, aligning surface
measurements with the model estimation [30].

It is worth noting that our approach strongly depends
on the performance of the stereo camera, as conventional
RGB-D cameras may face limitations in composing depth
images in semi-indoor scenes with changing illumination
conditions. To fulfill these objectives, the Roboception
RC-Visard 160 stereo camera was deployed.

3.2.2 Odometry estimation

During our experiments, we observed poor relocal-
ization performance of vanilla InfiniTAM, when dealing

with partial and noisy surface measurements, captured
under conditions of reduced overlap. To address this
challenge, we conducted a thorough investigation of the
camera pose estimation. Leveraging InfiniTAM’s mod-
ularity, we looked into the integration of a more robust
camera pose estimation module. For this, we deployed
the well-established visual odometry method RTAB-Map
[32], which is a flexible Graph-Based SLAM technique,
to create dense 3D reconstructions. Consequently, the in-
tegration of an advanced external camera pose estimation
played a significant role in developing a robust real-time
3D reconstruction method, demonstrating adaptability in
handling complex environments such as construction sites.

3.3 Integrated system

The proposed system consists of two interconnected
major submodules: semantic understanding and 3D recon-
struction. The semantic understanding module deploys a
YOLOv8m-seg [19] segmentation model, stabilized with
the SiamMask [40] segmentation mask tracker, adept at
robustly identifying exposed reinforcement bars. The 3D
reconstruction module incorporates an external odometry
estimation component and employs TSDF volumetric re-
construction, leveraging RTAB-Map [32] and InfiniTAM
[30], respectively.

As illustrated in Figure 1, the integrated method follows
these steps: Given the sensor data (RGB image, depth
image) as an input, the semantic understanding module
infers a mask, marking areas with exposed reinforcement
bars in each image. Simultaneously, the sensor data is used
to obtain a visual odometry estimation. Combined with
the segmentation mask and sensor depth measurements,
the 3D reconstruction module constructs a semantic 3D
model of the environment. This model can be used to
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acquire a digital representation of the construction site
in real-time, streamlining the planning and execution of
robotic shotcrete operations.

4 Experimental evaluation
4.1 Experimental process

We tested our pipeline at a semi-indoor construction site
featuring wooden panels, both with and without exposed
reinforcement bars. We tested before shotcrete applica-
tion, as depicted in the upper part of Figure 4. The 3D
reconstruction module processed data captured by a Robo-
ception RC-Visard 160 stereo camera. The semantic un-
derstanding module inferred masks for areas with exposed
rebars.

4.2 Results

Qualitative results are presented in the lower part of
Figure 4. The semantic understanding module precisely
identified regions of interest, denoted by cyan masks.

We measured the effectiveness of the integrated frame-
work in terms of its geometric precision by applying a
manual procedure to measure the point-to-point distances
of the wooden frames within the 3D model, correspond-
ing to the segmented area. The vertical and horizontal
dimensions of the real wooden frame were measured to
be 2 meters long and 1 meter wide. We selected sev-
eral 3D point pairs in the point cloud (�,�, �) to mea-
sure their distances and assess the accuracy of the scene
reconstruction. Specifically, the experiment involved 12
point-to-point measurements of the frame’s dimensions,
as illustrated in Figure 5. Subsequently, we compute the
root mean square error (RMSE) by comparing the dis-
tances of the real wooden frame with the distances of the
reconstructed 3D model. The RMSE amounts to 0.564
centimeters.

5 Conclusion

We proposed a real-time method for semantic 3D re-
construction for robotics-based construction applications.
Our method uses a robust semantic understanding module
using a custom YOLOv8m-seg segmentation model and
the SiamMask mask tracker, together with RTAB-Map for
odometry estimation and InfiniTAM for 3D reconstruc-
tion. The resulting semantic 3D mesh model is an impor-
tant step towards introducing robotic systems in shotcrete
construction to improve worker safety and alleviate labor
shortages. Our experimental evaluation concluded that
the developed method is applicable for semantic under-
standing and reconstruction of semi-indoor construction
scenes, highlighting regions of interest before performing

Figure 4. Upper part: samples of two images of
the testing area within the construction site. Lower
part: semantically annotated 3D mesh model, where
regions of interest are highlighted in cyan.

Figure 5. Samples of point-to-point measurements
of the 3D reconstruction accuracy

shotcreting. The novel approach was tested under real-
istic construction site conditions, showcasing good per-
formance in terms of RMSE, mIOU, mean precision and
mean recall. We believe that the method can be extended
to accommodate other common shotcrete application sce-
narios, as well as to spark general interest in introducing
advanced computer vision approaches to challenging con-
struction tasks.
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Abstract – 

In the context of real-time data acquisition and 
processing, dealing with missing data (MD) is a 
common challenge that can compromise the quality 
and effectiveness of machine learning (ML) 
algorithms. Previous research focuses on creating a 
real-time safety monitoring system that predicts 
safety conditions in scaffolds by analyzing strain 
measurements from sensors placed in the structure's 
columns. However, it does not address the effect of 
sensor failures and the resulting MD. This paper 
explores how the presence of MD, caused by faulty 
sensors, affects the performance of eight ML 
algorithms in a safety monitoring scaffolding system: 
gaussian naive Bayes (GNB), random forest (RF), 
multi-layer perceptron (MLP), support vector 
machine (SVM), decision tree (DT), XGBoost (XGB), 
logistic regression (LR), and linear support vector 
classification (LSVC). This study identifies how these 
algorithms perform when processing datasets with 
missing values. As the amount of MD in the datasets 
increases, there is a consistent negative influence on 
the performance of each algorithm, resulting in 
reduced predictive accuracy. Among all the tested 
ML algorithms, RF and DT have shown to be the most 
sensitive to MD. 

 
Keywords – 

Scaffolds; classification; missing data; machine 
learning. 

1 Introduction 
Real-time data acquisition and processing often face 

the challenge of missing data (MD), impacting data 
quality and machine learning (ML) algorithm 
performance [1], impacting pattern identification [2]. 
Strategies to handle MD are crucial [3] because its 
presence introduces a risk of process failures, failing to 
accurately represent the true reality of the system [4]. The 
collective findings from several studies [5–8] underscore 
the significant influence of MD on the ML algorithms’ 
performances, and stress the necessity of handling MD 

effectively to ensure accurate and dependable ML results. 
Previous research focuses on real-time monitoring of 

intricate scaffolds using ML techniques to forecast safety 
conditions [9]. This study delves into a technique for 
categorizing instances of scaffold failure and accurately 
predicting safety conditions, using data from strains 
installed on the scaffold columns. The authors 
successfully improved the accuracy of ML classification 
through a self-multiplication technique [10]; nonetheless, 
prior research did not account for the influence of sensor 
failures and the subsequent absence of data on the 
system's acquisition. In this specific case, MD can cause 
an incorrect prediction in the scaffold structure’s safety 
conditions. For instance, if the scaffold structure is about 
to overturn due to unbalanced loads, the MD in a sensor 
measurement can result in a safe classification instead of 
an overturning one. 

These real-time sensing systems should demonstrate 
high accuracy in safety monitoring to promptly detect 
temporary structures’ potential structural failures. The 
primary purpose of research toward reliable safety 
predictions is to safeguard the lives of workers [10]. 
Accurate predictions help to identify potential hazards or 
structural failures in advance, allowing for timely 
interventions or preventive measures to protect workers 
from injuries. This could involve reinforcing a structure, 
evacuating an area, or adjusting working conditions to 
prevent accidents. In addition, an accurate safety 
prediction can save costs associated with medical 
expenses, structural or property damage, legal liabilities, 
and potential project delays. 

In response, this project studies the problem of MD in 
a scaffold dataset. It investigates MD effects on the 
performance of eight ML classification algorithms: 
gaussian naive Bayes (GNB), random forest (RF), multi-
layer perceptron (MLP), support vector machine (SVM), 
decision tree (DT), XGBoost (XGB), logistic regression 
(LR), and linear support vector classification (LSVC). 

2 Literature Review 
To study the effects of MD on data mining processes, 

it is crucial to understand MD mechanisms [11]. The 
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methods used to handle missing values are often based 
on assumptions tied to the underlying mechanisms 
causing the MD [12]. Four mechanisms of the occurrence 
of MD are defined [13]: when the entry is not supposed 
to have a value in a given field, it is said that it is 
structurally missing (SMD) [14]. Missing completely at 
random (MCAR) is when the cause of data absence is 
independent from the observed and unobserved entries. 
Missing at random (MAR) is when the cause of data 
absence is related to the other observed entries. Finally, 
missing not at random (MNAR) is when the cause of data 
absence is related to the missing entry and the other 
observed entries. According to the previous definitions, 
this study deals with MCAR data, because the missing 
values originate when a sensor failure occurs due to a 
communication error or device malfunction. This event 
is not related to any other measured variable in the system. 

The influence of MCAR on ML algorithms for safety 
monitoring cannot be overstated. Studies [5,8] highlight 
how the presence of MCAR significantly distorts the 
integrity of datasets, leading to biased predictions and 
compromised algorithmic performance. This bias stems 
from the randomness of MD, affecting the statistical 
properties of the dataset and, consequently, the MS 
models’ training and generalization capabilities [7]. 

In a comprehensive review [15] of 152 ML-based 
clinical prediction model studies, the reporting quality 
regarding MD was generally poor, aligning it with 
similar reviews. Excluding participants with MD and 
insufficient details was found to be a common practice of 
MD handling methods. Other studies [16] utilized 
techniques like mean imputation or complete-case 
analysis for healthcare data. The review highlighted the 
pressing need for improved reporting guidelines, 
adherence, and understanding the repercussions of 
improper MD handling in ML-based prediction studies in 
healthcare. 

The gaps and challenges related to MD are evident in 
ML-based heart disease prediction models [17]. The 
limited exploration of MD effects reveals a lack of 
comprehensive understanding regarding model 
performance. The study demonstrates by varying 
accuracy percentages in predicting heart disease, yet fail 
to explicitly address how to handle MD or its influence 
on these outcomes. This highlights the need for a more 
nuanced comprehension of data preprocessing methods. 
Another study [6] centers on how MD affects ML 
algorithms used in hydrologic predictions and proposes a 
method to fill in the gaps. A comprehensive overview [18] 
of MD in ML emphasizes the importance of 
appropriately addressing and evaluating various 
imputation techniques. Additionally, the study notes the 
use of smaller, domain-specific datasets, accenting the 
need for exploring MD handling in larger, real-world 
datasets with diverse features.  

Applications in construction [19] focus on critically 
evaluating concrete strength predictions for enhanced 
sustainability. However, challenges arise due to MD, 
noise, and model interpretability. The authors used a 
dataset of manufactured sand concrete and various ML 
algorithms to demonstrate predictive performance. They 
found it necessary to bridge MD concerns and enhance 
interpretability for reliable concrete strength predictions 
in construction applications. 

In safety applications, researchers addressed MD 
issues on high-plateau flights [20] by proposing an 
improved method based on least squares support vector 
machines (LS-SVM). This method approaches the 
challenges placed by missing or abnormal quick access 
recorder data due to harsh environmental conditions. 
Through advanced ML techniques, this method enhances 
the reliability and accuracy of flight data processing and 
analysis, contributing to improved aviation safety. 

Estimations of increased risk of crashes on freeways 
need to be accurate and reliable, but the utilization of 
real-time traffic data in proactive safety management 
systems is lacking due to MD. To fill these gaps, past 
research [21] has proposed a framework for real-time risk 
assessment on freeways by integrating data from multiple 
detection systems, real-time weather, and roadway 
geometry. The development of the framework mitigates 
the effects of MD, contributing to the system with high 
estimation accuracy, robustness, and reliability. 

To detect high-severity accidents in the construction 
industry, accurate prediction models are needed. While 
occupational accidents are common in construction, the 
challenge lies in determining the combination of 
preprocessing techniques that yield the most accurate 
severity prediction, considering issues such as MD, 
outliers, feature scaling, and imbalanced class 
distribution. Specifically, in dealing with MD, the 
researchers [22] have experimented with different 
scenarios of preprocessing techniques to determine the 
best combination. One of the scenarios involved not 
removing MD, indicating that missing values were 
retained in the dataset rather than being imputed or 
deleted. This approach allowed the model to learn from 
the available data without discarding potentially valuable 
information. 

Prior studies developed a real-time safety monitoring 
system [9] based on strain measurements from sensors 
installed in the columns of the structure but did not 
consider the implications of MD introduced by sensor 
malfunctions. The previous articles contribute to 
understanding the influence of MD and how to improve 
model accuracy, comparability, and reliability in 
different areas of study. These contributions are used as 
guidelines, as the nature of the described problems 
present similar challenges to the ones found when a 
faulty sensor generates MD in a scaffold safety 
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monitoring system’s dataset. Leveraging existing 
knowledge from various domains helps in developing 
strategies to handle MD effectively in the context of 
scaffold safety monitoring systems. Understanding how 
MD affects the performance of various ML algorithms 
contributes to the development of strategies to address 
specific types of MD and the mitigation of their impacts 
on algorithmic performance. 

3 Objective and Scope 
This research aims to assess the influence of MD, 

stemming from sensor failures, on the ML algorithms’ 
predictive accuracy and performance in a real-time safety 
monitoring system for scaffolds. This paper evaluates the 
performance of eight ML algorithms: GNB, RF, MLP, 
SVM, DT, XGB, LR, and LSVC when exposed to 
datasets that feature MD caused by the simulation of 
faulty sensors. This paper expands upon a previous study 
[10] through additional investigation, evaluation, and 
discussions of MD across various ML models. By 
employing a diverse set of classification algorithms, the 
study explores different modeling approaches to handle 
the same type of data and capture the patterns. While 
reviewing different safety-related studies conducted with 
ML application, it was observed that GNB [23–25], RF 
[26–28], MLP [26,28,29], SVM [26,28,30], DT 
[28,31,32], XGB [33–35], LR [32,36,37] and LSVC 
[26,28,38] are mostly employed by researchers. 
Therefore, these eight ML models are used in this 
investigation. 

4 Approach 
The proposed approach comprised four fundamental 

steps, as illustrated in Figure 1. General approach of the 
studyFirst, it conducts an in-depth analysis of the initial 
dataset, establishing a benchmark for understanding the 
complete data's characteristics. Subsequently, simulated 
MD is introduced to replicate sensor faults, enabling the 
evaluation of ML algorithms' performance under these 
conditions. Then, the algorithms are assessed for their 
predictive capabilities using both the original complete 
dataset and the data affected by missing values. 

A crucial aspect involves progressively evaluating 
algorithm performance as the number of faulty sensors or 
MD increases, highlighting the repercussions of sensor 
failures on algorithm accuracy. This comprehensive 
approach provides insights into the ML classification 
algorithms’ behavior in scenarios involving faulty 
sensors, aiding in understanding their robustness. 

The results may contribute to making decisions about 
algorithm selection and implementation in real-world 
applications. The previous steps are explained and 
justified as follows: 

 
Figure 1. General approach of the study. 

 

Step 1: Data analysis. This step involves thoroughly 
examining the characteristics of the original complete 
dataset. It is necessary to establish a baseline 
understanding of the nature of the system, including data 
distribution, variability of measurements, and any 
underlying patterns. This analysis provides essential 
context for subsequent steps and helps to identify 
potential issues or anomalies in the dataset. 
Step 2: Data amputation. Simulated MD is introduced 
to replicate sensor faults, replicating real-world scenarios 
where data may be incomplete due to sensor 
malfunctions. This step is crucial to evaluate ML 
algorithms’ performance in the presence of MD. By 
simulating sensor faults, it is possible to estimate how 
well the algorithms may handle these conditions and 
whether they can effectively make predictions despite 
incomplete information. 
Step 3: ML algorithm evaluation. In this step, ML 
algorithms are trained and tested using the original 
complete datasets. This allows the evaluation of the 
algorithms ability to make accurate predictions, while 
operating under ideal conditions before introducing MD. 
This step is a starting point assessment to compare 
algorithm performance under different conditions and 
determine how MD affects predictive accuracy. It 
provides a quantifiable perception of the algorithms’ 
robustness and their reliability in real-world applications. 
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Step 4: Progressive evaluation with increasing MD. 
As the number of faulty sensors or MD increases, 
algorithm performance is progressively evaluated. This 
step is essential to understand how algorithm accuracy 
changes as data quality deteriorates due to sensor failures. 
By systematically increasing the severity of MD 
scenarios, it is possible to identify thresholds where 
algorithm performance significantly degrades. This 
evidence helps to understand the limitations of ML 
algorithms in handling MD and informs decision-making 
regarding algorithm selection and deployment. 

4.1 Real-time safety monitoring system 
This study incorporates a real-time safety monitoring 

system designed for scaffold structures, based on a 
previous investigation [10]. The system relies on strain 
sensors embedded within the columns to gather crucial 
data indicative of potential scaffold failures. Figure 2 
(Figure 5 in [10]), illustrates the scaffold's configuration, 
comprising 10 columns distributed across 3 stories with 
20 sensors strategically positioned at various locations. 
The sensor measurements are used to predict the scaffold 
safety condition as overload, uneven, sideways, and safe 
by processing the data with ML classification algorithms 
in Python (GNB, RF, MLP, SVM, DT, XGB, LR, and 
LSVC). The algorithms are a built-in function from 
sklearn package, except for XGB, which has its own 
package called xgboost. Training was carried out with 
complete datasets without including MD. 

 
Figure 2. Scaffolding Structure with sensor 
measurement (Figure 5 in [10]). 

4.2 Dataset 
The original complete dataset was obtained from a 

previous study [9]. The dataset for strain measurement 
was created based on structural conditions observed in 
scaffold usage and distinguished between safe and unsafe 
conditions. The unsafe category was divided into global 
and local failures. Global failures involved overturning in 
both lateral X and Y directions. Local failures included 
uneven settlement and overloading issues. The scaffold 
model comprised 10 vertical members, each equipped 
with 20 evenly distributed strain-measuring sensors 
placed on them, as shown in Figure 2 (Figure 5 in [10]). 
The output is divided into 23 classes representing 
different safety conditions. The dataset contains 1,000 
samples for each of the 23 classes. 

4.3  MD generation and follow-up analysis 
The initial dataset was generated based on the 

automated monitoring system’s optimal operation 
conditions without accounting for MD [10]. Therefore, 
data amputation is needed to simulate the MCAR 
scenario. 

This paper considers the progressive occurrence of 
failure. In this progression, the number of failing sensors 
starts from 1 to 20, equal to the entire sensors. While this 
may not make sense in a practical manner, it is important 
that this research investigates the effect of incremental 
sensor failures on the classification accuracy from a 
theoretical perspective. To simulate faulty sensors, or 
MD, null values were introduced, which are considered 
as 0.000με as an indication of absence of measurement. 

The conducted analysis involved observing how 
different ML algorithms responded to the introduced 
failure cases in the dataset and thus overall prediction 
performance. By systematically introducing these cases 
across all sensors progressively, how each algorithm 
adapted to and handled the simulated errors was 
evaluated. algorithm presents a summary of the analysis 
output by showing the prediction accuracy in relation to 
the number of faulty sensors the entire dataset across all 
the tested ML algorithms. 

The evaluation metric used for ML classification 
algorithms is accuracy instead of other metrics because is 
straightforward to understand. It represents the 
proportion of correctly predicted classes out of the total 
classes in the dataset and intuitively captures how well 
the ML model performs overall. In this specific case of 
study, accuracy is an appropriate metric due to the 
balanced dataset, i.e., the dataset contains 1,000 samples 
for each of the 23 classes. 

Accuracy is evaluated by dividing the strain dataset 
into two portions: a training set and a testing set. This 
splitting is done to assess how well the ML algorithms 
perform in making predictions on new, unseen data. 
Specifically, the testing set comprises 20% of the entire 
dataset. The purpose of this separation is to use the larger 
portion (80%) as the training data to teach the model how 
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to make predictions based on patterns and information 
within that data. The remaining 20% is set aside as the 
testing data, which is kept separate and not used during 
the training phase. 

After training with the training dataset, the obtained 
model is then evaluated using the testing dataset. The 
predictive accuracy is determined based on how well it 
predicts or classifies the outcomes within this separate 
testing data. 

The following sections further discuss these results. 

5 Results and Discussion 
Prior to discussing the results, Table 1. ML algorithm 

performance in optimal operation conditions shows the 
accuracy achieved by each studied ML classification 
algorithm on a complete strain dataset. As this is based 
on a complete dataset, high accuracies are anticipated. 

Table 1. ML algorithm performance in optimal 
operation conditions. 

ML Algorithm Accuracy 
RF 0.9998 

XGB 0.9998 
DT 0.9991 

SVM 0.9989 
LR 0.9974 

MLP 0.9941 
GNB 0.9937 
LSVC 0.9937 

The high accuracy percentages reported in the study 
for various ML algorithms indicate their effectiveness in 
correctly classifying a complete dataset without MD 
presence. The reported accuracies in Table 1 are achieved 
under optimal operating conditions without any faulty 
sensor performing. In such conditions, these algorithms 
perform up to 99%, achieving near-perfect accuracy 
(100%). Note that more complex algorithms with a larger 
number of hyperparameters are prone to overfitting and 
have difficulty handling MD, especially if not 
appropriately tuned or validated. 

Figure 3. Effect of MD generated from faulty sensors 
on the performance of ML classification algorithms 
while processing a strain dataset of a scaffold 
structure.illustrates how the accuracy of the ML 
classification algorithms is negatively affected by the 
inclusion of MD in the dataset. The accuracy of GNB 
drops gradually as the number of faulty sensors increases. 
With all sensors functioning, it achieves an accuracy of 
99.37%. However, as the number of faulty sensors 
increases, the accuracy decreases progressively, reaching 
4% when all sensors are faulty. It still presents at least 50% 
accuracy with about 8 faulty sensors out of 20 sensors. 

RF shows a similar trend, but after the second sensor 

fails, the accuracy is more negatively affected than that 
of GNB. 

 
Figure 3. Effect of MD generated from faulty 
sensors on the performance of ML classification 
algorithms while processing a strain dataset of a 
scaffold structure. 

 
DT shows a pattern where accuracy significantly 

drops from the third faulty sensor. The accuracy drops 
from analyzing with 2 sensors in failure to 3 sensors in 
failure, exhibiting the most detrimental rate at about 50%. 

In general, all ML algorithms experience a decrease 
in accuracy as the number of faulty sensors increases. 
Except for DT’s case, about 50% accuracy was still 
achieved when 5-7 failing sensors were included in the 
analysis. Overall, GNB and LSVC appear to be relatively 
more robust against MD compared to the other 
algorithms listed here. DT and RF exhibit higher 
sensitivity to MD, showing a significant decrease in 
accuracy as the number of faulty sensors increases. 

Several reasons could contribute to RF and DT being 
more sensitive to MD compared to other algorithms, and 
they can be more susceptible to noisy or inconsistent data. 
DT create biased nodes when encountering MD, 
affecting subsequent decision-making and accuracy. MD, 
which can be considered a form of noise, might be 
challenging for these algorithms to handle effectively. 
These algorithms might lack the robustness to handle MD 
compared to other algorithms like GNB or LSVC, which 
can handle missing values more effectively due to their 
underlying mechanisms. 

The study also evidences the decline in accuracy as 
the number of faulty sensors or amount of MD increases. 
This decrease in accuracy indicates that the algorithms 
are sensitive to MD, which may be due to their inability 
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to effectively handle such inconsistencies. 
It is important to note that the behavior of these ML 

algorithms concerning MD can depend on various factors, 
including the specific dataset used in training. Tuning 
hyperparameters or using specific techniques for MD 
handling might help to mitigate these algorithms’ 
sensitivity to missing values. 

6 Conclusions 
This study investigates the effect of MD caused by 

simulated sensor failures on the performance of ML 
classification algorithms used in a real-time safety 
monitoring system for scaffolds. The research focuses on 
assessing the predictive accuracy of eight ML algorithms 
when confronted with a dataset containing different 
amounts of MD. 

It was evident that MD has a significant negative 
influence on ML algorithms’ performance, and there is a 
need to effectively handle it to ensure accurate results. 
Previous studies in various domains have stated the 
challenges posed by MD and the need for improved 
reporting guidelines and understanding the repercussions 
of improper MD handling in ML-based prediction studies. 
In the context of scaffold safety monitoring systems, 
developing strategies to handle MD effectively is 
required, considering the influence MD has on 
algorithmic performance. 

Results indicate that most ML algorithms achieve 
over 99% accuracy on the complete dataset, and RF, DT, 
and XGB exhibit the highest accuracy. However, when 
introducing progressively incremental MD, all ML 
algorithms experience a decrease in accuracy. Notably, 
GNB and LSVC appear relatively robust to MD, while 
DT and RF exhibit higher sensitivities to MD, showing a 
significant decrease in accuracy as the number of faulty 
sensors increases. 

To conclude, MD significantly affects ML algorithms’ 
performance, particularly DT and RF, which show higher 
sensitivity to MD. Possible reasons for this sensitivity 
include susceptibility to noisy data and a lack of 
robustness in handling MD compared to that of other 
algorithms. Dataset characteristics and proper handling 
techniques must be considered to mitigate the algorithms’ 
sensitivities to MD. 

7 Limitations 
The study primarily focuses on theoretical 

simulations of sensor failures, introducing null values to 
simulate MD. This approach allows for controlled 
experimentation and may not fully capture the 
complexities of real-world sensor malfunctions. 
Although the assumption of sensor failing one by one 
does not reflect a realistic scenario, this study conducts a 

progressive analysis to systematically assess MD’s 
effects. By simulating failures in a progressive manner, 
the study can observe the incremental degradation in 
algorithm performance with each additional failing 
sensor. This helps to understand MD’s cumulative effect 
on the algorithms’ reliability for safety monitoring 
applications. 

As the study’s primary objective is to investigate 
MD’s influence on ML algorithms’ performance, the 
hyperparameter tuning is not considered. The 
performance comparison of the ML algorithms is made 
with default hyperparameter settings; this approach 
provides a baseline for comparison and allows for 
assessing the algorithms' robustness without additional 
tuning.  To extend and generalize the results, validation 
with real-time acquisition systems and actual sensor 
failures are required. 

8 Future Work 
As future work, MD handling techniques like 

imputation could be applied to fill in the MD. The real-
time safety monitoring system’s accuracy and precision 
could be improved by optimizing these methods. To do 
this, tuning hyperparameters or data preprocessing could 
be used. Once the imputation stage is complete, it would 
be possible to evaluate the imputed values’ effects on the 
predicted safety conditions in the real-time safety 
monitoring system. 
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Abstract – 

Digital Twin (DT) is a virtual replica that mirrors 
physical objects, systems, or entities. In the 
construction sector, DTs play a crucial role in 
building management, optimizing energy usage, 
predicting maintenance, and enhancing building 
lifecycle management. Although effectively integrated 
into traditional construction practices, its application 
in the prefabricated construction (PC) field remains 
relatively limited. Despite its potential to transform 
the PC, a significant research gap exists in 
comprehensive literature addressing the approaches, 
challenges, and requirements specific to this field.  

This study aims to bridge this gap through a 
mixed-method research approach that includes 
bibliometric analysis and systematic review. 
Publications related to PC and DT are collected from 
the Scopus database, followed by bibliometric 
analysis to offer a quantitative insight into the current 
research trends, prolific authors, and geographical 
distribution. Furthermore, this study conducts a 
systematic review that qualitatively analyzes the 
objectives of DT applications in PC, explores its 
methodological approaches, identifies challenges and 
recommendations for practitioners and researchers, 
and suggests future needs. The findings highlight the 
pressing need for standardization, robust data 
management, and scalable solutions to navigate the 
complexities. Conclusively, this paper presents a 
comprehensive conceptual framework to facilitate the 
application of DT in various phases of PC. The critical 
limitation is the reliance on the publications on the 
Scopus database and its potential biases. Excluding 
the need to expand on more emergent publications, 
discussing empirical DT studies in PC to highlight 
interoperability and standardization needs is also 
required for future research. 
 
Keywords – 

Prefabricated Construction; Digital Twins; 
Cyber-Physical System; Building Information 
Modeling; Internet of Things 

1 Introduction 
Traditional construction (TC) methods have faced 

criticism for low productivity, delayed project 
completion, unskilled workforce, subpar performance, 
and inefficient resource management. In response, 
prefabricated construction (PC) has emerged as a 
contemporary construction method, gaining popularity 
for its efficiency and benefits [1]. Though PC's origins 
trace back to the 1960s, its recent surge is primarily 
attributed to advancements in computing and technology 
like Building Information Modeling (BIM), Artificial 
Intelligence (AI), and the Internet of Things (IoT) [2]. 
BIM, in particular, is widely adopted in PC to address 
issues such as the need for early design decisions, 
logistical and supply chain complexities, and inadequate 
collaboration among stakeholders. As a digital 
representation, BIM encompasses a facility’s physical 
and functional characteristics, serving as a shared and 
comprehensive knowledge base for information [3]. This 
information provides a dependable foundation for 
decision-making throughout the building's life cycle, 
from the initial concept stage to eventual demolition [4].  

Using the cyber-physical system (CPS), Digital Twin 
(DT) is gaining significant traction across various 
industries, involving real-time monitoring, performance 
optimization, predictive analysis, simulations, and 
testing to aid critical decision-making processes. DT is 
emerging as a pivotal technology in the Industry 4.0 era, 
finding integration across diverse sectors. It essentially 
creates a digital replica or model of a physical entity 
(known as the physical twin), with both entities being 
interlinked through real-time data exchange [5]. This 
concept allows the Digital Twin to accurately reflect the 
state of its physical counterpart in real-time, and vice 
versa. DT's applications are varied, encompassing real-
time monitoring, design and planning, optimization, 
maintenance, and remote operation [6]. Initially 
developed in the aerospace sector, DT is now poised to 
transform other industries, including manufacturing, 
construction, and healthcare [5]. By bridging the physical 
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and virtual worlds in real-time, DT offers an accurate 
approach to modeling complex, unpredictable scenarios. 
This ability, especially when combined with BIM, 
significantly improves and addresses PC challenges.
Given BIM's interaction with CPS, DT is seen as a 
mature evolution of BIM [7].

Although DT was initiated in product lifecycle 
management by Michael Grieves in 2002 [5], its
significant existence in construction began in the 2010s
and the early 2020s in PC, as the technology matured in 
managing complex construction projects became more 
evident. However, those are related to the application 
rather than the overview of DT in PC, and a critical gap
exists. To address this gap, this study aims to bring out
the following objectives: (1) scientometrically analyze 
the status of DT application in PC; (2) understand the 
level of DT integration and approaches in PC; and (3) 
identify the challenges and their requirements. To 
achieve these objectives, articles searched from the 
Scopus database are analyzed bibliometrically and 
systematically.

2 Digital Twin in PC
2.1 DT in Construction 

With the rise of IoT, which is the application of 
unique identifiers to physical objects that enable them to 
be connected to a network, allowing the transfer of data 
to and from those objects, the application of DT in the 
construction field is increasing. The evolution of various 
AI and machine learning (ML) technologies has made it 
even more possible in recent years [8]. From the articles 
published in the Scopus database, Figure 1 depicts a 
sharp rise in DT across industries from 2009 to 2023. A 
modest start with a few yearly publications until 2016 
precedes a significant surge from 2017 onward, 
indicating increasing adoption of DT technology. The 
numbers more than double annually, from 38 in 2017 to 
a projected 2866 in 2023, highlighting the rapidly 
growing integration of DTs in the era of Industry 4.0.

In the construction sector, the application of DT has 
been increasing in the past few years. This can be 
depicted in Figure 2, which presents the distribution of 
articles between the engineering and construction sectors 
from 2014 to 2023. While engineering publications have 
grown substantially, reaching 1944 in 2023, DT in PC 
has also seen a notable increase, constituting 
approximately 15% of the engineering total. This 
percentage underlines the rising significance of DT 
applications in construction.

Initially, DT usage in the construction sector 
predominantly focused on post-construction operations 
and maintenance [9]. However, advancements in AI and 
IoT technologies have expanded DT applications to 
include logistics, supply chain management, design 

simulation, and energy optimization through sensors and 
machine learning. In PC, the synergy of DT with BIM is 
increasingly recognized for maximizing efficiency and 
promoting sustainability [10]. Some predominant 
applications include streamlining design, manufacturing, 
and assembly processes and improving lifecycle 
management through real-time data analysis and 
simulation. While many articles have addressed DT 
applications across PC phases, a thorough overview of 
DT applications is limited. For instance, Xie and Pan 
(2017) explored practices and challenges, proposing a 
basic framework for DT's integration with PC [9]. Yevu 
et al. (2023) reviewed DT in PC, focusing only on supply 
chain and carbon emissions [11], while Zhuo et al. (2023) 
discussed all digital technologies in PC [12]. This 
indicates the need for a more holistic review of DT 
applications in PC.

Figure 1. Application of DT over the years

Figure 2. Percentage of publications in 
engineering and construction

2.2 Fundamental Components of DT in PC
The fundamental components of a DT in PC include:

⚫ Physical assets: The PC components, such as 
panels, modules, or entire building sections, are the 
core objects that the DT will replicate.

⚫ Data collection system: IoT sensors and devices 
embedded in the components gather real-time data 
on performance, conditions, and usage [13].

⚫ Connectivity system: A network infrastructure 
enabling continuous data transmission from the 
physical to the digital, often utilizing cloud 
computing.
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⚫ Digital replica: A virtual model, usually created 
using BIM software, that reflects the physical 
characteristics and behavior of the PC components. 

⚫ Data processing and analytics: Software systems 
and algorithms that analyze the data collected 
incorporating AI and ML for advanced insights [11]. 

⚫ Integration layer: Middleware that facilitates the 
integration of the DT with other systems, such as 
BIM, ensuring cohesive data flow and functionality. 

⚫ User interface: A dashboard to visualize data, 
interact with the DT, and make informed decisions 
based on the insights provided [9]. 

⚫ Simulation and modeling tools: Applications to 
simulate various scenarios on data collected, predict 
outcomes, and plan for future actions in the virtual 
world. 

⚫ Feedback loops: Mechanisms that allow for the 
information and insights gathered from the DT to be 
fed back into the design, manufacturing, or 
construction process to improve future PC projects. 

The integration of DT differs significantly between 
TC and PC. As mentioned earlier, DT in TC primarily 
focuses on managing on-site activities and adapting to 
changing project conditions, thus enhancing project 
management and resource allocation [14]. Conversely, in 
PC, DT is applied to optimize factory-based 
manufacturing, logistics, and assembly processes, 
benefiting from a more controlled and systematic 
environment, thus leading to improved precision and 
efficiency. Building on this foundation, Sections 3 and 4 
delve into DT's detailed application in PC, highlighting 
empirical studies and integration strategies for 
overcoming identified challenges. 

3 Research Approach  
This study adopted a mixed review approach [4] that 

integrates a bibliometric analysis and a systematic review 
to mitigate biased conclusions. Bibliometric analysis is a 
quantitative research method to explore the patterns, 
trends, and impact within a body of literature. It involves 
statistical analysis of articles’ metadata to understand the 
development and dissemination of knowledge in a 
specific field. On the other hand, a systematic review is a 
methodical and comprehensive literature review focused 
on a particular research question. It aims to identify, 
evaluate, and synthesize all available research evidence 
relevant to that question. Figure 3 illustrates the three-
step methodology sequentially adopted in this research. 
As a first step, the Scopus database, known for its 
extensive coverage and stringent peer review process [4, 
9], was selected as the primary source for literature 
retrieval. This search was confined to English-language 
articles, specifically targeting journals and conference 
proceedings in the Engineering subject field. The 

research focused on a set of keywords intertwining DT 
and PC, encompassing terms such as "digital twins," 
"virtual replica," "predictive twin," and various related 
phrases in prefabrication such as "prefabricated 
construction," "prefabricated structures," "modular 
construction," "precast construction," "offsite 
construction," "modular integrated construction," 
"ppvc," "industrialized construction," using the Boolean 
operator “AND.” The initial search yielded 79 articles, 
providing extensive bibliometric data. However, not all 
are aligned with the study's focus. After thorough abstract 
and full-text reviews, 47 articles are included in this study.  

Subsequently, VOSviewer, which facilitated the 
construction and visualization of a comprehensive 
bibliometric network, was employed for a bibliometric 
exploration, concentrating on the co-occurrence of 
keywords and the geographic distribution of publications. 
Finally, the publications were thoroughly examined to 
analyze the objective-oriented application, 
methodological approaches, challenges, and 
requirements, and a conceptual framework was devised 
to facilitate the application of DT in PC.  

 
Figure 3. Research steps and approaches 

4 Analysis and Discussion 
This section delves into the bibliometric content 

analysis and discussions based on the final dataset 
derived from step 1, as outlined in Figure 3.  

4.1 Bibliometric Analysis 
The bibliometric analysis concentrates on three 

aspects: discerning main research themes via keyword 
co-occurrence, mapping global research through country 
co-authorship, and identifying leading contributors 
through author co-authorship networks. This approach 
provides insights into the development, geographic 
distribution, and critical DT and PC research contributors. 

4.1.1 Research Themes 

The “co-occurrences of keywords” analysis is vital to 
identifying dominant themes and topics in DT and PC 
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literature [4]. Figure 4 illustrates a network map that 
visualizes the interconnectedness of keywords based on 
their co-occurrence in the literature. Central to the 
network is “digital twin,” with 25 occurrences and 11 
links, demonstrating a total link strength of 22. This 
highlights its pivotal role and frequent association with 
other key topics in the field. Adjacent to 'digital twin,' the 
term 'modular construction' features prominently, with 13 
occurrences and a total link strength of 12, indicative of 
its significant overlap with DT concepts. The 
“construction industry,” with ten occurrences and a total 
link strength of 9, bridges multiple topics, suggesting its 
encompassing impact across various research themes.

Further analysis in Table 1 identifies “architectural 
design” and “prefabricated construction” as influential
nodes within the network, having 8 and 7 occurrences, 
respectively. This reflects their integral relationship with 
DT in streamlining design/construction methodologies.
BIM emerges as a crucial facilitator within the DT 
framework, evidenced by its six occurrences and a link 
strength of 6, pointing to its role in enhancing the digital 
representation of construction. Other notable keywords 
like “offsite construction,” “construction projects,” 
“decision making,” “modular integrated construction,” 
and “robotics” are featured, each with five occurrences, 
signifying their relevance. The link strengths and 
occurrences of these terms, as reported in Table 1,
underscore the multi-faceted nature of DT and PC, 
revealing a rich tapestry of interconnected research areas.

Figure 4 Network of keywords co-occurrences

4.1.2 Contributor’s Geographical Distribution

Analyzing the geographical distribution of research 
offers insights into DT and PC's leading research 
countries and the degree of international collaboration. 
Figure 5 visualizes the international collaboration 
network with a minimum of 3 articles and 20 citations,
and their network details are presented in Table 2. China 
emerging as the most prolific contributor, with 18 
publications and a link strength of 3, indicating focused 
research efforts within the country as of 2022. Hong 
Kong follows, with 9 publications and higher 
connectivity, reflected by 4 links and a total strength of 6, 
suggesting its central role in research collaborations. 

Table 1. List of keywords in the network

Keyword Occurrences Links Total link 
strength

digital twin 25 11 22
modular construction 13 10 12
construction industry 10 11 9
architectural design 8 9 8
prefabricated 
construction 7 7 7

BIM 6 6 6
modulars 6 7 6
offsite construction 6 8 5
construction projects 5 8 4
decision making 5 4 4
modular integrated 
construction 5 7 5

robotics 5 8 5

Figure 5 Network of co-authorship of countries

Table 2. Top contributing countries

Country Publication Links Total link 
strength

Avg. 
year 

China 18 1 3 2022
Hong Kong 9 4 6 2022
United States 7 5 6 2022
United Kingdom 5 5 6 2023
Australia 4 3 3 2022
Canada 3 2 2 2023
Italy 3 2 2 2021

The US is highlighted as a key player with 7 
publications and 5 links, demonstrating its collaborative 
ties and a balanced link strength of 6, matching its 
research output in 2022. With 5 publications and 5 links, 
the UK continues its active research engagement into 
2023, indicating an ongoing commitment to advancing 
the field. Although smaller, with 4 publications, 
Australia’s contribution indicates a strong within-country 
focus, as shown by a link strength of 3 in 2022. Canada 
and Italy, each with 3 publications and a link strength of 
2, demonstrate their involvement, with Canada's activity 
projecting into 2023 and Italy's contributions noted 
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earlier in 2021. These underscores DT and PC research’s 
dynamic and interconnected nature, with varying degrees 
of international collaboration and research focus.

4.1.3 Top Contributors

Identifying principal authors and contributors 
highlights influential researchers and groups in DT and 
PC. This analysis underscores leading voices, offering 
insights into the field's key drivers. It aids in pinpointing 
potential collaborators and grasping the scholarly 
communication network. Out of 163 authors from the 
data collected, Figure 6 and Table 3 depict the co-
authorship network among scholars in this domain with 
a minimum of 2 articles and ten citations. The network 
map reveals a robust collaborative cluster centered 
around Huang, George Q., Jiang, Yishuo, and Zhong, 
Ray Y., each with four documents to their credit, sharing 
six links and a total link strength of 17 in the year 2022. 
This trio forms a core collaborative group, underlining 
their significant contribution to the field.

Figure 6 Network of co-authorship of authors

Table 3. Top contributing authors

Country Documents Links Total link 
strength

Avg. 
Year 

Huang, George Q. 4 6 17 2022
Jiang, Yishuo 4 6 17 2022
Zhong, Ray Y. 4 6 17 2022
Dong, Miaosi 3 4 11 2021
Li, Ming 3 6 13 2022
Liu, Xinlai 3 6 14 2022
Liu, Zhansheng 3 1 2 2022
Wang, Zhichen 3 4 11 2021
Yang, Bin 3 4 11 2021
Zhang, Binghan 3 4 11 2021

Adjacent nodes represent authors such as Dong, 
Miaosi, Wang, Zhichen, and Zhang, Binghan, each with 
three documents and four links, indicating active 
participation and a link strength of 11 in 2021. Li, Ming, 
and Liu, Xinlai, also with three documents but possessing 

stronger collaborative ties, evidenced by higher link 
strengths of 13 and 14, respectively, in 2022, are key 
figures within the network. Liu, Zhansheng, with 3 
documents but a solitary link and a minimal link strength 
of 2 in 2022, appears as an emerging contributor within 
the network. The visual data from Figure 6, combined
with the quantitative metrics from Table 3, highlight the 
influential authors and the intensity of their 
collaborations, offering insight into the community 
driving DT and PC research forward.

4.2 Content Analysis
This section delves in-depth into the objective-

oriented application of DT and PC, exploring their
methodological connections, proposing a conceptual 
framework, and dissecting the challenges and 
requirements to leverage DT's full potential.

4.2.1 Objective-Oriented Application 

The integration of DT in PC represents a pivotal shift 
towards leveraging advanced digital technologies to 
address various challenges and objectives, such as
enhancing efficiency, innovation, and sustainability.
Figure 7 illustrates the spectrum of objectives in the 
integration of DT in PC. The paramount objective is 
efficiency optimization, highlighted in 17 articles, with 
significant contributions such as ChainPM, a blockchain 
3.0 paradigm enhancing construction project 
management by Zhao et al. [15], resulting in a 99.8% 
reduction in information synchronization latency. Jiang 
et al. introduced a DT-enabled smart PC system for 
optimizing on-site assembly processes [16]. Other 
notable integrations include supply chain coordination 
[17] and immersed tunnel works [18]. These examples 
show a coordinated industry effort to use DT to 
streamline PC processes and reduce downtime, 
highlighting a broader trend toward increased efficiency.

Figure 7. Distribution of objectives of DT in PC

Innovation and R&D, encapsulated in 8 articles, are
represented by advances such as exploring multi-scale 
and multi-scenario digital twins by Jia et al. [19],
underscoring the industry's endeavor to tackle complex 
digitalization challenges. Lifecycle Management and 
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Risk Mitigation are also well-represented; for instance, 
Nguyen et al. developed a digital engineering model 
combining the DfMA with object-oriented parametric 
modeling techniques [20]. Osadcha et al. systematically
review DT geometry updating, emphasizing the need for 
accurate, real-time data to manage and mitigate risks 
throughout a building's lifespan [21]. Quality 
Enhancement, highlighted in works like Shi et al.'s 
method for geometry checking of precast culvert 
segments [22], 3D scanning-based geometric DT, and 
assembly [23], showcases the precision that DT can bring 
to construction quality control.

Although Safety and Compliance, and Collaboration 
and Communication appear less frequently, they are no 
less critical. For instance, Yang et al. [24] explored 
computer vision for fall hazard detection on construction 
sites. Sun et al.'s virtual reality training system based on 
IoT technology demonstrates DT's potential in improving 
safety and fostering collaboration [25]. Meanwhile, the 
objectives of sustainability improvement, illustrated by 
works such as DT-enabled prefabrication supply chain 
for carbon emissions evaluation by Yevu et al. [11], align 
with global environmental sustainability goals, showing 
the promise of DT in driving green construction practices.
This reflects a multi-dimensional approach where DT 
serves as a cornerstone for innovation, addressing 
efficiency, safety, quality, and sustainability. As such,
Figure 7 illustrates the current state of DT application in 
PC and points to potential areas for future research and 
development within the industry.

4.2.2 Methodological Connections

Integrating various technologies with DT in PC 
exemplifies the industry's movement toward 
digitalization. Exploring their methodological 
connection is essential to understanding how different 
technologies interplay with DT, enhancing PC efficiency, 
informed decision-making, and fostering innovation for 
a competitive, sustainable, and safe construction industry.
Figure 8 represents the frequency of other technologies 
integrated with DT and PC. Among the technologies, 
BIM is the most integrated with DT in PC [15, 17, 20,
26], showcased by its highest occurrence. The pivotal 
role of BIM reflects its comprehensive digital 
representation capabilities essential for the life cycle 
management of a building [9]. Following BIM, IoT, and 
sensors are instrumental in real-time data acquisition, 
essential for the dynamic updating of DT to reflect the 
current state of PC elements [26-29].

AI and ML stand out as the third most integrated 
technology, often with BIM and IoT, highlighting their 
role in processing and analyzing data for predictive 
insights and decision-making [20, 26-29]. Conversely, 
augmented reality/virtual reality (AR/VR) [25],
blockchain [30], cloud computing [31], finite element 

method (FEM) [32], robotics [26], and geographic 
information systems (GIS) [17] show a nascent 
integration. These technologies, despite their lower 
integration frequency, bring distinct advantages such as 
enhanced visualization (AR/VR), secure data 
transactions (blockchain), scalable data storage (cloud 
computing), precise structural analysis (FEM), 
automation (robotics), and spatial data analysis (GIS).

In conclusion, while BIM and IoT form the backbone 
of DT integration in PC, the full spectrum of digital 
technologies contributes to a more intelligent, efficient, 
and interconnected construction ecosystem. Each 
technology, irrespective of its current integration 
frequency, has the potential to revolutionize aspects of 
DT in PC, indicating a trend towards an increasingly 
digital future in the construction sector.

Figure 8. Frequency of other technologies in DT-
PC integration

4.2.3 Conceptual Application Framework

Integrating DT into PC is a multi-stage process 
involving careful planning, continuous data collection 
and analysis, and advanced technologies like AI, IoT, and 
BIM. Figure 9 encapsulates a comprehensive framework 
for integrating DT in PC, encompassing the entire 
lifecycle of a structure. From initial BIM-based design to 
IoT-enhanced manufacturing and logistics, the 
framework ensures real-time data flow and optimized 
construction processes. The subsequent stages of on-site 
assembly, quality control, and operation benefit from 
continuous DT interaction, facilitating predictive 
maintenance and efficient building management. Finally, 
the DT supports sustainable decommissioning and 
material recycling, aligning with circular economy 
principles. This integrated approach signifies a 
transformative step towards intelligent, sustainable 
construction practices.

Figure 9. Stage-wise application framework
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4.2.4 Challenges and Requirements 

The meticulous management of extensive data is a 
formidable challenge in DT-PC integration, necessitating 
unwavering accuracy, uniformity, and instantaneous 
updates [8]. Thus, ensuring data integrity becomes 
paramount [9]. Interoperability poses its trials, with 
disparate software and platforms often at odds, hindering 
seamless integration [33]. Scalability demands attention, 
calling for solutions adapting to varying project 
magnitudes within PC operations. The technological 
intricacies of DT require specialized acumen, forming a 
barrier to entry for broader adaptation [33]. The initial 
financial outlay for DT implementation is substantial, 
which may deter smaller enterprises from embracing the 
technology [33]. Furthermore, the absence of 
standardization within the construction domain results in 
poor integration procedures and quality outcomes [11]. 

This research highlights certain gaps in the existing 
methodologies and practices concerning the assimilation 
of DT within the PC sector. Therefore, to foster a 
cohesive integration of DT in PC, a concerted effort 
towards standardization of data protocols is imperative to 
guarantee inter-system compatibility. A robust 
infrastructure for data management must be established, 
capable of safeguarding data integrity and facilitating 
real-time processing [9, 12]. Using sophisticated 
analytics and AI is essential to distill actionable insights 
from the collected data [12], enhancing predictive 
maintenance and decision-making. Moreover, high-
speed and reliable connectivity is a prerequisite for 
effective communication across the DT ecosystem [9]. 
User interfaces must be intuitively designed to enable 
stakeholder engagement across varying levels of 
technical expertise [9]. Hence, educational initiatives are 
critical to equip the workforce with the necessary skills 
to navigate these advanced technologies. The 
convergence of DT with BIM is paramount, enriching the 
visualization and analytical facets of construction 
projects. DT solutions must be inherently scalable to 
accommodate a spectrum of project requirements. 
Additionally, compliance with regulatory standards and 
privacy legislation is essential. Consequently, investment 
in R&D is vital to drive innovation and refine DT 
applications tailored to the PC industry. 

5 Conclusions and Limitations 
This study presents the emergent route of DT 

integration within the PC sector, unraveling the 
methodological synergies and potential for industry-wide 
transformation. The research delineates the escalating 
adoption of DT, propelled by advancements in BIM, AI, 
and IoT, signifying a paradigm shift from traditional 
construction methods towards a digitized, efficient, and 
sustainable approach. Notably, the bibliometric analysis 
explains the focal research themes, geographical research 

proliferation, and the influential scholarly contributions 
shaping the DT-PC narrative. The content analysis 
accentuates its multifaceted objectives, from efficiency 
optimization to sustainability enhancement. 

The article offers a conceptual framework outlining 
the integration of DT across PC stages, advocating for a 
seamless digital continuum from design to 
decommissioning. The findings highlight the pressing 
need for standardization, robust data management, and 
scalable solutions to navigate the complexities inherent 
in DT-PC integration. Notably, the study acknowledges 
the limitation of relying solely on the Scopus database. 
Future research can expand more emergent publications 
and should focus on empirical validation of DT models 
in PC, exploring advanced technologies for enhanced DT 
functionality, and developing interoperability standards. 
Investigating scalable solutions, data security, and 
environmental impacts, alongside economic analyses, 
will address critical gaps and advance the field 
significantly, paving the way for practical, scalable, and 
sustainable DT applications in PC.  
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Abstract 

Digital Twins have emerged as a transformative 
solution enabling organizations across sectors to 
digitally replicate physical assets and processes to 
extract operational insights. Implementing Digital 
Twin systems involves diverse stakeholders, ranging 
from providers to end-user developers and adopters. 
At the crux of Digital Twin implementation lies the 
need of Digital Twin platform – the foundational 
infrastructure on which solutions are built, 
integrations are executed, and data flows are 
managed. While substantial research targets 
advancing Digital Twin platforms’ capabilities, 
investigations analyzing real-world implementations 
spanning industries remain scarce. This research 
profiles 19 platforms harnessing data aggregated 
from provider websites, white papers, press releases 
and user documentation to compile understanding on 
platform purpose, inbuilt security and interaction 
mechanisms, integration architectures, predominant 
use cases, real users’ locations, and supported 
solutions. Social Network Analysis (SNA) conducted 
in Pajek detected valuable adoption patterns in the 
Digital Twin platforms market while community 
identification analysis linked predominant platform-
capability combinations to industry and locational 
preferences, arming stakeholders to strategize road 
mapping. Results showed that Azure Cloud, IBM 
Cloud, and MindSphere were ranked highest in 
centrality among the platforms mapped. In parallel, 
to determine platform capability dimensions and 
their acceptance across geographies and use contexts, 
normalized centrality metrics were performed for 
other data types. Also, 58 solutions provided by 
platforms were classified into five categorical purpose 
groupings. The findings expand visibility into the 
dynamics of Digital Twin platforms and can be 
evolved by expanding sample diversity and blending 
functional, operational, and economic perspectives in 
future studies supporting stakeholders in 
implementation processes. 

 

Keywords – 
Digital Twin systems, Digital Twin Platforms, 

Social Network Analysis 

1 Introduction 
In the rapidly evolving landscape of digital 

transformation, organizations worldwide are increasingly 
turning to innovative solutions to enhance efficiency, 
streamline operations, and gain a competitive edge [1]. 
Among these, Digital Twins have emerged as a 
transformative force, revolutionizing the way industries 
approach data, simulation, and real-world processes. As 
the significance of digitalization continues to grow, the 
adoption of Digital Twins has become not only a strategic 
imperative but also a key driver in reshaping industries 
and fostering unparalleled advancements in technology 
[2]. Digital Twin provides the means to depict, emulate, 
forecast, optimize, and control physical space through 
real-time connectivity, mapping, analysis, and 
interaction with a specific fidelity and frequency [3]. This 
communication between the physical and virtual systems 
is enabled by explicitly defining the data produced by the 
system, augmenting it with information about system 
entities, and realizing “value adding services” on top of 
this data driven definition [4]. Core components of 
Digital Twin technology include high fidelity data 
collection via Internet of Things (IoT), sensors, 
predictive data analytics and process simulations to 
create the model, as well as visualization dashboards to 
provide services for users [5]. With the advantages of 
model, data, and service, Digital Twin offers superior 
solutions for enhancing quality, increasing efficiency, 
cutting costs, mitigating losses, ensuring safety, and 
conserving energy [6]. Therefore, Digital Twin enables 
maximum optimization of processes and value chains of 
the physical system. Moreover, the application of Digital 
Twin in diverse industries can effectively expedite their 
digitalization, networking, and intelligence development 
processes. 

As the adoption of Digital Twin increases across 
sectors such as manufacturing, healthcare, automotive, 
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construction, and urban development, dedicated software 
platforms have emerged to facilitate the Digital Twin 
development and scalability of Digital Twin [7]. A 
Digital Twin platform provides the core infrastructure to 
enable the creation, management, and utilization of 
Digital Twins across an organization's ecosystem while 
establishing the digital thread that connects the physical 
and virtual worlds [8]. According to [9], Digital twin 
platform ecosystem refers to collaborative environment 
involving Digital Twin platform providers, application 
developers, technology providers, system integrators, 
consultants, and user organizations for enabling digital 
transformation across industry verticals. The key 
capabilities of a Digital Twin platform include data 
ingestion and integration, simulation engine, 
visualization dashboards, analytics, reporting and 
notifications, collaboration tools, Application 
Programming Interfaces (APIs) and integration 
capabilities, security features, and scalability [10], [11]. 
Digital Twin platforms empower organizations to unlock 
key benefits, including predictive maintenance, 
improved asset performance, and accelerated innovation 
[12]. Prominent examples of Digital Twin platform 
include Microsoft Azure Digital 1Twins, GE's Predix, 
Siemens MindSphere, PTC's ThingWorx, Dassault 
Systemes' 3DEXPERIENCE, and Ansys Twin Builder. 
While these platforms are applicable across various 
industries, companies often opt for customized solutions 
based on Digital Twin platforms, avoiding a one-size-
fits-all approach. Despite numerous investigations into 
developing Digital Twin platforms in recent years, there 
is a gap in gathering, categorizing, and analyzing the 
existing platforms provided by developer companies. An 
analysis of the implementation of existing Digital Twin 
platforms in different industries, along with their 
definitions, purposes, solutions, and other aspects is 
needed. 

 This paper aims to assist the evolving landscape of 
Digital Twin platforms and ecosystem partners dedicated 
to delivering asset-class or industry-specific Digital Twin 
solutions. This objective is accomplished by applying 
Social Network Analysis (SNA) techniques to model and 
interpret the relationships between various Digital Twin 
ecosystem participants on a global scale. Additionally, 
existing Digital Twin platforms are analyzed with respect 
to their functional and geographic concentration of 
interconnected providers and user communities. 

2 Background 
 Digital Twins have gained traction in recent years 

across various industries, including manufacturing, 
aviation, healthcare, construction, and smart cities. 
Recent surveys on industry adoption levels indicate that 
manufacturing has taken an early lead in implementing 

Digital Twin prototypes and applications [13]. Although 
adoption levels vary across industries and applications, 
the common thread involves leveraging connected IoT 
devices, predictive analytics, and simulations through 
Digital Twin platforms. This is accomplished by utilizing 
core features such as physics-based equipment modeling, 
real-time data integration via IoT APIs, Artificial 
Intelligence (AI)-powered analytics, monitoring 
dashboards, and simulation tools [14]. Several studies 
have been conducted to develop Digital Twin platforms 
to address specific problems in different industries. In the 
manufacturing sector, [15] developed a Digital Twin for 
steel pipe weld quality control. A Digital Twin platform 
based on a microservices architecture and offering 
solutions for continuous deployment, data infrastructure 
and I4.0 business services was developed by [16]. [17] 
developed an AI-based injection molding machine 
Digital Twin able to prevent failures by recognizing 
machine deterioration patterns. [18] established a Digital 
Twin platform for the medical device assembly machine 
to diagnose the anomalies’ root causes and predict the 
quality of the products with more confidence, higher 
speed, and less invasive methods. 

While manufacturing leads in piloting Digital Twin 
platforms, momentum also exists in other sectors such as 
construction and smart cities. [19] developed a cyber-
physical interconnection method for computational 
design and robotic construction in a wooden architectural 
realm. [20] employed Digital Twin within a human-robot 
collaborative system to assist in assembling complex-
shaped architectures and tested it through a real system. 
[21] created a  Digital Twin-enabled anomaly detection 
system for asset monitoring and with a data integration 
method based on extended Industry Foundation Classes 
(IFC) in daily Operation and Maintenance (O&M) 
management, which was successfully tested on a real 
case. [22] proposed a Digital Twin-enabled real-time 
synchronization system (DT-SYNC) aiming to facilitate 
Planning, Scheduling, and Execution (PSE) using real-
time resource status and construction progress 
information obtained from high-fidelity Digital Twins. 
[23] introduced a digital-twin based multi-information 
intelligent early warning and safety management 
platform to address high safety risks during tunnel 
construction. [24] developed a blockchain-enabled 
Digital Twin collaboration platform for Modular 
Integrated Construction (MiC) fit-out operations for 
modular construction. [25] proposed a geospatial 
platform based on the universal game engine Unity3D, to 
manage large-scale individual mobility data for an Urban 
Digital Twin (UDT) platform. [26] proposed a Digital 
Twin platform to address challenges in incorporating 
Photovoltaic (PV) systems and wind energy sources into 
smart city power grids. [27] presented the design, 
implementation, and use cases of the Chattanooga Digital 
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Twin (CTwin) toward the vision for next-generation 
smart city applications for urban mobility management.. 
[28] presented an overview of different Digital Twin 
platforms that can be used in Electric Vehicle (EV)
applications in smart cities.

Healthcare is also poised for Digital Twin adoption 
through "Digital Hospital" initiatives utilizing AI and 
simulation to optimize patient flow, resource allocation,
and medical equipment maintenance [29]. [30] built a
Digital Twin body through dynamic equations and 
pressure control mechanisms based on pressure reflexes. 
[31] built a  Digital Twin coupled with blood flow and 
head vibration to develop diagnostic tools. Subramanian 
(2020) built a  Digital Twin that integrated scientific 
information and clinical source information. [33]
constructed a Digital Twin of lumbar spine based on AR, 
data analytics, motion capture system, Inverse Kinematic 
(IK) method and Finite Element Method (FEM). [34]
developed a Digital Twin system for the vaccination 
process and tested it in a clinic. [35] built an emergency 
department Digital Twin simulation able to quantify the 
downstream impact of delayed or erroneous triage on 
patient outcomes.  [36] developed a patient centric 
mathematical data model to formally define the semantic 
and scope of our proposed Healthcare Digital Twin (HDT) 
system based on Blockchain.On the other hand, there 
have been studies attempting to define the core 
infrastructure, tools, and capabilities of platforms to 
develop Digital Twins. As defined by[37], Digital Twin 
platforms aim to provide the technical foundation for 
virtual modeling, data orchestration, and digital thread 
management required in Digital Twin initiatives. 
Multiple conceptual reference models exist, detailing 

potential components of Digital Twin platforms covering 
aspects such as physical counterparts, virtual models, 
connectivity, intelligence, and visualization, among 
others. [5], [38].

While logical representations are instructive, 
surveys of commercial platforms reveal differing 
priorities and configurations of key elements such as
digital shadow maintenance, analytics engines, 
simulation services and front-end apps [11]. In addition, 
studies have identified several common Digital Twin 
platform capabilities. [39] discussed key services 
required in Digital Twin enabled smart manufacturing, 
including sensing, data analysis, modeling, simulation, 
and visualization. [5] reviewed core concepts and 
technologies behind Digital Twins, including system 
integration, simulation, machine learning, visualization
and deep   learning. [40] summarized developmental
components of Digital Twins into four parts: Digital
Twin modeling and simulation, data fusion, interaction, 
and service. Required features for Digital Twins such as
interconnection, simulation models, data collection, and 
visualization were discussed by [41]. [38] and [42]
reviewed Digital Twin capabilities which are defined and 
summarized in Figure1. While substantial research 
activity exists around conceptual Digital Twin platforms, 
architectures, and capability frameworks, a gap persists 
in empirical documentation and evaluation of specific
platforms developed and deployed across industries. For 
all the prototyping and technical specification efforts, a
systematic investigation into platforms supporting
operational Digital Twin initiatives remains lacking. This 
limitation not only hampers the benchmarking of  the 

Figure 1 . Digital Twin platform capabilities
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expansion of Digital Twin platforms adoption and 
deployment but also impedes the identification of 
obstacles and milestones crucial for guiding investment 
decisions. Asset owners, lacking evidence of platform 
viability and modernization pathways, face challenges in 
making informed trade-off decisions. 

3 Data Overview 
The Digital Twin platform dataset underpinning this 

research was compiled by drawing from secondary 
platform sources, press announcements, and providers’ 
and users’ websites. Structured information was captured 
for 18 unique Digital Twin platforms located in six 
different countries, covering details on the platform’s 
launch year, core capabilities such as built-in security 
mechanisms and twin interaction methods, target use 
case, and roster of 58 solutions leveraging these 
platforms. Additionally, user community details were 
gathered related to leading industries and functional 
applications where available. Table 1 summarizes the 
findings and their definitions- the full data is available 
and will be provided upon request. 

The dataset provides reasonable coverage across 
industry segments investing in Digital Twin, with over  
40 industry segments identified including manufacturing, 
energy, healthcare, automotive, and construction. These 
major segments are located in 19 different countries. It is 
important to note that the depth of details on solutions 
varies considerably based on how much detail each 
provider or user provides for the solution they are using. 

 
Table 1. Dataset summary 

Data Attributes Definition 

Platform provider Owner name and headquarter 
location 

Launch year Year when platform first 
released 

Platform purpose Primary functions and digital 
twin focus areas 

Platform integration 
method Integration classification 

Twin interaction 
methods 

IoT connectivity and data 
ingestion protocols 

Security 
mechanisms 

Data and processes security 
protocols and mechanisms 

Platform users Industries that the platform 
can be deployed 

Current users’ 
location 

Countries that are using each 
platform 

Digital Twin 
platform’s Solutions 

Names and descriptions of 
developed solutions 

Solution focus Solutions’ purposes 

4 Analysis and Discussion 
Social Network Analysis (SNA) was employed to 

analyze the dataset using Pajek software. In this analysis, 
Digital Twin platforms, users’ industry, security 
mechanism, twin interaction method, and users’ location 
are modeled as nodes with edges defined based on stated 
collaborations, integrations, and deployments. Both 
visual and quantitative SNA techniques are applied to 
identify key patterns. 

SNA yielded several insightful observations 
regarding the current state and trajectory of the Digital 
Twin ecosystem. As depicted in Figure 2 and indicated 
by Degree of Centrality (DoC) rankings, a select few 
platforms have emerged as most influential in shaping 
today's deployments. Azure Cloud (DoC: 18), IBM 
Cloud (DoC: 18), MindSphere (DoC: 17), and Vuforia 
(DoC: 17) are identified as the top platforms, 
experiencing significant most adoption across various 
industry verticals. The dominance of these mainstream 
platforms aligns with the finding that cloud-based (DoC: 
8) and hybrid (DoC: 6) integration methods now prevail 
in how Digital Twin solutions leverage platforms.  

Additionally, the SNA results identified key security 
and twin interaction mechanisms that are central to 
Digital Twin platforms. Authorization (DoC: 18), 
authentication (DoC: 14),  and encryption (DoC: 10) 
emerged as the most common security mechanisms, 
while service APIs (DoC: 15), bidirectional 
synchronization (DoC: 13), and interface simulation 
(DoC: 13) lead in enabling integration and 
communication with physical assets. The widespread use 
of these platform-enabled capabilities emphasizes their 
significance in ensuring the usability and security of 
Digital Twin platforms. However, the network topology 
also revealed gaps in the adoption of these leading 
practices, particularly among Asian user organizations. 
Providing more implementation guidance and sharing 
best practice could accelerate the assimilation of platform 
services in these regions. 
Moreover, examining the industry and geographic 
distribution of Digital Twin platform adoption adds value 
by identifying demand patterns. Manufacturing (DoC: 
10), automotive (DoC: 8), energy (DoC: 7), and 
construction (DoC: 5) industries emerged as leading 
segments actively leveraging Digital Twin platforms. 
Furthermore, and as depicted in figure 3, the community 
detection analysis provides particularly useful insights 
into industry and location combinations that tend to 
utilize specific platform and mechanism combinations. 
For instance, MindSphere platform with Authorization 
and secured protocols, paired with Hybrid integration 
method, see adoption in construction and agriculture use 
cases across USA and Germany. These patterns suggest 
that specific platform configurations meet the needs of 
these industries and locations. 
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Figure 2. SNA results

Figure 3. Community identification analysis

Finally, the temporal social network analysis 
indicated that the development and implementation of 
Digital Twin platforms have entered a phase of rapid 
growth and acceleration over the past three years. The 
increasing rate of participation across both supply and 
demand sides of the market signals the crossing of a 
tipping point. Digital Twin providers are developing 

various solutions with specific purposes, moving beyond 
isolated proofs of concept into scaling adoption across 
industries. The analysis of the range of solutions 
associated with major Digital Twin platforms revealed
that the purpose of these solutions largely falls into five 
key categories: 1) detailed virtual modeling, 2) 
simulation and predictive analysis, 3) connectivity and 
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data integration, 4) immersive interaction, and 5) 
lifecycle and change management. For example, 
solutions like CATIA, Creo, NX, OpenBuildings, and 
Unified Engineering provide sophisticated CAD and 
engineering environments to model highly accurate 
Digital Twin representations. Complementary simulation 
tools like SIMULIA, Discovery Live, Plant Simulation, 
and Twin Builder enable predicting real-world 
performance through digital prototypes. Solutions 
including IoT Hub, Watson IoT, and C3 IoT focus 
specifically on ingesting and managing streams of data 
from physical assets. Augmented and virtual reality 
solutions provide new ways of immersive interacting 
with Digital Twins on-site or remotely. Furthermore, 
solutions like Windchill, Teamcenter, and iModelhub 
help manage Digital Twin data and relationships 
throughout ongoing change. 

While most platforms provide an integrated set of 
solutions spanning the five main areas, the analysis 
reveals some differentiation and specialization as well. 
For example, the ANSYS Digital Twin platform 
emphasizes simulation-centric solutions for digital 
mission engineering across complex systems. Autodesk 
brings generative design paired with construction site 
data flows. Azure offers cloud-native capabilities for 
scalable Digital Twin data and lifecycle management. 
Also, augmented reality leaders like Vuforia integrate 
immersive Digital Twin experiences as a key solution 
area. Observing these patterns provides perspective on 
the expanding functionality Digital Twin platforms now 
offer as enablers, spanning detailed modeling to 
operational connectivity to simulation-driven insights 
and beyond. Additionally, while Digital Twin platforms 
host an expanding roster of twin-enabled solutions, the 
depth of solution details wildly varies. Identifying use 
case patterns to determine which solutions best match the 
purpose will accelerate the large-scale adoption and 
implementation. 

5 Conclusion 
Numerous Digital Twin platforms, each designed for 

specific purposes, have been developed by providers 
globally. The comprehensive information gathered on 
these platforms and analyzed through SNA offers 
valuable insights into the current status, intentions, 
capabilities, and associated solutions of these platforms 
summarized as below: 
• Platforms: SNA’s analysis revealed that among these 

robust platforms, Azure Cloud, IBM Cloud, and 
MindSphere exhibit the highest centrality.  

• Platform users’ industry: When examining user 
industries across all platforms, Manufacturing 
emerged as the most prominent, followed by 
Automotive, Aerospace, and Marine, with Logistics 

and Agriculture being the least common industries.  
• Platform users’ location: In terms of geographic 

distribution of users, the USA takes the lead, followed 
by European countries, while Asian countries having 
the least widespread adoption.  

• Security mechanisms: According to the SNA, 
Authentication, Authorization and Encryption 
represented the most widely implemented security 
mechanisms, whereas Data Masking, Secured 
Protocol, and Trusted Hardware ranked as less 
common.  

• Twin interaction methods: As a crucial capability of 
Digital Twin platforms, Service APIs were the 
predominant method of twin interaction, whereas 
Twin-to-Twin approaches ranked as the least used.  

• Integration methods: Regarding integration 
methods, Cloud-Based platforms were deemed the 
most probable, with combinations of On-Premise 
with Hybrid, as well as On-Premise with Cloud-
Based, ranking as the least probable. 
Additionally, within such analyses, the identification 

of communities in the established relationship network 
can offer valuable insights. Community detection 
revealed groupings that include at least one node of each 
type: platforms, security mechanisms, interaction 
techniques, integration approaches, probable industry 
adopters and locational distribution. Mapping these 
associations highlights the most relevant combinations of 
platform capabilities for specific industry applications 
and geographies. This community perspective informs 
strategic decisions in selecting appropriate platforms 
capabilities for given use case requirements. Moreover, 
individual platforms offer differentiated solutions that 
serve distinct purposes, grouped into five categories: 
detailed virtual modeling, simulation and predictive 
analytics, physical-to-digital connectivity and data 
integration, immersive interaction modes, and lifecycle 
and change management. This research also confirms 
accelerated growth and maturation within the Digital 
Twin platform landscape over the past three years. 

Despite limitations such as potential geographical 
bias toward platform providers and constraints related to 
documentation availability, the current analysis expands 
visibility into the dynamics of the Digital Twin platform 
ecosystem. Moving forward, several facets warrant 
deeper investigation in future research. For instance, 
expanding sample diversity and analyzing fringe use 
cases in terms of industry vertical and regional adoption 
to spotlight capability gaps restricting implementation. 
Longitudinal monitoring of advancing functionality 
across simulation fidelity, automation sophistication and 
cloud orchestration flexibility would reveal comparative 
platform suitability rates. Finally, incorporating financial 
partnership ties and usage data can provide tangible 
indicators of real-world sustainability alongside technical 
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capability. By blending functional, operational, and 
economic perspectives, evolving social network 
modeling and simulation techniques will empower 
stakeholders to chart technology maturation, predict 
partnership risks, and plan implementation timelines as 
industrial Digital Twins progress toward mainstream 
viability. 
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Abstract -
Ground Penetrating Radar (GPR), known for its appli-

cations in diverse domains, demonstrates potential for non-
destructive diagnostic assessments on building rooftops. This
study delves into the unique characteristics and data struc-
ture of GPR, investigating the novel approach of processing
GPR as a “contextual neighborhood” of A-scans within their
respective B-scans as opposed to the typical pixel-based ap-
proach. Given the challenge of obtaining a large corpus
of annotated rooftop GPR data, we employ self-supervised
deep learning methods for GPR representation learning.
Experiments include training a vanilla Autoencoder, Vari-
ational Autoencoder, and a Transformer-based Autoencoder
on GPR A-scans. Additionally, we extend our analysis by
fine-tuning a pre-trained Masked Autoencoder on image
based GPR B-Scans to investigate the differences between
the conventional pixel-based approach and our proposed A-
scan-based approach. Through a meticulous analysis of the
learned latent spaces across these methods, we assess the
viability of self-supervised deep learning in encoding mean-
ingful GPR representations for downstream tasks. This re-
search contributes to the exploration of GPR’s applicability
in building rooftop diagnostics and underscores the potential
of self-supervised deep learning for efficient representation
learning in the absence of annotated data.

Keywords -
GPR; Rooftop; Self-supervised; Transformer; Autoen-

coder

1 Introduction

Ensuring the structural integrity of building rooftops
necessitates reliable assessment methods. Ground Pene-
trating Radar (GPR) emerges as a promising, cost-effective
alternative to traditional techniques like infrared thermog-
raphy and nuclear moisture gauges [1]. Utilizing electro-
magnetic waves, GPR captures changes in electromagnetic
properties within the scanned medium of the propagating
waves.

Figure 1. Contextual neighborhood of A-scans
within the same B-scan. A-scans from the same
B-scan share contextual information that may aid in
the identification of features of interest. The blue
scans indicate typical GPR readings that may not
be pertinent for analysis, and the red scans indicate
scans that contain features of interest.

GPR data is typically presented in the form of A-scans
and B-scans. An A-scan, a single-point, 1D scan collected
at each sampling interval, records amplitude variations of
reflected waves over travel time. Despite its 1D nature, an
A-scan encapsulates information beyond its precise loca-
tion due to the non-linear propagation of electromagnetic
waves. This distinction can be observed in the appearance
of point objects like pipes as hyperbolas in GPR B-scans.

In contrast, B-scans are a series of sequentially mea-
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sured A-scans often treated as images, offering a human-
interpretable view of subsurface features. In rooftop di-
agnostics, many applicable downstream tasks appreciate
higher levels of granularity in analyses. As B-scans may
span many meters in length compared to the centimeter-
scale offered by A-scans, we investigate approaches that
study GPR at the A-scan level. This allows us the oppor-
tunity to explore the potential advantages in studying GPR
scans through leveraging their inherent data structure – as
opposed to the conventional method of processing GPR
B-scans as images. Figure 1 illustrates the concept of con-
textual neighborhood membership of A-scans within the
same B-scan. Deep learning models may be able to ex-
tract richer semantics in GPR representations through the
exploit of intrinsic contextual information shared between
A-scans of the same B-scan, especially considering the
capability of A-scans to capture information adjacent to
the immediate position of the GPR sensor.

Despite GPR’s capabilities in producing high-resolution
radargrams, interpreting scans remains challenging even
for skilled technicians [2]. This challenge underscores
the motivation to integrate deep learning for automated
interpretation. While prior applications of deep learning
in GPR interpretation exist, such as for land mine detection
and utility identification [3, 4, 5], they primarily relied
on supervised training with annotated labels. Given the
scarcity of such labeled data for building rooftops, our
investigation centers on self-supervised methods.

Our contributions can be summarized as follows:

1. Exploration of Self-Supervised Deep Learning Mod-
els: We assess the efficacy of self-supervised deep
learning models in extracting meaningful features
within the latent space of GPR data.

2. Analysis of Inherent Data Structure: We investigate
the advantages of addressing GPR data through its
native data structure (A-scan, B-scan) as opposed to
treating it as a conventional image.

These contributions collectively aim to advance the un-
derstanding of GPR applications in building diagnostics,
particularly in the context of self-supervised learning.

2 Related Works
2.1 GPR for Subsurface Analysis

GPR has historically found great utility in imaging and
analyzing subsurface features in various outdoor environ-
ments. For example, the sensor has found use in moni-
toring the structural integrity of river embankments and
levees [6]. The non-destructive nature of GPR enabled the
visualization and detection of underground animal bur-
rows without disrupting the site. This advantage has also
been leveraged in the inspection of concrete bridges [7].

Similarly to [6], GPR was used to detect and identify the
different layers present in the composition of bridges, as
well as the thickness of each layer. We consider the suc-
cess in the use of GPR in these varied environments as an
indication of the potential viability in the use of GPR in
the building rooftop setting.

2.2 Use of GPR for Building Diagnostics

Though the use of GPR has predominantly existed out-
side of building diagnostics, investigations on the use of
GPR in various applications on buildings and similar struc-
tures exist. The technology has been used to study and
identify cracks and signs of moisture damage in historical
and heritage buildings [8, 9], and has even been used to
detect moisture within building walls in conjunction with a
thermal camera in [10]. However, many of these methods
rely on manual interpretation or an ensemble of process-
ing methods. These limitations affect the scalability and
generalizability of the methods, which are key factors to
consider when addressing the sheer variability in the types
of buildings, not to mention the number of buildings that
may need to be serviced.

2.3 Learning-Based GPR Analysis

Several works [1, 3, 4, 5, 11] have delved into learning-
based analysis of GPR scan data for feature detection.
For instance, [11] utilizes the mask R-CNN [12] architec-
ture to automatically detect and segment cracks in asphalt
pavement at the pixel-level. However, these approaches
predominantly rely on supervised learning methods, ne-
cessitating manual annotation of GPR scans. This reliance
on labeled data poses a challenge in terms of scalability due
to the labor-intensive nature of annotation. Additionally,
these works predominantly study GPR feature detection
from the perspective of GPR B-scans as images. To ad-
dress these limitations, our study explores the potential
of self-supervised learning, aiming to extract meaningful
features from GPR scans without the need for extensive
manual annotations. We also hope to differentiate our con-
tributions through a comprehensive analysis addressing
the utility of A-scans in context of B-scan neighborhoods
over the typical image-based approach.

2.4 Autoencoders for Self-Supervised Learning

The Autoencoder (AE) architecture is a popular ap-
proach to self-supervised learning. This architecture typ-
ically involves an Encoder block that learns to compress
the input into the latent space, and a Decoder block that
learns to extract the original input from the compressed
representation [13]. Over the years, many derivatives have
emerged from the original Autoencoder idea including the
Variational Autoencoder (VAE), which aims to encode the
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Figure 2. A simplified diagram describing the end-to-end training and testing procedure for each proposed
method.

input as a distribution over the latent space [14], and the
Masked Autoencoder (MAE), which motivates effective
self-supervised learning through the nontrivial task of un-
corrupting masked inputs [15]. Transformers [16] have
also been largely successful in challenging natural lan-
guage and computer vision tasks. Recalling the unique
property of A-scans sharing contextual information be-
tween their neighbors within the same B-scan, we consider
a Transformer-based Autoencoder (TAE) that takes a win-
dow of sequential A-scans as input. We aim to evaluate
these approaches to determine their capabilities in learn-
ing meaningful features from GPR data without the need
for signals from manually annotated labels.

2.5 Challenges in the Use of Synthetic GPR Data

gprMax [17] is a GPR simulation software that has been
leveraged in works such as [11, 18] to generate a large
corpus of synthetic scans for training deep learning mod-
els. While effective in certain applications, particularly
those requiring controlled environments, the use of syn-
thetic scans presents challenges in the context of building
rooftop diagnostics. Capturing the inherent variability in
rooftop composition and the diverse range of surface fea-
tures, such as pipes, vents, and walls, becomes complex.
The fidelity of synthetic scans may struggle to emulate
the nuanced characteristics of real-world GPR data from
building rooftops. Due to the present obstacles, we decide
against the use of synthetic GPR data in our analysis and
instead collect data from real-world commercial and retail
building rooftops.

3 Methodology
Our objective is to investigate various methods for learn-

ing representations of Ground Penetrating Radar data,
specifically focusing on:

1. Vanilla Autoencoder
2. Variational Autoencoder
3. Transformer-based Autoencoder
4. Image-level Masked Autoencoder

These methods are compared against a baseline ap-
proach, involving the analysis of preprocessed data with-
out a deep learning model. The Autoencoder, Varia-
tional Autoencoder, and Transformer-based Autoencoder
are trained from scratch on GPR A-scans, while the Im-
ageNet pretrained Masked Autoencoder will be finetuned
on GPR B-scans treated as images. This approach aims to
highlight any distinctions between leveraging the inherent
data structure of GPR and treating GPR scans as holistic
images. Evaluation of each method includes the presen-
tation of reconstruction samples, visualizations of latent
spaces using T-SNE for qualitative analysis, and quanti-
tative metrics utilizing KMeans clustering. Figure 2 pro-
vides a simplified illustration of the described procedure.

3.1 Dimensionality Reduction

T-SNE, a common dimensionality reduction technique,
is employed to visualize high-dimensional latent spaces.
For the deep learning models, T-SNE is applied to feature
vectors generated from the encoder block’s forward pass.
As is typically recommended to reduce the computation of
T-SNE, models that have encoders that output to relatively
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high dimensions use PCA to reduce the feature dimension
to 50 prior to the application of T-SNE. This procedure ap-
plies to the TAE and MAE, as well as the baseline. Feature
vectors for AE, VAE, and TAE represent encoded A-scans,
while those for MAE represent the 16x16 patches created
from resized B-scans. Despite differences in representa-
tion, patches are reasonably analogous to A-scans as they
capture local features from the entire B-scan. Indicators of
meaningful encoding include visible clustering of feature
vectors and separation between clusters.

3.2 Clustering

KMeans clustering is utilized to quantitatively evaluate
the quality of the learned latent spaces. The algorithm
is similarly applied to the generated feature vectors for
each method. Two metrics, the Silhouette Score [19] and
the average distance between cluster centroids, are em-
ployed for comparison. The Silhouette Score assesses
cluster well-definition, while the average distance mea-
sures cluster separation. These metrics are calculated over
a range of 𝑘 = [2, 3, ..., 15] clusters, as the appropriate
number of clusters needed to capture GPR representations
is unknown. The value of the Silhouette Score can range
between -1 and 1, inclusive, with a value closer to 1 in-
dicating high-quality clusters. A score greater than 0.5 is
generally interpreted as reasonable.

3.3 Data Collection

The dataset comprises diverse scans collected from real-
world building rooftops using the Proceq GP8800 SFCW
handheld GPR sensor. SFCW, or Stepped Frequency Con-
tinuous Wave, indicates that this sensor is capable of broad-
casting a wide range of frequencies to scan at both shallow
and deep depths. While capable of a broader range of
sampling rates, the sensor was set to record one scan per
centimeter traveled, focusing on an approximately 9 x 9 cm
area. The GPR is mounted on a user-controlled differen-
tial drive robot, seen in Figure 3 approximately 3cm from
the ground surface. The GPR employed a servo motor
to facilitate scanning by matching the GPR scanning rate
with the robot’s speed. During the data collection process,
the robot navigated the roof in a series of straight seg-
ments, limiting the GPR data to those linear paths. The
scanning process was intentionally paused during turns.
Multiple scans were performed per rooftop. The straight
segments were positioned approximately 0.9m apart from
one another, ensuring comprehensive coverage of the en-
tire roof surface. Multiple paths across each rooftop were
scanned, resulting in a dataset of over 1400 B-scans or
over 1.3 million A-scans. Each B-scan contains a variable
number of A-scans – from a few tens of scans to a few thou-
sand – and each A-scan records 655ns in two-way travel

time. The dataset covers a diverse range of roofing sur-
faces, including built-up roofing with gravel overburden,
Styrene-Butadiene-Styrene (SBS) modified asphalt roof-
ing, Ethylene Propylene Diene Monomer (EPDM) roofing,
Thermoplastic Polyolefin (TPO) roofing, and Polyvinyl
Chloride (PVC) roofing. In addition, scans were acquired
on both dry and moisture-saturated surfaces. The total
area scanned exceeds 50k square meters.

3.4 Preprocessing

The dataset is partitioned into train, validation, and test
sets (containing 1181, 144, and 144 B-scans, or over 1.1m,
136k, and 130k A-scans, respectively). While standard
preprocessing techniques including signal gain and de-
noising are employed for better manual interpretation of
GPR data, we have found that normalization by mean and
standard deviation across training A-scans accomplishes
the same as well as enhancing training performance.

Figure 3. Robot used for GPR Data Collection

3.5 Training

Each model is trained using varied regiments that are
best suited for the model. The AE and VAE is trained for
100 epochs using a starting learning rate of 1.5e-4 and a
batch size of 128. The batches are comprised of A-scans
that are randomly sampled from the training dataset. The
TAE is trained for 600 epochs using a starting learning
rate of 1.5e-4 and a batch size of 16. The batches for the
TAE are comprised of a random window of 64 sequential
A-scans from a randomly sampled B-scan. If the B-scan
is shorter than 64 in length, the scan is padded with the
mean A-scan to make up the difference. The MAE is
finetuned over 50 epochs using a starting learning rate of
1e-3 and a batch size of 16, with the masking ratio set to
the default 0.75 as described in the original paper. Dur-
ing inference, the masking ratio is set to 0 to ensure each
token is encoded, as the original architecture discards all
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masked tokens immediately after masking. Each batch is
comprised of randomly sampled B-scans that are resized
to (224 x 224). The resized scans are additionally nor-
malized using the mean and standard deviation calculated
from ImageNet. All models are trained using the AdamW
optimizer with decay = 0.05 and betas = (0.9, 0.95) and a
cosine decay learning rate schedule. Training is conducted
on a machine with an Nvidia RTX 8000 GPU and the code
is written using PyTorch.

Figure 4. Sample reconstruction outputs from all
trained deep learning methods. This scan is specifi-
cally chosen to study the diverse set of features that
may be present in GPR scan data.

4 Results
4.1 Reconstruction

As shown in Figure 4, every deep learning model trained
is successful in reconstructing GPR scans. To highlight
the various features that may be present in GPR scans, a
specific scan was chosen from the test dataset for visual-
ization. On the bottom left corner of the scan, there is a

reading of some sort of point object, possibly a pipe, and
on the right there is a response that is typical of “ponding”
or moisture on the surface. All models are successful in
reconstructing these features as well as the surrounding
responses without excessive artifacts or noise. This is to
demonstrate that the models are effective in encoding and
reconstructing GPR signals, which allows us to further our
investigation in determining whether anything meaningful
is being encoded in the latent spaces of each model.

Figure 5. Illustration of the learned latent spaces
generated from each method, with the inclusion of
the baseline for reference. We note the similarities
present in the baseline, AE, VAE, and TAE. This
figure is best viewed in color.

4.2 Qualitative Evaluation

T-SNE visualizations are created with perplexity set to
50 to account for the large number of A-scans. Two vi-
sualizations are provided, one displaying the latent space
using the entire test dataset and the other showing the en-
coded features of a single B-scan. This is done to examine
how the models are organizing the latent space, as well
as to provide a relevant visualization for interpretation.
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Through analyzing the latent space, we may be able to un-
derstand whether the models are encoding certain A-scans
similarly or if there is some latent structure to the data.
For instance, A-scans that indicate the presence of objects
like pipes would ideally be encoded closer together in a
cluster and separate from A-scans that indicate moisture.
Color is provided to further illustrate the location of points
in 3D space. In Figure 4 we observe similar behavior to
the baseline for the AE, VAE, and TAE models. While
not well defined, weak clustering is apparent. Notably,
the latent space appears to be organized similarly across
the mentioned methods, particularly in the large cluster
visible on the left. Despite the visible formation of weak
feature clusters, it is not immediately apparent whether
these groups are truly distinct or semantically meaningful.

This similarity is continued in Figure 6 where we ob-
serve the same pattern of a large cluster towards the left and
smaller, tighter clusters on the right in the latent space visu-
alizations. Displaying the latent spaces alongside the cor-
responding encoded scan provides additional visual cues
that aid in understanding how the scans are encoded. We
observe the possibility of a grouping of like A-scans which
is particularly evident in the TAE. The A-scans belonging
to the point object reading are encoded near each other,
with the same being observed for the A-scans pertaining
to the moisture-saturated surface.

The MAE stands out among the methods tested. The
latent space visualization shown in Figure 5 for the MAE
describes reasonably well-defined and separated clusters.
However, the MAE results in Figure 6 are not as intuitive
to interpret. The latent space appears sparse and there is no
visible pattern in the encoding visualization. Therefore, it
is uncertain whether the clustering exhibited in Figure 5 is
representative of meaningful encodings. This result also
suggests the validity of studying GPR scans as a collection
of A-scans in a neighborhood of their respective B-scans.

4.3 Quantitative Evaluation

The following metrics are calculated over a range of � =
[2, 3, ..., 15] clusters, inclusive. This is done to ensure a
holistic understanding of method performance despite not
knowing intuitively how many clusters are appropriate for
GPR data. The number of clusters that adequately describe
the GPR signal behavior is unknown. As mentioned prior,
a positive Silhouette Score that is close to 1 and a large
Average Centroid Distance indicates clusters that are well
defined and distinct.

While the results in Figure 7 demonstrate the AE gener-
ating higher quality clusters among the methods tested, the
scores observed indicate fairly weak performance. Sim-
ilarly, the results shown in Figure 8 seem to suggest a
substantial separation of clusters from the AE. However,
the AE performs similarly to the MAE in this metric, which

Figure 6. Encoding visual of a specific scan through
all methods. The colors seen in the encoding visual
correspond to the colors of their respective points in
the 2D latent space. For the baseline, AE, VAE, and
TAE, the columns represent the encoded A-scans
from the sample scan. The MAE visual represents
the encoded 16 x 16 patches. This figure is best
viewed in color.
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measured a comparatively low Silhouette Score. Thus, the
quantitative results also remain inconclusive.
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Figure 7. Silhouette Score for 2-15 clusters. This
figure is best viewed in color.
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Figure 8. Average Centroid Distance for 2-15 clus-
ters. This figure is best viewed in color.

5 Discussion and Conclusions
Self-supervision enables the possibility of leveraging

the vast capabilities of deep learning in GPR processing at

a massive scale. We believe that advancements in this area
can further refine the performance and generalizability of
works such as [1] and [4] through training on far larger
and more comprehensive unlabeled GPR datasets. Addi-
tionally, enabling self-supervised training on massive real-
world datasets reduces the reliance on simulated synthetic
data, whose characteristics may not translate accurately to
the real world. As such, we recognize the significance of
extending the utility of GPR in rooftop diagnostics through
self-supervised GPR representation learning. Our study,
however, reveals that this task is not without its complexi-
ties.

The challenges in learning meaningful representations
likely stem from the inherent variability in GPR scan data.
Rooftop scans encompass diverse materials, compositions,
and features distributed somewhat unpredictably. This
intricacy poses a substantial obstacle for models aiming to
autonomously derive semantically significant encodings.

Despite the inconclusive results in representation learn-
ing, we remain optimistic in the approach of studying GPR
as a sequence of A-scans within a shared B-scan context
based on the results demonstrated in Figure 6.

Moving forward, addressing these challenges may in-
volve exploring additional pre-processing techniques or
alternative model architectures. Future research should
investigate strategies to enhance the robustness of self-
supervised GPR representation learning, ensuring its
adaptability across diverse scenarios in building diagnos-
tics.
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Abstract – 

Every year, accidental damage during excavation 
leads to numerous disruptions in utility services. 
These incidents cause not only financial losses but also 
injuries and fatalities. A major contributing factor to 
these incidents is the lack of accurate location data for 
utilities. The current practice involves a time-
consuming coordination process of obtaining utility 
maps from owners and field surveys, which is often 
hindered by delays and incomplete records. In 
response to these challenges, this paper proposes a 
novel method to predict underground utility lines in 
situations where records are unavailable or delayed. 
Our approach leverages visible utility anchor points, 
such as manholes, and the spatial context provided by 
nearby ground features like roads. The methodology 
involves three primary steps: constructing a 
relational data model of the utility network, 
transforming this data into graphs, and employing a 
graph neural network for prediction. This innovative 
approach demonstrates good performance, achieving 
a ROC AUC score of 95.24% in predicting sewer line 
connections between manholes. This method 
automates the inference of utility lines, providing 
utility owners and excavation contractors a solution 
for identifying unknown connections and reducing 
risks from inaccurate information. 

 
Keywords – 

Underground Utility Network Completion; 
Spatial Contextual Information; Graph Neural 
Networks 

1 Introduction 
The ongoing issue of inaccurate and incomplete 

information of buried utilities poses a significant 
challenge across the United States. Annually, numerous 
utility disruptions are caused by accidental excavation 
damage. These incidents impact communities and 
businesses, leading to injuries and tragically resulting in 

loss of life. According to Common Ground Alliance 
Damage Information Reporting Tool [1], 87.84% of 
these incidents occur due to missing or inaccurate 
location information. Current practice to mitigate these 
risks involves coordinating with utility owners to access 
utility maps and employ utility surveyors. The utility map 
serves as a crucial starting point, providing approximate 
line locations for further utility surveys. However, 
obtaining utility records faces prolonged delays in the 
coordination process, and some records may be entirely 
absent. Therefore, there's an urgent need to propose a 
method for inferring utility line locations when utility 
records are delayed or unavailable. 

When records are inaccessible, inferring some utility 
lines is possible by examining visible utility anchor 
points like manholes and nearby ground facilities such as 
roads and buildings. These visible features imply the 
presence and general locations of utilities. Acquiring 
information about these visible features is feasible 
through field surveys or high-resolution satellite imagery. 
However, this inference relies on scarce professional 
judgment and expertise, which can be time-consuming, 
error-prone, and may further complicate the process. 

This paper introduces a novel approach for 
automatically completing underground pipeline 
networks. It focuses on predicting utility line segments 
by using visible utility anchor points and ground facilities 
as spatial contextual cues. The objective is to aid users in 
inferring the existence and approximate locations of 
utility lines when utility records are not accessible. 

2 Literature Review 

2.1 Utility Parameters, Spatial Contexts, and 
Design Practices for Predicting Utilities 

Existing studies [2–6] address the design and 
completion of utility networks by predicting the presence 
of pipelines based on their endpoints, such as manholes, 
and assessing the extent to which the network conforms 
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to design criteria and practices. For instance, Afshar [2] 
suggested minimizing the cost function related to pipe 
diameters and excavation depths while adhering to 
certain constraints to reflect design criteria. He compiled 
a list of sewer design practices as constraints, such as the 
minimum flow velocity required to prevent sediment 
buildup and the minimum pipe slope necessary to avoid 
adverse slopes due to inaccurate construction. Similarly, 
Izquierdo [3] formulated the problem for hydraulic 
systems, akin to Afshar's approach, but also incorporated 
the continuity and energy equations of hydraulics into the 
model. These studies concentrate on using the parameters 
of the pipeline and pipe endpoints to aid in the design of 
the pipeline network. 

Furthermore, some research extends beyond the 
parameters of pipes and their endpoints. It also examines 
the relationship of these endpoints to visible ground 
elements and the surrounding environment, such as 
catchments, roads, and buildings near the pipes. For 
example, Bailly et al. [4] predicted the presence of 
pipelines based on the cumulative length of pipelines in 
relation to the catchment extent and network connectivity. 
Chahinian et al. [7] used manhole locations and 
elevations to predict the presence of pipelines and 
minimize instances of lines intersecting buildings and 
roads. Their top result achieved a precision and recall of 
0.92 each, alongside a critical success index of 0.85. 
These studies underscore the importance of spatial 
contexts in enhancing pipeline network predictions. 

2.2 Challenges and Limitations in Existing 
Studies 

Existing studies carefully consider the information 
crucial for completing or designing pipeline networks. 
However, they face challenges in both mathematically 
modeling and solving the problem as follows: 

1. One primary difficulty is the unknown correlation 
among pipe endpoint parameters, their connection 
parameters, spatial contexts, and pipeline presence. 
Existing studies simplify the problem by 
assumptions, leading to a lack of justification. 

2. Another challenge is capturing the interdependency 
of variables within a network solely through human 
knowledge. This limits current methods to focusing 
only on parameters directly connected to the 
pipelines or nearby ground facilities, overlooking 
broader interdependencies.  

3. Additionally, even when correlations and 
relationships are simplified and mathematically 
formulated, solving the model becomes 
computational expensive. These problems are often 
approached as combinatorial optimization, aiming 
to minimize costs while considering various 
constraints. The complexity of these problems is 

compounded by non-linear functions and 
constraints, resulting in a solution space filled with 
numerous local minima and discontinuities. 
Consequently, studies have resort to computational 
expensive optimization methods such as heuristic 
algorithms, particle swarm, ant colony optimization, 
and others, in pursuit of the global optimal solution. 

In summary, current research mainly utilizes rule-
based approaches to predict pipeline connections 
between two endpoints, considering both their 
parameters and spatial contexts. This body of research 
highlights the complexities involved in formulating and 
solving these problems, especially the challenges in 
converting industry practices into effective cost functions. 
It indicates that explicitly modeling this problem relying 
solely on human knowledge presents significant 
challenges. Additionally, the complexities hinder further 
exploration of factors, such as the detailed spatial 
relationships between manholes and their surrounding 
environment, related to pipeline prediction. 

2.3 Advantages of GNNs in Pipeline Network 
Completion 

In the context of pattern recognition, learning-based 
methods can overcome the limitations of previous studies 
that struggled with explicitly modeling cost functions. 
With sufficient data, machine learning can quickly adapt 
to data from diverse practices. 

Among the learning-based approaches, Deep Neural 
Networks (DNNs) [8,9] distinguish themselves from 
traditional machine learning methods by simultaneously 
learning features and objective functions. The advantages 
of using it for this problem lie in three aspects:  

1. Alignment with Graphical Data Structures: Pipeline 
networks are inherently structured in a graphical 
format, with manholes serving as nodes and 
pipelines as edges. This naturally aligns with the 
architecture of Graph Neural Networks (GNNs), 
facilitating the integration of information into a 
unified network for discerning data correlations. 
Additionally, this problem can be formulated as 
linkage prediction in GNN studies [10], a well-
established research area that is supported by a solid 
mathematical and statistical foundation. 

2. Feature Extraction from Subgraphs: GNNs 
specialize in handling graph-structured data, 
enabling the extraction of comprehensive features 
from subgraphs [11]. These methods, known as 
graph embeddings, allow for the representation of 
pipeline networks by aggregating information not 
just from direct connections but also from the 
broader network context.  

3. Discriminative Feature Learning: The concurrent 
learning of features and objective functions  lead to 
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learn discriminative implicit representations [8]. In 
contrast to traditional methods that linearly model 
relationships between handcrafted features, DNNs
excel in learning implicit feature representations 
that encode complex relationships within the data.
These features are specifically optimized for the 
downstream task, enhancing the accuracy and
effectiveness of pipeline network predictions [12].

4. Recent advances in using GNN models in 
Geospatial Artificial Intelligence (GeoAI): GNN
models are particularly adept at handling geospatial 
challenges that involve analyzing points of interest, 
their spatial relationships, and non-grid topologies. 
GNNs have shown notable effectiveness in 
applications such as traffic flow [13] and PM2.5 
level forecasting [14], where training and testing 
occur on the same nodes, referring to transductive 
learning. A significant challenge in GeoAI, 
however, is the application of models trained on one 
set of location data to completely new, unseen 
locations, known as inductive learning. To address 
this, significant advancements have been made in 
geospatial location encoding techniques [15]. These 
techniques transform location data, whether two- or 
three-dimensional, into a high-dimensional feature 
vector. This approach preserves relative distances 
and, optionally, directional relationships between 
locations, enhancing the model's ability to adapt to 
new locations not seen in the training phase.

Therefore, there is a need to explore the potential to 
overcome the limitations of current utility network 
completion methods using data-driven approaches. This 
study mainly introduces the framework of utility line 
prediction, addressing the following two challenges: (1)
identifying which spatial and semantic contexts to 
include along with their encoding techniques; and (2)
designing GNN models capable of efficiently 
propagating information across a heterogeneous graph—
such as nodes representing manholes and roads—and 
learn features for network topology prediction.

3 Methodology
The overall framework is illustrated in Figure 1. The 

process begins with building a relational data model to 
organize information on utility anchor points, lines, and 
ground facilities and their spatial relationships. Second,
all the records in the relational data model are represented 
as graphs, with anchor points and facilities as nodes, and 
utility lines and their relationships as edges. Finally, a
GNN model is developed to predict utility lines, which 
are the links between anchor point nodes.

Figure 1. Overall Framework

3.1 Relational Data Model Construction
Geospatial relational data modeling is a crucial step 

to present the properties and the relationships among 
different entities. It not only facilitates data extraction 
from existing databases but also aids in building the 
graph representations of the utility anchor points, lines 
and ground facilities. Figure 2 depicts the Entity-
Relationship (ER) diagram.

Figure 2. Entity-Relationship Diagram

In this diagram, three entities are used:

1. Utility Anchor Point: These are visible utility line 
junctions, such as manholes and ground pumps, 
indicating the locations of underground lines. 
Attributes include ID, type, and geometry.

2. Road: Roads, as a typical ground facility, provide 
spatial contextual cues for utility line prediction. 
The alignment of utility lines along roads makes 
this data a potential indicator. Additionally, roads 
are accessible from satellite imagery and digital 
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road maps, which are widely available. Roads are 
characterized by their ID, length, and geometry.

3. Utility Line. These are typically buried utility lines 
that are the focus of prediction in this research. Data 
on these lines are used for model training and for 
validation and testing in the evaluation stage. As 
this study focuses on predicting the existence of 
lines, only ID and geometry information are utilized.

Three relationships are established based on spatial 
relationship analysis:

1. Utility Line-Anchor Point Connection: The 
connection between utility lines and anchor points 
is determined by merging two tables through point-
line intersection analysis. 

2. Anchor Point-Road Proximity: Anchor point-road 
proximity is identified by locating the nearest line 
to the anchor point, considering only those within a 
100-meters radius as "close." Additionally, three 
attributes are extracted: the position of the nearest 
point on the road, the distance from the anchor point 
to this nearest road point, and the side of the road 
on which the anchor point is located. These 
attributes aid in predicting utility line placement, as 
most lines run parallel to, rather than across, roads. 
For instance, two connected manholes are likely to 
be on the same side of the road and in proximity.

3. Road-Road Intersection: The road-road relationship
is built by merging road tables through line-line 
intersection analysis.

3.2 Graph Representation
Building the graph representation of the utility 

network and its surroundings, based on the geospatial 
data model, involves three main steps: (1) establishing 
relationships between anchor points through their 
connections with utility lines; (2) converting the 
relational data model into a graph data model; (3) 
encoding the data with numerical values.

3.2.1 Anchor Point to Anchor Point Relationship
Establishment

This step transforms the utility line entity into 
relationships between anchor points. It is designed to 
align with the objective of predicting utility lines, which 
will be modeled as the edges between anchor point nodes 
in the graph network. Typically, in the graph data model,
edges represent relationships in the relational data model.

The implementation process is straightforward. A list 
of anchor-point ID pairs is generated if they intersect 
with the same utility line segments. This action removes 
the utility line entity in the relational data model and 
establishes a many-to-many relationship between the 
anchor points themselves.

3.2.2 Relational Data Model to Graph Data Model 
Conversion

This step follows the typical process of transforming 
the relational database to graph database, including the 
following steps: (1) table to node label; (2) row to node;
(2) column to node property; (3) foreign key to edge; (4) 
relationship attributes to edge properties.

(a) Relational Data

(b) Graph Data

(c) Graphical Representations in ArcGIS map
Figure 3. Utility Anchor Points and Roads, along
with their Relationships
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Figure 3 presents an example illustrating utility 
anchor points and roads, along with their relationships, in 
three different formats: as relational data model 
representation, as graph data model representation, and 
as visualized data on an ArcGIS map.

3.2.3 Data Encoding

Data encoding is a step to transform the data in 
different formats into the numerical features fed into the 
neural networks to predict the links between anchor point 
nodes. Table 1 summarizes the features used in this 
research, along with data encoding methods. 

Table 1. Data Encoding Methods for Attributes

Node / Edge Attribute Name Encoding Methods
Utility 
Anchor 
Point

Location Location Encoding

Type One-Hot Encoding

Road

Centroid 
Location Location Encoding

Type One-Hot Encoding

Length
Equal-Frequency 
Binning and One-

Hot Encoding

Orientation
Equal-Width 

Binning and One-
Hot Encoding

Utility 
Anchor 

Point-Road 
Relationship

Relative 
Position of 

Nearest Point 
on Road

None

Distance
Equal Frequency 
Binning and One-

Hot Encoding
Side None

3.3 Utility Line Prediction using Graph 
Neural Networks

This research develops a GNN model that consists of 
two main components: convolutional layers, and a 
classifier. Initially, it adopts a multi-scale location 
encoder [14] that applies sinusoidal functions of varying 
frequencies to transform location data. The convolutional 
layers include the GAT (Graph Attention Network [16])
and GraphSAGE (SAmple and aggreGatE [17]) as basic 
building blocks. GAT incorporates an attention 
mechanism, assigning importance weights to 
neighboring nodes that are learnable within the network. 
It processes node features, edge indices (indicating node 
connections), and edge attributes as inputs and generates 
updated node features and attention weights as outputs. 
GraphSAGE is a method of sampling neighboring nodes 
with specific weights and aggregating these neighboring 
node features into the weighted target node. Both layers 

focus on feature aggregation at the graph nodes. The final 
component of the network is a binary classifier, designed 
to predict connections between node pairs through the 
multiplication of their feature vectors. The loss function 
used is cross-entropy loss function, commonly applied in 
binary classification tasks. Figure 4 presents a detailed 
visualization of the GNN model, including its inputs, 
outputs, and overall architecture.

Figure 4. Architecture of the GNN model and 
corresponding Inputs and Outputs

3.3.1 Architecture Variants

Since there are no existing GNNs for this application, 
several architectural variants are discussed, as illustrated 
in Figure 5. ReLU layers are not drawn for simplification.

Figure 5. Architecture Variants

The base model utilizes two GAT layers, which 
include dropout rates to prevent overfitting. The outputs 
from these GAT layers, which are the updated features of 
the nodes, along with the indices of the edges, are fed into 
two GraphSAGE layers. The first variant consists solely 
of four GraphSAGE layers. Unlike GAT layers, 
GraphSAGE layers do not process edge attributes, 
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meaning that this model variant does not include 
information on road-anchor point spatial relationships 
beyond connectivity. The second variant examines the 
impact of alternating positions of GAT and SAGE layers. 
The third variant investigates the effective integration of 
edge attributes by introducing skip connections, with FC 
referring to fully connected layers. 

4 Experimentation 

4.1 Data Description and Preprocessing 
This research utilizes two data sources: (1) The sewer 

network map provided by Urban Utilities, accessible at 
https://services3.arcgis.com/ocUCNI2h4moKOpKX/arc
gis/rest/services/UU_Sewer_OpenData/FeatureServer. 
In the ArcGIS sewer network map, the manhole and 
pump feature layers are utilized to represent utility 
anchor points, and the gravity sewer main lines are used 
as the utility lines. (2) The road network from the 
Brisbane City Council, which is available at 
https://services2.arcgis.com/dEKgZETqwmDAh1rP/arc 
gis/rest/services/Roads_hierarchy_overlay_Road_hierar
chy/FeatureServer. The road feature layer is employed as 
an example of ground facilities.  

The raw data about manholes, pumps, gravity sewer 
main lines, and road networks were exported from 
ArcGIS Pro software as individual shapefiles. 
Subsequently, these files were processed using Python 
geospatial data analysis and network analysis packages. 
The proximity analysis between manholes and roads was 
conducted using the QueryPointAndDistance function in 
ArcGIS Pro Python API. This function identifies the 
nearest point on a polyline to a given point and calculates 
the distance between them. Additionally, it provides 
details about which side of the line the point is located on 
and the distance along the line, expressed as a percentage. 
The data was preprocessed in two steps. First, the data 
was cleaned by removing utility lines that lack 
connections with any manhole or pump points or are 
linked to only one point. This is because the method 
assumes that each utility line connects to a minimum of 
two anchor points. Second, roads located more than 100 
meters from the manholes were filtered out, as roads not 
classified as "close" to the manholes do not contribute to 
link prediction. The statistics are summarized in Table 2. 

Table 2. Data statistics before and after pre-processing 

Name Count 
(Before) 

Count 
(After) 

Utility Line 243,773 203,203 
Utility Anchor Point 206,187 206,187 

Road 41,753 32,080 

4.2 Experiment Design 
4.2.1 Training, Validation, and Testing Data Split 

The data was divided into training, validation, and 
testing sets in three steps: (1) within the utility anchor 
point networks (excluding roads), connected components 
were identified, leading to a collection of subgraphs, each 
representing a distinct component; (2) the training, 
validation, and testing datasets were then randomly 
distributed in a 6:2:2 ratio from these subgraphs. (3) 
nodes representing roads were included in various 
datasets, determined by their connectivity to utility 
anchor points. Some road nodes might appear in multiple 
datasets if they are connected to anchor points belonging 
to different sets. This separation ensures that utility line 
edges and utility anchor point nodes from the training set 
do not appear in the validation or testing sets, and those 
from the validation set are excluded from the testing set. 

This approach of using connected components for 
dataset division was chosen because the distribution of 
unknown utility lines typically concentrates in specific 
areas rather than being evenly spread throughout a city. 
Figure 6 illustrates the distribution. 

 
Figure 6. Training, Validation and Testing Sets 

4.2.2 Evaluation Metrics 

The model outputs are numerical values representing 
classes assigned to each edge that connects two manhole 
nodes: “      ”    1 indicates the presence of a pipeline, 
“      ”      signifies its absence. A common threshold 
of 0.5 is used to separate these two classes. These studies 
adopt the following evaluation metrics for experiments: 
(1) Precision. Precision is the proportion of true positive 
predictions, correctly predicted pipeline presence, out of 
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all positive predictions made. (2) Recall. Recall is the 
proportion of true positives, correctly predicted pipeline 
presence, out of all actual pipeline presences. (3) AUC 
(Area Under the Curve) ROC (Receiver Operating 
Characteristics) score. The ROC curve is a plot of the 
TPR (True Positive Rate or Recall) against the FPR 
(False Positive Rate) at various threshold settings. It is 
the measure of separability of two classes. (4) F1-Score. 
F1-Score is the harmonic mean of precision and recall. (5) 
Accuracy. Accuracy is the total number of correct 
predictions among all the cases. (6) MCC (Matthews 
Correlation Coefficient). MCC is a correlation 
coefficient between the observed and predicted 
classifications for imbalanced dataset. It returns a value 
between -1 and 1, where 1 indicates a perfect prediction, 
0 means random prediction, and -1 indicates total 
disagreement between prediction and observations. 

4.2.3 Hyperparameter Tuning 

For model training, the number of epochs is 
determined using an early stopping approach. The 
maximum size of the epochs is 100, but once the 
validation loss does not decrease or decreases by less 
than 0.001 for five consecutive epochs, the training 
process will be stopped to prevent overfitting. Regarding 
optimization techniques, the Adam optimizer is used with 
a learning rate set at 0.001. 

The model fine-tuning focuses on two 
hyperparameters: the size of the hidden layers and the 
dropout rates. This approach is chosen due to an 
overfitting problem observed during the experimentation 
process. The options for the hidden layer size are set at 
four specific values: 32, 64, 128, and 256. The dropout 
rates range from 0 to 0.6, with increments of 0.2. The 
hyperparameter tuning process is guided by various 
evaluation metrics on the validation set, and the testing 
data is used only for evaluating the optimal model. Due 
to space constraints, the detailed evaluation metrics 
corresponding to each model variant and hyperparameter 
combination are stored in the GitHub repository. 

4.3 Experiment Results 
The hyperparameter tuning of the model is driven by 

its performance on various evaluation metrics using 
validation data. The best-performing models on the 
validation set for each metric are summarized in Table 2.  

For more detail, Variant 3a represents a model 
configuration with a hidden layer size of 32 and a dropout 
rate of 0; Variant 3b is configured with a hidden layer 
size of 128 and a dropout rate of 0; and Variant 3c 
features a hidden layer size of 32 with a dropout rate of 
0.4. Variant 1a, on the other hand, corresponds to a model 
with a hidden layer size of 64, utilizing only SAGE layers. 

The fine-tuned models, each selected for achieving 
the highest score for each evaluation metrics, are further 

evaluated using the testing data. The outcomes from 
these tests are compiled and presented in Table 3. 

Overall, Variants 1 and 3 demonstrate the most robust 
performance. Variant 3 excels in ROC AUC scores, 
accuracy, and MCC metrics, indicating its superior 
capability in differentiating the presence and absence of 
pipeline connections. On the other hand, Variant 1, which 
focuses solely on node attributes and connectivity and 
overlooks edge attributes such as the manhole's location 
relative to the road, achieves the highest recall and F1 
score. This outcome is reasonable since ignoring road-
crossing pipelines leads to more conservative predictions. 
This conservative approach is particularly advantageous 
in utility line detection scenarios, where the priority is to 
minimize the risk of missing lines. 

Table 3. Optimal Model Architectures and 
Hyperparameter Combinations on Validation Set  

Model Var.3a Var. 3b Var. 3c Var. 1a  

ROC AUC 0.9619 0.9616 0.9608 0.9572  

F1 0.8987 0.8980 0.8959 0.9001  

Precision  0.9137 0.9215 0.9265 0.8992  

Recall 0.8842 0.8756 0.8672 0.9010  

Accuracy 0.9004 0.9005 0.8992 0.9000  

MCC 0.8011 0.8020 0.8001 0.8000  

Table 4. Testing Results on the Tunned Models 

Model Var.3a Var. 3b Var. 3c Var. 1a  

ROC AUC 0.9520 0.9524 0.9488 0.9479  

F1 0.8855 0.8849 0.8790 0.8868  

Precision  0.8783 0.8884 0.8890 0.8687  

Recall 0.8927 0.8815 0.8692 0.9057  

Accuracy 0.8845 0.8854 0.8803 0.8844  

MCC 0.7692 0.7708 0.7608 0.7695  

5 Conclusion and Discussion 
This research presents an effective method for 

completing utility networks. The approach includes three 
steps: (1) build a relational data model to arrange the data 
regarding utility anchor points, lines, ground facilities, 
and their spatial relationships; (2) convert all records in 
the relational data model to graphs, with anchor points 
and facilities as nodes, and utility lines and their 
relationships as edges. (3) develop a GNN model to 
predict utility lines. The experimental results 
demonstrate good performance, achieving a 95.2% ROC 
AUC score in inferring sewer lines between manholes. 
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This novel approach offers advantages for utility owners 
and excavation contractors, providing a framework to 
deduce missing connections within utility networks. 

However, a limitation of the model is its lack of 
explainability, which impacts user trust. Furthermore, 
applying the model directly to varied datasets presents 
challenges due to the necessity for: (1) aligning context 
features with standardized utility network criteria, and (2) 
considering diverse practices that vary by time and 
geography. Ensuring model adaptability to different 
utility networks requires accurate, complete, and region-
specific utility network training data. Future research will 
focus on assessing the impact of data quality on model 
performance. Additionally, expanding the model to 
include more spatial contexts, such as buildings and legal 
boundaries, could further improve its utility and accuracy 
in real-world applications. Lastly, considering potential 
consequences of false alerts and missed detections in 
utility strike prevention and flexibilities in pipeline 
network design, presenting the likelihood with 
uncertainty could further improve decision making.  

6 Data and Code Availability 
The code, data, and supplemental materials are 

available in the GitHub repository: 
https://github.com/Yuxi0048/PipeNetworkCompletion.  
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Abstract – 

The accurate detection of soil boundary levels is 
vitally important for creating the correct solutions for 
the earthwork phases of construction. In Building 
Information Modeling (BIM), subsoil models are 
interpolated from information obtained from ground 
investigations. Our study focused on the adaptive use 
of geological uncertainty modeling to derive 
additional information during excavation. The results 
show that the continuous mapping of excavated 
ground is an effective estimation tool for modeling 
boundary levels. This adaptive tool can significantly 
decrease uncertainty in earthwork, presenting new 
possibilities for productivity and sustainability. The 
results of this study enable comparisons of alternative 
options in adaptive uncertainty modeling during 
excavation, allowing for the development of 
uncertainty-based subsoil models for construction. 

 
Keywords – 

Soil boundary level; uncertainties; excavation; 
geological mapping; building information modeling; 
model-based design; ground investigation 

1 Introduction 
As the development of construction technology is 

focusing on questions related to productivity, safety, and 
sustainability, many are facing the challenge of adopting 
progression with the prevailing conditions of practice. In 
response to this challenge, building information 
modeling (BIM) tools were introduced, and they have 
played a crucial role in coordinating the planning and 
construction phases, addressing unforeseen problems, 
and facilitating information sharing between disciplines. 
These interdependent interactions between various 
engineering disciplines are built on information that is 
initially available. 

In many cases, the problems that arise during 
construction are a result of the limited or partial 
information available during the planning phase. Because 
unforeseen problems are solved onsite, they tend to be 
reactive rather than proactive. Although many 

construction phases are flexible in the face of emerging 
challenges, certain planning disciplines, such as 
geotechnical engineering, rely on preliminary 
information to develop solutions for the entire 
construction process. The reactive nature of problem-
solving in such cases creates challenges in terms of not 
only timetabling and costs but also overall planning 
solutions. 

Proactive modeling addresses this issue by providing 
a more accurate estimation of ground conditions, but it 
requires updated soil models. Until now, achieving this 
has involved additional soundings, soil sampling, or 
boreholes to create new modeling conditions, 
simultaneously incurring additional costs due to extra 
ground mapping. 

A recent study by Satyanaga et al. [1], which 
reviewed the current state of BIM applications for 
geotechnical engineering, focused on the integration of 
geological and geotechnical information into modeling 
the planning and construction phases using case studies. 
Their findings correlate with our study’s hypothesis that 
there is a lack of flexibility to create adaptive models for 
implementation when applying preliminary information 
with finite element method calculations. There is a need 
for further research to create less intricate and 
calculation-dependent modeling tools when applying 
geotechnical information. Vanicek et al. [2] concluded 
that BIM modeling is behind other engineering 
disciplines in terms of the effectuation of geological and 
geotechnical information. This has much to do with the 
site-specific properties of soil parameter determination. 
Constitutive models of ground conditions require soil 
sampling and sounding results to create a condition map 
of an entire area. Since soundings and soil samples 
represent point-specific information, there is an element 
of uncertainty in interpolating these points. Similar 
findings regarding soil parameter uncertainty in BIM 
modeling have found support in the studies of Beaufils et 
al. [3] and Wu et al. [4]. 

According to Wiegel et al. [5], the development of 
geotechnical modeling with geostatistical information 
and uncertainty modeling improves overall decision-
making and sustainability in construction. They 
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highlighted that tools for incorporating geotechnical 
information into BIM models are still under development. 
In addition, they pointed out that, although different 
methods of uncertainty modeling are available, the 
integration of these methods with BIM models is not 
ready. We found no study in which the uncertainty of 
subsoil models was updated with adaptive soil boundary 
detection during excavation. 

Pakyuz-Charrier et al. [6] concluded that overlooking 
the amount of uncertainty distorts the accuracy of the 
modeled area. The handling of uncertainties in geological 
information can either enhance or distort a 3D subsoil 
model, as pointed out in studies between 2001 and 2018 
[7], [8], [9], [10], [11]. All of these studies were founded 
on the understanding that information fed into the 
uncertainty model is gathered beforehand and 
interpolated to create the modeled area. As preliminary 
information, the sounding, sampling, and borehole 
information has only limited room for flexibility during 
construction.  

The risks of utilizing subsoil models with partial or 
inaccurate information can, in many cases, actualize 
economic loss. Estimations of cut and fill volumes, for 
example, can significantly impact tendering bids, 
transportation estimates, contract schedules, and 
emission calculations. This was the case in the 
Autostrada1 motorway construction project, with 
Skanska Poland estimating that each centimeter of excess 
excavation at depth would incur costs of EUR 1 million 
[12]. In this way, uncertainty modeling, together with the 
automatic implementation of geotechnical and geological 
BIM models, can prevent major errors in calculations and 
analyses [13].  

Developments in construction safety and productivity 
have had an increasing impact on the digitalization of 
infrastructure construction. Automation has allowed 
worksite information management to incorporate BIM 
modeling. For this, accurate subsoil models are crucial 
(Fig. 1), and with the state of the art of geotechnical 
modeling today, they require intermediary software and 
investment in data gathering and storage, according to 
Hiltunen et al. [14].  

 

 
Fig. 1 BIM data and subsoil models create the 
basis for automated excavation in earthwork 
construction. 

The aim of our study is to investigate the potential of 
adaptive geological information derived during 
excavation by studying the effects of incorporating new 
information into a geological uncertainty model and then 
creating a verified soil boundary and geological model 
for an entire excavated area.  

Based on the main aim, the following questions are 
addressed by our study: 

1. How does the uncertainty of a geological model 
develop when excavation is conducted 

a)  systematically from one end of an 
uncertainty model to another 

b) from the most uncertain area of the model 
outwards? 

2. What is the potential for adaptive boundary 
detection in geological modeling? 

3. What are adaptations of uncertainty modeling with 
updated geological information in the future? 

2 Materials and methods 

2.1 Uncertainty modeling 
The method used in our study for modeling 

uncertainties in the determination of geological 
boundaries was based on kriging interpolation and 
Bayesian statistics [15]. This approach was theoretically 
inspired by the 3D geological uncertainty modeling of 
Wellmann et al. [16], although it was adapted to typical 
geotechnical conditions in infrastructure projects. In such 
projects, relatively few geological boundaries are 
typically expected, and geological conditions are only of 
interest within a limited area below the ground surface. 
For computational efficiency, the uncertainty modeling 
code was developed in 2D, with the resulting surface 
representing a specific geological boundary of interest. 
The uncertainty model used in this study was 
implemented in Sweden by Tyréns AB as part of its 
GeoBIM concept, with the company providing a direct 
connection to a geotechnical database. Uncertainty 
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modeling was performed using Python code running on 
a server and controlled by the user through a Microsoft 
Teams interface.  

The user was asked to evaluate the most probable 
vertical location of the geological boundary at each 
measurement point (e.g., geotechnical drilling and 
soundings). The minimum and maximum possible 
locations of the same boundaries were evaluated by the 
user, and these input data were used to construct a skew-
normal distribution for each measurement point. These 
distributions represented all possible boundary-level 
values in the measurement points and their corresponding 
likelihoods. The uncertainty modeling was then, in short, 
based on an iterative approach, in which random 
boundary-level values were drawn from the uncertainty 
distributions of Svensson et al. [17]. This was followed 
by kriging interpolation of the boundary surface. Since 
the input boundary levels varied for each iteration, the 
approach resulted in an estimation of how uncertainty in 
the determination of the boundary level propagated from 
individual measurement points to the surface model as a 
whole.  

In addition to this propagated uncertainty, the 
variance of the kriging interpolation, which is linearly 
proportional to the distance to the measurement points, 
was also taken into consideration. Both types of 
uncertainties (i.e., spatial variance and propagated 
uncertainty) were weighted together for the final 
quantification of the total measurement uncertainty of the 
modelled surface. In addition, the model output is also 
the most probable bedrock level as well as the minimum 
and maximum bedrock levels. 

2.2 Study area and data collection 
In an earlier study, Svensson and Friberg [18] 

successfully validated the algorithm used in the 
uncertainty model implemented at Tyréns AB to study 
the top boundary of bedrock in three separate 
infrastructure projects in Sweden. From these 
infrastructure projects, five uncovered and surveyed 
areas were mapped and studied alongside the uncertainty 
model created using preliminary information derived 
from Swedish JB-sounding (Soil-Rock soundings) 
investigation points.  

Svensson and Friberg [18] produced a one-step 
verification system in which the preciseness of the 
uncertainty model was verified according to the results of 
the uncovered bedrock boundaries. The uncertainty 
model was not updated during the excavation of the 
bedrock boundary. 

Using a three-step process, our study verified the 
development of the uncertainty model when new 
information was introduced into the algorithm during 
excavation. First, the estimated soil boundary that had 
been updated during excavation was verified with 

additional sounding points not used in the initial model. 
This produced additional data points for the algorithm 
with the same estimated uncertainty as the initial points. 
Second, the updated model was verified with soil 
samples, which produced additional data points with 
minimal estimated uncertainty. Third, the true soil 
boundary was mapped from the excavated ground. 

This three-step method enabled us to verify the 
development of uncertainty with adaptive information 
derived during excavation using the prevailing conditions 
of practice. This broad adaption of data points enabled 
the generalization of the adaptive uncertainty modeling, 
since it was not dependent on certain information-
gathering methods while the ground conditions were 
mapped. 

Our study area site description represents a typical 
Scandinavian friction subsoil consisting of an aggregate 
sandy gravel layer on top of a moraine base layer. The 
sandy gravel layer’s depth varied from 1.00 m to 13.48 
m below the ground. On average, the depth was 12.40–
12.60 m (Fig. 1). This site was chosen because of the 
varying depth of the soil boundary, which created an 
uncertainty variation around the site area (Fig. 2).  

The geological uncertainty model was created for a 
50 m × 75 m area. The initial information for the 
uncertainty model was taken from nine measurement 
points. The soil boundary level was measured by static-
dynamic penetration tests, producing an estimated soil 
boundary depth with a 20 cm difference in the 
evaluations of the minimum and maximum possible 
locations of the same boundaries. The actual boundary 
depth from these points was verified by soil sampling. 

The test site was then divided into a 5 m × 5 m mesh 
grid, from which the verified soil boundary level of each 
grid square was introduced into the uncertainty model. 
The true soil boundary level was verified from surface 
model measurements of the excavation pit floor, 
additional soil sampling, and static-dynamic penetration 
test results not used in the initial uncertainty model. 

 
Fig. 1 Verified uncertainty model of the test site’s 
sandy moraine layer. 
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Fig. 2 Initial geological uncertainty condition map 
of the test site. Uncertainty increases according to 
the shade of red. The initial measurement points 
are visualized with black and white “T” symbols. 

2.3 Data processing and analysis 
The data collected from the surface model 

measurements of the excavation pit floor, additional soil 
sampling, and static-dynamic penetration test results 
were processed into the uncertainty model to create two 
separate scenarios. These scenarios were simulated to 
study the adaptive properties of the geological 
uncertainty model—that is, how the algorithm adjusted 
the estimate of soil boundary levels—when the 
calculation parameters were refined.  

Because, in most cases, soil boundaries vary in height, 
the uncertainty model’s development is dependent on the 
weighted distance in which the data points are defined in 
contrast to one another. The longer the distance, the 
greater the uncertainty (traditional standard procedure). 
In our study, we compared the development of the 
uncertainty model when the distance was largest between 
the data points (i.e., the uncertainty was adjusted at the 
beginning of the excavation) with a case in which 
excavation took place with a traditional one-end-to-
another approach. 

Using the aforementioned three-step verification 
system, additional sounding data points and soil sampling 
were introduced as alternative sources of adaptive 
information. The estimated soil boundary uncertainty 
between the minimum and maximum possible locations 
was kept steady at 20 cm throughout the entire area. 

In the first scenario, the uncertainty modeled area was 
systematically excavated from the western boundary 
toward the east (Fig. 3). In the second scenario, the 
excavation was modeled from the most uncertain area 
outward (Fig. 4). The development of the uncertainty 
model was reviewed in 20% increments as an estimation 
of the volume of sandy gravel layers. 

 
Fig. 3 Development of the uncertainty model in 
Scenario 1, with excavation boundary levels in 20% 
increments. 

 
Fig. 4 Development of the uncertainty model in 
Scenario 2, with excavation boundary levels in 20% 
increments. 

3 Results 

3.1 Systematic excavation from west to east 
The results show that the uncertainty of the model 

decreased methodically as the excavation proceeded 
toward the eastern end of the test site (Fig. 5). The most 
probable level of volume estimated for the sandy moraine 
layer decreased below the end result as the excavation 
advanced from 40% to 60%. This was due to the most 
uncertain area of the site being located at the approximate 
center of the excavation. As the excavation modeled the 
correct level for the uncertain area, with 60% of the 
excavation completed, the estimation corrected itself 
back to the original trend of the development. 

Even with largely varying uncertainty around the test 
site, with 60% of the excavation completed, the 
difference in the volume-level uncertainty was 29.46% 
for the completed excavation (Table 1). The uncertainty 
in the volume level, with the initial measurement point 
data alone, had a difference of 82.58% compared to the 
completed excavation. 
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Table 1. Results of uncertainty during systematic 
excavation from west to east. 

Model 
Upper 
level 
(m3) 

Most 
probable 
level (m3) 

Lower 
level 
(m3) 

Difference in 
volume-level 

uncertainty (%) 
0% 24,274 29,080  33,929  82.58% 

   
20% 24,909 29,178  33,473  72.39% 

  
40% 27,271 30,646  34,023  50.91% 

  
60% 26,392 29,088  31,790  29.46% 

  
80% 28,183 30,411  32641  10.53% 

  
100 % 28,282 30,286  32,294  0% 

 
Fig. 5 Development of the uncertainty model as 
excavation systematically proceeded from west to 
east. 

3.2 Excavation from the most uncertain area 
outward 

When initially mapping the most uncertain parts of 
the excavation area, and extending the excavation 
outward from there, the decrease in uncertainty was more 
effective and linear. The largest development in the 
uncertainty model, excavating with this approach, 
occurred in the first 20% of the excavation (Fig. 6). Here, 
uncertainty decreased by 35.09% (Table 2).  

As the excavation progressed, the difference in 
volume-level uncertainty was 15.03% compared to the 
completed excavation, when 60% of the test site had been 
mapped. Compared to the systematic excavation from 
west to east, where the difference at the same percentage 
increment was 29.46%, the percentage difference 
between these two scenarios was 64.86%. 

Table 2. Results of uncertainty in the excavation from 
the most uncertain area outward. 

Model 
Upper 
level 
(m3) 

Most 
probable 
level (m3) 

Lower 
level 
(m3) 

Difference in 
volume-level 

uncertainty (%) 
0% 24,274  29,080  33,929  82.58% 

   
20% 26,523  29.749  33,473  53.60% 

  
40% 27,252  29,901  32,992 

  
35.44% 

  
60% 27,854  30,185 

  
32,518 

  
15.03% 

  
80% 28,275  30,317 

  
32,363 

  
1.88% 

  
100% 28,282 30,286  32,294  0% 

 
Fig. 6 Development of the uncertainty model as 
excavation proceeded from the most uncertain 
area outward. 

4 Discussion 

4.1 Potential and limitations of adaptive 
boundary detection in geological modeling 

The use of adaptive boundary detection reduces the 
level of uncertainty when interpolating between 
measurement points and mapping boundary levels. In the 
future, this could have a large effect on the planning 
phases of geotechnical solutions, excavation, and 
transport. As the expected volumes of excavated soil 
become more precise, the planning of cut and fill 
volumes and possible aggregate consumption and 
emissions calculations will become more efficient and 
effective. The detection of soil boundary depths will 
allow for more precise geotechnical calculations in 
earthwork solutions, such as stabilization, preloading, 
and settlement, and for a more proactive approach to be 
taken to unforeseen problem-solving. The need for 
additional ground investigations after the initial planning 
can be reduced to a necessary minimum in cases where 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

948



the detection of boundary levels during excavation is 
sufficient. This can help in cost- and timetable-effective 
construction, as ground condition mapping is one of the 
most costly phases of planning. These benefits are vital 
for contractors and clients to ensure that projects proceed 
according to the expectations of the tendering proposal. 
An algorithm continuously updated with the best 
estimate (±2 std. dev., 95% uncertainty) [18] of boundary 
levels would be the best possible tool to achieve this goal. 

Adaptive uncertainty models can potentially lead to 
precise, boundary-based autonomous excavation, with 
the excavation models dictating how the excavation 
adapts to changes in soil boundaries while in progress. 
This can create more dynamic uses for unmanned 
excavation through BIM–model interaction.  

As the computational requirements of autonomous 
excavation do not seamlessly interact with the prevailing 
conditions of practice in excavation, a middle-ground 
solution utilizing modeling tools that can be incorporated 
in near real time into machine-control models can help 
with the interaction. Our proposed adaptive uncertainty 
model can create a tool that enables an autonomous 
excavator to excavate with precision, where earlier 
machine control models were more robust in their 
definitions. The uncertainty model could provide 
additional tools for contractors to create more precise and 
effective tendering offers while using traditional means 
of excavation. 

As a tool, uncertainty modeling does not exclude the 
need for thorough ground investigations. Since the 
effectiveness of the model relies on the initial 
information fed into the calculations from measurement 
points, the ground investigation planning should be as 
detailed as possible. The initial uncertainty model 
provides vital information on the mapped area and, as our 
results show, allows for variable results depending on the 
execution of the excavation. 

The evaluation of the minimum and maximum 
possible locations of boundaries plays an important role 
in total uncertainty. In our case, when the location 
difference was set at 20 cm, the degree of compaction in 
the soil played an important role. Due to the degree of 
compaction, static-dynamic penetration produced results 
per 20 cm increment. This is not the most precise 
sounding method available, and by choosing the most 
accurate method, depending on the soil type, the 
uncertainty can be minimized. 

4.2 Adaptive geological uncertainty modeling 
in the future 

BIM applications for geotechnical engineering are 
under widespread development, although one obstacle to 
their development concerns differences in the conditions 
of practice. To address this, uncertainty modeling allows 
individual uncertainties to be set for each investigation 

location, depending on the quality of the data to be 
obtained through various methods.  

The same aspect of flexibility can be capitalized on in 
adaptive modeling since there are multiple methods for 
boundary detection. The integration of uncertainty 
modeling tools into BIM applications should be 
conducted with the same type of principles. To 
implement uncertainty modeling in everyday work, it is 
necessary to make the tool available without the need to 
install additional programs, learn new interfaces, and 
manage new data formats. An example of this is the 
uncertainty modeling tool used in our study.  

This modeling method was incorporated into the 
Microsoft 365 Teams platform, which many users 
already know and can access. By making uncertainty 
modeling available on a platform that is already widely 
used in the industry, the threshold for starting to use the 
method was significantly reduced. 

5 Conclusion 
This study introduced an adaptive utilization method 

for geological uncertainty modeling. The results derived 
from the test site data indicate that adaptive updates of 
ground mapping information can significantly reduce the 
uncertainty of earthwork. Since the information utilized 
can be sourced from multiple information sources (i.e., 
the mapping of excavated ground), the method can be 
widely adapted to the prevailing conditions of practice. 
The main benefits of adaptive uncertainty modeling are 
the creation of precise and effective information during 
earthwork phases without additional work phases or 
significant costs. 

At present, uncertainty modeling tools are not in 
widespread use. Further development of the algorithm 
depends on operational experience derived during field 
tests. Because the algorithm for calculating soil 
boundaries and the accompanying uncertainties depend 
on the individual uncertainty of each data point, the 
amount of information gathered from various test sites, 
which is effectively a ground condition database, can 
significantly advance the algorithm’s development.  

Such a database can help determine how various 
geological parameters and the distances between data 
points are weighted, depending on how much they should 
influence the calculation, thereby advancing the 
calculation of site-specific conditions by converging the 
predicted excavated soil boundaries with the individual 
uncertainties in each data point. 
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Abstract – 

Formwork accessory planning plays an important 
role in fastening and supporting the formwork panels 
for construction safety. This research aims to improve 
the automation of formwork accessory planning of a 
BIM-based aluminum formwork layout planning 
system currently developed at the National Taiwan 
University for automating the layout planning of 
formwork panels. It has been proven to save 
engineers time in conducting formwork panel 
planning in several case studies. However, the 
engineers still need to spend a lot of time conducting 
formwork accessories planning manually in the 
system. Therefore, this research proposes an 
approach based on accessories planning rules to 
support automation for engineers in conducting prop 
generation, brace planning, waler planning, double 
waler planning, and quantity estimation of the 
accessories including waler bracket, pull tie, wedge, 
and pin. The case study result shows that the 
proposed approach can save engineers 87.5% of the 
time compared to the original process of conducting 
formwork accessory planning. 
Keywords – 

Planning Automation; Formwork Accessories; 
Aluminum Formwork Planning System; Building 
Information Modeling 

1 Introduction 
The aluminum formwork system represents a 

significant advancement in construction technology and 
offers many benefits compared to the traditional timber 
formwork system. Notably, the stiffness of the aluminum 
formwork system surpasses that of the timber formwork 
system, providing a more robust and stable structure [1]. 
Moreover, the aluminum formwork system has longer 
durability, enabling multiple reuses and reducing the 
overall cost of construction [2]. Easily installing and 
dismantling aluminum formworks also contributes to 

time efficiency, a critical factor in construction sites. 
Furthermore, the smooth surface of the aluminum 
formwork system often results in superior surface 
finishes on concrete structures, requiring no additional 
surface treatment. This advantage enhances the aesthetic 
and functional quality of the final product. 

To fully use the advantages above, the 
implementation of the aluminum formwork system 
requires precise pre-planning, which is a time-consuming 
process for engineers. This formwork planning process 
includes panel planning and accessory planning. This 
research is focused on improving the automation of 
formwork accessory planning. The accessories play a 
crucial role in supporting and stabilizing the formwork, 
preventing significant displacement or even collapse 
during the concrete pouring process. Accessory planning 
must consider the type, size, and quantity of accessories, 
as well as their configuration. The primary objective of 
accessory planning is to ensure the stability and safety of 
the formwork system while optimizing construction 
efficiency. 

However, few researches aimed at automating the 
accessory planning process. Furthermore, the prevailing 
practice in formwork accessory planning largely remains 
a manual endeavour, with engineers dedicating 
considerable time and resources to the task. This reflects 
a notable gap in automation, a fact underscored by the 
industry's reliance on traditional methods and the 
corresponding absence of advanced technological 
integration in this area. This lack of automation in the 
accessory planning process motivated the authors to 
propose a semi-automatic approach for the configuration 
and quantity estimation of accessories after the panel 
planning process. This approach is implemented in a 
BIM-based aluminum formwork layout planning system 
[3]. The proposed semi-automatic approach includes 
prop generation, brace planning, waler planning, double 
waler planning, and quantity estimation of the 
accessories including waler bracket, pull tie, wedge, and 
pin. 
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This paper presents the literature review in Section 2, 
the detail of the proposed approach in Section 3, the result 
and discussion from a case study in Section 4, and the 
conclusions in Section 5. 

2 Literature Review 
The authors reviewed research related to the 

advancements in formwork planning automation, 
specifically focusing on the integration of BIM 
technologies. Hyun et al. [4] initiated the automation in 
formwork design using spatial analysis of BIM. Lee et al. 
[5] developed prototype software for automating 3D 
layout planning of formwork using BIM data. Chen et al. 
[3] introduced a BIM-based approach that combines a 
semi-automated generation module with a manual 
refinement module. These studies contribute to 
automating formwork planning, particularly in panel 
planning. 

From the literature review, the authors noted that 
current research on formwork planning automation 
primarily emphasizes panel planning rather than 
accessory planning. However, formwork accessory 
planning also takes considerable time. Therefore, this 
research aims to automate accessory planning to address 
this gap. The following section outlines the approach 
proposed for automating accessory planning. 

3 The Proposed Approach 
The authors interviewed formwork accessory 

planning engineers to realize their planning principles 
and rules. Then the authors aimed to obtain the required 
information for planning automatically from a BIM 
model and manual inputs. Finally proposed a semi-
automatic formwork accessory planning approach. The 
proposed approach consists of two parts: accessory 
planning and accessory quantity estimation. The first part 
focuses on arranging various accessories integral to the 
formwork system, such as props, braces, walers, and 
double walers. Figure 1 illustrates the placement of the 
accessories. The second part estimates the quantity of 
wedges, pins, pull ties, and waler brackets. The 
arrangement aims to provide clear guidance to 
construction workers on accessories placement for 
construction efficiency. Quantity estimation serves to 
accurately determine the quantity of accessories needed, 
preventing extra transportation and management costs 
from secondary production. Also, it minimizes waste 
resulting from overestimation. 

 
Figure 1: The placement of accessories. 

To appropriately place accessories, we extract BIM 
parameters such as dimensions, locations, and 
orientations from formwork or structural components as 
the basis for our analysis. For example, to position a 
waler on a panel, we first need to obtain the panel's 
dimension and location information to determine the 
waler's placement and size. 

Figure 2 outlines a sequential process for accessory 
planning. Double waler planning occurs after waler 
placement, as the positioning of double walers depends 
on the walers' locations. After positioning walers and 
double walers, we calculate waler bracket numbers and 
place braces, ensuring large braces align with waler 
positions. Consequently, we perform pin and waler 
bracket estimations, paving the way for the calculation of 
the wedge requirements. This systematic approach 
ensures each component is accurately placed and 
quantified, maintaining the integrity of the formwork 
system.

 
Figure 2: The flowchart for the proposed 

approach. 
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3.1 Accessory Planning 
The proposed approach leverages Building 

Information Modeling (BIM) technology to automate the 
planning of formwork accessories, including props, 
braces, walers, and double walers. By extracting and 
analyzing parameters from BIM components, such as 
location, dimensions, and elevation, the system plans the 
positioning and estimates the quantities of the necessary 
accessories. This process ensures that all elements are 
appropriately arranged and quantified based on precise 
data extracted from the BIM model, minimizing manual 
intervention and enhancing construction efficiency. The 
subsequent sections will delve into the specifics of how 
the approach utilizes BIM parameters for comprehensive 
accessory planning and quantity estimation, showcasing 
the method's reliance on accurate BIM data to inform and 
streamline the planning process. 

3.1.1 Prop Generation 

A prop is a vertically adjustable support. It would be 
placed beneath a panel called PB (Beam Prop Head). The 
prop generation of this research builds upon a previous 
study [3], which only focuses on the generation of props. 
In this research, we further calculate props’ heights and 
categorize them into groups based on their application 
purposes. Some props are designed to directly support the 
floor, while others are positioned on the windowsill, as 
shown in Figure 3. The actual height requirement for a 
prop is determined by subtracting the elevation of the 
underlying object from the PB elevation. Basically, props 
are entirely dependent on the PB and remain fixed in their 
positions during accessory planning. Therefore, we place 
props first in the planning process, ensuring they serve as 
references for conflict checks. When other accessories 
are introduced, they must be carefully placed to avoid any 
conflicts with the props.  

 
Figure 3: Props configuration. 

3.1.2 Waler Planning 

A waler is a square and elongated tube placed across 
several templates and secured by a waler bracket. Its 
purpose is to ensure the linearity and smoothness of the 
wall template after concrete pouring. The waler is 
configured on the wall formwork and the column 
formwork is located inside the building.  

The planning rules of the waler are as follows: 

• Adjacent walers need to be staggered and 
overlapped with a specific length determined by 
engineers. 

• Walers come in standard sizes, e.g. L1, L2, L3, etc. 

When planning the waler, the user needs to select all 
the formworks to be configured, and the software system 
will first group the formworks. Formworks that are 
connected along a horizontal line are grouped. Then, the 
waler is configured according to the total length of the 
formwork.   

There are two types of formwork combinations. The 
first type is a panel combination in which the total length 
is greater than the longest standard length of a waler. In 
this situation, the longest possible waler is given priority 
in placement. The placement of the walers is staggered at 
two different heights. Moreover, the overlap of the two 
staggered walers needs to be larger than the specific 
length decided by engineers, as shown in Figure 4. 

 
Figure 4: Walers configuration. 

The second type is the panel combination less than 
the longest standard length and only one appropriate 
length of waler needs to be placed. There are three 
situations according to the corner conditions at both ends 
of the formwork combination, as shown in Figure 5. The 
corner conditions are divided into internal corners and 
external corners. The first situation is that both ends of 
the formwork combination are internal corners. In this 
case, if the length of the panel combination is not equal 
to the standard size of the waler, the waler needs to be cut 
to fit between the two internal corners. The second 
situation is that both ends of the panel combination are 
external corners. In this case, an appropriate length (the 
minimum standard size of the waler which is greater than 
the panel combination length) of the waler needs to be 
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placed in the middle of the formwork combination, and 
there is no need to adjust the length of the waler. The last 
one is that the two ends are an internal corner and an 
external corner, respectively. In this case, a standard-size 
waler is used, but the waler must be aligned with the 
internal corner. 

 
Figure 5: Three situations of walers. (1) Two 
interior corners. (2) Two exterior corners. (3) 
One interior corner and one exterior corner. 

3.1.3 Double Waler Planning 

Because exterior columns are difficult to secure with 
braces, a stronger double waler is used to maintain the 
stability of the column formwork. The example of double 
walers planning is shown in Figure 6. 

The planning rules for double waler are as follows: 

• To ensure the verticality of two horizontally 
adjacent panels at the corner where the column 
touches the wall panels, two double walers need to 
be welded into an L-shaped double waler 
combination. 

• Double walers come in standard sizes, e.g. L1, L2, 
L3, etc. 

When configuring double walers, users only need to 
select all the formworks that need double walers and the 
software system would automatically place the L-shaped 
double waler at the interior corner of the external column 
and the wall, followed by prioritizing the configuration 
of the standard-size double walers on the remaining 
surfaces before the placement of non-standard-size 
double walers. 

 
Figure 6: Double walers planning. 

3.1.4 Brace Planning 

A brace is used to control the verticality of a panel 
and the ground, and the panels on both sides of the same 
wall are tied by pull ties. Therefore, for a wall, only one 
side of the wall needs to be configured with a brace. The 
same applies to columns and only two adjacent faces 
need to be configured with braces. There are small braces 
and large braces. Small braces are placed in the gap 
between panels. Large braces are attached to the waler 
and connect the waler to the floor. Because the 
configuration rules of braces in contact with the column 
differ from those of the wall formworks, their planning 
rules for configuration are different.  

The planning rules for braces for wall panels are as 
follows: 

• The engineers should determine the specific 
distances (d1, d2, d3) before planning. The 
maximum distance between small braces is d1. The 
maximum distance between the endpoint and the 
large brace is d2. The maximum distance between 
large braces is d3. 

• A small brace must be placed at both ends of each 
formwork combination, and the distance between 
each small brace needs to be less than d1. 

• A large brace needs to be placed less than d2 from 
each end of each formwork combination, and the 
distance between each large brace in between needs 
to be less than d3. 

• There needs to be a floor near the wall to make sure 
the braces have some space to be fixed to the floor.  

• A large brace needs to connect a waler to the ground, 
so the height of the large brace needs to be adjusted 
according to the height of the waler. 
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When configuring braces on a wall panel combination, 
users can choose the panels they want to configure with 
braces. The software system first configures small braces, 
chooses one end to start configuring, and places a small 
brace. Then, it places braces at intervals of d1 until the 
remaining length is less than d1. Then, it places a small 
brace at the other end. Next, it configures large braces, 
chooses one end to start configuring, and places a large 
brace d2 from the endpoint. Then it places one brace at 
intervals of d3 until the remaining length is less than d3, 
Finally, it places a large brace d2 from the other endpoint. 
Furthermore, the software system can automatically 
detect the waler nearby and adjust the large brace’s 
height according to the height of the detected waler. An 
example of brace planning of wall panel combination is 
shown in Figure 7. 

 
Figure 7: Brace planning of wall panel 

combination. 

The planning rules for braces for column panels are 
as follows: 

• The engineers should determine the specific length 
L for structural safety consideration before planning. 
If the total length of the column panel combination 
is larger than L, three small braces and two large 
braces need to be placed. If it is less than L, two 
small braces and one large brace need to be placed. 

• There needs to be a floor near the wall to make sure 
the braces have some space to be fixed to the floor. 

• The large brace needs to connect the waler to the 
ground, so the height of the large brace needs to be 
adjusted according to the waler above. 

When configuring braces on column panel 
combination, users can choose the panels they want to 
configure with braces. When the total length is more than 
L, the software system places three small braces and two 
large braces at appropriate locations. Examples are 
shown in Figure 8. Furthermore, the software system can 
detect the waler nearby and adjust the large brace height 
according to the height of the detected waler. 

 
Figure 8: Brace planning of column panel 

combination. 

3.2 Accessory Quantity Estimation 
In addition to arranging props, braces, and walers, we 

also need to estimate the quantity of wedges, pins, pull 
ties, and waler brackets. Since these accessories are 
numerous and their positions are fixed, we do not need to 
plan their arrangement positions but only need to 
estimate their quantity as accurately as possible.  

3.2.1 Pin Quantity Estimation 

A pin is used for connecting and holding two 
formwork panels together by passing through the holes 
of two adjacent formwork panels. It is used with a wedge 
inserted into the hole at one end of the pin to achieve 
fixation. All the holes of formwork panels are fitted with 
pins. Therefore, when estimating the quantity of pins, we 
can sum up the quantity of all the holes on the formwork 
panels and divide it by two. 

3.2.2 Waler Bracket Quantity Estimation 

A waler bracket is an accessory used to place walers 
and double walers. It has a structure like a pin and allows 
the entire waler bracket to be fixed on the hole of the 
formwork panels. The waler bracket is placed between 
the formwork panels. All positions with walers and 
double walers need to be fitted with waler brackets. 
Different lengths of waler and double walers require 
different quantities of waler brackets. When estimating 
the quantity of waler brackets, we need to multiply the 
quantity of waler of each size by the corresponding 
quantity of waler brackets and sum up the multiplications. 

3.2.3 Wedge Quantity Estimation 

A wedge is an accessory used to fix the pin and the 
waler bracket on the hole. All positions with pins or waler 
brackets need to be fixed by wedges. When estimating 
the quantity of wedges, we only need to sum the quantity 
of waler brackets and pins. 
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3.2.4 Pull Tie Quantity Estimation 

A pull tie is a thin steel sheet. Its length is determined 
by the thickness of the wall or column. During concrete 
pouring, it tightly pulls the panels on the opposite sides 
together. This prevents the panels from expanding or 
bursting, ensuring the quality of the construction. To 
estimate the quantity of pull ties, we can count the 
number of pull tie holes of formwork panels. Also, 
through the thickness of the wall and column, we can 
know the type of pull tie used.  

4 Case Study 
Figure 9 shows the panel planning result from a 

previous study [3]. We utilized this real case to evaluate 
the efficiency of the proposed approach by recording the 
time engineers used during the planning process and 
comparing it with manual operations. The operation time 
for different accessory planning approaches is listed in 
Table 1. 

 
Figure 9: A real case [3]. 

4.1 Evaluation 
In the traditional manual process, engineers spend 

400 minutes reviewing accessory placement rules and 
manually positioning BIM accessory components in the 
model, ensuring each piece aligns with structural 
requirements and project specifications. A preliminary 
automatic approach [3], which only supports the 
generation of prop, takes 365 minutes. It only saves 8.75% 
of the time. Our semi-automatic approach supports (1) 
generation of prop, (2) planning of brace, waler, and 
double waler, (3) quantity estimation of the above-
mentioned accessories, and (4) quantity estimation of the 
pin, waler bracket, wedge, and pull tie. With the proposed 
semi-automatic approach, the time is significantly 
reduced to only 50 minutes. This time includes the 
manual adjustment of conflicts between different 
accessories. The results indicate a timesaving of 87.5% 

for engineers, a significant improvement in efficiency. 
Furthermore, our approach allows for more precise 
planning of aluminum formwork accessories in a semi-
automatic manner. This precision is crucial in ensuring 
the quality and safety of the construction process. It also 
reduces the risk of errors that could potentially lead to 
costly and time-consuming corrections. 

4.2 Discussion 
The evaluation primarily measures the efficiency of 

various planning approaches through time spent. 
Engineers dedicated most of the 50 minutes saved by our 
semi-automatic method to adjusting the placement of 
double walers, with the remainder used for verification. 
Enhancing the automation level of double waler planning 
could further reduce the time required.  

Although time serves as our main evaluation metric, 
quality and error rates are equally critical. Future 
assessments will quantify these aspects to provide a more 
comprehensive evaluation of our system. Additionally, 
comparing the results in different scenes, and recording 
the adjustments made by engineers after running the 
program could offer insights into the system's quality, 
suggesting a direction for future enhancements to reduce 
manual interventions and improve overall system 
effectiveness. 

Table 1: The operation time for different accessory 
planning approaches. 

Operation Approach Time 
(Minutes) 

Timesaving 
(%) 

Manually 400 0 
Preliminary Automatic [3] 365 8.75 

Semi-automatic (this research) 50 87.5 

5 Conclusions 
This paper proposes an approach for accelerating the 

planning and quantity estimation of aluminum formwork 
accessories. Through a real case study, we validate the 
effectiveness of the approach in improving the efficiency 
of engineers' accessory planning. The results show a 
significant timesaving of 87.5% for engineers, and this 
could have a profound impact on the overall project 
timeline and cost. While our approach has been proven 
effective in improving efficiency, the need for manual 
adjustments to resolve conflicts between different 
accessories could be further addressed by the integration 
of an automatic conflict identification and resolution 
feature in future iterations. 
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Abstract –  

This paper proposes a 3D digital-twin system for 
remote-control operation in construction. Prevalent 
remote operation using multiple cameras cannot 
eliminate blind spots completely due to the limitation 
of the number of installable cameras. Thus, to ensure 
various remote operations can be performed safely, 
the 3D digital-twin system applying is developed. This 
system can help remote operators to recognize the 
location and behavior of remote-control machines in 
virtual space simulating a work site. Experiments 
using a crawler robot with a manipulator verify that 
remote operators can grip an object with the gripper 
of the manipulator while avoiding collision between 
the robot and the robot’s surrounding equipment. 
Furthermore, by using the system, remote operators 
can complement the field of view which camera 
images alone could not confirm. To apply the system 
in various work sites, the following research elements 
should be examined and verified. The first is to 
develop the collision-avoidance control with 
surrounding equipment for manipulators. The second 
is to improve the accuracy of self-localization and 
keep robots localized using 3D LiDAR. The third is to 
reflect the real behavior of objects in virtual space by 
using sensors such as LiDAR and stereo cameras. 

 
Keywords – 

Digital Twin; Remote Operation;  
Collision avoidance;  

1 Introduction 
Decreasing numbers of experienced workers and a 

lack of interest among the young have become a concern 
for the construction industry in recent years. As demand 
for construction work is nevertheless expected to grow 
strongly in coming years, this workforce shortage is a 
severe problem. Therefore, to improve the efficiency of 
on-site work, construction methods using Information 
and Communication Technology (ICT) have been 
studied.  

In addition, various remote-control machines 

working construction sites where people cannot enter 
have been developed. Hence, remote operation among 
ICT construction methods have become important. Here, 
remote operation is the work that operators from a remote 
location operate remote-control machines by using visual 
images or measurement data from sensors attached to 
them. Prevalent remote operation uses visual images 
from cameras in the work area together with remote-
control machines, and various application examples at 
construction sites have been reported [1, 2]. 

However, these examples have the following issues. 
The first is that there is a limit to the number of locations 
where cameras can be installed, making it difficult to 
eliminate all blind spots during remote operation. Second, 
the difficulty to measure a quantitative distance between 
the remote-control machines and surrounding equipment 
has high risks of collision between them.  

Thus, to eliminate the skill requirements of remote 
operation, one of our purposes is to develop a visual 
assistance system for viewing the  remote-control 
machines on site from the multiple angles of view. 
Furthermore, the other is to develop a collision-
avoidance control between them. 

This paper is structured as follows. Section 2 
introduces the scientific background. Section 3 gives the 
methods of the visual assistance system and the collision-
avoidance control. Section 4 presents the results of 
experiments using a crawler robot with a manipulator. 
Finally, Section 5 concludes the paper. 

2 Scientific Background 
To develop the visual assistance system, it was the 

first thing to survey digital twin technology. A digital 
twin is a simulation technology that virtually reproduces 
and replicates phenomena and artifacts in physical space 
in digital space through large-scale data processing and 
phenomenon modelling based on data collected by 
advanced measurement and observation [3-5]. Research 
related to digital twins in the fields of engineering and 
computational science has increased rapidly in the past 
five years. In addition, the research is active in the United 
States, Germany, the United Kingdom, China. and 
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research projects have been promoted in each country in 
collaboration with universities, public research institutes, 
and private companies. 

Next, elemental technologies were defined to realize 
the visual assistance system using digital system as 
follows: 

(1) recognizing the self-position of remote-control 
machines, 

(2) recognizing the behaviour of remote-control 
machines, such as gripping, lifting and putting some 
objects by machines’ manipulators, 

(3) Developing control function to prevent collisions 
with robots’ surrounding equipment. 

As famous technology related to (1), there is 
Simultaneous Localization and Mapping (SLAM) 
technology that simultaneously creates the maps of the 
surrounding environment of robots and estimates its own 
position from measurement data attached to the robots. 
SLAM technology estimates the self-position of the 
robots by comparing shape data (usually measured by 
2D/3D LiDAR) around the robots with the map data 
acquired in advance. Some examples that display where 
robots are in work area on viewer have been reported [6-
8]. In addition, these examples using SLAM utilize Robot 
Operating System (ROS), which is an OS for developing 
robot software. ROS is middleware that runs on existing 
OSs and can safely send and receive data in real time 
between control programs divided according to execution 
content. In recent years, some studies that control 
unmanned ground vehicles via ROS have been 
conducted [9-11]. As mentioned above, ROS is 
characterized by being able to acquire multiple sensor 
information via a local network and perform distributed 

processing to control robots from various remote 
locations. On the other hand, regarding to (2), there is 
some examples that the behaviour of robots was 
synchronized in 3D virtual space [12]. Furthermore, by 
combining (2) and (3), the planning methods of optimal 
paths that avoid the collision between manipulators and 
surrounding equipment have been studied [13]. 

Thus, these individual studies on the elemental 
technologies (1)-(3) have been reported. However, no 
system has been developed that can collectively execute 
these elemental technologies. Hence, this paper proposes 
the following methods. 

(a) 3D digital-twin system for visual assistance that 
reflects both the location and the behaviour of 
remote-control machines including unmanned 
ground vehicles (UGV), manipulators and tip 
attachments of manipulators in real time. 

(b) collision-avoidance control as the function of the 
3D digital-twin system that sends a control signal 
instructing it to slow down or stop to the remote-
control machine. 

3 Methods 

3.1 3D digital-twin system 
This section introduces the 3D digital-twin system 

mentioned in Section 2-(a). Figure 1 presents the detailed 
overview of the proposed 3D digital-twin system. Firstly, 
virtual (digital) space of the robot's surrounding 
environment built either as a point cloud or a Computer 
Aided Design (CAD) model is displayed on the viewer 
of the digital-twin system (shown at the right side of 

把持

Local Network

Command to device Sensor data

Virtual (Digital) spaceReal (Physical) space 

Remote device

3D model of deviceForward/Backward

Left/Right turn

Commands to device Sensor data

Remote operator

synchronized

Figure 1. Configuration of 3D digital-twin system  
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Figure 1). Here, 3D models of the robots are 
superimposed onto the virtual space. For the 
development of the viewer, we have chosen Unity that is 
a commercially available software renowned for its 
ability to create 3D virtual environments using point 
clouds or CAD models. Subsequently, sensor data 
generated from devices in the real space, such as the joint 
angles of manipulators and the body position/posture of 
UGVs, are integrated into the 3D models of the robots in 
real time (shown at the left side of Figure 1). To facilitate 
the transmission and reception of various data between 
the devices in real space and the 3D models in virtual 
space, the digital-twin system uses Robot Operating 
System (ROS).  

3.2 Collision-avoidance control 
This section describes the 3D digital-twin system 

mentioned in Section 2-(b). Figure 2 presents an 
overview of the collision-avoidance control. As shown in 
Figure 2, the collision-avoidance control uses two 
cylindrical models centered around the robot's body axis: 
stop-range model, and deceleration-range model. The 
details of each model are described as follows.  

When the 3D model of devices’ surrounding 
equipment or point clouds measured by LiDAR fall 
within the yellow stop-range model, the system 
commands the actuators of devices to stop. By contrast, 
when these data falls within the blue deceleration-range 
model, it sends deceleration commands to the actuators. 
To detect whether these data has entered the stop 
(deceleration)-range model, the system uses Collider that 
Unity handles collision between Objects in virtual space 
with. In addition, as shown in Figure 2, an alarm on the 

viewer screen appears when the 3D model of devices’ 
surrounding equipment move in on stop (deceleration)-
range model.  

3.3 Verification experiments 
Figure 3 shows the overview of a verification robot 

using in experiments. The robot is assembled by a 6 
Degree of Freedom (DOF) manipulator and a crawler 
UGV. As shown in Figure 3, A total of six encoders are 
attached to each joint of the manipulator. With the 
crawler, it has two drive wheels, and an encoder is 
attached to each drive wheel. In addition, an 2D LiDAR 
is attached to the tip of the UGV and an IMU sensor that 
measures the tilt and rotation angles of the UGV around 
the Earth's axis. Figure 4 shows an overview of the 
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Figure 2. Collision-avoidance control  
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equipment for the experiments. Here, Figure 4 (a) shows 
the overall view and (b) shows an enlarged view around 
a plate-shaped object. The equipment is configured with 
a tube pipe and plywood. Also, Network cameras for 
remote monitoring are also installed in a total of four 
positions as shown in Figure 4 (a).

The verification experiments were performed with
the following procedure. First, a remote operator moves
the robot from the starting position (drawn as yellow 
circle) to the front of the plate-shaped object. Next, 
control the manipulator to adjust the positional 
relationship between the gripper of the manipulator and 
the plate-shaped object. Finally, grip and lift the object 
using the gripper. In the experiments, two patterns of 
remote control were compared and verified: remote 
operation using network cameras, and remote operation
using network cameras and the digital-twin system. To
use the digital-twin system, the virtual space including 
the 3D models of the robot and the equipment was built 
in the viewer of the digital-twin system.

4 Results

4.1 Remote operation using network cameras
Figure 5 shows each camera image when the 

verification robot turned the corner of mockup equipment.
From Figure 5, it was difficult to measure a quantitative 
distance between the robots and robot’s surrounding 
equipment. Moreover, some operators could not 
accurately understand the current position of the robot 
within the equipment due to the lack of any overhead 
image of the equipment.

Figure 6 shows the camera images while lifting the 
plate-shaped object by the gripper. As with the robot 

turning the corner, there was an issue with measuring a 
quantitative distance between them. In addition, while 
operating the robot, some operators collided the robot
against the plywood by accident.

As mentioned above, remote operation using network 
cameras alone had many difficulties.

4.2 Remote control using network cameras
and digital-twin system

4.2.1 Verification of digital-twin system

Figure 7 shows the top view of the virtual space when 
the verification robot turned the corner of mockup 
equipment. From Figure 7, the current position of the 
robot within the equipment could be determined even if 
a camera could not be attached to the ceiling.

Figure 8 shows the top/right-side view of the virtual 
space, and the right-side camera image of the robot while
adjusting the position of the manipulator. From Figure 8
(a) and (b), the digital-twin system allowed operators to 
change the angle of view of the virtual space. By 
changing it, operators could understand the location and 
behavior of the robot more easily than by using network 
cameras. Moreover, Comparing Figure 8 (b), and (c), the 
manipulators were displayed in the same posture at the 
same time. In other words, the robot and the robot model 
in the virtual space were synchronized in real time.

Figure 9 shows the right-side view of the virtual space, 
and the right-side camera image of the robot while lifting 
the plate-shaped object by the gripper. From Figure 9,
operators could control the robot without any collision
with tube pipes. Furthermore, the digital-twin system
could reflect the situation that the plate-shaped object
was lifted by the gripper.

(a) Overview

Figure 4. Equipment for the experiments

(b) Enlarged view
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4.2.2 Verification of Collision-avoidance

Figure 10 shows the right-side view of the virtual 
space when the verification robot moves forward 
toward the plate-shaped object. Here, considering the 
dimensions of the robot, the deceleration range explained 
in Section 3.2 was set in a cylinder with a diameter of 
1500 mm from the model center axis. In addition, the stop 
range was set in a cylinder with a diameter of 1000 mm.

As shown in Figure 10, the crawler UGV of the robot 
stopped immediately when the equipment entered the
stop-range model. Moreover, the robot remained stopped 
even if a forward command was accidentally sent to the 
robot by operators.

5 Conclusion
With the goal of ensuring the safety of remote 

operation, this paper proposes a 3D digital-twin system
that can serve as a visual aid to remote-control operation.
Prevalent remote operation using visual images from 
cameras have the issue that a limit to the number of 
locations where cameras can be installed make it difficult 
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to eliminate all blind spots during remote operation. 
Moreover, the conventional examples using digital twin 
cannot reflect both the location of robots and the behavior 
of robots’ manipulators in the virtual space.

Therefore, the 3D digital-twin system that can reflects
both in real time was developed. The highly versatile 
system works by attaching sensors to remote-control 
machines and using a network connection to show their 
real-time movements and positions in a virtual space. In 
addition, the system also includes a collision-avoidance 
control based on analysis in virtual space. This was used 
to develop feedback control for collision avoidance that 
functions by sending a control signal to the remote-
control machine, instructing it to slow down or stop if the 
collision risk model overlaps the model of the area 
surrounding the machine. From the result of experiments, 
by using the 3D viewer 3D digital-twin system, operators 
could grip and lift the plate-shaped object without any 
collision with the surrounding equipment. Furthermore,
by using collision-avoidance control, the crawler slowed
down when a nearby item of equipment comes within the 
deceleration region, and stopped when the model of the 
surrounding area comes within the machine stop region.

However, to apply the system in various construction 
sites, the following research elements should be 
examined and verified.

The first is to develop the collision-avoidance control 
with surrounding equipment for manipulators. Various 
remote-control machines have two main units: vehicle, 
and manipulator. As described in Section 3.2, the 
collision-avoidance control for vehicle is developed. 
However, to enhance the safety of remote operation, 
three-dimensional collision-avoidance control for will be 
required. As of now, we think that the same control for 
manipulators can be realized by setting the cylindrical 
deceleration stop (deceleration)-range model to each 
rigid body part of manipulators.

The second is to improve the accuracy of self-
localization and keep robots localized using 3D LiDAR. 
The system does not limit which self-position estimation 
methods are selected when updating the position of 
robots. In the verification experiments, the verification 
robot used the following algorithms: “gmapping” for 
making 2D occupancy grid maps, and “amcl” for 2D self-
location estimation. As well-known, using these 
algorithms need to define the initial pose of a robot and 
the definition is a time-consuming task. Therefore, we 
have verified 3D LiDAR SLAM in the same verification 
experiments. Experiments in progress verify that 3D 
LiDAR SLAM keeps robots localized more accurately 
than these 2D algorithms. 

The third is to reflect the real behavior of objects in 
virtual space by using sensors such as LiDAR and stereo 
cameras. Since the system described in the paper is in the 
basic development stage, we assumed the following 

conditions to reflect the position of objects:

(1) The shape of objects is not varied,
(2) The shape of objects is the same as the known 

data (such as drawings).

However, the work sites where (1) and (2) cannot be 
assumed should be considered. Hence, we need to study 
some approaches that automatically reflects site 
environment in virtual space.
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Abstract –  

Pipe spools are key components in industrial 
projects. Usually, they are built off-site in a 
fabrication shop and then shipped to the project 
location for installation. The fabrication shop deals 
with numerous spools, each designed to specific 
requirements according to shop drawings. The nature 
of pipe spools being engineered to order, together 
with production constraints such as lead time of 
materials, different processing times, and availability 
of resources, render the scheduling process within the 
shop challenging and time-consuming. As such, this 
research aims to automate the scheduling process by 
developing a reinforcement learning model that 
includes an agent that is capable of handling the 
scheduling process. The proposed model is applied to 
an illustrative example to investigate the concept of 
automating the scheduling process. The construction 
professionals highlight the great potential of the 
proposed model in the fabrication scheduling process, 
and its ability to minimize manual intervention. 

 
Keywords – 

Pipe spools; Reinforcement learning; Industrial 
projects 

1 Introduction 
Industrial projects include facilities like power plants, 

nuclear plants, and oil/gas production sites. Pipe 
spools—a main element in these facilities—are often 
fabricated off-site in fabrication shops that receive 
numerous orders accompanied by shipping schedules to 
construction sites [1,2]. A pipe spool comprises 
components like pipes, flanges, and elbows, each having 
varying lead times. The pipe spool is considered a unique 
product, being custom-made based on the shop drawings, 
engineered-to-order, and subject to frequent 
modifications due to design alterations or priority 
changes, availability of resources, processing times, and 
due dates [3]. All these features and constraints render 

the scheduling process challenging, laborious, and time-
consuming. As a result, previous research has attempted 
to address the challenges of the scheduling process.  

Metaheuristic algorithms have been explored as 
solutions for pipe spool scheduling [4,5]. Methods 
applied include genetic algorithms, artificial bee colonies, 
and ant colony optimizations [6-12]. Yet, their static 
nature limits their applicability in the dynamic and 
complex shop environment [13]. Simulation-based 
approaches have also been investigated as potential 
solutions including simulation models of pipe spool 
fabrication to study the fabrication process [14-20]. 
These models were used to study cycle time, bottlenecks, 
and resource utilization, which provides a level of 
support to construction professionals but does not offer a 
direct solution to the time-consuming nature or need for 
manual intervention in the scheduling process. Based on 
the aforementioned research efforts, we concluded that 
research related to automating the scheduling process and 
minimizing manual intervention remains relatively 
unexplored. 

This research aims to bridge this gap using a 
reinforcement learning model to automate the scheduling 
process and reduce human manipulation. The 
reinforcement model is comprised of an agent, actions, 
environment, states, and rewards. The agent employs a 
dueling deep Q-network and experience replay where the 
agent stores past experiences while interacting with the 
environment. The agent observes the states within the 
environment, takes an action from the available actions, 
and then learns through a reward system. 

This study advances the body of knowledge by 
exploring the potential of reinforcement learning models 
in the domain of construction management, specifically 
scheduling. 

The remainder of this paper presents background 
information on pipe spool fabrication and reinforcement 
learning. We then provide a brief review of the state-of-
the-art, identify research gaps, and discuss the potential 
of reinforcement learning in the scheduling process. The 
methodology section elaborates on the techniques and 
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algorithms used, and then provides an illustrative 
example demonstrating our research’s practicality. 

2 Research Background 
This section provides a brief review of the fabrication 

of pipe spools, and focuses on three main processes: 
fitting, welding, and inspection. Also, it presents an 
overview of reinforcement learning. 

2.1 Pipe Spool Fabrication Process 
The process of pipe spool fabrication encompasses 

multiple phases. This research focuses on the main 
fabrication processes: fitting, welding, and inspection. 
Pipes are the foundational element of spool assembly, 
being cut into specified sizes and shapes based on the 
shop drawings [20]. Once cut, the pipe moves to a fitting 
station where it is temporarily fixed with multiple 
components such as elbows, flanges, and reducers. 
Following this assembly stage, the semi-completed pipe 
spool moves to the welding station, either manually or 
lifted by machinery, based upon its weight and other 
handling requirements. The welding process ensures a 
permanent fixation of all components together [21,22].  
Finally, the welded spool undergoes inspection, which 
represents the final stage in the process [3]. 

2.2 Reinforcement Learning 
Reinforcement learning (RL) is a trending area of 

machine learning now used in many fields [23]. In RL, 
there are key components: agent, actions, environment, 
states, and rewards. An agent observes states in the 
environment, takes an action, and learns from interacting 
with its environment by receiving rewards or penalties, 
aiming to get more rewards and fewer penalties [23]. This 
learning process helps the agent make better decisions 
[24]. We can explain this using a Markov decision 
process (MDP), which includes states, actions, state 
transition probability matrix, reward functions, and 
discount factor [25,26]. This will be discussed in more 
detail in the methodology section. 

3 Literature Review 
This section explores two primary research areas: the 

application of RL in construction, and RL applications in 
job shop scheduling. 

3.1 Reinforcement Learning in Construction 
Scholars have explored the use of RL across multiple 

construction domains. Akanmu et al. [27] have presented 
a digital platform to train construction professionals 
encompassing wearable devices, RL, labor engagement, 

and monitoring tools. Mullapudi et al. [28] also 
developed a control strategy for stormwater systems that 
relies on an RL model to control the operations of valves, 
gates, and pumps. 

3.2 Reinforcement Learning in Job Shop 
Scheduling 

RL has been used to enhance dynamic scheduling in 
job-shop environments. Several researchers applied the 
Q-learning algorithm, where agents are taught to take 
action by choosing a dispatching rule to reduce tardiness 
in the process [29-32]. Yet, due to the large number of 
states in real-world production scenarios, Q-learning fails 
in practicality, as maintaining an extensive Q-table for 
such states becomes unfeasible. 

Accordingly, there was a leap in estimating the Q-
values by shifting towards deep reinforcement learning 
(DRL), which has demonstrated significant promise in 
job shop scheduling [33-35]. DRL, incorporating deep 
neural networks (DNNs), revolutionized the estimation 
of Q-functions [36]. 

A literature analysis reveals that there have not been 
any previous studies exploring the use of RL for 
scheduling in pipe spool fabrication. This finding aligns 
with the insights of Xu et al. [23], who assessed the 
current advancements in RL within construction 
engineering and management. The authors emphasize the 
limited number of studies incorporating RL in this 
domain, suggesting a need for increased focus [23]. 
Additionally, they highlight project scheduling and 
resource allocation as promising areas for future research. 

The capabilities of RL make it a promising solution 
for pipe spool fabrication scheduling due to its strengths 
in the following areas: (1) navigating complex problems 
in changing environments with high dimensions; (2) 
adjusting to varied scenarios and states; (3) engaging in 
independent learning; and (4) predicting future action 
outcomes. 

Building on this, our study introduces a pioneering 
RL-driven scheduling model tailored for pipe spool 
fabrication shops. The intention behind this model is to 
navigate the evolving landscape of such environments 
while addressing several inherent challenges in the 
scheduling area like resource allocation and adhering to 
due dates. 

4 Model Development 
Our model focuses on the fabrication process of pipe 

spools, specifically addressing the fitting stage. To 
develop the proposed model, the following information 
is required: start date, fitting processing time, required 
resources, and due date. As depicted in Figure 1, the 
model development involves two main stages: data 
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preparation and RL. Each stage will be described in the 
coming subsections. The proposed model development 
process is designed to allow the integration of data 
related to pipe spools with an RL model. Once the RL
model is trained on a training dataset, it can then be 
applied to an unseen dataset of pipe spools that need to 
be scheduled.

Figure 1. Methodology

4.1 Data Preparation
In this research, synthetic data is generated to mimic 

the spool information required to build the model. The 
generated dataset includes start date, fitting processing 
time, resources, and due date. The dataset includes 
approximately 1,900 records, and each record represents 
a spool. The dataset is then split into a training set with 
80% of the records, and a testing set with the remaining 
20% of the records.

4.2 Reinforcement Learning
This section describes the development of the RL

model and formulates the scheduling process as a 
Markov decision process (MDP). Dueling DQN and 
prioritized replay are used in developing the agent.

4.2.1 MDP Formulation

As a general representation, the MDP can be 
described by five main components (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) where
𝑆 is the set of states, 𝐴 is the set of actions, 𝑃 is the 
probability transition matrix from one state to another, 𝑅
is the reward function, and 𝛾 is the discount factor. 
Typically, in each time step 𝑡 , the agent observes the 
states, takes an action 𝑎𝑡, then gets a reward or penalty 𝑟𝑡
through the reward function 𝑅. It then moves to the next 
state 𝑠𝑡+1 depending on 𝑃. While calculating the rewards, 
the effect of future rewards is taken into consideration 
using the discounting factor 𝛾.

• State

The state is a crucial concept that represents the 
current status of the environment at a given time step, and
based on the state, the agent determines its next action 
[37]. In our model, the state includes average processing 
duration for every spool, average slack, and average
resources required for each spool.

• Action

Actions are crucial decisions made by an agent based 
on its observation of the current state. As the agent 
navigates the environment, it utilizes specific rules for its 
choices. In this context, the agent has two dispatching 
rules from which to select: first-come-first-serve (FCFS)
or shortest processing time (SPT). The FCFS rule simply 
adheres to the order of spool arrival, processing spools in 
the sequence they were received, while the SPT rule 
prioritizes spools expected to be completed in the shortest 
duration. Given these choices, the agent dynamically 
identifies the optimal action for the current state during 
each decision-making time step.

• Reward

The reward function plays a crucial role in guiding 
the agent's decisions. It provides feedback from the 
environment in response to the agent's actions, 
effectively serving as an indicator of the agent's 
performance. The reward function deals with minimizing 
the number of spools that are not completed before their 
due date as demonstrated in Equation (1):

𝑅 = {
0, 𝐷𝑖 ≤ 𝑡

−1, 𝐷𝑖 > 𝑡
(1)

where 𝐷𝑖   represents the due date of the spool, and 𝑡
represents the time step.

4.2.2 Deep Reinforcement Learning

In this model, we employ the Dueling Deep Q-
Network (Dueling DQN) which builds upon the 
foundational principles of the Deep Q-Network (DQN). 
The Dueling DQN enhances the conventional DQN by
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decoupling the state values and the action advantages, 
refining the policy learning process. 

The RL model is developed through the features of 
PyTorch, a powerful open-source machine learning 
framework related to RL algorithms [41]. Additionally, 
OpenAI's gym serves as the training ground for the RL 
model [42]. Coupling PyTorch’s modeling prowess with 
OpenAI gym’s environmental interface and training 
capabilities results in a refined and highly effective RL 
solution. 

• Model Training 

The Q-value serves as a foundational metric in the 
MDP, quantifying the anticipated discounted future 
reward when a specific action is taken. The ultimate aim 
of the agent is to develop an optimal policy that increases 
the expected rewards, a principle outlined by Mnih et al. 
[34]. 

However, employing a non-linear function 
estimator—such as a neural network—to approximate 
the Q-function presents challenges. Specifically, it can 
lead to instability or divergence. Two predominant 
strategies, as described by Wang et al. [38], offer 
solutions to those challenges. First, the experience replay 
method involves storing the agent's experiences. This 
data is then randomized, reducing correlations, and 
sampled in mini-batches to train the Q-network. The 
second strategy introduces an iterative update mechanism. 
By integrating a target Q-network into the DQN with 
parameter 𝜃𝑖

−, correlations with targets are diminished. 
This target Q-network synchronises with the primary Q-
network's parameters at periodic intervals, as illustrated 
by Mnih et al. [34]. 

Enhancing the DQN's architecture, we adopted the 
Dueling DQN. This refined structure improves efficiency 
by addressing Q-value overestimations. Notably, the 
Dueling DQN separates its estimations, separately 
determining the state value function and the action's 
advantage. These assessments then combine to forecast 
the action's quality, a technique explained by Liang et al. 
[39] and Wen et al. [40].  

In each time step, the agent observes the state of the 
environment and chooses an action from one of the two 
dispatching rules: FCFS or SPT. Once an action is taken 
by the agent, the environment starts to send feedback in 
the form of reward or penalty, so that the agent can learn 
from this interaction and make sure to take better actions 
that maximize rewards in future time steps. 

The model is trained on the training dataset, which is 
approximately 1,500 records and 10 resources for fitting 
the spools. Additionally, the following hyperparameters 
(Table 1) are used while training the model: 

 

Table 1. Model hyperparameters 

Parameter Value 
No. of training episodes 100 

Learning rate 0.0025 
Minibatch size 32 

ε 0.9 
γ 0.9 

5 Model Results and Interpretation 
After training, the agent was introduced to the testing 

dataset containing pipe spool records unseen by the agent. 
Consequently, the agent was evaluated on this dataset, 
making decisions to maximize rewards and concurrently 
reducing the number of spools that were not completed 
before their due date. Figure  shows the average reward 
during the evaluation phase, based on the respective 
dispatching rule selected by the RL agent.  

Figure 2. Average reward per episode (Exp #1) 
 

Another experiment was conducted and the model 
was trained using 300 episodes—an episode is a 
complete cycle of scheduling all the pipe spools in the 
training dataset—and a learning rate of 0.001 in lieu of 
100 and 0.0025, respectively. Figure 3 shows that the 
model’s performance was relatively improved as the 
lowest average reward reached -50 when compared to the 
first experiment where the lowest average reward 
reached approximately -70. 
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Figure 3. Average reward per episode (Exp #2) 
 

A third experiment was conducted and the model was 
trained using 500 episodes and a learning rate of 0.001. 
Figure 4 shows that the model’s performance was 
impacted as the lowest average reward reached 
approximately -140 when compared to the first and 
second experiments where the lowest average reward 
reached -70 and -50, respectively. As such, these 
hyperparameters had a negative impact on the model 
performance. Future work will investigate the 
hyperparameters that improve the model performance.  

Figure 4. Average reward per episode (Exp #3) 

6 Contributions and Future Work 
This research introduces an innovative method for 

automating the scheduling of pipe spool fabrication in 
industrial construction projects. It uses RL, specifically 
employing Dueling DQN with an experience replay 
buffer that stores the agent’s previous experiences. This 
method proves that an agent can be developed to 
schedule tasks in the simulated fabrication shop, reducing 
human intervention. This work serves as an initial 

exploration into applying RL for pipe spool scheduling 
in a fabrication shop. 

The research was then applied to an illustrative 
example that employed an artificial dataset that 
mimicked the data collected from the fabrication shop. 
The analysis highlights the significant potential of 
incorporating RL into scheduling, offering industry 
professionals a decision support tool for pipe spool 
scheduling. 

These preliminary results show that the proposed RL 
model has the potential to outperform traditional methods, 
which often require human input to deal with continuous 
changes. This research also refines the automation of 
scheduling, emphasizing the main constraint of adhering 
to due dates, which is imperative to preventing onsite 
installation delays. 

The study includes certain limitations that must be 
addressed in future research. First, the study focused on 
the fabrication process only, specifically the fitting 
operation. Second, only two of the basic dispatching rules 
were included as actions to be taken by the agent. Third, 
a simple straightforward reward function was used to 
calculate the rewards/penalties based on the agent’s 
actions. Finally, the model should be trained and 
evaluated on a real-world dataset from a fabrication shop. 
Future efforts should expand this research by 
encompassing diverse shop operations, by comparing the 
performance of the agent against the dispatching rules, 
and by assessing the agent’s ability to shift between those 
dispatching rules. 
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Abstract –  

The construction industry is witnessing a 
transformative shift with the integration of advanced 
technologies, especially in the topic of 3D 
segmentation. This study underscores the current 
state and challenges of 3D segmentation, with special 
emphasis on construction research, and provides an 
insightful understanding of the latest research 
developments and trends. The study also looks at the 
performance metrics of the most relevant techniques, 
as well as the main limitations and research gaps, 
highlighting the need for further research in highly-
performing techniques based on Deep Learning for 
point cloud segmentation in construction applications. 

 
Keywords –  
3D Segmentation; Systematic Literature Review; 
Construction Industry; Point Cloud; Deep Learning 

1 Introduction 
The abundance of 3D point cloud data is increasing 

with the availability and advancement of laser scanning 
equipment and the democratization of 3D semantic data 
generation. The availability of 3D data generally boosts 
the possibility and efficiency of developing deep learning 
algorithms to segment and classify 3D information, 
which heavily relies on the volume of available training 
data [1]. The manufacturing industry, amongst others, 
has greatly benefited from the extensive research over the 
past 15 years in 2D and 3D segmentation [2]. This was 
possible due to the static scenarios present in said 
industries, making them reliable semi-controlled 
environments. However, the construction industry has 
not developed at the same pace due to its dynamic and 
unstructured nature [3]. Some researchers and companies 
are already providing the means for the construction 
industry to take advantage of this revolution, where 
several applications and companies employ 3D data 
acquisition systems and processing algorithms [4], 
especially in the field of Scan-to-BIM [5]. Nevertheless, 
segmentation algorithms are still behind.  

In this review article, the recent advancements in 3D 
point cloud processing are explored, particularly in the 
segmentation and classification domain, comparing the 
trending techniques in all industries with a focus on 
construction. From that, current challenges and research 
gaps are highlighted. The rest of the paper is structured 
as follows: Section 2 explains in detail the scope of this 
review. Section 3 presents the methodology used for the 
acquisition and analysis of the presented data. Section 4 
analyses the obtained data. Section 5 provides a 
discussion of some of the findings from the analyzed data. 
Section 6 comments on some of the limitations of this 
study and future work. Finally, Section 7 summarizes the 
main takeaways of the study. 

2 Scope of review  
The review focuses on segmentation and 

classification algorithms. These can be applied to either 
2D or 3D data. With 2D being extensively studied 
already, this study particularly focuses on 3D data, 
particularly in point cloud segmentation. The study also 
explores applications in the construction industry and 
non-construction industry (e.g., manufacturing, medical, 
robotics perception, etc.), with special emphasis on the 
construction industry. Point cloud segmentation 
techniques can be generalized into three different 
categories: 

1. Traditional techniques: Traditional techniques of 
point cloud segmentation do not include training or 
clustering. These techniques include voxel cloud 
connectivity segmentation or super voxel-based 
segmentation, region growing, edge detection, and 
model fitting-based techniques. 

2. Machine learning techniques: This category is 
comprised of techniques that include automated 
classification of points based on features 
(unsupervised machine learning), including K-
Nearest Neighbors (KNN), Gaussian Mixture 
Models (GMM), and shallow learning models such 
as Support Vector Models (SVM). 
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3. Deep learning techniques: This is the most 
advancing category of techniques. They can be sub-
categorized as point-based, projection-based, and 
discretization. 

3 Methodology 
The methodology used followed a Systematic 

Literature Review (SLR) [6] to conduct a methodical and 
comprehensive examination of existing research 
literature on a specific topic aimed at identifying, 
evaluating, and summarizing the findings of relevant 
studies to address a defined research question. Unlike 
traditional literature reviews, which can be more 
narrative and subjective, an SLR provides a 
comprehensive and unbiased overview of the current 
state of research. To ensure reproducibility and 
comprehensiveness, SLR involves defined steps, such as 
(1) defining clear research questions, (2) setting inclusion 
and exclusion criteria, (3) extracting and analyzing data, 
and (4) reporting and presenting findings in a structured 
manner. The following subsections delve into each of 
these steps. 

3.1 Research Questions 
Given the emphasis of the study on 3D data 

segmentation in the construction industry and its 
evolution, especially with the development of Machine 
Learning and Deep Learning approaches, the following 
research questions have been formulated for this review: 

1. Which techniques are used in the construction 
industry to segment and/or classify point clouds 
from the construction sites? 

2. What techniques are adopted to segment and/or 
classify non-construction site point clouds? 

3. What are the common metrics used to measure the 
efficiency of the techniques? 

4. What are the common challenges of the best-
performing techniques in the construction domain? 

3.2 Databases and Search Engines 
For this review, the Scopus (ScienceDirect) database 

has been chosen. Scopus is one of the largest abstract and 
citation databases, covering a broad spectrum of 
disciplines. Its extensive coverage of peer-reviewed 
scientific journals makes it a suitable choice for this 
review. Scopus includes papers published in reputable 
and relevant journals to the research topic evaluated in 
this paper, such as Automation in Construction, and 
proceedings of equally relevant and reputable 
conferences, such as the International Symposium on 
Automation and Robotics in Construction (ISARC). To 
ensure we did not miss any relevant ISARC publication, 
we also used the ISARC proceedings database available 
in the publication section of the IAARC website [7]. 
 

3.3 Search Strategy 
For this review, the keywords shown in Table 1 were 

identified based on their relevance to 3D data 
segmentation in the construction industry and the 
previously established classification. The set of 
keywords is comprised of the different techniques and 
other pertinent terms that, based on the initial search and 
to the authors’ knowledge, fall within the different 
categories. 

Table 1. Set of keywords used for literature search, 
based on the different categories. 

Category Sub-category Keywords 
1. Traditional  1.1 Supervoxel-

based techniques 
VCCS; Seed 
Growing; Graph-
based; Mean shift-
based; Normalized 
cuts; Random 
walks; 
Hierarchical 
diffusion 

1.2 Region 
growing-based 
techniques 

Region growing; 
Octree based; RG 

1.3 Model fitting-
based techniques 

RANSAC; Hough 
transform; Region 
growing with 
model fitting; 
Expectation-
Maximization; EM 

2. Machine 
Learning 

2.1 Unsupervised 
learning techniques 

KNN; GMM; K-
means 

2.2 Shallow 
learning techniques 

SVM; Decision 
trees; Random 
Forests; Density-
based spatial 
clustering; 
DBSCAN 

3. Deep 
Learning 

3.1 Point-based 
techniques 

PointNet; 
PointNet++; 
PointCNN; 
DGCNN; 
KPConv; 
PointConv; Point 
Transformer; 
ShellNet; 
PointBERT; 
CurverNet; Self 
Organizing 
Network 

3.2 Projection-based 
techniques 

Spherical 
Projection; Voxel 
Grid projection 

3.3 Discretization-
based techniques 

3D CNN; VoxNet; 
Submanifold 
Sparse CNNs 

To maximize the scope of the search and ensure all 
relevant literature is captured, the keywords were 
combined using the Boolean operators “AND” and “OR”. 
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An example of the search query used in the database for 
subcategory 1.2 (region growing-based techniques) 
combining the keywords mentioned above with all the 
different inclusion and exclusion criteria is shown below: 
 
TITLE-ABS-KEY ((( “region growing” OR “octree” OR “RG”) 
AND (“3D data”) AND (“construction industry” OR “AEC”))) 
AND PUBYEAR>2007 AND PUBYEAR<2025 AND (LIMIT-
TO(DOCTYPE,“ar”) OR LIMIT-TO(DOCTYPE,“cp”) OR 
LIMIT-TO(DOCTYPE,“re”)) AND (LIMIT-TO(LANGUAGE, 
“English”)) 
 
In this typical structure of the query, region growing, 
octree and RG represent the list of keywords in Table 2. 
The terms 3D data, construction industry and AEC were 
used to limit the search to construction and related 
domains. Moreover, ar, cp, and re are document types 
representing ‘article’, ‘conference paper’, and ‘review’, 
respectively. The use of these operators allows for a more 
refined search, ensuring that the results are closely 
aligned with the research questions. The results from this 
search criteria are available in [8]. 

3.4 Inclusion and Exclusion Criteria 
To ensure the relevance and consistency of the 

literature selected for this review, the following criteria 
were established: 

• Focus on techniques related to 3D data processing. 
The data processing is conducted in two separate 
streams for construction and non-construction 
domains. 

• Papers that have appeared in recognized journals or 
conference proceedings. 

• Papers published after 2008 for a broader overview 
of the topic, with a specific emphasis on those 
published after 2018 to evaluate the most recent and 
cutting-edge techniques. 

• Papers written in English. 
• Exclusion of non-peer-reviewed papers, such as 

opinion pieces, editorials, or news articles. 
• Exclusion of papers not related to 3D data 

processing. 
• To evaluate techniques, specific research is 

conducted by specifying the data as laser scan or 
LiDAR and Photogrammetry. 

3.5 Data extraction and synthesis 
For this review, the following data were extracted 

from each paper: Authors, Publication year, Journal or 
conference, Keywords, Abstract, Methodology, and 
Findings. 

Following the extraction, the data were synthesized to 
provide a comprehensive overview of the current state of 
3D data processing in the construction industry. The 
synthesis process involves analyzing the extracted data to 
identify patterns, trends, and key insights.  

4 Analysis of the data 
The number of publications found for each category 

is shown in Figure 1. The values shown indicate the 
number of papers obtained using the criteria specified in 
Section 3 and the classification and keywords provided 
in Table 1. The gradient provides a visualization of the 
number of papers per category (from low (light 
background) to high (dark background)). The search also 
distinguished among the different sub-categories (i.e., 
techniques) applied to the construction industry and those 
applied to non-construction industries. This distinction 
helps to identify how the construction industry is 
catching up with other fields. 

From Figure 1, it can be seen that fitting-based 
segmentation techniques (Category 1.3), such as 
RANSAC, Hough transform, region growing with model 
fitting and EM, are the most frequently implemented and 
researched. Overall, the adoption of these techniques has 
been on a constant increase in the past 15 years. Figure 2 
shows a significant increase in the use of these techniques 
in the construction industry in 2012 and 2017. However, 
in other industries, their usage has been steadily growing, 
with a slight decrease observed in 2020. 

 
Figure 1. Number of publications for each sub-
category. 

Figure 1 also shows that the second most frequently 
used set of techniques is Category 2.2. This category 
encompasses shallow learning techniques like SVM, 
decision trees, Random Forests (RF), and DBSCAN. 
Until 2012, the application of these techniques was 
limited across various domains, including construction. 

However, from 2012 to 2014, there was a significant 
increase in the number of construction industry 
publications. The usage of these techniques continued to 
rise with relative consistency until 2017, followed by a 
sudden decline. In the non-construction sector, a drop 
was observed in 2020. 

Focusing on Category 3, the distribution of the 
different techniques and metrics from the 72 
construction-related publications (66 from 3.1, 3 from 3.2 
and 3 from 3.3) and 1,011(892 from 3.1, 30 from 3.2 and 
89 from 3.3) from non-construction related are 
summarized in Figure 3. 
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(a) (b) 

Figure 2. Number of publications for each sub-category in (a) the construction industry and (b) non-
construction industries versus time (from 2008 until November 2023). 

 

  
(a) (b) 

  
(c) (d) 

Figure 3. Distribution of papers related to Category 3 for (a) techniques and (b) metrics used in construction 
publications and (c) techniques and (d) metrics used in non-construction publications. 

Legend: P = Precision; R = Recall, OA = Overall Accuracy, Acc = Accuracy; IoU = Intersection over Union, CM = Confusion Matrix, 
MAE = Mean Absolute Error, RMSE = Root mean squared error. 

Others for techniques include: PointConv, depth image estimation, 3DAGN, FPSnet, SOnet, Point Transformer, ShellNet, 
ResPointNet++, SEP network, GLSNet, DbNet, 3DLEB-Net, RandLA-Net, IAGMLP, RFFS-Net, TriangleConv, DSNet, SPGraph, 

PointCNN, IBPCS, CNN. Others for metrics include: Support, MAE, FLOPs, Success, R2, CM 
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In summary, it can be seen that the use of point-based 
techniques, part of Deep Learning (Category 3 in Table 
1), is growing the most. Due to space constraints, this 
paper focuses on Deep Learning techniques as it is 
expected to be more relevant in future construction 
research. 

5 Discussion 
5.1 Techniques 

As depicted in Figure 2, in the non-construction 
sector, despite limited mentions of Deep Learning 
techniques in earlier years since 2010, the number of 
publications incorporating these techniques began to 
increase significantly since 2016. Publications in the 
construction sector using Deep Learning techniques 
under Categories 3.1 and 3.3 began in 2018, while 
Category 3.2 started in 2021. The clear difference in the 
Category 3 popularity between the construction and non-
construction sectors is affected by the fact that Deep 
Learning techniques heavily rely on the quality and 
quantity of the training data. The construction sector is 
challenging, dynamic, and often restricted by policies 
that do not allow the data to go public. This has prevented 
the widespread of training datasets related to construction, 
which has directly affected the usage of Deep Learning 
techniques in the construction field. 

Among the Deep Learning techniques, Category 3.1, 
which includes point-based techniques such as PointNet, 
PointNet++, PointCNN, DGCNN, KPConv, PointConv, 
Point Transformer, ShellNet, PointBERT, CurverNet, 
and Self Organizing Network, is dominant compared to 
the other categories identified for Deep Learning. Since 
2018, the adoption of these techniques has increased 
more significantly in non-construction sectors, making 
them the most widely used techniques in recent years, 
particularly since 2021. However, in the construction 
sector, Category 1.3 (model fitting-based techniques) and 
Category 2.1 (techniques like SVM, decision trees, 
random forests, and DBSCAN) continue to be 
predominant. Meanwhile, the frequency of publications 
mentioning Category 3.1 techniques has decreased by ten 
since 2022 in the construction domain.  Figure 3(a) 
illustrates that from techniques grouped in Category 3, 
the field of construction research frequently employed 
PointNet, PointNet++, and DGCNN. Moreover, 
MVCNN, Spherical projection and 2D CNN were each 
utilized in more than 2 articles. The publications in the 
non-construction sector have a similar tendency to use 
PointNet and PointNet++ more frequently than the 
remaining techniques, with a greater usage of PointNet 
over PointNet++ and a 10% reduction in utilization of 
DGCNN. On the other hand, other techniques including 
PointConv, depth image estimation, 3DAGN, FPSnet, 
SOnet, Point Transformer, ShellNet, ResPointNet++, 

SEP network, GLSNet, DbNet, 3DLEB-Net, RandLA-
Net, IAGMLP, RFFS-Net, TriangleConv, DSNet, 
SPGraph, PointCNN, IBPCS and CNN were used in 
about 24% of reviewed publications in the construction 
field, and 17% for non-construction fields.  

5.2 Metrics 
Figure 2 (b) highlights that recent techniques have 

mostly employed metrics like Precision, Recall, F1-
Score, and Intersection over Union (IoU) to assess 
performance. Accuracy, measured as a ratio of correct 
predictions to the total number of predictions, is a 
dominant metric used in the Category 3 papers published 
in the construction domain, where it is used in 30% of the 
reviewed publications. IoU was utilized to measure 
efficiency in 18% of these construction-related 
publications. Precision, Recall and F1 score were 
employed in an average of 14% of the publications for 
Category in the construction field. 

In the case of the non-construction domain, there is 
an increased reliance on Accuracy, with 59% of the 
reviewed papers using this metric to evaluate the 
performance of their algorithms. Unlike the construction 
domain, research in non-construction fields utilized 
Recall, Precision and F1 scores in about 5% of the 
reviewed publications. In general, compared to the 
construction-related research, there is a similar utilization 
of the metrics that are grouped as others (Support, MAE, 
FLOPs, Success, R2, CM) in the non-construction.  

5.3 Challenges  
Despite providing highly accurate results, Deep 

Learning techniques have limitations. For instance, they 
heavily rely on the diversity and completeness of the 
initial training dataset for them to produce accurate 
results, as well as correctly labeled training datasets [9]. 
Hu et al. [10] demonstrated the negative impact of 
training a model on a dataset that contains geometries 
that are different from those in the scan location. Their 
segmentation technique utilizing ResPointNet++ was 
successful in scoring mean IoU (mIoU) values greater 
than 90% across all the classes. However, the mIoU for 
the segmentation of points belonging to chairs was 
62.55%. The authors note that this low mIoU can be 
attributed to the dataset used for training the model. The 
dataset contained data for a specific kind of chair, 
whereas the scan site had chairs with different geometries. 
In order to account for this, the geometries of the building 
components could be identified before the scan, and the 
model could be trained on a dataset that contains 
information on the geometries of commonly occurring 
classes in a scan location. Alternatively, a more robust 
approach could include training datasets that are 
comprised of various generic chairs that have a higher 
probability of being found on a scan site. 
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Additionally, a common limitation that has been 
identified is the computational load required for 
segmentation [11]. The effects of high computational 
load can be mitigated through the utilization of 
voxelization [12] and octrees [13]. By reducing the 
access time for each data point and the number of data 
points, these techniques were capable of increasing 
computational efficiency.  

Based on the construction-related publications that 
were considered, four key limitation categories have been 
identified in Table 2. First, some techniques’ 
effectiveness is contingent on the quality of the point 
cloud; factors like point cloud density can significantly 
influence segmentation outcomes. The impact of noise 
and occlusion is another concern, as some algorithms are 
severely affected by these elements. 

The second key limitation is the ability to handle 
complex geometry. While certain techniques perform 
well in segmenting planar objects or familiar shapes like 
furniture and vehicles, they are limited when segmenting 
objects on construction sites. The primary reason for this 
is that construction often involves irregular shapes, such 
as cylindrical forms or structures with unconventional 
geometry, like unfinished elements or formwork systems. 
The capability to accurately segment undefined shapes is 
crucial in construction applications. Many techniques are 
effective in specific scenarios but require extensive 
testing and fine-tuning when dealing with complex 
shapes. 

The third limitation category is the dependence on 
synthetic point clouds, predominantly from BIM. 
Although BIM offers a detailed representation of element 
geometry, it usually does not align with real-world 
scenarios, especially in terms of texture and the 
geometric presence of unfinished or temporary objects on 
construction sites. For example, casting concrete requires 
formwork, and if the concrete element is elevated, it will 
require scaffoldings. These elements (i.e., formworks and 
scaffoldings) need to be accurately represented in the 
BIM to achieve an accurate representation of the 
construction site using a synthetic point cloud generated 
from the BIM. Moreover, this becomes even more 
pronounced when the specific surface texture of 
materials is relevant to explaining the status of the 
construction. This is because the renderings from the 
BIM are not sufficiently close to the texture of the real 
material at a given time. Therefore, a synthetic dataset 
might not be comprehensive enough to be used on the 
construction site. 

The last category is a limitation related to the manual 
intervention requirements. Given the complexity of 
construction, complete automation would be beneficial to 
bypass time-consuming data processing steps. Hence, the 
need for manual intervention during segmentation is 
considered a significant limitation. 

6 Limitations and future work 
Despite having provided a comprehensive and 

systematic review of the different techniques used for 
point cloud segmentation, the methodology presents 
some limitations. Given the volume of handled data, the 
study had to be based on keyword extraction and 
evaluation of the abstract and author-provided keywords, 
which in most cases is sufficient to provide an overall 
idea of the study’s objective and methodology. But in 
some cases, said keywords are not going to be well 
defined, and it could lead to mislabeling said studies. A 
more in-depth analysis would be needed for more 
accurate results. 

Table 2. Summary of the 4 categories identified for the 
challenges. 

No. Categories Challenges References 

1 Point cloud 
quality 

Dependence on 
point cloud 

density  
[14], [15] 

Handling and 
effect of noise [16] 

Handling and 
effect of 
occlusion 

[17], [18] 

2 Complex 
geometries 

Limited to 
common 
geometric 

shapes 

[10], [19] 

Limited to 
planar surfaces 

[12], [13], [20], 
[21] 

Not 
experimented 
with complex 

shaped 
elements 

[22], [23], [24]  

Technique 
trained for 

specific 
objective and 

set of elements 

[25] 

3 Based on synthetic data [26], [27] 

4 Manual intervention required [26], [28] 
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This study revealed the main challenges in current 
point cloud segmenting methods for applications in the 
construction domain. In practice, despite the increasing 
adoption of technology in construction sites, there is still 
a significant reliance on manual and hybrid (semi-
automated) construction information processing. 
Therefore, there is still more work to do in reshaping the 
proposed methods to be feasible for construction industry 
utilization. In addressing the challenges, recent 
advancements in generative algorithms, such as Large 
Vision Language modeling, and spatial computing 
technologies, such as Neural Radiance Fields and 
Gaussian Splatting, could offer solutions to many of the 
challenges outlined in Table 2. Future research should 
specifically investigate these methods for practical 
applications in construction sites, evaluate whether the 
limitations are adequately addressed, and recommend 
directions for future work.  

Given the space limitations, not all the required data 
for a detailed comparison could be added to the study. 
For future work, a more extensive study will be done, 
providing a more detailed comparison and description of 
the different evaluated techniques, including a 
comparison of their effectiveness, especially in real-
world construction scenarios and providing technical 
differences between the techniques and their mean 
performance/evaluation metrics, an objective 
comparison is provided. 

7 Conclusion 
This study provides a review of the literature on point 

cloud segmentation techniques with a focus on 
construction applications. The study examined the 
popularity of specific techniques over time and evaluated 
the implementation trends in the construction industry 
and non-construction sectors. A key observation is the 
rapid advancement of deep learning techniques in non-
construction applications in recent years, while 
construction-related applications still predominantly rely 
on shallow learning or fitting-based techniques. Based on 
the reviewed construction publications, PointNet, 
PointNet++ and DGCNN are found to be dominant in 
deep learning-based techniques. This study also has 
revealed that out of the 72 reviewed construction-related 
articles, 30% employed Accuracy, 18% utilized IoU,     
15% applied Recall, 14% used the F1 score, and 13% 
relied on Precision. Finally, the study presented a 
summary of limitations in the considered set of 
construction-related publications. The limitations were 
classified into four main areas such as working with low-
quality point clouds, the necessity for manual 
intervention, reliance on synthetic data, and the 
capability to segment complex geometries, such as the 
elements in the construction site.  
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Abstract -
Large-scale 3D printing using concrete is a promising tech-

nology in the construction industry. In recent years, with
the introduction of new commercial products and some real-
world building projects, 3D concrete printing is moving from
experimental and lab-scale applications towards regular con-
struction operations in the field. In this paper, a solution for
quality monitoring of 3D concrete printed structures after
printing is shown. The solution is based on the use of multi-
view RGB-D images captured using a low-cost stereo-depth
camera. The objects considered in the paper are 3D printed
using a gantry 3D concrete printer. The object scanning pro-
cess is described. Then the 3D reconstruction of the printed
structure 3D model is explained. Finally, a quality assessment
technique to evaluate the accuracy of the printed structure
is introduced. This technique to quantify the printing error,
compares the reconstructed 3D model of the actual state of
the print and the CAD model used in the printing planning.

Keywords -
3D printing, concrete additive manufacturing, 3D vision,

multi-view reconstruction

1 Introduction
3D concrete printing (3DCP) is a highly growing trend

in the construction field [1]. This is due to the many
advantages of 3DCP in comparison to traditional tech-
niques [2] as it increases construction speed, decreases
material waste, and enhances flexibility to construct com-
plex shapes without the need for specific and expensive
formwork.

On-site, the printing quality is highly dependent on
many factors. The most important of them is the oper-
ator’s experience in setting up the machine and dialing the
right fundamental printing parameters - i.e. the movement
speed and material flow rate, which accurately match the
used material mix and the current environmental condi-
tions such as temperature and humidity. Additionally, the
printing quality can be affected by basic machine accuracy
and fluctuations in the quality of the extruded material and

external factors.
Post-printing quality monitoring is necessary to evaluate
the mechanical characteristics of the print. The presence
of extra material, material leakage, first layers tearing, or
layers closure pattern can affect the object’s geometrical
accuracy.

In literature, many research works have focused on tech-
nological aspects related to the optimization of the printing
process like the construction of the printing machine itself
which could be a gantry system or robotic manipulators.
Other investigated problems are the optimal material mix,
finding printing parameters, and evaluation of mechanical
characteristics of the printed parts at their wet and hard-
ened states. While there is a lack of systematic approaches
that defines the necessary tools and methods to monitor
and evaluate the 3D concrete printed objects.

The goal of this paper is to introduce a methodology for
quality inspection of 3D concrete printed objects. This is
achieved by quantifying the printing error of cured prints
by comparing their reconstructed 3D model ”as-built”
from multi-view RGB-D images against its initial CAD
model ”as-planned” which was used for the generation of
movement commands for the printing process. In figure 1,
an example of the multi-view images of a polygon-shaped
3D concrete printed object are shown. These images are
used to reconstruct the 3D model shown in figure 2 that
could be compared with the object CAD model for error
assessment.

Figure 1. Example of multi-view images

The paper is structured as follows. In Chapter 2, related
work is summarized. In chapter 3, the 3D reconstruction
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Figure 2. Output: 3D model

technique and the 3D model elaboration are described.
In chapter 4, the experimental setup and test results are
shown. In chapter 5 the conclusions are shown.

2 Related work
In the field of 3D concrete printing, few systematic ap-

proaches were proposed for digital quality inspection of
the printed objects. While in the construction field, dig-
ital measurement tools are becoming essential for quality
evaluation. Several techniques [3, 4] were introduced for
quality evaluation based on the use of multi-view images
and point clouds of concrete buildings and roads.

The most used form of digital information is the point
cloud [5], that are used for several purposes such as 3D
model reconstruction, geometry quality inspection, and
construction progress tracking. These point clouds are
mostly captured using laser scanners or being generated
elaborating images or videos of the considered object.
Laser scanner [6] and structured light sensors [7] are the
most used in application requiring accurate measurements.
These sensors present some limitations like high prices and
low portability due to their big size.
Recently, computer vision-based quality monitoring tech-
niques are gaining popularity thanks to the fast develop-
ment of low-cost, accurate, and small vision sensors and
the development of machine learning techniques. These
machine-learning techniques are mostly based on the elab-
oration of color images.
Techniques based on the 3D reconstruction using multi-
view images are commonly used for quality monitoring in
civil infrastructures, for example, roads [4, 8] and building
[3, 9], having big dimensions where low accuracy margin
is acceptable. While for more accurate quality inspection
multi-view solutions based on laser scanners are preferred
[10, 11].

In our previous paper [12], we have discussed two 3D
reconstruction techniques based on the use of multi-view
RGB-D images. These images are captured by a low-cost
stereo depth camera (Realsense D415 camera) attached
to the end-effector of a six-axis collaborative robot. One

of the introduced techniques, odometry-based technique,
does not require previous pose knowledge at each view-
point. It is based on the estimation of the 3D camera pose
capturing each of the RGB-D images. These poses are then
used for the 3D model reconstruction of the covered work-
piece visible in the captured images. In the present work,
a modified version of the odometry-based technique is ap-
plied to reconstruct the 3D model of concrete printed ob-
jects. With respect to the previously introduced work, only
considering workpiece to be placed within the workspace
of a robotic manipulator, in the present work the algorithm
has been modified to be able to deal with bigger objects
(typical of 3D printed concrete structure) and a higher
number of images.
In this paper we propose a quality monitoring technique
based on the comparison between the reconstructed 3D
model of a 3D printed object and its original CAD model.

3 Multi-view 3D reconstruction and 3d
model elaboration

In this section, the approach used for the 3D construc-
tion process of an unknown object is introduced. The
solution is based on matching the RGB-D multi-view im-
ages to estimate the camera pose while capturing every
image. Knowing the pose, color, and depth information
at every viewpoint of the object, it is possible to integrate
all this information to create a 3D model of the object.
This technique was initially introduced for indoor scene
reconstruction as shown in [13]. A variation of the algo-
rithm has been introduced in our previous works [12, 14].
The proposed solution, in the previous papers, is used to
reconstruct the 3D model of a workpiece considered in a
contact-based robotic application. In the current paper,
the algorithm is modified and applied in the field of 3D
concrete printing considering relatively bigger objects that
are scanned in a higher number of multi-view 3D images.
The summary of the proposed approach is shown in figure
3. Step 1 is to capture multi-view RGBD images of the
object. Step 2 is to elaborate the images to relate them
to common reference. Step 3 is to integrate the images
content to reconstruct the 3D model of the object. Step 4
is to extract only the object from the 3D model. Step 5
is to compare the reconstructed 3D model with the CAD
model of the object to determine the printing error. The
steps are described in details as follows.

To capture several images from different perspectives
that cover all the objects or at least the interested area. In
this work, the Realsense D415 [15] which is a low-cost 3D
stereo depth camera is used.
The D415 stereo depth camera captures the RGB-D im-
ages using different sensors. The color image is captured
by an RGB sensor having a resolution of up to 1920 X
1080 pixels and is able to capture up to 30 frames per
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Figure 3. Proposed solution summary

second (fps).
In stereo cameras such as Realsense D415, the depth image
is captured using two sensors, and the depth information
is perceived by comparing the position of the pixels in the
two images. The depth value of each pixel is calculated
using triangulation methods considering the known phys-
ical distance between the two sensors. The depth image
captured has a resolution of up to 1280 X 720 pixels at a
frame rate of up to 90 fps.
Due to the fact that the RGB-D images are captured us-
ing different physical sensors, it is necessary to align the
images. The alignment process consists of changing the
parameters such as dimension and coordinate system ori-
gin of an image (color or depth) to match the other one.
This step is necessary to have both images with the same
dimension and refer to the same coordinate system. In
such a way, a pixel in one image has the same exact posi-
tion in the other image.
The multi-view RGB-D images are captured by a moving
camera. That means that every image is referred to the
camera coordinate system at that moment. The first step
in the developed algorithm is the estimation of the camera
pose of each image using the RGB-D odometry technique
introduced in [16]. Every image is compared to the con-
secutive one to calculate the pose change.
The estimation of the pose change between two images,
consists in the calculation of the homogeneous transfor-
mation matrix. If applied to one image, it matches it to the

other one like it has been captured from the same position
and same camera orientation.
The calculated camera motion matrices, are used to refer
all the images to a common coordinate system. The com-
mon reference frame used is the frame of the first image.
The referring process consists in the use of the camera
motions found for every image to refer the content of the
image to be with respect to the common reference frame.

3.1 Scanning process and 3D model reconstruction

The quality of the reconstructed 3D model is highly
dependent on the input data. The color and depth sensors
are set to the maximum resolution of 1920 X 1080 pixels
and 1280 X 720 pixels respectively.
The depth measurement accuracy is dependent also on the
distance between the observed object and the camera at
the moment of capturing the image. For the resolution
used, the optimal range for depth accuracy is between the
minimum of 450 mm and the maximum of two meters.
This range guarantees the accuracy of the readings with
errors lower than 2% of the total distance between the
object and the camera.

The 3D reconstruction technique used, is based on
matching the images and comparing the overlapped parts
in them. To guarantee that, the frame rate or the number
of images that the camera can capture at every second and
the camera movement have to be related to have the time
necessary to capture the images covering all the parts of
the object without large movement between sequential im-
ages. In this work, the camera is moved manually. Where
the user moves the 3D stereo depth camera around the
object to be scanned and capture RGB-D images of all
the interested areas. The relationship between the cam-
era movement speed and number of the RGB-D images
captured is explained in our previous work [12].

The considered work-pieces in this paper have dimen-
sions between one meter and two meters, in terms of length
and width. The height is lower than 0.5 meters. To recon-
struct the required 3D models, a dataset of 100 RGB-D
images is used. In case of having a data set higher than
the fragment size, the data set is partitioned in patches of
100 RGB-D images or less.

3.2 3D model elaboration and object extraction

The quality evaluation of a 3DCP object, which may
not coincide perfectly with the starting CAD model used
for generating the printing trajectory, could be done using
the explained algorithm for the 3D model reconstruction
of the object in its dry state.
The quality evaluation procedure, consists of the recon-
struction of the 3D model of the observed scene contain-
ing the printed object. The 3D model is then cropped to
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extract only the 3D model of the object. The extracted part
is then compared to the initial CAD model of the object
to evaluate its quality to find the zones having similarities
and zones having printing defects. The process in detail is
explained in the following.

To extract only the object that we are interested in, it is
necessary to make some assumptions about the scanning
and the printing processes. The first assumption is that the
object is positioned, in most of the RGB-D images, in the
center of the covered area. The second assumption is that
the printing process happened over a flat surface.
With the first assumption, the search algorithm could con-
sider only the center of the constructed 3D model of the
scene. That means only a part of the model has to be ana-
lyzed. The second assumption allows us to consider that in
the central area could be found the 3D printed object and
the floor on which it was printed. Searching in the model
for a plane surface (points having the same height and con-
nected together), it is possible to find all points combining
the floor. By removing these points, it is possible to obtain
the points of the object.

3.3 Registration of CAD and scanned point-cloud

To evaluate the reconstructed 3D model accuracy of the
3DCP object, it is compared with the CAD model. The
comparison accuracy depends on the ability to compare an
exact point in the scanned point cloud to the exact relative
point in the 3D model. To guarantee good comparison
accuracy the two point clouds have to be aligned.
Alignment of point clouds, known as the point cloud reg-
istration process, is a well-known problem in computer
vision and is widely used in construction to compare and
inspect buildings, roads, and civil infrastructures using
laser scanners or similar scanning techniques. The 3D
registration process consists of finding the transformation
matrix that if applied to the second model aligns it to the
first one and also refers both of the models with respect to
the same reference coordinate system.

Different registration techniques can be applied that
can be categorized into coarse and fine registrations
[17]. Coarse registration is a feature-based technique that
matches the features in the two point-clouds. The most
used strategies are classified as point-based, line-based,
and surface-based. These methods are very accurate but
highly dependent on the similarities level of the two point-
clouds that is dependent on the sensor noise, scanning
point of view, point-clouds density, and geometrical non-
conformity due to fabrication process accuracy. To guar-
antee high accuracy, complicated feature extraction tools
may be necessary to develop.

Fine registration techniques are based on approximate
iterative processes to find the optimal rigid transforma-
tion matrix between the two point clouds. The most used

technique is Iterative Closest Points ICP [18, 19] and its
variations. These techniques are based on the minimiza-
tion of positional errors of relative point sets selected from
the two point clouds. This implies the necessity for a good
initial guess of the rigid body transformation to avoid local
minimum problems. Elaboration time is dependent on the
point-cloud size.

In the case of 3DCP objects, using the above techniques
leads to registration failure for the following reasons. The
low geometrical conformity of the printed object due to
printing accuracy tolerance. Also difficult to identify fea-
tures like lines or surfaces in the noisy scanned point cloud.
Finally, lack of initial transformation guesses to be used for
ICP techniques as the scanning process is done manually
and the camera origin is not referred to a known reference
frame.
To overcome these limitations, we propose an easy and
fast-to-apply registration technique to align the two point
clouds based on more general features considering the
overall point clouds. These features are the boundary box
and the three-dimensional center of the object. Aligning
these features allows an alignment of the two 3D models.

4 Experimental setup and scanning results
In this section, the introduced 3D reconstruction al-

gorithm is applied to reconstruct the 3D model of a 3D
printed concrete object. The experimental setup used is a
modular gantry system 3D concrete printer. As a first step
of the analysis, the model reconstruction has been tested
with images gathered by manual scanning: a 3D camera is
moved around the object to capture the multi-view RGB-D
images. Scanning results in terms of the reconstructed 3D
models are shown together with an example of accuracy
measurement of the reconstructed 3D model.

4.1 Gantry systems 3D concrete printer

Experiments done in this paper are done in collaboration
with COBOD International A/S. It is a company provid-
ing innovative solutions in the construction field combin-
ing 3D printing and robotics technologies to automate the
construction process. Printing solutions could be based
on the use of robotic manipulators or gantry systems.
The main product is BOD2 shown in figure 4 which is a
modular gantry system that can have different sizes based
on the size and shape of the building needed to construct.
The smallest version BOD2 2-2-2 has a print area of 4.52
x 4.55 x 3.09 m. The biggest is BOD2 5-10-4 which has a
print area of about 12.10 x 24.75 x 8.14 m.

4.2 3D reconstruction results and quality assessment

The 3D concrete printed object conformity with the
design (”as-planned” CAD model) is an essential crite-
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(a) Smallest printer BOD2 2-2-2

(b) Biggest printer BOD2 5-10-4

Figure 4. BOD2 models https://cobod.com/
bod2/

rion for its validation, i.e. are mechanical rigidity and
the possibility of assembling the printed object to other
components highly affected by accurate, conform 3DCP
execution according to the planned geometry. To check the
geometrical conformity, in this section a 3D printed con-
crete object is scanned and the proposed 3D reconstruction
algorithm is used to reconstruct its 3D model that allows
for error quantification.

Using RGB-D odometry technique previously described
in [14], a set of 100 color and depth images, similar to
those shown in figure 1 for the polygon shape object, are
integrated to reconstruct the 3D model shown in figure 2.
The developed 3D reconstruction pipeline is applied also
to scan the ring shaped 3DCP object shown in figure 5.
The ring-shaped object has an outer diameter of 0.8 meters
and a height of 0.1 meters.

3D concrete printing process, similar to small dimen-
sion and traditional PLA 3D printing process, may lead to
geometry deformation related to the first layers adhesion
failure or to the layer closure area. The goal is to quantify
the highlighted errors in correspondence to the layer clo-
sure and first-layer adhesion. The 3D reconstructed model

of the object is shown in the sub-figure 6b.

Figure 5. Ring shaped object

Hausdorff Distance is used to compare the 3D recon-
structed model of the print’s actual result and the ground
truth or the 3D CAD model of the object used to generate
the trajectory of the 3DCP.
Hausdorff distance measures the magnitude of the biggest
printing defect that may cause low resemblance between
the printed object and the CAD model. To calculate Haus-
dorff distance it is necessary to calculate all the distances
between relative points in the two point-clouds and find
the maximum of them.
To calculate the Hausdorff Distance Meshlab [20] is used.
Meshlab is an open-source 3D model elaboration soft-
ware. It allows us to calculate, between two aligned and
down-sampled point clouds, maximum distance (Haus-
dorff distance), minimum distance, distance mean value,
and Root Mean Square error.
The two 3D models of the ring shaped object are shown
in figure 6. The sub-figure 6a represents the CAD model
or the ground truth to which the reconstructed 3D model
shown in the sub-figure 6b is compared.

Comparison results are shown in the figure 7. The Haus-
dorff algorithm is applied over a total of 159039 relative
points. The error is represented as a color-map. Lower
values of errors, distances between relative points in the
two 3D models, are represented in orange color. Points
where higher error occurs are represented slight green
while the maximum error is represented by a blue color.
For better understanding of the error measurement results,
on the left side of the figure, a histogram representation is
used to show the quantity of points having different error
values. Most of points, especially the points that are part
of the upper surface are having the lowest error values.
Considering all points, error mean value of 0.0057 meters
and error Root Mean Square of 0.0073 meters are ob-
tained. The printing defect in correspondence to the layer
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(a) CAD model

(b) Constructed 3D model

Figure 6. Comparison between CAD model and out-
put 3D model of the actual print
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Figure 7. Hausdorff distance comparison applied to
the ring case

closure is where the maximum error is obtained. Error
value is 0.039 meters. A higher error values are obtained
in correspondence to the first layer adhesion failure.

5 conclusion
In this paper, a vision-based approach for the quality

monitoring of 3D printed concrete objects is proposed.
The solution consists of the use of a low-cost stereo-depth
camera to capture multi-view images to reconstruct its 3D
model. To quantify the accuracy of the printed object,
the 3D reconstructed model ”as-built” is compared to its
”as-planned” CAD model. The developed algorithm for
the 3D reconstruction works in two configurations. In
the first configuration, the 3D camera is moved manually
around the object. This configuration could be used for
either onsite or offsite quality monitoring since the cam-
era is manually moved between viewpoints. The second
configuration for automatic scanning is mostly used for
onsite quality monitoring where the camera is attached to
the printer and moved around it to scan the object with-
out the need to move the object from its printing position.
The viewpoint in this latter case is generated automatically
knowing the position of the printed object. To quantify the
accuracy, the reconstructed 3D model and the initial CAD
model are compared using the Hausdorff Distance func-
tion. Future work is to exploit quality monitoring results to
highlight the defects of the 3D printed concrete object and
to generate instructions to adjust them, e.g. by controlling
the printer to fix-up gaps with additional material or to di-
rect workers to surface finishing and grinding operations
where over-extrusion or extra material is present.
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Abstract -
Accurate localization plays a crucial role in the effective

operation of autonomous robotics systems, especially in dy-
namic environments such as construction sites. Simultaneous
Localization and Mapping (SLAM) utilizing LiDAR sensors
has emerged as a popular solution due to its ability to func-
tion without external infrastructure. However, existing al-
gorithms exhibit significant shortcomings. Despite current
methods achieving high accuracy over long trajectories, they
struggle with precision and reliability in complex indoor en-
vironments. This paper introduces a novel feature-based
LiDAR SLAM system designed to address these limitations
and enhance short-term precision and overall robustness.
The proposed system is evaluated using both existing datasets
and a physical robot platform, addressing the limitations of
current implementations and showcasing improved perfor-
mance in challenging real-world scenarios, particularly in
construction environments.

Keywords -
Simultaneous Localization and Mapping; SLAM; LiDAR,

Localization; Navigation

1 Introduction

Localization is a critical component of nearly all au-
tonomous robotics systems. Accurately understanding the
robot’s pose relative to its environment is often crucial for
navigation and manipulation tasks. While GPS can some-
times be sufficient for outdoor environments, more com-
plex approaches are typically needed for indoor environ-
ments due to significant signal attenuation by the building.
In warehousing and manufacturing, autonomous robots are
conventionally localized using visual markers placed in the
environment or external camera systems with fixed posi-
tions. These approaches have enabled increased robotic
automation which has lowered costs, increased workforce
productivity, and improved efficiency [1]. However, these
approaches are often not feasible in construction due to
construction sites continuously evolving throughout the
building process. This makes setting up external localiza-

tion systems difficult.
One popular solution is to use onboard sensors to per-

form simultaneous localization and mapping (SLAM), al-
lowing autonomous systems to localize in previously un-
mapped environments. SLAM can provide high-accuracy
and precise positional estimates in indoor environments,
without the need for any external infrastructure. One popu-
lar onboard sensor for performing SLAM is LiDAR, which
typically uses the time of flight data of a laser to measure
distances to nearby obstacles. These distance measure-
ments are converted to a point cloud, providing a 3D rep-
resentation of the environment. LiDAR has numerous
advantages over cameras such as direct measurement of
depth and invariance to lighting conditions. This elim-
inates scale ambiguities and allows for robust measure-
ments, even in harsh or dim lighting conditions such as
those commonly present in night-shift work operations.
Additionally, LiDARs are not impacted by textureless or
highly repetitive textured environments, which are com-
mon in construction (e.g. unfinished/unfurnished rooms,
brick walls).

Over the last couple of decades, various algorithms and
frameworks have been proposed for performing LiDAR-
based SLAM. One of the most popular and robust of the
recent methods is LIO-SAM [2]. LIO-SAM uses a range-
image generated from a point cloud to extract LOAM [3]
features. It then uses frame-to-frame matching and frame-
to-global-map matching, along with GTSAM [4] to gen-
erate a 3D point cloud of the environment and localize the
LiDAR within it. Additionally, LIO-SAM tightly couples
the LiDAR and IMU, allowing for point cloud deskewing
and full utilization of the IMU data in the factor graph op-
timization. Unlike other more recent point-based methods
such as ART-SLAM [5], LIO-SAM is feature-based and
thus more computationally efficient. This allows it to run
on smaller robots without a GPU. As such, it has become
a popular option for mobile robots and is used extensively
in the research community [6, 7, 8, 9].

While LIO-SAM has been shown effective on multiple
datasets, it has several limitations that make it sub-optimal
for real-world localization of a navigating autonomous sys-
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Figure 1. An overview of the proposed algorithm

tem. Despite achieving high long-term trajectory accu-
racy, LIO-SAM often provides poor short-term precision.
This results in large short-term errors in the pose esti-
mate that can lead to navigational issues and poor map
quality. These issues are particularly evident when work-
ing with robotic systems that exhibit high vibrations (such
as quadruped robots) or systems utilizing cheaper, lower-
quality IMUs. Additionally, the algorithm lacks robust-
ness in complex environments where limited visibility of
the ground planes and LIO-SAM’s lack of consideration
for surface normals leads to weak constraints on the roll,
pitch, and z-height. This can lead to complete loss of
tracking in many confined indoor environments, such as
stairways and small rooms. These limitations make current
implementations unreliable in common construction envi-
ronments, endangering the robot and the people around
it.

To address these issues, we present a novel feature-based
LiDAR-inertial SLAM system that significantly improves
short-term precision and overall robustness. The proposed
system is validated on existing datasets and a physical
robotics platform.

2 Methodology

Figure 1 shows an overview of the different modules in
the proposed algorithm. Unlike existing approaches, the
proposed algorithm first organizes the cloud into a �x�
array (organized cloud), where � is the number of chan-
nels in the LiDAR, � is the number of samples taken per
revolution of the LiDAR, and each element in the array is
a point storing its x, y, z, and intensity values. This pre-
processing step speeds up computations of later steps in
the pipeline, enabling real-time performance. After orga-
nizing, the cloud is deskewed using IMU data to undo any
distortions caused by rotations of the LiDAR sensor over
the capture interval of the point cloud. This is necessary
as LiDARs typically output their data as scans (one full ro-
tation of the laser array) which contains points captured at
different times over the scan period. Deskewing removes
any distortions caused by rotations of the sensor over the
scan period. The deskewed point cloud then undergoes

feature extraction where planar points (Figure 2) and edge
points (Figure 3) are extracted from the cloud using novel
proprietary feature extractors. Planar points are further
clustered into individual planes. Unlike LIO-SAM which
labels points as planar based on the local roughness of the
range image, we consider the full 3D positions of each
point and its neighbors to more reliably identify planar
surfaces and remove non-planar points. Additionally, our
approach efficiently estimates the normals of the points,
providing us with richer features and additional informa-
tion during feature matching and pose optimization. The
individual planes, each containing a point cloud of their
constituent points, along with an edge cloud comprising
all the edge points, are subsequently assembled into a
Frame object. This Frame is initialized with an initial
pose derived from the last predicted pose and the IMU’s
orientation estimate.

Figure 2. Example of extracted plane points

Figure 3. Example of extracted edge points
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An iterative process is then used to match the features
and optimize the pose of the current frame with respect
to the key frames. At each iteration, a 3-stage matching
approach is used to first match the Frame to its nearest
key frames, then match the Frame’s planes to the selected
key frames’ planes, and finally match planar and edge
points in the Frame to the planar and edge points stored
in the matched planes and key frames’ edge clouds. The
feature matching step results in a set of planar and edge
correspondences that are used to calculate multiple error
metrics. These metrics are minimized with respect to the
Frame’s pose using Newton’s method. The Frame’s esti-
mated pose is then updated and the iterations are repeated
until we converge on a pose or have repeated a set number
of iterations. The final pose of the LiDAR is returned as
the final output of the system. If needed, the frame is
added to the key frames to iteratively grow the map.

Ultimately, our approach differs from LIO-SAM in three
main ways. First, we organize the cloud and use the full
3D positions of the points during feature extraction, in-
stead of using the range image. The organization of the
point cloud allows us to compute features in a compa-
rable amount of time to LIO-SAM while utilizing more
of the point cloud’s information. Second, we do not use
LOAM features, and instead use novel feature extractors
that extract more reliable planes and edges. Our edge de-
tector explicitly handles edges caused by occlusions and
our plane detector efficiently estimates normals, providing
more information for pose optimization. Our use of dif-
ferent feature extractors also enables us to utilize 3-stage
feature matching which exploits the additional information
captured by the features to improve matching accuracy.
Lastly, our method uses key framing to efficiently repre-
sent the map, enabling frame-to-global-map matching for
every frame. This results in a highly memory-efficient map
representation and limits the short-term drift, improving
the short-term precision of the localization estimate.

An additional difference in the current implementation
is that we do not use a factor graph to optimize the global
map or fuse IMU orientation estimates into our pose graph.
This is a limitation of our current approach as it can lead to
larger long-term drift for very long sequences. However,
we plan to address this issue in future work by incorporat-
ing our design with GTSAM [4].

3 Experiments
To evaluate the performance of the proposed approach

against a baseline, the algorithm is quantitatively com-
pared to LIO-SAM on an existing construction site dataset,
as well as qualitatively evaluated on physical robotics hard-
ware. LIO-SAM provides a good baseline as it requires the
same sensors (a 360-LiDAR and an IMU), is also feature-
based, and requires similar computational resources. For

numerical analysis, we primarily evaluate the accuracy of
the localization estimates, as localization is the primary
use case of real-time SLAM algorithms for most systems.
Additionally, localization can be evaluated more directly
than map quality and better localization directly leads to
improved mapping.

3.1 Hilti Dataset

To evaluate the absolute positional accuracy, both al-
gorithms were tested on some of the additional sequences
provided by the Hilti SLAM Challenge 2022 dataset [10].
This dataset provides ROS bag recordings of LiDAR and
IMU sequences collected from various construction and
indoor environments using a Hesai Pandar XT-32 LiDAR.
Vitally, the dataset also provides millimeter-accurate syn-
chronized ground truth poses collected with a motion-
capture system. This allows direct comparison of the pre-
dicted and ground truth trajectories.

To enable both algorithms to process the data, the point
clouds were preprocessed to convert them into a Velodyne
point format (does not change any data, but changes point
format). Additionally, the IMU data was preprocessed as
both algorithms expect the IMU to provide fused orien-
tation estimates. These were generated using the open-
source imu filter madgwick package [11]. To provide a
wide range of difficulties and environments, 5 sequences
from the dataset were tested. These are Exp04, Exp05,
Exp06, Exp14, and Exp18.

Table 1. Dataset statistics for Hilti sequences calcu-
lated based on the ground truth poses

Dataset
Max
Pitch
/ Roll
(◦)

Mean
Ang
Vel
(◦/s)

Mean
Lin
Vel
(m/s)

Max
Ang
Vel
(◦/s)

Max
Lin
Vel
(m/s)

Exp04 10.968 19.970 0.606 142.194 1.886
Exp05 17.324 17.110 0.561 146.696 1.616
Exp06 58.033 38.971 0.617 263.522 2.408

The first three scans were captured on three floors of
a real-world indoor construction site with progressively
more aggressive motions. The three datasets all include
variations in Z-height, open and confined spaces, and tilt-
ing in both pitch and roll. Table 1 provides some statistics
generated from the ground truth poses provided by the
datasets. Exp06 in particular offers very fast motions and
aggressive rotations. Both Exp04 and Exp05 were des-
ignated as easy difficulty by the dataset creators, while
Exp06 was designated as medium difficulty due to the fast
motions.

Captured in more demanding indoor settings, Exp14
and Exp18 both present challenging sequences with ge-
ometric ambiguity and confined spaces. Notably, Exp14

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

990



showcases a rectangular staircase, while Exp18 incorpo-
rates a spiral staircase at the beginning and end of the
sequence, resulting in their classification as medium and
hard difficulty, respectively.

Table 2. Results from the Hilti Sequences, N/A in-
dicates an algorithm lost tracking and could not re-
cover

Seq Algorithm
Trans
RMSE
(m)

Trans
SD
(m)

Rot
RMSE
(◦)

Rot
SD
(◦)

Exp04 LIO-SAM 0.1670 0.0879 1.486 0.355
Ours 0.1147 0.0566 0.966 0.493

Exp05 LIO-SAM 0.0945 0.0450 0.873 0.336
Ours 0.1124 0.0564 1.818 1.055

Exp06 LIO-SAM 0.3599 0.2274 2.258 1.053
Ours 0.4825 0.2578 4.098 1.707

Exp14 LIO-SAM N/A N/A N/A N/A
Ours 0.7966 0.5292 3.985 1.559

Exp18 LIO-SAM N/A N/A N/A N/A
Ours 0.7979 0.5713 10.433 3.854

The two algorithms were evaluated on all five sequences
using a Ryzen 5600H processor, processing the data in
real-time. The predicted poses were captured and stored
in a text file, and then synchronized with the ground truth
poses using timestamps. For evaluation, translation er-
rors were calculated using the Euclidean distance between
the estimated and ground truth trajectories. The rotation
errors were calculated as the smallest angle between the
estimated and ground truth orientations. The root-mean-
square (RMSE) and the standard deviation (SD) of the
translational and rotational errors are reported to evaluate
the accuracy and consistency of the estimated trajectories
in Table 2.

Figure 4. Predicted trajectory (red) versus ground
truth (green) for Exp14 using our approach

As shown in Table 2, our approach achieved better re-
sults in 3 of the 5 sequences. Importantly, Exp14 and
Exp18 show that our approach is more robust than LIO-
SAM by completing the sequence. LIO-SAM on the other

hand lost tracking in the first 5 seconds of both sequences
due to starting in confined spaces and having to navi-
gate stairways. Additionally, most of the errors in Exp14
occurred in the last few seconds due to the cloud being
highly geometrically ambiguous as a result of the transla-
tional symmetry of the stairway (Figure 4). Exp18 also
highlights the generalization capability of our approach
to various built environments. While the other sequences
primarily feature standard built environments, Exp18 was
captured in a gallery with curved walls, ornate columns,
and tight walkways. Despite there being few truly planar
surfaces, our plane extractor was able to identify locally
planar surfaces and outperformed LIO-SAM, completing
the sequence.

Figure 5. Angled view of the predicted trajectory for
Exp06 using our approach

Our algorithm also achieved better performance on
Exp04. Upon initial inspection, it seems that LIO-SAM
exhibited slightly better performance in Exp05 and Exp06.
However, as shown in Figure 5 and Figure 6, our approach
produced a smoother and more locally accurate trajec-
tory, despite experiencing some additional drift in roll and
pitch that resulted in comparable but slightly higher overall
RMSE. This additional drift is due to how our algorithm
integrates the IMU data into our pose estimates. Currently,
our algorithm only utilizes the IMU data for initial pose es-
timation and point cloud deskewing. However, IMUs also
generate attitude measurements, which provide absolute
constraints on the roll and pitch of the system. Since our
system does not fuse the IMU orientation estimates with
our final predicted pose, our algorithm is more susceptible
to long-term drift in the roll and pitch axes for longer se-
quences with aggressive motions. Therefore, even though
our system provided better short-term estimates for Exp 05
and Exp06, the full trajectory errors were slightly higher.
Future work will focus on reducing these errors by reinte-
grating the IMU data into the LiDAR pose estimate follow-
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(a) LIO-SAM’s predicted trajectory

(b) Our predicted trajectory

Figure 6. The predicted (red) and ground truth
(green) trajectories for Exp06 (cloud generated from
ground truth for reference)

ing Gauss-Newton optimization. Nevertheless, even with
our current implementation, the preference for a smoother
and locally accurate trajectory for navigation purposes may
outweigh the marginal gain in long-term positional accu-
racy offered by LIO-SAM. A similar story was observed
in Exp05.

3.2 Quadruped Robot Dataset

While the Hilti SLAM Challenge dataset provides real-
world sequences collected via a high-quality hand-held
system, it may not be fully representative of the types of
trajectories followed and the vibrations produced by many
robotics systems. To evaluate the algorithm on a robotics
platform, our algorithm and LIO-SAM were evaluated on a
dataset collected in an indoor environment using a teleop-
erated Unitree Go1 quadruped robot equipped with a Velo-

dyne VLP-16 LiDAR and a YostLabs 3-Space Micro USB
IMU (Figure 7). Compared to the Hilti Dataset, the data
produced by this system is much noisier due to lower IMU
precision, high vibrations due to the robot’s walking gait,
and a lower precision LiDAR. Additionally, the LiDAR
has a very limited field-of-view (30◦) and lower resolution
(only 16 channels), providing an additional challenge to
the SLAM system. Both algorithms took less than 50 ms
to process each frame.

Figure 7. Lab robot used to collect dataset

Figure 8 shows a close-up of the resultant trajectory and
generated map. While the overall trajectories produced by
both algorithms were similar, the difference in short-term
precision becomes apparent. During the test, LIO-SAM
suffered from poor short-term precision in the predicted
pose. This is likely due to their strategy of performing
frame-to-global map matching at a slower rate than frame-
to-frame matching, as well as vibrations picked up by the
IMU. Our approach did not suffer from these issues and
produced a much smoother and more accurate trajectory.
Additionally, our 3-stage matching approach can use nor-
mal information to distinguish between the two sides of
a wall, accurately recovering the thicknesses of the walls.
Meanwhile, LIO-SAM uses only proximity during match-
ing, meaning both sides of the wall typically merge into a
single plane, making it difficult to recover the geometry of
the building. This has significant implications for build-
ing information modeling (BIM) as wall thicknesses are
often of great interest for accurately modeling the building
geometry.

As shown in Figure 9, the higher precision in predicted
poses also leads to improved map quality and sharper point
clouds. The difference is most evident when comparing
the thin legs of the chairs, and the guard rail by the stairs.
Improved map quality is of significant importance for tasks
such as object detection, where sharper maps translate to
lower noise in the object point clouds, capturing finer de-
tails of the object and improving the odds of accurate clas-
sification or segmentation. Additionally, the reduction in
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(a) LIO-SAM’s predicted trajectory

(b) Our predicted trajectory

Figure 8. The predicted trajectory (yellow) and re-
sultant map for the quadruped robot dataset (from
same viewing angle)

noise in the object point clouds can improve the precision
of measurements between object features, enabling more
accurate object modeling.

Local stability in the estimated pose is also crucial for
autonomous navigation. Poor short-term positional drift
can cause the robot to temporarily assume it is too close
or inside an obstacle, causing it to react unpredictably or
sporadically. This can lead to jerky or dangerous recovery
behaviors where the robot attempts to continuously re-plan
its trajectory around obstacles. Our algorithm generates
smoother, more accurate local trajectories than LIO-SAM,
which can lead to less time spent re-planning and more
consistent robot behavior.

4 Conclusion
In this study, we present a novel, computationally

lightweight, LiDAR SLAM system for real-time localiza-
tion and mapping. The proposed system was designed as
a stand-alone C++ package to be used with 360 LiDAR
scanners. The system was evaluated on a real construc-
tion dataset as well as on a quadruped robot. The system

(a) Map produced by LIO-SAM

(b) Map produced by our approach

Figure 9. Example maps recovered by LIO-SAM and
our approach using the quadruped robot

achieved state-of-the-art performance on the majority of
the datasets and demonstrated improvements in the pose
estimate’s robustness and precision.

While the proposed system provides clear advantages
for the localization of autonomous systems, it does have
some limitations. The current approach only uses the IMU
for initial pose estimation and deskewing the cloud. This
leads to eventual drift in roll and pitch as the IMU data is
not utilized during pose estimation. Future work will inte-
grate the final pose estimates with a factor graph to enable
more flexible integration of additional sensors. This will
also allow us to incorporate attitude or preintegrated IMU
factors, improving the pitch and roll estimation over long
trajectories.
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Abstract –  

Concrete 3D printing is a digital fabrication 
technology that has the potential to increase the level 
of automation in construction. However, getting 
consistent output quality is a challenge in concrete 3D 
printing because of the change in material properties 
with time and the influence of environmental 
parameters. A robust quality monitoring and control 
system is required to control the variations and obtain 
good-quality output. In this study, computer vision 
techniques are used to monitor the 3D printing 
process. Image features such as temporal variations 
in layer thickness and textural changes are used to 
assess the buildability properties. Two metrics have 
been developed for quantifying these features: 
entropy standard deviation and maximum layer 
thickness deformation. A significant correlation is 
found between the two metrics, and this relationship 
can be used to re-confirm the buildability assessment. 
For a given concrete mix, limiting values can be 
computed for the metrics to effectively classify an 
element into a stable type or one that is likely to 
collapse. This data can also be used as feedback to the 
printing system to make corrective actions to increase 
the quality of the print output. Thus, a real-time, non-
intrusive buildability assessment system for concrete 
3DP elements is demonstrated in this study.  

Keywords – 

Concrete 3D printing; Computer Vision; Buildability,; 
Quality monitoring 

1 Introduction and background 

Concrete 3D printing (3DP) is a freeform technology 
that aims to realize the benefits of digital fabrication. It 
has been found to reduce construction time, material, and 
labor usage while improving sustainability. However, 
due to the dependency of material properties on multiple 
input parameters, 3D printed elements are found to have 
variations in the output quality. 3D printing challenges 
include proper extrusion and limiting dimensional 
changes with time [1]. One of the critical parameters of 
3DP is buildability, which determines the number of 
layers that can be printed without significant dimensional 
changes in individual layers due to the weight of the top 
layers. The common buildability failures in 3D printing 
are plastic and buckling collapse [2]. It depends mainly 
on the workability of the concrete, and many studies have 
used fresh-state property tests to find a printable region.  

There are very few real-time techniques that help in 
monitoring the variations during the printing process. 
Studies on quality monitoring and control techniques are 
increasing in the additive manufacturing industry [3]. 
However, studies on quality monitoring in concrete 3DP 
are relatively less. Monitoring using 2D camera images 
and computer vision techniques is gaining prominence in 
industry applications. In this study, a computer vision 
methodology for quality monitoring is developed that 
helps assess the buildability properties of 3D printed 
elements. Significant dimensional changes affect the 
print quality and long-term structural properties [4,5]; 
hence these are monitored in this methodology. In 
addition, new image features have been identified that 
can effectively assess the buildability properties of 3DP 
elements.  
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2 Methodology 

 

Figure 1. Methodology of buildability assessment 
using image features extracted through computer 
vision techniques 

 Figure 1 shows the overall methodology for 
buildability assessment of 3D printed elements using 
Computer Vision (CV). It consists of the following three 
parts: 

• Input data collection 
• Image pre-processing 
• Study of temporal image features  

In the input data collection phase, 2D images of the 
3D-printed elements are collected using a camera during 
printing. The input data is preprocessed in the second 
stage to remove all the background data, reducing the 
computational complexity and increasing accuracy. The 
final phase involves the usage of computer vision 
techniques to extract image features and understand the 
temporal variations of the image features. The temporal 
variations are used to assess the buildability and the 
dimensional changes in the printed elements.  

3 Materials and Methods 

3.1 Experimental procedure 

To demonstrate the methodology for buildability 
assessment using computer vision, a series of elements 

were printed in a laboratory setting. The experimental 
details are described in this section. 

This study uses a new LC2-OPC mix, which uses 
Limestone Calcined Clay (LC2) and Ordinary Portland 
Cement (OPC) cement as binders with manufactured 
sand as aggregate. Super-plasticizers (SP) and viscosity 
modifying agents (VMA) are used to control the 
rheological properties of the printed elements. In general, 
buildability properties depend on the rheological 
properties, especially the workability of the printing 
concrete. The initial workability of concrete varies with 
super-plasticizer dosage. However, the workability 
during the printing process is dynamic, with variations 
occurring due to hydration or evaporation with time.  
Hence, elements are printed under different initial 
workability conditions and at different times of printing 
(time from the point of mixing water to the dry concrete 
mix) to understand the impact of the changes in 
rheological properties on the buildability of 3DP 
elements.   

Table 1. 3DP elements printed with different 
Super-Plasticizer (SP) and Time Of Printing (TOP) 
as per experimental procedures 

Category 
No. 

SP 
(%) 

TOP 
(min) Status of Print 

1 

0.50 

10-15 Collapsed 

2 25-30 Collapsed 

3 40-45 
Good quality print with slight 
expansion/distortion in the 
middle 

4 

0.40 

10-15 Good print with minor voids 
in the top layers 

5 25-30 Fair print with many voids in 
the top layers 

6 40-45 Non-extrudable 

7 
0.30 

10-15 Good print with a fair amount 
of voids in the top layers 

8 25-30 Non-extrudable 

9 40-45 Non-extrudable 

Table 1 shows the elements printed with different 
super-plasticizer values of 0.50%, 0.40%, and 0.30% to 
account for initial workability changes. For every super-
plasticizer (SP) dosage, the Time of Printing (TOP) is 
varied in three ranges, 10-15, 25-30, and 40-45 mins. The 
different TOP values account for dynamic workability 
changes during the printing process. Nine different 
categories of printing were done as part of the 
experimental procedure. For every category, three prints 
were done to capture the variation in the data. For 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

996



 

Category 1 and 2, the super-plasticizer dosage was very 
high, resulting in collapse before reaching the target 
height of 500 mm. The super-plasticizer value was very 
low for categories 6, 8, and 9, making the concrete non-
extrudable and non-printable. Since this is a buildability 
study, the non-extrudable categories are not considered.  

A Canon 1300D 18MP camera was kept directly at 
the printing palette at a horizontal distance of 1000 mm 
from the printed element to capture the 2D video/images 
of the 3DP element. An illumination lamp was kept 
above the camera, which provides a constant illumination 
of 6500 (+/-100) Lux on the surface of the printed 
elements. The same camera and lighting setup were 
followed for all the print elements.  

A stable element that retained shape and could be 
printed to a target height of 500 mm without collapse is 
designated as a good buildable element. If the element 
collapsed before the target height, it is classified as a 
collapsed or bad buildable element.  

3.2 Image Data Collection and Pre-
processing 

 

Figure 2. Input image of a stable 3D-printed 
Element - A 

Figure 2 shows the input images of the 3D-printed 
element that reached the target height of 500 mm 
(Element A). Individual snapshots were taken from the 
video after the completion of every layer (layer time 
instances). The layers are designated as L01, L02, and so 
on, numbered from bottom to top. The two bottom layers, 
L01 and L02, were intentionally compressed against the 
printing palette to act as the base for printing. Hence, the 
analysis is done from layers L03 to L10. Image 01 refers 
to the image instance captured after the completion of 
layer L03. Image 02 refers to the image instance captured 

after the completion of layer L04 and so on. The Image 
numbers – Image 01, Image 02, and so on refer to the 
image instances taken after the completion of every layer, 
and they indirectly represent the time of printing 
containing information about temporal changes in the 
overall printed element.  

The input images are pre-processed to remove all the 
background data. It is first processed through Salient 
Object Detection (SOD) to segment only the objects in 
focus. All the objects outside the focus were removed and 
were converted into black pixels. Individual layers are 
cropped out, and their temporal changes are studied to 
extract useful image features.  

 

Figure 3. Hough Transform output after pre-
processing of images of Element A 

Each layer is characterized by the top and bottom 
layer boundaries, which are effectively horizontal for 
linear elements. Hence, the Hough Transform technique 
is used to identify the layer boundary [6]. Then, 
additional rows of pixels are added to the top and bottom 
boundaries to account for undulations in layer boundaries 
to crop the individual layers.  Figure 3 shows the pre-
processing output where all the background data is 
removed, and only the printed element is cropped out. It 
also shows the Hough Transform output, where all the 
layer boundaries are identified as horizontal red lines.  

The image of each layer is obtained by cropping the 
initial image of the layer instance using the boundaries 
identified through Hough Transform. The temporal 
changes in each layer after the printing of subsequent top 
layers are captured within the crop window. 
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Figure 4. Temporal images of layer L03 of a good, 
stable printed Element A 

 

 

Figure 5. Temporal images of layer L03 of a 
collapsed Element B 

Figure 4 and Figure 5 show the temporal changes of 
layer L03 within a crop window for Elements A and B, 
respectively. The individual layer images are processed 
through two different computer vision techniques - 
texture analysis and layer thickness extraction; these are 
discussed in later sections.  

It is found that the dimensional stability and the 
buildability of the printed element can be evaluated by 
assessing the bottom ten layers of every 3D printed 
element. Hence, only the bottom ten layers are used in 
the analysis.  

3.3 Texture extraction – Modified Histogram 
of Oriented Gradients (HOG) 

The texture is the tangible feel on the surface of the 
material. In the case of an image, it is computed as the 
variations in the brightness intensity of the pixels. This 
study uses a modified version of the Histogram of 
Oriented Gradients (HOG) concept. The modified HOG 
computes the gradient changes in three directions. The 
details of the concept and methods of the modified HOG 
algorithm are discussed in [7].  

3.4 Entropy value calculation 

Entropy is a measure of uniformity in a distribution. 
It was first introduced by Shannon and is given by the 
following formula, 

Entropy = -∑ Pi * log2 Pi                                    (1) 
Where Pi is the probability of the i-th value in the 

distribution. Entropy can be used for quantifying the 
textural changes within an individual layer image [7,8]. 
The higher the entropy value, the higher the textural 
value, and vice versa.  

3.5 Canny edge detection  

Canny edge detection is an edge detection method 
that looks for sudden changes in the pixel brightness 
intensities.  

 

Figure 6. Canny edge detection output of L03 of 
Element A 

Figure 6 shows the Canny edge detection output of 
layer L03 of Element A at a particular instance. It shows 
that the boundary lines between two layers are captured. 
The layer thickness is the vertical distance between the 
top and bottom boundaries of the layer identified from 
the Canny edge detection output. Two edge lines are 
determined for every boundary because the pixel 
intensity changes on both sides of a layer boundary. The 
layer thickness is computed as the vertical distance 
between the top surface boundary of the target layer to 
the bottom layer. It is done to avoid the impact of voids 
on the bottom surface boundary of individual layers. 

4 Results and Discussions 

4.1 Temporal textural variation 

Figure 7 shows the temporal changes in the texture of 
the layer L03 of Element A. It is found that layer L03 
deforms minimally from Image 02 to Image 20. Beyond 
that, no significant dimensional changes are visible 
within the crop window. The black pixels in Figure 7 
represent the gradient (change in pixel intensities) 
observed within the layer L03 crop window, as obtained 
from the modified HOG algorithm. The number of black 
pixels within the L03 crop window is found to be 
changing from Image 02 to Image 20. Beyond that, it is 
consistent. This trend matches the pattern found in the 
actual dimensional changes within the crop window. 
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Figure 7. Temporal changes in the textural output 
of layer L03 of Element A 

 

 

Figure 8. Temporal changes in the texture of 
layers L03 to L10 of Element A 

The variations in the pixel intensities (gradient/black 
pixels) are captured as a single entropy value for each 
image instance. Its temporal changes are given in Figure 
8. It is seen that the entropy values have minor variations 
until Image 20. Beyond that point, the values are constant, 
indicating that layer L03 has become stable by achieving 
the initial stiffness/yield strength.  

 

Figure 9. Temporal changes in the textural output 
of layer L03 of Element B 

Figure 9 shows the modified HOG output of layer 
L03 of Element B. In contrast to Figure 7, the layer L03 
of element B is continuously compressed with time. In 
Image 21, even the top layer has come into the crop 
window. This element eventually collapsed due to large 
deformations. The same is visible in the textural changes 

in terms of the number of black pixels varying with time 
(image instances). 

 

Figure 10. Temporal changes in the texture output 
of layers L03 to L10 of Element B 

The temporal change in the texture of Element B is 
captured in terms of entropy value variations, as shown 
in Figure 10. Unlike Figure 8, the entropy values keep 
changing drastically and do not seem to consolidate.  

Entropy Standard Deviation (ESD), or the standard 
deviation of the entropy values over time, is introduced 
in this study as a single measure of the temporal changes 
in entropy value for every individual layer. The standard 
deviation of entropy values (ESD) of layer L04 of 
element B is 0.1148, whereas the ESD value of layer L04 
of element A is 0.0172. Similarly, ESD values for layers 
L03 to L10 of all the print elements. It is found that the 
ESD values are low for a stable print element and high 
for a collapsed print element. It proves that the ESD is a 
good measure of the dimensional stability or the 
buildability collapse assessment of the 3DP elements.  

4.2 Temporal layer thickness variation 

In continuation to section 3.5, the layer thickness is 
measured as the vertical distance between the two 
boundary edge lines identified from the Canny edge 
detection output. The layer thickness is found at thirty 
different sections along the line of printing. It is done to 
understand the layer thickness changes at different local 
sections rather than the overall average layer thickness. 
Figure 11 shows the layer thickness found in thirty 
different sections of layer L03 of Element A, identifying 
the layer boundaries and the vertical distance between 
them in terms of pixel points. Also, the changes in layer 
thickness over time are obtained by following the same 
steps on individual layer images taken at different time 
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instances.  

 
Figure 11. Layer thickness extracted at 30 
different sections of layer L03 of Element A 

 
Figure 12. Layer thickness extracted at different 
sections of layer L03 of Element A 

The changes in layer thickness are captured and 
shown in terms of a graph in Figure 12. The x-axis shows 
the different section points along the line of printing 
(where layer thickness is measured), and the y-axis 
shows the layer thickness in terms of pixel point units of 
layer L03 of element A measured at different time 
instances (Image numbers). The figure shows that the 
layer thickness initially reduces with time (increase in 
Image numbers). However, the layers gain initial 
stiffness/ yield strength with time, and the thickness 
reduction stabilizes. 

 

Figure 13. Layer thickness extracted at different 
sections of layer L03 of Element B 

The layer thickness found for layer L03 of Element B 
is given in Figure 13. Since the printed elements have 
high workability, the layer thickness continuously 

reduces with time, ultimately leading to the element's 
collapse.  

 
Figure 14. Layer thickness extracted at different 
sections of layer L03 of Element B 

The temporal layer thickness changes of layer L03 of 
element B are given in Figure 14. Unlike Figure 12, the 
layer thickness value reduces continuously with time. 
Beyond Image 19, there is a sudden decrease in the layer 
thickness, ultimately leading to the element's collapse 
beyond the time instance - Image 22.  

 

Figure 15. Layer Deformation (%) (LTD) of layer 
L03 of Element B 

To have a single metric for layer thickness reduction, 
the concept of maximum Layer Thickness Deformation 
(LTD) (%) is introduced, where LTD is measured using 
the following formula: 
LTD (%) = (Layer thickness at initial instance – layer 

thickness at instance X) / Layer thickness at 
initial instance X 100.                              (2) 

The LTD is calculated at every section and every time 
instance X. The maximum deformation value across the 
different sections and the time instances is considered the 
Maximum LTD (MLTD) value. The LTD values found 
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at different sections and different time instances of layer 
L03 of Element B are given in Figure 15. It shows the 
LTD values and their temporal changes (image numbers)
across different sections along the printing line. It is 
found that the LTD values increase even beyond Image 
16 and reached the maximum value at section 07 (MLTD)
before the element's collapse. The MLTD value for layer 
L03 of Element B is 45.47%, but in the case of layer L03 
of Element A, it is only 12.50%. The MLTD values are 
found for layers L03 to L10 of all the experimental print 
elements. It is found that the MLTD values of layers from 
a stable printed element are low. And for the collapsed 
element, the MLTD values are drastically high. Hence,
MLTD also serves as a good image feature to assess the 
buildability collapse or dimensional stability of 3D 
printed elements.

4.3 Limiting value for entropy standard 
deviation (ESD)

Figure 16. ESD vs. QOP plot showing the 
individual layer data points of good and bad 
quality printed element layers.

To find a limiting value that classifies a print element 
as a stable or collapsed element, each layer (L03 to L10) 
of all the experimental prints is considered as individual 
data points and analyzed. The layers L03 to L10 of a 
stable printed element are tagged as good-quality data 
points (Quality of Printing). In the case of collapsed print, 
all the individual layer data points (L03 to L10) are 
designated as bad-quality data points (Quality of 
Printing). Figure 16 shows the plot of the Entropy 
Standard Deviation (ESD) vs the Quality of Printing 
(QOP) designated based on the dimensional stability of 
every individual layer data point. The limiting value
(discriminant) is found to be 0.065 (black dotted line) for 
ESD, which differentiates a stable and collapsed print 
element.  The overall misclassification is 8.432% for the 
130 individual layer data points assessed in this study.

4.4 Limiting value for maximum layer 
thickness deformation (MLTD)

Figure 17 shows the MLTD vs. QOP plot showing the 
maximum layer thickness deformation (MLTD) (%) of 
the individual layers (L03 to L10) of stable and collapsed 
printed elements. Similar to finding the limiting value for 
ESD, the layers of collapsed elements are designated as 
bad-quality data points, and the layers of stable elements 
are designated as good-quality data points. The limiting 
value is found to be 12.50% for MLTD, with a 
misclassification of only 4.769%.

Figure 17. MLTD vs. QOP plot showing the good 
and bad quality individual layer data points

4.5 Relation between max layer thickness 
deformation (MLTD)(%) and entropy 
standard deviation (ESD)

Figure 18 shows the relation between the measured 
image feature metrics - MLTD (%) and ESD for all 
individual layer data points. All the individual layer data 
points from a stable printed element are given in green, 
and the collapsed printed element is given in red. A
distinct region separation is noted from the plot. When 
the individual limiting values identified for each image 
feature are plotted, a discriminating boundary separating 
stable print data points and collapsed layer data points is
found. It is to be noted that during the printing process, if 
any of the layers L03 to L10 falls in the collapse region 
or the rate of change of image feature values moves 
towards it, then there is a high chance of the 3D printed 
element collapsing. Hence, the correlation identified for 
ESD and MLTD can be used to supplement or re-confirm 
the buildability assessment from the individual image 
feature analysis. The developed limiting values of image 
features are valid for the current mix design and 
experimental procedures used in this study. They are not 
expected to vary drastically for other mixes as the 
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dimensional change might be in the same pattern for 
collapse in other mixes.  

 

Figure 18. Plot showing the correlation between 
MLTD (%) and ESD 

5 Conclusion 

This paper presents a methodology for assessing the 
buildability of 3D printed concrete elements using 
computer vision techniques. Two new metrics have been 
developed in this research: Entropy Standard Deviation 
(ESD) and Maximum Layer Thickness Deformation 
(MLTD). These metrics are computed using image 
processing techniques and can be used for buildability 
assessment. The conclusions of the study are as follows: 

• There exists a correlation between the two metrics. 
This relationship can be used to re-confirm the 
buildability assessment independently through two 
methods.  

• For a given concrete mix, limiting values can be 
determined for the two metrics for discriminating 
between a stable print and one that could result in a 
collapse. 

• Buildability or dimensional stability in terms of a 
stable/collapse print can be evaluated by monitoring 
and assessing the bottom ten printed layers of a single 
batch of concrete mix.  
This is the first study to identify metrics that clearly 

predict properties of 3D printed concrete elements. This 
study paves the way for further research in computer 
vision on the use of image features to assess critical 
parameters like buildability. The image features can be 
used in a feedback loop to control the printing system. 
Based on the temporal variations in the image features, 
extrusion speed, and printing speed can be modified to 

give the bottom layers significant time to increase initial 
stiffness and yield strength to carry the weight of the top 
layers. It ensures sufficient buildability and avoids 
material wastage, increasing the sustainability of 3D 
printing technology. Thus, the study will help develop an 
autonomous, non-intrusive tool for the buildability 
assessment of concrete 3D-printed elements.  
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Abstract 

In the context of the increasing expansion and 
complexity of civil engineering projects, construction 
inspection plays a crucial role in ensuring project 
quality and safety. The traditional construction 
inspection report writing process mainly relies on the 
manual records of on-site inspectors. This process is 
not only time-consuming but also easily affected by 
personal subjective judgments. In the current rapidly 
evolving construction environment, there are obvious 
limitations to this traditional method, especially in 
terms of the accuracy and timeliness of the reports. In 
view of this, this study proposes an innovative 
approach that combines the Set-of-Mark (SoM) 
prompting technology and the multimodal Large 
Language Models (LLMs), aiming to automate the 
construction inspection report generation process and 
improve the efficient and effectiveness of the onsite 
inspection. The case study shows that the method can 
fulfill the basic requirements of construction 
inspection reports and further improves the quality of 
the report in complicated scene through SoM 
prompting. The core of this method is to conduct a 
more accurate analysis of the conditions of the 
construction site by overlaying marks on key areas of 
the construction inspection images and using the 
multimodal LLMs to capture the region of interest 
(ROI), and then automatically generate detailed 
construction inspection reports. This technological 
innovation not only significantly improves the 
efficiency of construction inspection report writing, 
but also greatly enhances the quality and credibility 
of the report content through in-depth image analysis 
and text generation. 

 
Keywords 

Construction inspection, multimodal large 
language model, Set-of-Mark prompting, automated 
report generation 

1 Introduction 

Construction inspection work is a key component to 
the success of civil engineering projects, especially in 
today's increasingly large-scale projects and complex 
construction environments. To obtain a comprehensive 
understanding of the construction sites, engineers have to 
monitor the entire construction procedures and associated 
factors all the time, which is a process often hindered by 
subjectivity and inefficiency. To address this issue, this 
study proposes an innovative approach that leverages the 
Set-of-Mark (SoM) prompting in conjunction with 
multimodal LLMs to automate the generation of 
construction inspection reports. 

The proposed approach entails processing 
construction site images using SoM prompting [1], a 
visual prompt technique that segments images into 
distinct, semantically meaningful regions, each marked 
with identifiable symbols. These enhanced images are 
then delivered to multimodal LLMs, such as GPT-4 [2], 
which are adept at interpreting complex visual and 
textual data. This collaboration has resulted in the 
generation of construction inspection reports that are not 
only detailed and accurate, but also largely avoid the 
problem of subjective bias that tends to occur when 
reports are prepared manually. 

The novel approach of combining SoM prompting 
with multimodal LLMs in construction inspection 
represents a significant advancement over traditional 
methods. It utilizes the cutting-edge capabilities of image 
processing technology and language models to provide 
high quality construction inspection reports. This method 
promises to enhance the overall efficiency of 
construction management and quality control processes. 

The subsequent sections of the paper will elaborate 
on the methodology of applying SoM prompting for 
inspection image processing, the integration of these 
images with multimodal LLMs, and the impact of this 
integration on the quality and reliability of construction 
inspection reports. We will also present a case study that 
demonstrates this method's application in a real-world 
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engineering project and provide an analysis of the results. 
The conclusion will summarize the findings and explore 
potential future research directions. 

2 Methodology 

This section describes in detail the two core 
technologies used in our study: the SoM prompting and 
the multimodal LLMs. First, we introduce the SoM 
prompting to mark the construction inspection images, 
and then utilize the multimodal LLMs to convert images 
and texts to automatically generate construction 
inspection report. 

 

Figure 1. The workflow of the proposed 
approach 

2.1 SoM Prompting 

SoM prompting is a novel visual prompting method 
designed for multimodal LLMs. Its main purpose is to 
enhance the visual localization ability of the model 
through visual marks. The mathematical formulation of 
SoM prompting can be expressed as follows:  

                                        (1) 

where I is the input image,  is the textual query, and 

 is the textual output of the model. The key to the SoM 

prompting strategy is the ability to divide an image into 
a series of semantically meaningful regions and to 
impose auxiliary information on these regions to make 
them both interpretable and describable by multimodal 
LLMs. 

2.1.1 Image Segmentation 

Image segmentation is the first step in SoM 
prompting, aiming at automatically or semi-
automatically extracting semantically aligned regions. 
For this purpose, a range of image segmentation tools 
have been adopted, such as SEEM [3], Semantic-SAM 
[4], and SAM [5]. These tools need to have the following 

properties, firstly robustness to ensure that the tools can 
segment regions with precision and convey fine-grained 
spatial layout information to the multimodal LLMs, 
secondly an open vocabulary to recognize objects outside 
of the predefined vocabulary, and lastly richness of 
granularity to support not only the segmentation of 
complete objects, but also the segmentation of part of an 
object's region. 

In this study, these image segmentation tools can be 
used to delineate different areas of the construction site 
such as construction equipment, worker locations, and 
building materials. As shown in Figure 2, a construction 
inspection image I of size A×B is divided into N regions 

. Each region can be 

represented by a binary mask, where each mask 
corresponds to a key region in the image. For example, 
one mask may represent the location of an air 
conditioning duct, while another mask may represent the 
area where construction materials are stacked. 

Figure 2. Image segmentation using SAM 

2.1.2 Mark Generation 

After completing the image segmentation, marks 
that contribute to multimodal LLM localization need to 
be generated for each region. The type of marks depends 
on whether they can be interpreted by the multimodal 
LLMs. In this study, considering the complexity of the 
construction site scene, alphanumeric marks should be 
used because they not only take up less image space, but 
also can be recognized by most multimodal LLMs using 
their OCR function [6]. In addition to this, the polygon 
and box marks used in image segmentation will be used 
as auxiliary marks. 

In addition to selected mark types, assigning 
optimally located marks to each significant region in the 
inspection image is critical for the generation of 
subsequent inspection report. There is a significant 
problem in current mark assignment methods: placing the 
marks directly at the center of the mask leads to 
overlapping between marks. To solve this problem, an 
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optimization algorithm is employed as shown in Figure 3, 
which are based on the principle of reducing the overlap 
between marks by calculating the area of the identified 
regions in the image and sorting them in order of size to 
ensure that smaller regions are processed first before 
larger ones when assigning marks. The algorithm further 
excludes overlaps with processed regions to obtain an 
independent mask, and then applies a distance 
transformation algorithm to find the optimal mark 
locations.  

Figure 3. Pseudocode of mark allocation 
algorithm 

By using the image segmentation tools and the mark 
allocation algorithm, the inspection image processed by 
SoM prompting can be obtained as shown in Figure 4. 

Figure 4. Inspection image with SoM 
prompting 

2.2 Multimodal LLMs  

Multimodal LLMs represent an important 
advancement in the field of artificial intelligence (AI), 
and their core capability is to concurrently process and 
understand data from different modalities, such as images, 
text, and sound [7]. These models are typically based on 
deep learning architectures, in particular neural networks 

such as convolutional neural networks (CNNs) [8] and 
vision transformer (ViT) [9] for image processing, and 
some transformer models [10] for processing sequential 
data such as text. 

 

Figure 5. The process of extracting image 
features by vision transformer 

2.2.1 Selection of Multimodal LLMs 

In the process of automatically generating 
construction inspection reports, multimodal LLMs not 
only extract information from inspection images, but also 
text them to generate inspection reports. Therefore, the 
selection of an appropriate multimodal LLM is an 
important factor in the quality of the report. The choice 
of model relies on a comprehensive evaluation of the 
model in multiple aspects [11]. First, the model must 
demonstrate strong perception ability, which includes 
accurately identifying specific objects and details on the 
construction site. For example, the model needs to be 
able to identify construction equipment, engineering 
materials, and even safety signs during construction. 
Furthermore, cognitive capability plays a crucial role. 
The model is expected to interpret visual data effectively 
and translate it into a logically coherent and 
comprehensive construction inspection report. This 
requires that the model is not just a simple information 
processing tool but has certain reasoning and logical 
analysis capabilities. 

Secondly, the model should have good instruction 
following ability. In the process of generating 
construction inspection reports, the model needs to 
perform tasks according to specific instructions, such as 
generating specific project status descriptions based on 
construction images. Therefore, the selected multimodal 
LLM should be able to accurately understand and 
respond to these instructions to avoid misunderstandings 
or biases. 

In addition, preventing hallucination problems [12] 
is also an important criterion for selecting multimodal 
LLMs. When dealing with complex construction 
scenarios, the model should not produce incorrect object 
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recognition, such as incorrectly identifying engineering 
hazards or equipment that do not exist. Therefore, models 
with higher accuracy and reliability are more appropriate. 

In practical applications, considering the 
particularity of construction inspections, the training data 
and instruction design of the model are also very critical. 
The training data of the model should cover a wide range 
of construction scenarios to ensure its effectiveness and 
accuracy in practical applications. Meanwhile, the 
instruction design should be as concise and clear as 
possible so that the model can accurately interpret and 
execute it. 

Figure 6. The criteria and weights of model 
selection 

Taking the above criteria into consideration, when 
selecting a multimodal LLM suitable for construction 
inspection scenarios, it is recommended to choose those 
models that perform well in perception and cognitive 
tests, can accurately follow instructions, and have good 
performance in object recognition and logical reasoning. 
In addition, considering the complexity and variability of 
construction inspections, it will be more advantageous to 
choose a model that can quickly adapt to new scenarios 
and tasks. Through careful selection, multimodal LLMs 
can effectively improve the quality of automated 
generation of construction inspection reports, thereby 
improving overall project management efficiency and 
safety. 

2.2.2 Construction Inspection Report Generation 

In multimodal LLMs, the image and text inputs are 
first processed through their respective preprocessing 
modules and then embedded into the same dimensional 
space. For image data, this may include steps such as 
feature extraction, object recognition, and image 
segmentation, which are designed to extract useful visual 
information from the image. For text data, word 
embedding is a key step. Word embedding converts each 
word into a vector in a high-dimensional space, and these 
vectors are usually learned by training algorithms such as 
Word2Vec [13] on large text datasets. Mathematically, 

this can be expressed as a mapping function as follows: 

                                                       (2) 

where  is a word in the vocabulary and  is a d-

dimensional vector space. The vector representation of 
each word not only captures the semantic information of 
the word, but semantically similar words are mapped to 
locations close to each other in this high-dimensional 
space. 

The processed data is then fed into the core of the 
model, which typically contains multiple levels of 
network structure for in-depth analysis and fusion of 
information from different modalities. In this process, the 
model learns how to correlate and interpret data from 
different sources. Considering that the data is different 
for each modality, the fusion process needs to combine 
this information efficiently. For example, if there are an 
image feature vector  and a text feature vector

, a common fusion strategy is to use weighted 

sum [14] or concatenation [15]. The mathematical 
principle of weighted sum is as follows: 

                           (3) 

where  is a weight parameter to balance the importance 

of the two models. Another common approach 
concatenation is to directly concatenate the two types of 
feature vectors to form a new vector: 

                                                                    (4) 

where  represents the concatenation of vectors. In 

both approaches, the key is to select and tune the 
parameters to combine information most effectively from 
different sources. In multimodal learning, this is usually 
achieved by optimizing an objective function that 
quantifies the degree of match between the fused data and 
the expected output. With such a fusion approach, the 
model can synthesize information from different 
modalities and improve its ability to understand complex 
data. 
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Figure 7. The flowchart of construction 
inspection report generation 

On the output side of a multimodal LLMs, the model 
can generate a comprehensive output based on the input 
data, which may be a report that combines image and 
textual information, or a comprehensive interpretation 
and analysis of the input data. This capability makes the 
multimodal LLMs particularly suitable for complex tasks 
that require the concurrently understanding of visual and 
textual information, such as the automated generation of 
construction inspection reports. 

In the construction inspection scenario, the 
multimodal LLMs can use its ability to understand 
images to identify specific features of the construction 
site, while using its text processing capabilities to 
generate a detailed report. This combination of visual and 
textual analysis makes multimodal LLMs ideal for 
generating accurate and comprehensive construction 
inspection reports. 

3 Case Study 

This case study focused on a large-scale 
construction project under construction in Pingshan 
District, Shenzhen City, Guangdong Province. This 
project provides a valuable practical scenario for in-depth 
analysis and verification of the application of the 
multimodal LLMs in the automated generation of 
construction inspection reports. The project covers an 
area of 0.2 square kilometers, providing diverse 
construction activities and rich visual data for 
multimodal LLMs. Since the MiniGPT-4 multimodal 
LLM [16] has demonstrated excellent performance in 
several benchmark tests, we chose MiniGPT-4 for the 
case study. 

MiniGPT-4 is designed to maintain the original 
efficient processing power of GPT-4 while optimizing its 
size and resource consumption to make it more suitable 
for application scenarios that require faster speeds and 
fewer computational resources. It is specifically designed 
for multimodal tasks, including image and text 

processing. It utilizes the state-of-the-art LLM Vicuna 
[17] as a decoder, combined with the pre-trained visual 
component BLIP-2 containing ViT and Q-Former [18]. 
MiniGPT-4 aligns the encoded visual features with the 
Vicuna language model through a single projection layer 
and fixes the other visual and language components. The 
initial training of the model covers a large image-text 
alignment dataset, which is then fine-tuned with high-
quality, accurately aligned image-text pairs in a second 
phase, a step that is critical to improving the reliability 
and overall usability of the model. MiniGPT-4 
demonstrates a variety of GPT-4-like capabilities, 
including detailed image description generation and 
website creation based on handwritten text instructions. 

 

Figure 8. The architecture of MiniGPT-4 

To meet the computational requirements of the 
project, a high-performance desktop computer with an 
RTX 4080 16GB was used to ensure the efficiency and 
stability of the process of using the MiniGPT-4 to 
generate construction inspection reports. 

The case study first explored the ability of the 
MiniGPT-4 model to rely on original inspection image 
which is not combined with SoM prompting to generate 
construction inspection report. 

 

Figure 9. Construction inspection report 
generated by MiniGPT-4 for inspection image 
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without SoM prompting 

By analyzing the inspection report shown in Figure 
9, it can be found that the inspection report 
comprehensively and accurately describes the contents of 
the construction inspection image. Although there are 
errors in the identification of objects such as crane and 
dump truck marked in red in the report, the generated 
report still adequately fulfills the standards required for 
construction inspection report. 

Further case study introduced SoM prompting, 
which aimed to enhance the model's ability to identify 
and describe construction details by annotating key areas 
of construction inspection images.  

 

Figure 10. Construction inspection image 
marked by SoM prompting 

With the assistance of SoM prompting technology, 
the MiniGPT-4 processed the annotated images and 
generated detailed construction inspection report. The 
inspection report generated by MiniGPT-4 for the image 
annotated by SoM prompting is shown in Figure 11. 

 

Figure 11. Construction inspection report 
generated by MiniGPT-4 for inspection image 
with SoM prompting 

The results shown that although the MiniGPT-4 can 
generate basic construction inspection reports by 
analyzing construction inspection images that have not 
been processed by SoM prompting, the introduction of 
SoM prompting has significantly improved the detail and 
accuracy of the report, which verifies the value of the 
multimodal LLMs and SoM prompting for the 
application in real construction scenarios. 

4 Conclusion and Future Work 

In this study, we successfully introduced the 
MiniGPT-4 to a large-scale construction project in 
Shenzhen and realized the automated generation of 
construction inspection reports that obtain a 
comprehensive understanding of the field scene. This 
result demonstrates the potential of multimodal LLMs in 
the construction industry. Multimodal LLMs can 
effectively analyse complex visual data at construction 
sites and successfully capture key factors of construction 
activities, thereby generating comprehensive and 
accurate construction inspection reports. Furthermore, 
we also improved the accuracy of reports by introducing 
SoM prompting, effectively improving the efficiency and 
quality of construction scene data analysis. 

However, this method also has certain limitations. 
Due to the huge number of parameters of the multimodal 
LLMs, the automated generation of construction 
inspection reports places high demands on computing 
resources. The running and processing of the current 
multimodal LLMs requires powerful hardware support, 
which may limit its feasibility in some practical 
application scenarios. In addition, the effectiveness of the 
report generated by the multimodal LLMs depends on the 
quality and diversity of the training data used to pre-train 
the models, which also places higher requirements on the 
source of training data for the multimodal LLMs. 

In the future, we aim to harness the specialized 
knowledge within the construction field to fine-tune pre-
trained multimodal LLMs, and by leveraging cloud 
computing resources, we can distribute the computing 
load and reduce the time and local resource requirements. 
Additionally, the exploration of more lightweight LLMs 
architectures would be beneficial. These architectures 
can remain the essential features necessary for accurate 
report generation while minimizing the model size and 
complexity. Moreover, we also plan to further develop 
tools and user-friendly interfaces for real-time analysis of 
construction inspection images so that construction 
managers can more easily use and understand the reports 
generated by the model. Through these measures, we 
look forward to advancing the automation process within 
the construction industry and providing new ideas and 
solutions for the practical application of multimodal 
LLMs in the field of civil engineering. As technology 
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continues to develop, models like MiniGPT-4 will play 
an increasingly important role in the digital 
transformation of the construction industry. 
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Abstract – 

In the construction industry, due to workers 
frequently engaging in highly physically demanding 
tasks and using various tools, workers are often 
exposed to ergonomic risks and safety hazards. 
Various observation-based traditional or computer 
vision-based artificial intelligence methods have been 
applied in the field of construction to assess 
ergonomic risks. However, the method of assessing 
ergonomic risks using Generative Pretrained 
Transformers (GPT) based visual language models 
has not been thoroughly explored. This study explores 
its unique ability in visual-text interaction to extract 
ergonomic risk information from images and 
generate corresponding human-like language 
descriptions. To test the feasibility and performance 
of the proposed method, two datasets were created. 
Each dataset contained 100 different scenarios with 
ergonomic risk information for finetuning and testing. 
Performance after finetuning the vision-language 
model with the finetuning dataset outperformed the 
model before finetuning; the results showed that the 
fine-tuned model achieved an accuracy of 81%, while 
the model before finetuning only achieved 28% 
accuracy. Therefore, the proposed method offers an 
automated, real-time, non-traditional artificial 
intelligence approach for identifying ergonomic risks 
and providing human-like language descriptions. 
This expands the perspective of health and safety-
related problem-solving and promotes the prevention 
of work-related musculoskeletal disorders (WMSD) 
in the construction industry. 
Keywords – 

Ergonomic Risks Identification; Work Safety; 
GPT; Vision Language Model; Construction Safety 

1 Introduction 
The timely recognition and mitigation of workplace 

hazards play a pivotal role in safeguarding the safety, 
health, and productivity of the working environment. Job 
tasks in construction often expose workers to conditions 

that entail repetitive movements, strenuous labor, and 
awkward body postures, subtly but adversely affecting 
their well-being. The consequential impact of these 
operations frequently manifests in the development of 
WMSD. Based on data from the European Agency for 
Safety and Health at Work, WMSDs exhibit the highest 
prevalence within the construction sector when compared 
to other industries. [1] In 2018, 52% of individuals 
employed in construction reported instances of 
backaches, while 54% experienced WMSD in the upper 
limbs and 41% in the lower limbs. The construction and 
manufacturing sectors demonstrate a high percentage of 
sick leave attributed to WMSD due to the physically 
demanding nature of the work. [1] Notably, the United 
States Bureau of Labor Statistics reported that WMSD 
accounted for 30% of occupational injuries and illnesses 
in 2018. Moreover, injuries and illnesses related to 
WMSD in the construction industry ranked fifth highest 
among all industries. [2] Consequently, proactive 
identification and prevention of WMSDs and associated 
health risks prove to be highly constructive. 

Conventional approaches to managing worker safety 
and health heavily depend on human observation, self-
reporting, and direct measurements. [3]-[6] In these 
traditional methods, ergonomists utilize manual 
procedures to detect ergonomic risks, frequently 
incorporating the observation and interviewing of 
workers. In essence, the subjective and time-consuming 
aspects inherent in the traditional identification of 
ergonomic risks impede its efficacy in promptly 
analyzing and preventing such risks. [7], [8] 
Consequently, it is imperative to explore methodologies 
that can objectively and swiftly pinpoint ergonomic risks. 

To address the inherent subjectivity and time-
consuming limitations associated with traditional 
ergonomic risk identification, researchers have shown a 
growing interest in automated approaches. Current 
research in automated ergonomic risk identification 
predominantly centers around computer vision-based 
methods [4], [9]-[14], with vision-language models yet to 
receive widespread attention. These computer vision-
based methods directly train on visual data to learn 
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patterns, particularly focusing on human joints for 
ergonomic risk identification. For instance, these 
computer vision methods implement ergonomic risk 
identification by training on visual data related to human 
joints. Thus, they predict ergonomic risks by estimating 
the joints of workers and calculating joint angles based 
on these estimations. 

On the other hand, vision-language model approaches, 
employing large language models (LLM) and 'zero-shot 
learning,' are gaining recognition for their ability to 
generate human-like descriptions. [15] They are pre-
trained on LLM/large text corpora and subsequently 
finetuned for vision tasks using image-text pairs [15]-
[17]. Unlike conventional computer vision methods, 
vision-language model-based approaches offer a unique 
perspective by generating human-like descriptions 
instead of numerical representations, thereby providing a 
more comprehensive understanding of ergonomic risk 
identification. GPT-4V [18] by OpenAI and MiniGPT-4 
[15] are two approaches based on vision-language 
models. Despite both incorporating LLM for initial 
pretraining and refining their models through subsequent 
finetuning with image-text pairs, it is noteworthy that the 
specific LLM and image-text pairs employed in each 
approach are unique. Furthermore, the unavailability of 
the source code and model for GPT-4V poses a limitation, 
as it hinders the ability to finetune its model using 
personalized image-text pairs for the identification of 
ergonomic risks. This lack of accessibility underscores 
the challenges associated with adapting the method for 
specific applications when critical components are not 
openly accessible. This study employed the MiniGPT-4, 
incorporating a vision encoder with a pre-trained Vision 
Transformer and Q-Former, a single linear projection 
layer, and the Vicuna LLM [15]. It is important to 
highlight that MiniGPT4 incorporates image-text pairs 
for finetuning pre-trained models, but the images within 
these pairs are not related to construction workers. 
Furthermore, the text captions associated with these 
images do not provide any descriptions of ergonomic 
risks related to the individuals depicted in the images. To 
equip the vision-language model finetuned with pertinent 
visual knowledge related to ergonomic risks, the image-
text pair dataset offered by MiniGPT-4, limited to daily 
scenes or common objects, proves inadequate for 
effectively addressing scenarios associated with the 
identification of ergonomic risks in the context of 
workers. To address this challenge, this study curates 
datasets containing images of construction workers along 
with corresponding text descriptions pertaining to 
ergonomic risks. 

During the quest for engineering-related studies, an 
inquiry into the terms "large language model" and 
"construction" on Scopus produced 25 results, yet merely 
3 were pertinent to applications in the construction 

domain. A similar search combining "vision language 
model" and "construction" revealed only 1 relevant 
outcome within the construction field. Regrettably, no 
results were obtained for the query pairing "large 
language model" and "ergonomic" in the Scopus 
database. Prior studies have utilized GPT models for 
tasks such as question answering, extracting information 
from Building Information Modeling (BIM) datasets, and 
optimizing scheduling and sequencing in engineering 
contexts. Zheng et al. (2023) presented a prompt-driven 
virtual assistant framework aimed at bolstering natural 
language-centric BIM search by integrating GPT 
technologies. This framework autonomously interprets 
users' natural language inquiries, retrieves pertinent 
information, and provides succinct natural language 
responses alongside corresponding 3D visualizations via 
a user interface. You et al. (2023) introduced a 
methodology harnessing the capabilities of ChatGPT to 
realize automated sequence planning in robotic assembly 
for construction. The efficacy of this method was 
demonstrated through its ability to decrease reliance on 
manual intervention, shorten planning durations, and 
enhance the overall efficiency of robot-driven assembly 
processes within the construction sector. Prieto et al. 
(2023) assessed the suitability of GPT for aiding in the 
creation of an automated construction schedule using 
prompts expressed in natural language. Chen et al. (2024) 
research presents an interactive query system based on 
Augmented Reality and Deep Learning for delivering 
real-time safety information through the analysis of on-
site images. Table 1 shows the search results on Scopus 
of relevant applications in the construction sector. 

Table 1. Relevant applications in the construction sector 

Study Application 
Zheng et al. [19] Natural language-based 

BIM information 
retrieval 

You et al. [20] Automated sequence 
planning in robotic 
assembly for 
construction tasks 

Prieto et al. [21] Automated construction 
schedule 

Chen et al. [22] Augmented reality-based 
safety information 
retrieval 

Current vision-language model methodologies in 
construction predominantly concentrate on tasks such as 
BIM information retrieval, automated construction 
schedule generation, sequence planning, and safety 
information querying. To the best of our knowledge, even 
with the presence of vision-language models such as 
GPT-4V and MiniGPT-4, there is currently no 
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specialized vision-language model approach explicitly 
developed for the identification of ergonomic risks. In 
other words, without the presence of ergonomic experts, 
accomplishing real-time identification of ergonomic 
risks and generating human-like descriptions of the risks 
for timely prevention of WMSDs on construction sites or 
in front of surveillance screens becomes challenging. To 
address the identified gap of lacking methods for 
identifying and generating human-like language 
descriptions of the ergonomic risks, this study aims to 
introduce a vision-language model-driven approach. This 
method facilitates users without specialized expertise to 
obtain human-like language descriptions of ergonomic 
risks occurring on construction sites, with the objective 
of mitigating WMSDs. Additionally, the study seeks to 
investigate the feasibility of implementing such 
methodologies. The code, finetuned model, pre-trained 
model, and the text descriptions in the image-text pair 
datasets can be accessed here: 
https://github.com/xinmingliUofA/ErgoGPT 

2 Methodology 
This study proposes a large vision-language model-

based ergonomic risk identification and seeks to assess 
the viability and performance of employing the vision-
language model approach in the domain of ergonomics 
risk identification. To fill the research gap of lacking 
image-text pair datasets for ergonomic risk identification, 
finetuning and testing datasets comprising image-text 
pairs that portray scenarios relevant to ergonomic risks 
faced by construction workers were generated. In the first 
step, we conducted finetuning on the pre-existing Vicuna 
LLM using the finetuning dataset we curated, consisting 
of image-text pairs depicting ergonomic risks. 
Subsequently, we evaluated the performance of the 
finetuned vision-language model using the distinct 
dataset of image-text pairs designed specifically for 
testing its capability in identifying ergonomics risks. 
Subsequently, this study conducted a performance 
comparison between the model finetuned using the 
curated data for ergonomic risk identification and the 
model finetuned using generic data supplied by 
MiniGPT-4. 

The MiniGPT-4 establishes a connection between the 
visual encoder and the LLM through the integration of a 
linear projection layer. MiniGPT-4 employs the open-
sourced Vicuna as its language decoder, an LLM built on 
the foundation of LLaMA, capable of executing diverse 
and intricate linguistic tasks. For visual perception, it 
utilizes the open-sourced visual encoder in BLIP-2, 
incorporating a ViT backbone paired with their pre-
trained Q-Former. The pre-trained model obtained 
through MiniGPT-4 is employed to acquire vision-
language knowledge from an extensive dataset of image-

text pairs. The pretraining process involved the 
utilization of approximately 5 million image-text pairs 
sourced from the Conceptual Caption, SBU, and LAION 
datasets. [15] 

The methodology section of this study is structured 
into three main steps. Initially, an image-text pair dataset 
was curated by a professional ergonomist, who provided 
text descriptions highlighting ergonomic risks associated 
with each photograph depicting construction workers' 
activities. These descriptions were subsequently 
transformed into an annotation file using a Python script. 
Secondly, the study involved finetuning a Vicuna LLM 
vision-language model utilizing the image-text pair 
dataset and a framework built upon MiniGPT. 
Additionally, a separate vision-language model 
exclusively employing Vicuna LLM was trained. Thirdly, 
the performance of both models derived from the second 
step was assessed. Specifically, the text descriptions 
generated by each model were compared to the ground 
truth using the testing dataset. 

2.1 Generating alignment data for the vision-
language approach 

As models undergo pre-training in the initial phase, 
they sometimes face challenges in producing coherent 
human language output. Consequently, additional 
finetuning is necessary to address issues like repetitive 
phrases, fragmented sentences, and irrelevant content 
that may arise in models that are solely pre-trained. 
Similar issues are present in other approaches utilizing 
large language models, like GPT-3. GPT-3.5 mitigates 
these issues through a combination of instruction 
finetuning and reinforcement learning. [15], [23] Hence, 
to make the output results fluent and more akin to human 
language, finetuning the pre-trained model is 
indispensable. 

Datasets for finetuning instruction and conversations 
are abundant in the field of natural language 
processing/large language models, yet they remain scarce 
in the realm of vision language, particularly in the context 
of ergonomic risk identification within ergonomic risk 
identification. As the primary objective of this study is to 
investigate the feasibility and proficiency of large vision-
language models in responding to questions related to 
ergonomic risk assessment, the datasets are rooted in 
real-world situations involving construction workers. 
The dataset employed for finetuning incorporated 100 
images featuring real-world construction workers 
engaged in various tasks, accompanied by captions 
detailing ergonomic risks associated with the depicted 
scenarios. Likewise, the dataset used for testing the 
finetuned vision-language model comprised similar 
images and captions focusing on ergonomics risks. The 
models used for testing include one finetuned with 
generic image-text pairs unrelated to ergonomic risks, 
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provided by MiniGPT-4, and the other finetuned using 
the dataset created in this study for finetuning purposes. 

The image component of the generic data supplied by 
MiniGPT-4 for the finetuning of models does not pertain 
to construction workers or the identification of 
ergonomic risks—many of the images solely depict mere 
objects. Furthermore, the text component in the data 
provided by MiniGPT-4 lacks descriptions related to 
ergonomic risks or workers' postures that might cause 
ergonomic issues. Consequently, the approach employed 
in this study for the generation of image-text alignment 
data differs from that of MiniGPT-4. In the process of 
generating alignment data, MiniGPT-4 generates the 
description of chosen images using a pre-trained model 
and subsequently employs ChatGPT to refine these 
descriptions, addressing issues such as repetitive words 
and fragmented sentences. In contrast to MiniGPT-4, the 
text component of the datasets in this study was curated 
with input from an experienced ergonomist. In particular, 
the text descriptions aligned with the images in the 
image-text pairs of the finetuning and testing datasets 
were created by an ergonomist with three years of 
professional expertise. The internet-sourced images 
portraying construction workers in action, utilized as the 
dataset for finetuning and testing, were supplied to the 
ergonomist. Subsequently, the ergonomist assessed each 
image, responding to the question 'Describe the workers 
and their postures in the image and tell me if they are 
exposed to ergonomic risks due to their postures?' The 
ergonomist's responses were documented in a CSV file 
as ground truth. 

This study chooses to adopt a methodology different 
from that of MiniGPT-4 for generating text descriptions 
corresponding to images in the dataset. The rationale lies 
in the fact that the generic datasets (Conceptual Caption, 
SBU, and LAION) employed for model pretraining were 
not crafted by ergonomists and lacked comprehensive 
ergonomic-related descriptions for the images within the 
dataset. Simply put, in light of the requirement for 
domain-specific knowledge in ergonomics within the 
pre-trained model, rather than employing the pre-trained 
model method in MiniGPT-4 to generate the text 
component for images, this study opts for input from 
ergonomists to guarantee the reliability of the relevant 
knowledge. Consequently, employing a pre-trained 
model to generate descriptions for selected images 
related to ergonomic risks is not deemed an optimal 
approach in this study. 

The dataset creation process in this study unfolds 
through three stages. Initially, images are procured by 
conducting a search for 'construction worker' in a search 
engine, and relevant images depicting workers in action 
are selected from the search results. In this process, a total 
of 200 images were carefully chosen, with 100 allocated 
to the dataset later employed for finetuning the pre-

trained model and the remaining 100 set aside for 
evaluating the models' performance. Subsequently, text 
descriptions corresponding to the images are composed 
in the second step, a task accomplished by an experienced 
ergonomist. These text descriptions encompass an 
assessment of whether the workers depicted in the images 
are exposed to ergonomic risks, along with the factors 
contributing to these risks. The final step involves the 
construction of image-text pairs, wherein images are 
named in an incremental numerical format with a specific 
file extension (e.g., .jpg). Notably, a Python program was 
devised in this study to automatically integrate the text 
descriptions created by the ergonomist into an annotation 
file, denoted by the .json file extension. 

Figure 1 shows an image sample from the finetuning 
dataset, and the ground truth text description of this 
image from the ergonomist is 'The image shows a worker 
wearing a white safety hat pouring cement on the road. 
The worker is exposed to awkward working posture 
because of the leaning forward posture, which is an 
ergonomic risk. The awkward posture may lead to the 
development of work-related musculoskeletal disorders.' 
Figure 2 shows an image sample from the testing dataset, 
and the ground truth text description of this image from 
the ergonomist is 'The image shows a worker standing in 
an awkward working posture on a black metal frame or a 
scaffold. The worker is exposed to ergonomic risks due 
to his overhead work posture, which may lead to work-
related musculoskeletal disorders. The worker may be 
exposed to fall hazards, and it is recommended to have a 
safety harness on him.' 

 

 
Figure 1. An image sample from the finetuning 
dataset. 
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Figure 2. An image sample from the testing 
dataset. 

2.2 Finetuning the pre-trained vision-
language model 

Following the initial phase, the pre-trained model 
underwent additional finetuning in the second phase to 
achieve coherent linguistic output. The finetuning phase 
involved the application of the Python script provided by 
MiniGPT-4, which was specifically designed for 
finetuning pre-trained models. The workstation's 
configuration for finetuning comprised an Intel Xeon 
Gold 6242 CPU, NVIDIA RTX A6000 GPU, and 128 
GB of DDR4 memory. The workstation operated on the 
Ubuntu 22.04.1 LTS 64-bit operating system. 

2.3 Testing the performance of the finetuned 
vision-language model 

To validate the proposed approach in this study for 
identifying ergonomic risks using a vision-language 
model and to evaluate the performance of the finetuned 
models, the test dataset outlined in Section 3.1 was 
employed. Initially, the finetuned models were 
configured to serve as the vision-language models 
utilized by MiniGPT-4 for executing vision-language 
tasks. Subsequently, following the instructions provided 
by MiniGPT-4, the program was executed, and the 
finetuned models generated text descriptions 
corresponding to the images in the test dataset. The 
prompt used to generate text descriptions was 'Describe 
the workers and their postures in the image and tell me if 
they are exposed to ergonomic risks due to their 
postures?' 

This study utilized a uniform prompt across the entire 
test dataset to maintain consistency in both the format 
and content of text descriptions across all test cases. 
Employing a uniform prompt for each test case also 

ensures fairness in the evaluations. Of greater importance, 
the ground truth text descriptions of the test dataset 
comprise descriptions of workers' actions and whether 
the workers are exposed to ergonomic risks based on 
these actions. Hence, the prompt is designed to focus 
explicitly on capturing descriptions of workers' actions 
and whether they are exposed to ergonomic risks. This 
uniform prompt aims to minimize unrelated factors when 
conducting a comparison between the ground truth text 
descriptions and the text descriptions generated by the 
finetuned model. 

To quantitatively assess the enhancement attained by 
the model trained on the ergonomic risk dataset proposed 
in this study, this study additionally finetuned a model 
using the generic image-text pairs provided by MiniGPT-
4. Following that, this study evaluated the performance 
of this model using the test dataset and the identical 
prompt. Subsequently, the accuracy of the two models 
was compared. 

The prompt is framed as a yes-or-no question, 
inquiring whether the workers depicted in the images are 
subject to ergonomic risks. Considering that the objective 
of this study does not involve assessing or improving the 
accuracy of computer vision algorithms/models for 
human pose estimation, only the performance of whether 
the finetuned models can correctly identify ergonomic 
risks in the images was tested. The finetuned model's 
judgment is considered correct only when there is an 
agreement between ground truth and the finetuned 
model's judgment regarding whether workers in the 
images are exposed to ergonomic risks. The accuracy of 
both models on the test dataset can be expressed by 
equation 1. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑎𝑠𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑎𝑠𝑒𝑠
∗ 100% 

(1) 

3 Results 
In contrast to the model finetuned with generic data 

from MiniGPT-4 (referred to as Model 1), the model 
finetuned with the dataset tailored for ergonomic risk 
identification among construction workers proposed in 
this study (referred to as Model 2) exhibited superior 
accuracy in recognizing ergonomic risks within the 
images of the test dataset. In terms of ergonomic risk 
identification, model 1 achieved an accuracy of 28% in 
generating text descriptions for the 100 test cases within 
the test dataset, whereas Model 2 achieved an accuracy 
of 81% for the same test cases, indicating a noteworthy 
accuracy improvement of 53%. Table 2 presents the 
accuracy obtained by testing Models 1 and 2 using the 
test dataset. Figure 3 illustrates an actual model 1 test 
case in the testing dataset featuring only one worker. 
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Figure 5 shows the result from model 2 for the same test 
case. The ground truth of this test case is 'The image 
shows a worker standing on a ladder using a power tool 
to fix pipes on the roof of a pavilion. He is exposed to 
safety hazards because he is standing on the ladder 
without wearing a safety harness. He is exposed to 
ergonomic risk because he is leaning his head forward for 
a long time, which can strain the neck and shoulders, 
leading to discomfort and potential neck pain.' 
Meanwhile, Figure 4 illustrates an actual model 1 test 
case in the test dataset featuring multiple workers. Figure 
6 shows the result from model 2 for the same test case. 
The ground truth of this multi-worker test case is 'The 
image shows workers laying bricks. They are wearing 
hard hats and gloves. They are exposed to ergonomic 
risks because they are squatting and bending forward, 
and their squatting and bending forward postures may 
lead to the development of work-related musculoskeletal 
disorders.' 

Table 2. Obtained accuracy by testing Models 1 and 2 
using the test dataset. 

Model Accuracy (%) 
Model finetuned with 
generic data 

28 

Model finetuned with 
our data 

81 

 
Figure 3. An example of model 1 generating a text 
description for an image containing a worker. 

 
Figure 4. An example of model 1 generating text 
description for an image containing multiple 
workers. 

 
Figure 5. An example of model 2 generating text 
description for the same image in Figure 3. 

The worker in the image is wearing
a red helmet and a yellow hard hat.
He is standing on top of a circular
roof made of wood and holding a
tool with a long handle that
appears to be used for drilling or
screwing. The worker's posture is
good as he is standing with his feet
shoulder-width apart, his knees
slightly bent, and his back straight.
However, his arms are extended
outward, which could expose him
to ergonomic risks if the tool he is
using is heavy or causes him to
overreach.

Describe the workers and their
postures in the image and tell me if
they are exposed to ergonomic risks
due to their postures?

Model 1

In this image, several construction
workers are seen working on a
sidewalk. They appear to be in the
process of laying bricks or some
other type of construction material
on the ground. One worker is
wearing a hard hat while others are
not. All of the workers are standing
in a symmetrical position with their
feet close together and their bodies
straight. None of them appear to be
experiencing any ergonomic risks
due to their postures, as they are
all maintaining proper posture and
alignment. The image does not
show any tools or equipment that
could cause harm to the workers if
used improperly. Overall, this
image appears to depict a safe and
secure construction site with no
apparent ergonomic risks to the
workers.

Describe the workers and their
postures in the image and tell me if
they are exposed to ergonomic risks
due to their postures?

Model 1

The worker is exposing himself to
ergonomic risks due to his posture.
He is bending over and lifting the
plywood with his right arm while
supporting his body with his left
hand on the other side of the railing.
This exposes him to potential
injuries, such as back strain,
shoulder strain, and
musculoskeletal disorders, as he
has to lift heavy objects without
proper support or using awkward
postures for long periods of time.

Describe the workers and their
postures in the image and tell me if
they are exposed to ergonomic risks
due to their postures?

Model 2
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Figure 6. An example of model 2 generating text 
description for the same image in Figure 4. 

4 Conclusions and future work 
The dataset with a specific focus on identifying 

ergonomic risks among construction workers was created 
to finetune a GPT-based vision-language model. The 
proposed methodology showcased robust generalization 
capabilities when applied to the testing dataset derived 
from real-world scenarios. The model, which underwent 
finetuning using image-text pairs featuring ergonomic 
risk information, demonstrated an 81% accuracy in real-
world test cases. This performance surpasses that of the 
model finetuned with generic image-text pairs lacking 
ergonomic risk information by 53%. These findings 
underscore the effectiveness of finetuning GPT-based 
vision-language models in achieving robust performance 
for the identification of ergonomic risks. 

As the objective of this study is to explore the 
feasibility and ability of visual question answering 
related to ergonomic risk identification by finetuning 
vision-language models using data related to ergonomic 
risks, the correctness of the text descriptions generated 
by the models is entirely dependent on the correctness of 
the text descriptions for postures. The study's objective 
does not prioritize the precision of computer vision 
algorithms in recognizing the content of images. For 
instance, if the model identifies ergonomic risks for 
different reasons compared to the ground truth, it is 
considered a correct identification. 

While computer vision algorithms have garnered 
significant attention for assessing ergonomic risks based 
on workers' actions in images, the unique and powerful 
capabilities of vision-language models in managing 
interactions between visual and textual elements have not 

been harnessed for ergonomic risk assessment. The 
validation experiments conducted in this study, which 
encompass scenarios featuring both multiple 
construction workers and a single construction worker, 
illustrate the efficacy of the proposed approach. This 
method, involving the finetuning of vision-language 
models with ergonomic-related data, demonstrates 
superior performance in ergonomic risk identification 
compared to models finetuned with generic image-text 
pairs data provided by MiniGPT-4. We aspire for the 
GPT-based vision-language approach presented in this 
study to play a role in identifying ergonomic risks for 
upcoming construction workers, thereby augmenting the 
well-being of workers and the safety of their work 
environments. Moreover, it is expected that this research 
will inspire further research of vision-language models 
for the identification of ergonomic risks and safety 
measures. 

As interest in this field grows, the potential 
applications of data acquired by surveillance cameras at 
construction sites are expanding, moving beyond simple 
video storage and traditional computer vision tasks like 
object recognition. With large vision language models 
capable of extracting human-like language descriptions 
from surveillance data, they can aid or potentially 
supplant the role of ergonomists and safety experts in 
real-time video analysis and alerting workers or safety 
personnel about safety concerns on construction sites. 
Furthermore, individuals without specialized expertise 
can leverage this technology to produce injury or safety 
reports based on construction activities, leading to 
improved construction practices and streamlining the 
process of filing insurance claims. 

5 Limitations 
Despite the remarkable accuracy demonstrated by the 

proposed method, akin to the utilization of vision-
language models in other fields, it has its limitations. 
These limitations revolve around issues such as language 
hallucination and insufficient perception capacities. As 
the vision-language model is constructed upon LLMs, its 
limitations in terms of language hallucination primarily 
result from inheriting the unreliable reasoning ability and 
hallucinating non-existent knowledge of LLMs. The 
inadequacy in perception capacities is predominantly 
linked to the limited visual perception capability of 
MiniGPT-4. Future research endeavors could mitigate 
language hallucination by further leveraging high-quality 
image-text pairs containing ergonomic information and 
refined LLMs. Addressing limited perception capacities 
may involve incorporating multiple layers in the 
projection layer, implementing a more robust visual 
perception model, and utilizing data that is more well-
aligned. 

The workers in the image are
exposed to ergonomic risks due to
their postures. They are bent down
and exposing their backs to strain
and injury. They may also be
exposed to repetitive strain injuries
from lifting and holding heavy
objects. Additionally, the worker on
the right side is sitting with his
knees bent and exposing his back to
strain and injury.

Describe the workers and their
postures in the image and tell me if
they are exposed to ergonomic risks
due to their postures?

Model 2
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In general, the mentioned limitations can be mitigated 
by integrating a wider range of diverse image-text pairs 
and refining the accuracy of textual descriptions detailing 
ergonomic risks depicted in the images. Expanding the 
pool of images and refining the accuracy of textual 
descriptions/annotations linked with these images has the 
potential to alleviate these limitations. 
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Abstract –  

The transition from a linear economy (take-make-
dispose) to a circular economy in the construction 
industry (i.e., circularity in construction) necessitates 
adopting deconstruction instead of demolition. 
Deconstruction planning methods need to be 
investigated to facilitate this transition. Successful 
deconstruction planning requires considering various 
information to capture the destiny of the extracted 
building’s product. Therefore, there is a dire need to 
propose a deconstruction planning method that is 
interoperable, easily integrated with various data 
sources, and conducive to stakeholder collaboration. 
To this end, this paper aims to propose a 
deconstruction planning method using Knowledge 
Graph (KG) technology. Firstly, the authors 
extracted the characteristics of the facility to be 
deconstructed, including hosting and hosted relations 
of components. Secondly, the characteristics of the 
facility’s products were transformed into a KG. 
Finally, disassembly rules were defined, and new 
knowledge was inferred via automated reasoning. 
The developed method was tested on two case studies, 
involving two-dimensional and three-dimensional 
representations. The results aligned with other 
methods in the literature, requiring fewer inputs. 

 
Keywords – 

Deconstruction planning; Disassembly sequence; 
Knowledge graph; Circularity in construction  

1 Introduction 
The construction industry has been identified as one 

of the largest consumers of virgin materials and a major 
contributor to landfills through Construction, Renovation, 
and Demolition (CRD) waste [1]. It is estimated that the 
construction industry is responsible for more than 30% of 
the world's total waste, and it consumes around 50% of 
the world's virgin materials [2]. The End-of-Life (EoL) 
phase of the built facility is the most critical phase 
regarding the amount of waste generated from the 
construction industry; more than half of the generated 

waste is caused by the implemented scenario to handle 
the facility at the EoL [3]. Two EoL scenarios can be 
implemented, namely, demolition and deconstruction [4]. 
Demolition is the act of destroying a built facility 
regardless of the recoverability of its products 
(materials/components/subsystems); most of the 
generated waste is landfilled with little consideration for 
recycling [5]. The resource-friendly scenario is 
deconstruction, which is a planned disassembly of 
products from the built facility. The output of this 
scenario can serve several purposes such as building 
relocation and repurposing, product reuse, and recycling 
[4].  

Demolition, with its short-term economic benefits 
and quicker process, remains the prevalent EoL scenario 
compared to deconstruction, which offers environmental, 
social, and long-term economic benefits. In response to 
this, the deconstruction planning research line has gained 
prominence. Deconstruction planning is divided into 
strategic and operational planning [6], [7]. Strategic 
planning is more high-level (e.g., minimizing the total 
duration of the deconstruction project), while operational 
planning is more in-detail and tactical (e.g., minimizing 
the duration of a single activity). Both planning methods 
are crucial and complement each other; strategic 
planning objectives may serve as the set of constraints to 
be followed in operational planning. 

Deconstruction planning requires integrating various 
pieces of information to make informed decisions on how 
to execute deconstruction most efficiently, including (i) 
building type; (ii) building age and condition; (iii) Bill of 
Quantities (BoQ); (iv) the existence of hazardous 
materials; (v) health and safety considerations; and (vi) 
legal requirements [6]. We refer to the information 
required for deconstruction planning as ‘disassembly 
information’. Achieving the main goal of deconstruction, 
circularity in construction, necessitates three main pillars: 
deconstructability, capability, and marketability [8]. 
Deconstructability involves the ability of a facility's 
products to be deconstructed, handled, loaded, and 
transported, encompassing information on type of the 
facility, products’ type, quantity, and condition, as well 
as working space, and lifespan. The capability pillar 
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focuses on stakeholder and infrastructure readiness, 
collecting information such as contractor resources, 
infrastructure capacity, and legal requirements [9]. In 
terms of the marketability pillar, engaging potential 
customers and stakeholders early on is essential to 
quantify the demand for reused products.  

Although the labor-intensive nature of deconstruction 
yields environmental and social benefits [7], [8], it 
remains one of the primary reasons stakeholders opt for 
demolition to expedite the removal of the built facility 
[10]. With the imminent large-scale retirement of aging 
facilities, there is a dire need to shorten the required 
duration for implementing deconstruction. To achieve 
this objective, it is essential to plan each deconstruction 
activity before its execution [6]. To this end, this paper 
aims to propose a deconstruction planning method that is 
interoperable, easily integrated with various data sources, 
and conducive to stakeholder collaboration to facilitate 
objective decision-making. The proposed method adopts 
a bottom-up approach, specifically focusing on 
operational deconstruction planning. 

2 Existing Operational Deconstruction 
Planning Methods 

In practice, operational deconstruction planning is 
based on professionals’ experience, which leads to 
suboptimal workflow due to the subjective nature of 
decision-making. To provide an objective method for 
deconstruction planning Sanchez and Haas (2018) 
developed a single-target Sequence Disassembly 
Planning for Buildings (SDPB). The proposed method 
was inherited from the Disassembly Sequence Structure 
Graph (DSSG) model theory for manufactured products. 
The disassembly graph of this method consisted of 11 
constraint matrices; 9 of them representing the physical, 
functional, and interdependence between components 
and fasteners, while the other two related to the 
environmental impacts and the cost of the disassembly 
works. The output of this method is an inverted tree graph 
of the chosen path of disassembly; root nodes in the 
inverted tree represent target components, leaf nodes 
represent parts that constrain the target components, and 
the links between them represent constraints. This 
research line that Sanchez and Haas (2018) started was 
the keystone for other works to explore the field of 
operational deconstruction planning.  

In this sense, Sanchez et al. (2019) extended the 
SDPB to include multiple targets. The multiple-target 
SDPB was obtained by merging the all single-target 
SDPB, by matching the identical components that have 
the same extraction direction. To cut the computational 
time, they introduced limits of design, which represents 
the unmodified components in the models. the 
components within the limits of design were not included 

in the disassembly model but however they were 
considered as physical and motion constraints. The 
output of the multiple-target SDPB was exported to 
Microsoft Project (MS) to develop the deconstruction 
baseline schedule. Yet, the developed SDPB methods 
rely only on a single deconstruction method. In this, 
another extension of SDPB was considering different 
deconstruction methods such as selective demolition, 
destructive disassembly, and perfect disassembly [13]. In 
the same vein, Mahmoudi Motahar and Hosseini 
Nourzad (2021) proposed a hybrid method for 
disassembly planning for buildings that support 
sequential and parallel approaches. Instead of using 
expert rules to cut the computational cost, they utilized 
the Non-dominated Sorting Genetic Algorithm (NSGA-
II).  

All the previously mentioned methods are mainly 
based on physical, interdependency, accessibility, and 
motion constraints. However, as mentioned in the 
introduction section, disassembly information includes 
more attributes than the ones mentioned in the previous 
studies. In this context, Denis et al. (2018) proposed a 
Disassembly Network Analysis (DNA) method that 
plans for disassembly by considering several product’s 
attributes such as accessibility, transportability, condition, 
weight, reversibility of connection, disassemble time, 
demolition time, and sequential dependence. Based on 
the values of these parameters, a flowchart of four steps 
has been followed to (i) check the possibility of 
disassembling the target component; (ii) identify 
potential paths to access the target component; (iii) 
determine the recoverable elements and lost ones during 
disassembling; and (iv) make decisions based on 
recovered elements, lost elements, and disassembly time 
for each path. 

Deconstruction is a significant step towards the 
adoption of circularity in construction. To ensure 
reaching this goal, post-deconstruction (i.e., the destiny 
of the extracted building’s products) needs to be 
considered [16]. This necessitates integrating various 
information beyond the building level such as technical 
feasibility, market feasibility, and legal environment in 
the region. Given these complexities, there is a pressing 
need to conduct deconstruction planning using methods 
that are interoperable, easily integrated with various data 
sources, and conducive to stakeholder collaboration. This 
is where semantic web technologies can play a crucial 
role. Recently, in the manufacturing industry, studies are 
modeling disassembly information using Knowledge 
Graphs (KGs) to describe manufactured products [17]. 
Knowledge graphs are capable of modeling, 
consolidating, and deducing insights from intricate, 
diverse data originating from various sources, offering 
scalability, expressiveness, and extensibility [18]. Its 
strength resides in its semantic processing and 
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interconnected organizational abilities, forming the 
foundation for intelligent information applications [19].  

3 Disassembly Information Modeling 
To construct the KGs in this study, three sequential 

steps were followed by the authors. Firstly, extracting the 
characteristics of the facility to be deconstructed 
including hosting and hosted relations of components. 
Secondly, the characteristics of the facility’s products 
were transformed into knowledge graph. Finally, 
disassembly rules were defined, and a new knowledge 
was inferred via automated reasoning. 

To test the proposed method for deconstruction 
planning, a simplified typical building frame assembly 
was used as a case study in both two and three-
dimensional representation, as shown in Figure 1. This 
case study was introduced by Sanchez and Haas (2018a) 
and has been utilized in the literature to prove the concept 
of other deconstruction planning methods [14], [15], [20]. 
Figure 1 illustrates the components and connections of 
the assembly in both dimensions. This information was 
translated into two matrices: a hosted component 
constraint matrix (HC) and a liaison constraint matrix for 
components (LC). Due to space limitations, the HC and 
LC matrices of the two-dimensional case study are shown 
in Equation 1 and Equation 2, respectively. HC records 
the individual relationship between host and hosted 
components, while LC documents the fasteners 
physically attaching the hosted components to the 
hosting component under analysis. Both HC and LC were 
utilized as inputs for the selective disassembly sequence 
planning method proposed by Sanchez and Haas (2018a). 

[
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(2) 

The information extracted in the previous stage was 

represented by Resource Description Framework (RDF) 
triples to form the Deconstruction Knowledge Graph 
(DKG). RDF serves as a versatile and universal data 
model employed for the representation and 
amalgamation of data through directed labeled graphs 
[21]. Each triple consists of two nodes (i.e., subject and 
object) connected with an edge (i.e., predicate) that 
defines the relationship between them. In this research, 
Blazegraph Database was utilized to construct the 
knowledge graph of the case study [22]. RDF triples were 
encoded using turtle format. Figure 2 shows part of the 
DKG of the 2D case study that includes all the in-flow 
and out-flow edges of nodes C7, C9, and C10. Two kinds 
of nodes were utilized in the DKG: Internationalized 
Resource Identifier (IRI), represented by circular borders, 
and literal nodes, represented by no borders. IRI nodes 
are used to describe entities that will have a unique 
addresses or references, while literal nodes are used to 
represent values such as strings, numbers, or dates. The 
relationships between the nodes were described using 6 
predicates as depicted in, Table 1. Two of these 
predicates, indicated by red arrows in Figure 2, were 
inferred after applying specific rules. More details about 
the inferred knowledge will be explained in the next 
paragraph.  

 
Figure 1. The prototype building in 2D and 3D - 
adapted from Sanchez and Haas (2018a) 
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Figure 2. Part of the disassembly knowledge 
graph for C7, C9, and C10 of the 2D case study 
(Processed by Arrows.app) 

Table 1. Predicates used to define relationships. 

Predicate  Description  Reciprocal 
relation 

:host Records hosting 
hosted relationship 

between components 

:is_hosted 

:block Records what 
components block the 

accessibility to the 
target component 

:is_blocked 

:has_to_be
_disassem
bled_befor

e 

Records the 
predecessor(s) that 

need to be 
disassembled before 

disassembling the 
target component 

:disassembled
_after 

:connected
_by 

Records how the 
hosted component is 

connected to the 
hosting component  

NA 

:has_mater
ial 

Describes the 
material of the 

component 

NA 

:has_type Describes the 
component and 
connection type  

NA 

Some rules will be used to infer new knowledge that 
will be used to develop the deconstruction plan. In the 
manufacturing industry, disassembly task planning (i.e., 
deconstruction planning) refers to the generation of the 
sequence of tasks, disassembly direction, and the tool to 
be used [23]. Table 2 lists the rules which were covering 
two main aspects, structural stability and accessibility. 
The structural stability was defined based on the host 
hosted relationship, while the accessibility was defined 
based on the theory of building layers, which describes 
six classes according to their life expectancy, stuff, space 

plan, services, skin, structure, and site [24]. It should be 
noted that other rules were encoded to define the inverse 
relationship between node (when applicable). The rules 
were applied utilizing SPARQL query language that is 
capable of retrieving and updating data stored in RDF 
format.  

Table 2. Rules used to infer new knowledge 

Rules Description  
?c1 :host ?c2. 
?c1 :host ?c3. 

?c2 a :Services. 
?c3 a :Space_Plan > 

?c3 :block ?c2 

If a component (C1) is 
hosting other 

components (C2 and 
C3); C2 is either 

plumping, electrical, 
mechanical, or 

hydraulics; and C3 is 
either internal wall, 

partitioning, finish, or 
furniture, then the space 
plan layer (C3) block the 

accessibility to the 
fasteners of the service 

layer C2.  
?c1 :host ?c2 >  

?c2 :has_to_be_disassem
bled_before ?c1 

If a component (C1) is 
hosting another 

component (C2), then the 
hosted component (C2) 

needs to be disassembled 
before the hosting 
component (C1) to 

ensure the stability of the 
structure. 

?c1 :block ?c2> 
?c1 :has_to_be_disassem

bled_before ?c2 

If the fastener of 
component (C1) needs to 
be accessed and another 

component (C2) is 
restricting its 

accessibility, then the 
barrier component (C2) 

needs to be disassembled 
to reach the fastener of 

C1. 
?c1 :host ?c2 > 

?c2 :is_hosted ?c1 
If a component (C1) is 

hosting another 
component (C2), then the 

C2 is hosted by C1. 
?c1 :block ?c2 > 

?c2 :is_blocked ?c1 
If a component (C1) is 
restricting the access to 
the fastener of another 

component (C2), then the 
C2 is blocked by C1. 

?c1:has_to_be_disassem
bled_before?c2  > 

?c2 :disassembled_after?
c1 

If a component (C1) 
needs to be disassembled 

before another 
component (C2), then the 

Component 

Fastener

Component type 

"     "Type description  

Modeled knowledge 

Inferred knowledge 
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C2 can be disassembled 
after C1. 

4 Model Solution and Deconstruction Plan 
To assess the effectiveness of the proposed 

knowledge graph-based deconstruction planning method, 
two case studies were employed. As illustrated in Figure 
1, the 2D example comprises 10 components and 9 
connections, whereas the 3D example involves 21 
components and 22 connections. SPARQL query 
language was used to retrieve the deconstruction plan 
from each example, as shown in Figure 3. The retrieved 
deconstruction plan is divided into two main parts. The 
first part records the phase in which the deconstruction 
activities take place; activities within the same phase can 
be performed in parallel. The second part provides a 
description of the component to be disassembled, 
including its connections to the hosting component. The 
proposed method in this study was tested by developing 
the deconstruction plan to extract the target components 
(C5) and (C19) in the two- and three-dimensional case 
studies, respectively. These two components were chosen 
because their deconstruction plan was proposed using the 
method developed by Sanchez and Haas (2018a).  

Figure 4 shows a visual representation of the results 
of the 2D and 3D case studies. Four phases were required 
to extract the target component (C5) in the 2D example. 
In the first phase, two components can be disassembled 
in parallel. Then, starting from phase B and all the way 
to phase D one component can be disassembled per each 
phase. In the three-dimensional case study, the 
deconstruction plan of the target component (C19) was 
sequential, i.e., only one component per each phase. The 
two knowledge graph-based deconstruction plans are 
aligned with the plans proposed by Sanchez and Haas 
(2018a). What sets the knowledge graph-based 
deconstruction planning method apart from the previous 
methods is that it needs fewer inputs to develop the plan. 
The proposed method did not require inputs indicating 
physical and motion constraints for fasteners and 
components, and still it provided the same results with 5 
matrices less from the existing methods in the literature.  

It should be noted that the proposed KG-based 
deconstruction planning method serves as a proof of 
concept. In the upcoming stages of this ongoing project 
in deconstruction planning, various pieces of information 
will be integrated, including both deconstruction and 
post-deconstruction phases. 

 
Figure 3. A snapshot of the applied SPARQL 
query to plan for deconstruction operations of the 
2D case study 

5 Conclusion  
The transition towards circularity in the construction 

industry is gaining momentum, primarily to achieve the 
sustainable development goals, especially SDG12 
(Responsible Consumption and Production). In this 
context, deconstruction should be adopted instead of 
demolition at the end-of-life (EoL) stage. Unlike 
demolition, deconstruction is a labor-intensive task that 
requires detailed planning. Therefore, this paper 
developed a deconstruction planning method based on 
knowledge graphs. The developed method was tested on 
two case studies, involving two-dimensional and three-
dimensional representations. The results aligned with 
other methods in the literature, requiring fewer inputs. 
The developed method was able to infer new knowledge 
with minimum inputs possible.  

The main contribution of this work was the proof of 
concept that knowledge graphs can be used to develop 
deconstruction plans in the construction industry. 
However, the work has the following limitations: (i) 
deconstruction performance criteria, such as 
deconstruction cost, environmental performance, and the 
duration of each activity, should be considered while 
developing the plan; and (ii) the two case studies mainly 
focused on structural components. 
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Figure 4. The deconstruction plan for 
components 5, and 19
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Abstract –  

Infra Built Environment Information Modeling 
(infraBIM)  enables efficient and accurate planning, 
construction, and maintenance of complex 
infrastructure systems. InfraBIM has spread 
worldwide and is used in various countries for 
infrastructure projects. InfraBIM experts are 
essential to take full advantage of the benefits of 
digital information modeling.  

The goal of the article is to find the structure of the 
infraBIM online course. For this reason, a total of 19 
online courses related to building information 
modeling (BIM) were explored based on their 
available title level structuality. The online courses 
were then analyzed and tracked with 17 subject 
occurrences in the courses. The use of artificial 
intelligence (AI) was tested to get information and its 
correctness as well as to prepare the test task material 
for the course. International interviews were done to 
study the current situation of InfraBIM. The course 
module was piloted during summer 2023 and the 
feedback was collected and analyzed. As a result, the 
open InfraBIM online module course was developed 
to promote international utilization and the learning 
process. 
Finally, the general structure of the developed online 
module course serves as a good starting point for the 
further development of an open and multilingual 
website for learning more about open InfraBIM. 
 
Keywords – 

Open InfraBIM; online course; marketing; e-
learning; AI 

1 Introduction 
The level of use of building information modeling 

(BIM) varies from country to country on an enormous 
scale [1]. In 2010, the implementation rate of information 
modeling in the Western European construction sector 
was only slightly more than a third (36%) [2]. In Europe, 
the implementation of BIM in construction companies 
was only 29 % in 2016 [3]. However, the estimation of 

BIM implementation is exceedingly difficult due to the 
fact each country has a different BIM maturity Level [4]. 
One reason could be the variety of technologies, which 
makes open infrastructure BIM complex and challenging. 
According to Salzano et al. (2023), one solution is to 
develop and increase the know-how of technological 
aspects when solving case study problems [5]. 

Increasing the use of the BIM in industry also requires 
that students and professionals develop the necessary 
skills and competencies to succeed in the modern 
infrastructure industry. Therefore, multiple construction 
and consulting companies are offering paid education. 
According to the NATSPEC Report (2023), 22 countries 
have BIM education in higher education and technical 
training institutions (vocational education) with a focus 
on Architecture, Engineering, and Construction (AEC) 
students. However, only 10 countries, such as Finland, 
Sweden, and Germany, have also BIM education both 
physical and/or virtual courses, and training for civil 
engineering. In addition, road construction-related 
projects have also been conducted between different 
countries, for example ERASMUS+ project inROAD. [6] 
The knowledge of educator’s base and skills in 
information technology tools and software, constantly 
changing or lacking instructions or requirements, 
students of different levels, availability of both financial 
and physical resources, and resistance to change among 
educational institutions and their staff are the main 
reasons why for example the education of infraBIM is not 
spread worldwide. [6] 

The introduction of infrastructure modeling has been 
promoted in countries by many parties when the benefits 
of its use have come to the attention of governments. At 
the European level, the use of infrastructure modeling is 
a requirement in public sector projects, in addition to 
Finland, for example in Sweden, Norway, and Great 
Britain. The Nordic countries have been at the forefront 
of introducing open infrastructure modeling. In Finland, 
a lot of work has been done since 2010 [7] to develop an 
open infra built environment model (infraBIM) to present 
information about infrastructure objects (such as roads) 
that is suitable for digital communication, interpretation, 
and processing by people and computer applications. The 
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concept of open InfraBIM includes Common InfraBIM 
Requirements (YIV2021), classification, and open 
format. YIV2021 supplies general requirements and 
guidelines for model-based projects as well as more 
detailed model technical requirements [8]. Classification 
presents the numbering and naming conventions 
covering the life cycle of infrastructures and models. 
InfraModel (IM), which is based on the international 
LandXML standard, is recommended for use as an open 
format to transfer infrastructure data.  

Globally, there are still a limited number of countries 
that are pioneers in infrastructure modeling [9,10]. In 
Central Europe, in several countries, the public sector has 
recommended the use of infrastructure modeling and has 
taken development steps to promote its use by creating 
standards, implementing programs, and conducting pilot 
projects [9,10]. Germany is a potential export country for 
InfraBIM technologies due to the ongoing development 
of infra modeling there, which is why the country was 
selected as one of the examples countries for a closer 
examination. Germany has already seen potential savings 
with the "selective use" of infrastructure modeling in 
small, medium, and large operations [11]. 

However, the need to harmonize and update the 
requirements has already been found in Germany, and the 
vision of the Standardization of Data Modelling of the 
Built Environment project program launched in 2022 is 
to unify the data modeling requirements of the built 
environment, which includes, for example, the 
standardization of guidelines, formats, and nomenclature 
by 2025 [8].  

In this article, the online pilot course for InfraBIM 
was developed and tested. For this purpose, the study of 
other online courses related to the topic was done and 
analyzed. The material was selected based on the 
interview of experts and using modern tools, such as 
artificial intelligence. 

2 Development of the online course 

2.1 Study of BIM-related online courses 
A total of 19 online courses [12-30] were selected in 

this paper. The following criteria were to choose 1) must 
be online courses that are openly available, 2) can be 
completed independently online, 3) are at the basics level, 
4) course materials must be available in English, and 
finally 5) the course must be found on the Google search. 
Search phrases that were used were BIM for the 
infrastructure course, InfraBIM, and course free. BIM for 
infrastructure course, InfraBIM course free, InfraBIM 
course EU (European Union), InfraBIM e-learning, and 
variations of those. The phrases were selected based on 
what regular information seekers would be expected to 
use to find information about the topic. 

2.2 Determination of the content of the course 
A methodical analysis was utilized to examine the 

content frameworks of the identified Building 
Information Modeling (BIM) courses. The evaluation 
was based on the criteria outlined in section 2.1. Initially, 
each course was scrutinized based on the available 
information, without any payment or login constraints. 
The table of contents or main headings were reviewed 
because of their accessibility and functioning as a 
decision-making tool for undergoing the course. 
Subsequently, data was systematically collected in Excel 
from the table of contents, outlining the inclusion of 
construction information modeling topics within these 
BIM courses at a fundamental level, along with their 
sequence. A color-coded system was used to identify 
similarities among topics across different courses. 
Finally, 17 topics were chosen based on shared themes 
and the required content. 

2.3 Interview study of the experts 
In the interview study, the point of view of experts 

about infrastructure modeling in Finland, Germany, and 
Denmark was investigated, and ideas about the content 
and structure of the website were mapped. The interviews 
were done by Teams meetings during spring 2023. 

Table 1. Profile of BIM experts from Finland, Germany, 
and Denmark. 

Country Profile of expert 
Finland Software industry 
Finland Development Manager in Bridge and 

Concrete Structures, Product and 
Equipment Development for a 

Contractor 
Finland Development Manager for BIM 

Germany BIM Coordinator and Consultant 
Germany Software Industry 
Denmark Senior BIM Specialist and Project 

Manager 
 

2.4 Use of artificial intelligence 
ChatGPT is a chatbot developed by OpenAI based on 

artificial intelligence (AI) technology, which is trained 
using a large language model. ChatGPT in dialogue 
format can produce human-like text and communicate 
interactively, as well as learn from earlier conversations. 
The browser-based ChatGPT was released to the public 
in November 2022 and is currently freely available in a 
research phase gathering feedback. [31]. In this paper, the 
use of ChatGPT was briefly investigated for creating 
multiple-choice tests and summarizing entities. The free 
version of ChatGPT was presented with natural language 
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tasks and questions in Finnish and English, and its ability 
to translate a multiple-choice survey into German was 
tested. ChatGPT's summarizing skills were tested with 
three questions presented in different ways: "How to 
summarize BIM or Building Information modeling in the 
infrastructure industry", "What is InfraBIM" and "What 
does Open InfraBIM mean" to see how ChatGPT's 
answers differ according to the layout of the questions 
and how it interprets the concepts of BIM in the 
infrastructure industry, InfraBIM, and Open InfraBIM.

2.5 Pilot course
The pilot course aimed to test the idea of online 

InfraBIM. The focus of the pilot course was decided to 
be a summary of the basics of the world of InfraBIM,
model-based construction, and benefits. The Microsoft 
Sway application was used as a tool in the course 
publication to implement the course. The content of the 
course included text, pictures, a text-to-speech video, 
Teams-interview video, a case study, and a quiz. The 
language of the course was decided to be English, since 
one of the target groups is Germany.

The link to the pilot course can be found on the 
Ouluzone+ web pages. [32] The link to the course was 
distributed by e-mail to the persons involved in the topic, 
selected experts, and contacts from Germany. Permission 
was granted to share the link freely. A total of seven-
question survey was done by Microsoft Forms to receive 
feedback. The answers were analyzed and used to 
develop the general structure for an InfraBIM online 
course.

3 Results

3.1 The availability of infraBIM courses
When doing some background research with the 

Google search engine, it soon became clear that despite 
several standard search terms such as BIM for 
infrastructure course, BIM for infrastructure online 
course, InfraBIM course, InfraBIM course free, 
InfraBIM course EU, etc., no website or online course 
dealing with the basics of infrastructure modeling could 
be found freely online at hand. With the selected criteria 
like free access, independent online, basic level, in 
English, finding online courses was challenging even for 
construction information modeling, as even most free 
courses require the creation of credentials to view the 
content. After expanding the criteria, the lists of 19 BIM 
courses were collected. Some of the founded courses 
were online courses offered by universities such as
Coventry University [13], National Taiwan University
[15], Purdue University [16] using for example edX.org 
or Coursera.org platforms which may have included 

lecture teaching, too. Many of the BIM courses are 
produced by industry-specific company such as
TÜVSÜD and HOCHTIEF ViCon [17, 26]. Si!BIM
course is the ERASMUS+ project which is focused on 
vocational training [30]. In addition, many of the courses
can be found on LinkedIn Learning (formally known as 
Lynda.com) [12], Udemy online learning platform [14,
18-24] as well as Alison.com [25] or Reed.co.uk [27-29].
The names of the 19 studied BIM-related online courses 
are listed in Figure 1, and the number of subjects is 
presented.

Figure 1. A total of 19 BIM online courses [12-
30] were analyzed related to specific 17 subjects.

3.2 Content of the studied BIM courses
Since one of the criteria was free access to the 

course, only the available material, e.g. the titles, 
were analyzed. A total of 17 BIM-related subjects 
was selected to study in more detail and the 
occurrence in the course was calculated (see Figure 
2). The studied subject had to come out clearly from 
the title. The lengths of the courses varied so a more 
precise location of the subjects' determinations was
not made.
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Figure 2. The occurrence of BIM subjects in 19
online courses [12-30].

What the courses had in common was to get started 
by somehow defining BIM, what BIM is, or why it is 
needed in the construction industry. The benefit aspect 
was therefore placed at the top in several courses, but it 
also appeared at the very end of the courses. The category 
that appeared the most in the courses was 
"implementation/use of BIM" in a total of 13 courses. 
Other most popular topics were "Benefits/why BIM" and 
"Communication/Collaboration", which appeared in the 
bodies of nine (9) courses, and "Models/Crash Analysis" 
and "Tools/technology/software" which were in the 
bodies of seven (7) courses. Not a single course had those 
topics appearing at the same time. The clearest positions 
can be seen with the categories "Future of BIM", which 
without exception came last in the course, if it was 
included in it, and "BIM's dimensions", which was the 
second first topic in both of its courses. For several topics, 
it is possible to find whether they are most often found
before or after the middle of the course. Titles related to 
sustainable development, or the infrastructure sector 
appeared in only one course. BIM in design was included 
in the courses a little more often than BIM in construction. 
The terms model-based construction, machine control, 
machine automation, open BIM, or open data did not 
appear in the title of any course.

3.3 The result of expert interviews
The first query revolved around the current state of 

BIM implementation in the interviewee's respective 
country. In the Finnish interviews, significant attention 
was drawn to the term "infrastructure information 
modeling." Interviewees expressed concerns over its lack 

of a clear or universally understood definition within the 
infrastructure sector, complicating its application. While 
it was acknowledged that the adoption of information 
modeling in the infrastructure sector lagged behind that 
of the construction industry, there was optimism about its 
potential to surpass the latter in development.

In contrast, in Germany, the discussions dealt with 
varying degrees of maturity of the infrastructure sectors, 
ranging from 0 to 3, depending on the sector. In particular, 
engineering firms demonstrated a more comprehensive 
understanding and use of infrastructure modeling 
compared to other sectors. The design sector appeared as 
the primary focal point around 2014–2015 when 
discourse on infrastructure modeling started. Larger 
design firms swiftly embraced infrastructure modeling, 
reaching a commendable maturity level between 2 and 3. 
Medium-sized firms fell within levels 1 and 2, with 
smaller entities typically at level 1. Interest among 
contractors in infrastructure modeling burgeoned around 
2020, possibly catalyzed by pressure from the design 
sector. Larger contracting companies approached a 
maturity level nearing 1, while smaller contractors 
largely refrained from model-based construction due to 
perceived redundancy. The spectrum of maturity levels 
among infrastructure owners appeared notably broad, 
spanning from 0 to 3. For major infrastructure 
stakeholders, such as Germany's railways, early 
endeavors related to infrastructure modeling signify 
considerable potential for digitalization advancement.

According to a Danish BIM expert, Denmark 
occupies an intermediate position, akin to Sweden, rather 
than being at the forefront of infrastructure modeling use. 
Although infrastructure modeling is still relatively 
uncommon, there is a gradual ascent in maturity within 
the sector. The adoption of certain Finnish open 
infrastructure modeling practices underscores this 
evolution. However, Denmark faces challenges, 
particularly in aligning with the pace of the construction 
industry. The longitudinal nature of infrastructure objects 
poses a distinct hurdle, complicating their portrayal as 3D 
entities. Insufficient object requirements impede 
progress, with the existing two-part Industry Foundation 
Classes (IFC) geometry proving inadequate. 
Consequently, there exists a palpable necessity for an 
IFC 4.3 infrastructure extension update to ease seamless 
data exchange, potentially spurring software companies 
to adapt to open infrastructure modeling standards.
Subsequently, discussions centered on the essential 
components of a learning environment. Experts 
encapsulated the concept of InfraBIM, emphasizing the 
use of 3D models enriched with metadata and 
information for each structural element. Standardized 
data and information structures were considered 
imperative for streamlining the modeling process. 
Central to the narrative was the critical role of 
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standardization in enhancing information flow and 
collaborative functionality. Furthermore, deliberations 
touched upon data transfer formats, advocating for the 
predominance of open standards. However, recognition 
was given to the practicality of native formats for internal 
modeling purposes. The inclusion of IFC or Inframodel 
in online courses was deliberated, considering the 
varying subscriber preferences for open formats across 
different countries. Significantly, the potential future 
standardization of IFC's infra extension as an ISO 
standard was highlighted as a significant development, 
with the potential to catalyze international adoption and 
compel software platforms to incorporate IFC support.

3.4 AI as a tool to supply course material
Based on the response produced by ChatGPT, the 

general concept of BIM is recognized, as well as the 
benefit perspective and life cycle management, in the 
consolidation experiments of the entities, but the 
response to the definition of "BIM in infrastructure" did 
not take a position on the perspective of the infrastructure 
sector and ChatGPT did not know how to connect the 
InfraBIM concept to the response. When asked about 
InfraBIM, ChatGPT was able to distinguish the term 
InfraBIM from BIM, which is the application of BIM for 
infrastructure projects. The answer brought up the same 
benefits as in the case of the first compaction, and no 
other differences in infra modelling compared to 
information modelling of building construction have 
been brought up, other than the target's infra projects. 
Linguistic problems were noticeable in the form of 
repetition, the answer listed "collaboration, efficiency, 
accuracy, and sustainability" twice, and a water treatment 
plant is included in the infrastructure items. Regarding 
Open InfraBIM, ChatGPT produced the longest answer 
and found that the use of open standards and data transfer 
formats should be encouraged and listed mostly 
achievable benefits. There is no mention of the use of 
nomenclature or common modelling requirements in the 
answer.

For the course material testing, ChatGPT produced 
multiple-choice surveys when handed the topics. There 
were some errors in the questions and answers, but after 
a human inspection, they could be used if there is a need 
for efficient material production. What ChatGPT could 
be more usable for is in terms of translating the course 
materials for different languages, which it did 
successfully from English to German.

Text-to-speech video sound recording for the pilot 
course was made with the free version of Amazon Polly 
according to the text materials.

3.5 The results of the pilot course
For the pilot module, the most important topics had 

to be defined as the basics of infra modeling, for which 
expert interviews, and observations from existing BIM 
courses´ were used. Based on the analyses of the other 
BIM online courses, the learning goals in this tested 
module were decided to have three goals (Figure 3). 

Figure 3. The learning outcomes for the tested 
pilot course. 

The material of the course was BIM vocabulary, 
statistics, text-to-speech video, summary after the video, 
Teams-interview, case study, and quiz. An example of 
the material presented in the pilot course is among other 
things the difference between information exchange 
using a Common Data Environment (CDE) and 
traditional information exchange is explained in the text, 
but also in the picture (Figure 4.).

Figure 4. Comparison of data exchange between 
traditional and Common Data Environment (CDE).

The table of the pilot course had decided to have the 
following 11 topics:
1. Why BIM in the infrastructure industry?
2. Vocabulary
3. What are the benefits of using InfraBIM?
4. 3D modelling vs. BIM
5. Roles and new responsibilities
6. Digital processes change the way we work
7. Why so many different models?
8. What are the requirements for InfraBIM?
9. Case study
10. Quiz
11. Learning more and references.
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Even though the course link had been opened more 
than 200 times, only nine participants gave feedback to 
the survey at the end of the course. Users were allowed
to select their top 3 favorite topics from the list mentioned 
above. A total of 18 votes were cast. According to 
feedback the most useful topic in the course was the part
where the benefits of using infraBIM (28% of the 
answers) were described. The roles and new 
responsibilities (22% of the answers) were the second 
useful topic. The other topics were evaluated between 5 
to 11 %, as can be seen in Figure 5.

Figure 5. Topics in the course that were 
considered the most useful for learning based on 
the feedback.

In the feedback survey, we were also asked to 
evaluate what materials were useful for the learning
aspect. Users were allowed to select their five most 
interesting materials. A total of 36 votes were given. The 
results can be seen in Figure 6.

Figure 6. What types of material on the course
were considered most useful for learning based on
the feedback of the final survey.

The materials of the pilot course ended up 
emphasizing a practical solution, whereby customers, 
designers, and contractors can all have their databases, 

and the most important thing is how to ensure a 
functioning open data transfer between the databases. 
The challenge of the pilot module was finding a suitable 
level of accuracy in summarizing the topics, with the goal 
being as concise a presentation as possible, for example, 
summarizing the role of machine control in model-based 
construction and whether breakdown into 2D and 3D
machine control systems is carried out. In the pilot, no 
breakdown was made, but the processing of machine 
control was carried out on a more general level, and the 
section included a link to Novatron Oy's website for other
information. It was decided to use three examples of open 
data transfer formats in the materials throughout the 
module, IFC, LandXML, and InfraModel, the first two 
because of their international recognition and the last one 
from the perspective of Finnish infrastructure modelling
and its international growth potential.

During the preparation and translation of the teaching 
materials, it was discovered that the terms translated 
directly from Finnish to English are not necessarily as 
well understood or in the same way. Based on the 
correction suggestions received, the English version of 
the YIV instructions could not be used straightforwardly.

As a result of the pilot course and feedback, a general 
structure for an InfraBIM online course module was 
developed (Figure 7). The general structure aims to 
perfect the conveyance of the fundamentals of the 
ideology of open infrastructure modeling using different 
teaching resources in the most efficient order.

Figure 7. The general structure of the basic level 
InfraBIM online course module. 

4 Conclusion
Based on observations, Open InfraBIM still needs

more international visibility and recognition as a term 
and a process. Infrastructure modeling has been 
overshadowed within the existing BIM online course 
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offerings and content, focusing primarily on building 
information modeling (BIM) in construction. This 
supports the need for an independent website dedicated 
to infrastructure modeling. In addition, it is justified to 
cover the fundamental principles of open infrastructure 
modeling in its education and marketing efforts because 
the expansion of its adoption is freshly beginning in 
several countries.  

Considering the feedback received, the general 
structural model of the InfraBIM online course is a good 
starting point for the further development of an open and 
multilingual website. An open infrastructure modeling 
website would be beneficial both internationally and 
domestically because the accessibility of easily available 
information within infrastructure modeling is a common 
issue.  

There is a need for educational materials to start from 
the very basics, distinguishing infrastructure modeling 
from mere 3D modeling. 3D modeling is already a 
familiar topic within the infrastructure sector and has 
been in use for quite some time. Therefore, the emphasis 
on materials should shift from generating information to 
consuming and managing information using an open 
model-based process and infrastructure models. Open 
infrastructure modeling is a vast domain, but it is possible 
to narrow down the model-based process by focusing on 
a particularly essential aspect: the renewed information 
consumption within infrastructure modeling. 
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Abstract 

 
Modular construction represents a significant 

advancement in the architectural, engineering, and 
construction (AEC) domain, bolstering productivity 
by integrating factory-based manufacturing and 
efficient assembly techniques. This study presents a 
holistic approach, merging Building Information 
Modelling (BIM) with technological automation 
interoperability, to facilitate seamless prefabrication 
and automatic monitoring within modular 
construction projects. It underscores the importance 
of comprehensive management across the 
construction lifecycle, from prefabrication to final 
assembly. The research advocates for an integrated 
framework encompassing information identification, 
data mapping between Industry Foundation Classes 
(IFC) and ProgressXML (PXML), and semantic 
enrichment for Radio Frequency Identification 
(RFID) tracking. This approach is aimed at 
streamlining data exchange, automating fabrication 
processes, enhancing quality control, and optimizing 
precast supply chain management, thereby 
improving overall information management among 
project stakeholders. 

 
Keywords – 

Building Information Modeling, Progress 
Monitoring, Modular Construction, Industry 
Foundation Classes (IFC),  ProgressXML (PXML), 
Radio Frequency Identification (RFID) 

1 Introduction 
Modular construction integrates mass production and 

automated techniques to refine construction workflows, 
enhance workforce productivity, and promote 

environmental sustainability [7]. Building Information 
Modeling (BIM) functions as a digital tool that 
encapsulates both the physical and functional attributes 
of a building. It provides a comprehensive and evolving 
model that adapts continuously over the construction 
lifecycle. It has attracted considerable attention for its 
application in multiple fields of modular construction, 
including but not limited to design automation [3], 
automated manufacturing processes [2], the use of 
robotics in assembly [21], optimization of supply chain 
logistics [6], and the facilitation of a circular economy [1].  
BIM functions as an object-oriented model that stores 
critical data for managing a building's lifecycle, covering 
aspects such as scheduling, analysis, and assessment.  

 
In addressing the increasing demand for digital 

transformation within the modular construction sector, 
this study introduces an approach to bridge the digital-
physical divide through the mapping of Industry 
Foundation Classes (IFC) and ProgressXML (PXML). 
IFC serves as the cornerstone for BIM interoperability, 
enabling seamless data exchange and management across 
various platforms. Meanwhile, PXML is tailored to 
represent the geometric and semantic details of 
prefabricated components, enhancing the flow of 
information for fabrication and logistics. This integration 
aims to automate and digitize the construction workflow, 
improving efficiency, quality control, and supply chain 
management. By ensuring data integrity and fidelity in 
the mapping process, this framework advances the digital 
management of information in modular construction, 
highlighting the potential of BIM and digital fabrication 
technologies to revolutionize construction processes, 
achieving higher efficiency and sustainability. 

 
Managing the construction progress of precast 

components with BIM and sensing technologies 
streamlines the process from design to end-of-life. 
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Unique identifications in BIM model correspond to 
Radio Frequency Identification (RFID) tags on 
components, allowing real-time tracking through 
fabrication, storage, transportation and assembly [5]. 
Post-installation, real-time data in BIM supports 
maintenance scheduling and asset management. At the 
component's end-of-life, it assists in sustainable 
decommissioning practices. This integration enhances 
efficiency, reduces errors, and improves lifecycle 
traceability.

The conventional approach to construction progress 
monitoring, traditionally focusing on individual 
processes (including fabrication, temporary storage, 
fitting out, delivery, and installation), fails to align with 
the evolving global trends in modular construction. There 
is a growing need for an approach that integrates BIM to 
oversee the entire construction process, from factory-
based production to site construction. Therefore, this 
paper introduces an innovative BIM methodology, 
enhanced by RFID-sensing technology, to facilitate 
automated construction progress monitoring, spanning 
from factory prefabrication to on-site assembly. We 
provide an illustrative example to demonstrate the 
effectiveness of these methods.

To assess the effectiveness of the suggested 
framework, field trials were conducted on a Prefabricated 
Prefinished Volumetric Construction (PPVC) residential 
project using RFID. Results confirmed the accurate on-
site placement of precast units and the reliability of 
sensor-derived data. 

2 Literature Review

2.1 Modular Construction
Modular construction, also known as offsite 

construction, prefabrication, or industrialized building 
system in literature, is commonly defined as a process in 
which building components or modules are produced in 
a controlled environment [9]. Different apart from 
traditional cast-in-place construction methods, modular 
construction is characterized by of standardization, 
industrialized production processes, and assembly-based 
construction [18].  Standardization in modular 
construction streamlines automation and improves 
construction progress.  A notable obstacle is encountered 
when there is insufficient coordination and 
communication between the contractors and the precast 
suppliers [16]. Moreover, the complexity of managing 
congested construction sites with limited storage capacity 
underscores the importance of having access to item-
level data for effective logistical coordination [20].

Figure 1. Integrated BIM and Sensing for Modular 

Construction 

Figure 1 provides an overview of the integration of 
BIM and sensing application in modular construction, 
with illustrative contents to demonstrate the studies in 
different construction stages.

2.2 PXML For Automated Prefabrication

In the rapidly evolving field of modular construction, 
the integration of digital technologies has become 
paramount for enhancing efficiency and accuracy. 
Industry Foundation Classes (IFC), a universally 
recognized data schema integral to BIM, plays a crucial 
role in exchanging and managing construction and 
facility management data [17]. 

This study conducted interviews with three 
prefabricators from the Singapore Integrated 
Construction and Prefabrication Hub (ICPH). It was 
found that the PXML format, utilized for fabrication and 
enterprise resource planning, along with steel fabrication 
machine codes (BVBS) for reinforcement fabrication, are 
the predominant data formats employed in the 
contemporary precast fabrication industry. Liu, et al. [12]
integrated BIM and steel fabrication machine codes 
(BVBS) using openBIM standards to streamline steel 
reinforcement design and prefabrication automation.

In IFC framework, the relationship and structural 
details of components are essential [14]. By converting 
this information into a unified data expression mode 
based on the IFC standard, the model's relevance and 
consistency are ensured [10]. This work focuses on 
enhancing the IFC framework specifically for precast 
entities. It involves refining attribute definitions and 
association links to accurately represent the 
characteristics and relationships inherent in prefabricated 
structures. This enhancement is key to achieving a 
detailed and precise description of the prefabricated 
model within the IFC standard system.

On the other hand, PXML offers a specialized format 
for capturing the geometrics and semantics of 
prefabricated components [8]. The strategic alignment of 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1034



IFC and PXML data structures paves the way for a more 
streamlined and cohesive workflow in precast fabrication. 
This alignment involves meticulous mapping of 
geometrical data, ensuring the physical characteristics of 
components are accurately represented, and semantic 
data integration, which encapsulates the functional 
attributes of these components. This study explores this 
data mapping of IFC and PXML in precast fabrication 
discipline, driving forward the construction industry 
towards a more digitized and efficient future.

2.3 Data acquisition for automatic 
construction progress monitoring

Problems with inadequately monitoring, finding, and 
recognizing highly tailored prefabricated components in 
supply chains for the construction industry include 
erroneous installations, double handling, and 
misplacement of parts, which cause delays in schedules 
and higher labor expenses [4]. Based on the previous 
research works, the data collection method for 
construction progress monitoring is categorized into 
enhanced information technology (IT) communication 
tools (emails, messages, etc.), Geo-spatial, 3D sensing
and imaging technologies [13]. Since enhanced IT is not 
conducive to automated construction progress 
monitoring, this study summarized prior research and 
conducted the comparison of data acquisition methods as 
follows:

Figure 2. Comparison of Data Acquisition Methods

Geo-spatial sensing is chosen for its robust data 
capacity, reliability, and potential for seamless 
integration with precast supply chain management 
systems. Moreover, the collecting of real-time scheduling 
data can be enabled by BIM, and the monitoring of 
precast components during the whole processes is made 
possible by RFID and GNSS [11]. Recent research 
studies use IFC, a standard data schema for BIM model, 
to express monitoring data [19]. The differences between 
RFID and QR / Bar code [15] are summarized in Table 1. 

Table 1 Comparison of RFID and QR/Bar Code
RFID QR / Bar Code

Around several meters Close proximity 
Writable, allowing data to Limited amount of data

be updated
More durable and can be 

used in harsh environments 
like construction sites.

Less durable in harsh environments 
and require a clear, unobstructed 

view to be scanned.

These technologies mainly assist in identifying 
materials. Barcodes function through the line-of-sight 
scanning of specific patterns on materials. In contrast, 
passive RFID operates by using electromagnetic fields to 
detect and monitor tags affixed to items, eliminating the 
need for direct line-of-sight. Passive RFID system 
technology has been selected to as an essential connector, 
bridging BIM elements with the real-world components 
or modules of precast structures, owing to its cost-
efficient nature, characterized by affordability, durability, 
and reusability/recyclability. 

3 Methodology
This study initially identifies the critical information 

required for BIM-enabled progress monitoring in 
modular construction. Following this identification, the 
research proceeds with data mapping between IFC and 
PXML for precast prefabrication, and then integrates 
RFID technology for the tracking of precast components.

3.1 Information requirement 
A BIM model for modular construction management 

should encompass various stages of the building process, 
from initial design to final decommissioning. Key 
information is categorized into different categories, 
including design information, manufacturing 
specifications, construction updates, maintenance 
records. The details are summarized in Table 2. 

Table 2 Identification of information requirements 
Category Description

Design 
Information

Detailed architectural, structural, and MEP 
designs for each modular component.

Manufacturing 
Specifications

Information about materials, fabrication 
processes, and quality control for module 

prefabrication.
Transportation 
and Logistics 

Data

Details on module transportation from 
manufacturing site to construction site, 

including size, weight, handling.
Assembly and 

Installation 
Guidelines

Instructions for on-site module assembly and 
installation, including assembly and connection 

details.
Integration 

with 
Traditional 

Construction 
Methods

Information on interaction between modular 
components and traditionally cast in-situ

elements.

Sustainability 
Features

Data on environmental impact, energy 
efficiency, and waste reduction strategies.

Operational 
and 

Maintenance 
Information

Details on building operation and maintenance, 
including maintenance access and replacement 

schedules.

Health and Safety procedures for handling and assembly
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Safety 
Protocols

modular components.

Cost and Time 
Estimates

Detailed budgeting and scheduling information 
for the construction process.

Future 
Disassembly 
and Reuse 

Plans

Strategies for eventual module disassembly or 
recycling.

Regulatory 
Compliance

Ensuring designs and processes comply with 
relevant building codes and standards.

Stakeholder 
Information

Contact information and roles of all parties 
involved in the project.

Change 
Management 

Data

Records of any changes made during the 
project execution.

As-Built 
Documentation

Accurate as-built drawings and models 
reflecting the final state of the construction.

3.2 Schematic Enrichment of BIM Data

(1) Mapping with PXML

According to IFC4.3.1.x (IFC4X3_ADD1), the 
majority of PXML-relevant data can be gathered from 
IFC files. Therefore, a mapping chart (Table 3) have been 
created to show the relation more clearly and accurately 
between the two data sets.

Table 3 Data Mapping for IFC and PXML
PXML 
Eleme

nt

PXML Attributes
(Version 1.3)

IFC Entity
(IFC4X3_ADD1)

Missing IFC 
Entity

Global 
ID

Unique identifier for each 
element

IfcGloballyUniqueId

DocInf
o

GlobalID, Document Version, 
Comment, ConvertConventions, 

Mode

IfcDocumentInforma
tion

Order Order Information, Import Source 
Information, ApplicationName, 

ApplicationGUID, 
ApplicationVersion

IfcWorkOrder, 
IfcApplication

Missing specific 
IFC entity for 
Import Source 

Information
Produ

ct 
(Elem
ent)

ElementNo, ProductType, 
PieceCount, Comment, 

RotationPosition, Stacking 
Information, Project Coordinates, 

Supplementary Product 
Information

IfcElement, 
IfcBuildingElement

Missing specific 
entities for Double 
Walls and Project 

Coordinates

Eleme
ntInfo

Fields of ElementInfo entries, 
Predefined ElementInfo types, 

ElemInfoVal

IfcElement, 
IfcPropertySet, 

IfcElementCompone
nt, IfcBuiltElement

No direct IFC entity 
for Predefined 

ElementInfo types; 
custom property 

sets may be 
required

Slab 
(Elem

ent 
Part)

PartType, Geometric Slab 
Placement, Slab Production 

Directives, Geometric Placement 
and Production Directives for 

Double Walls, Multi-Layer 
Elements, Legacy Slab Fields, 

Simplified geometry 
representation

IfcSlab, IfcSlabType, 
IfcProductDefinition

Shape, 
IfcShapeRepresenta

tion

Missing entities for 
Slab Production 
Directives and 

Multi-Layer 
Elements

Outlin
e

Geometric Outline Placement, 
Height, Name, GenericInfo, 

MountingInstruction, 
MountPartType, 

MountPartArticle, 
MountPartProperties, Concrete 

Properties, Layer, ObjectID, 
Shape SVertex

IfcObjectPlacement
IfcLocalPlacement

IfcMaterial, 
IfcBuildingElementP

roxy

Missing entity for 
Simplified geometry 

representation

Steel Geometric Steel Placement, 
ToTurn, StopOnTurningSide, 

Name, MeshType, 
WeldingDensity, BorderStrength, 

Generic Steel Info, Steel 
Production Directives, Layer, 

ObjectID

IfcReinforcingBar, 
IfcReinforcingBarTy

pe, 
IfcReinforcingMesh, 
IfcShapeRepresenta

tion

No direct IFC entity 
for MeshType and 
WeldingDensity; 

possibly handled by 
IfcMaterialPropertie

s

Bar ShapeMode, 
ReinforcementType, 

SteelQuality, PieceCount, 
Diameter, XYZ, RotZ, ArticleNo, 
NoAutoProd, ExtIronWeight, Bin, 

Pos, Note, Machine, 
BendingDevice, Spacer, 
WeldingPoint, Segment, 

Canonical Bar representation

IfcReinforcingBar, 
IfcReinforcingBarTy

pe
IfcElementQuantity,  
IfcShapeRepresenta

tion

Missing detailed 
specification for 
ShapeMode and 

SteelQuality in IFC

Girder PieceCount, XYZ, GirderName, 
Length, AngleToX, NoAutoProd, 

Height, TopExcess, 
BottomExcess, Weight, 

TopFlangeDiameter, 
BottomFlangeDiameter, 

GirderType, MountingType, 
ArticleNo, Machine, Period, 

Width, AnchorBar, GirderExt, 
Section

IfcGrid,
IfcGridPlacement

No equivalent for 
GirderExt; custom 
extensions may be 

needed

Custo
m 

PXML 
Eleme

nt

Custom attributes No direct IFC 
entity; custom 

mapping or 
extension required

The openBIM standards together with some common 
BIM specifications are introduced in this research, and 
the parameters in the PXML specification are listed and 
parsed using the latest version of the IFC4.3.1.x schema 
in terms of the semantic content of the precast 
components. The data mapping between PXML standard 
and IFC schema is made to address missing information 
in IFC based on existing entities of building elements and 
incomplete conversion in order to make it easier to input 
information prefabrication machines and tracking system. 
The efficiency of fabricating will be greatly improved 
with the use of data mapping, which will also hasten the 
process' automation.

(2) Mapping with RFID

Figure 3. Association between physical object, IFC 

Unique ID and RFID EPC

After fabrication, each component is assigned a 
unique identifier which will be linked to its RFID tag. An 
algorithm has been developed to link the IFC Unique ID 
of building model objects with a corresponding 
Electronic Product Code (EPC) used in RFID systems. 
This integration allows for the automatic conversion 
between these two identifiers. When a task involves an 
object with an RFID tag, the system detects the EPC and 
translates it into the IFC Unique ID. This process enables 
precise identification and management of physical 
objects in the whole life cycle, ensuring real-time 
synchronization with their digital counterparts in the 
building information model, enhancing efficiency and 
accuracy in building management. 

The RFID-enabled digital inventory and logistics 
management system, detailed in Table 3, is designed for 
efficient tracking and management of construction 
materials. It utilizes an RFID handheld scanner, adept at 
tracking materials from prefabrication to on-site delivery 
and installation, adapting to various logistic scenarios 
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like temporary storage or return for repairs. Crucial for 
the dynamic construction environment, the scanner's 
mobility and versatility align well with site 
unpredictability. 

Table 3 RFID-enabled Tracking Operations 

Phase Operations

I. Production

Attach RFID tag after precast 
component is fabricated, associate 
RFID with BIM elements and select 
produced

II. Transportation
(to warehouse or 
construction site)

Scan RFID tag at factory gate, 
transport precast component to 
construction site
Scan RFID tag at factory gate, 
transport precast component to 
warehouse

III. Arrival 
(at warehouse or 
construction site)

Scan RFID tag on site, stockpiled on 
site storage area
Scan RFID tag on warehouse, 
processed in fitting out yard

Scan RFID tag on construction 
site/warehouse, return immediately 
to prefabricator due to quality issues

IV. Assembly
Deliver precast component to the 
assembly location on site, and scan 
RFID tag

4 Case study
This study utilized a BIM Platform, serving as a 

centralized communication center for project 
communities, enabling collaboration and data exchange 
across construction processes and supply chains. It acts 
as the data backbone for the system, allowing access to 
object-based data and API, as demonstrated in Figure 4.
In the context of BIM-enabled prefabrication and 
progress monitoring, an integrated BIM and RFID 
system is developed to track, monitor, and manage the 
flow of building materials. This system updates project 
stakeholders on material status, ensuring quick, simple, 
and trustworthy identification, recording, tracking, and 
sharing of material logistic information. 

Figure 4 Smart Tracking System Framework

Project stakeholders in the construction supply chain 
can provide and obtain real-time information and project 
updates, enhancing budget and schedule management. 
The system reduces project failure costs and time through 
real-time monitoring, effective project management, and 
early schedule violation notifications. It coordinates 
planning errors, production, logistics, and assembly 
operations, preventing misunderstandings and avoiding 
rework and site readjustment.

Figure 5 illustrates the practical on-site RFID tagging
and the association of RFID tags to precast elements. 
Passive RFID technology is chosen for cost-effective 
digital inventory and logistics management, supported by 
the BIM Platform. The system electronically manages 
construction inventory, reducing delays, increasing 
productivity, and preventing errors in deliveries.

Figure 5 Actual on-site implementation 

The progress monitoring process involves attaching 
RFID tags to precast components after fabrication, 
associating them with BIM elements, and marking them 
as produced. Then the precast component will be shipped 
to warehouse or construction site, RFID tags are scanned 
at the factory gate, and components are transported to the 
construction site or warehouse. Upon arrival, RFID tags 
are scanned on-site or in the warehouse, with components 
either stockpiled on-site or processed in the fitting-out 
yard. Quality issues may prompt an immediate return to 
the prefabricator. During assembly, precast components 
are delivered to the assembly location on-site, and RFID 
tags are scanned. The locations and processes are 
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illustrated in Figure 6.

Figure 6 RFID tracking process and locations

This comprehensive process integrates RFID 
technology with BIM, allowing for real-time tracking and 
monitoring of precast components throughout their 
lifecycle. It enhances efficiency in logistics, quality 
control, and assembly operations, contributing to 
streamlined construction processes and improved project 
management. The seamless combination of RFID and 
BIM ensures accurate data exchange and facilitates 
effective communication across the construction supply 
chain, ultimately optimizing the overall construction 
workflow.

The dataset provides detailed information on 
construction assemblies, including identification, naming, 
location, status, production and installation dates, 
classification, and type, facilitating tracking and 
management within the construction project. The PPVC 
components are under IFCELEMENTASSEMBLY, 
indicating as integrated model for construction. The 
analysis of the precast modular production and 
installation dataset has revealed some critical insights 
and potential bottlenecks:
➢ The mean installation delay, calculated as the 

difference between the actual installation date and 
the planned production date, is approximately 280
days. This indicates a significant gap between when 
modules are planned to be produced and when they 
are actually installed.

➢ The standard deviation for installation delays is 
about 80 days, suggesting variability in how 
different modules experience delays.

To mitigate bottlenecks in construction projects, it is 
recommended to enhance project management by 
fostering improved coordination among production, 
logistics, and installation teams, thereby minimizing 

delays. Further, the supply chain should be analyzed and 
optimized to ensure the efficient delivery of modules 
from production facilities to installation sites.

Based on the analysis of the precast modular 
production and installation dataset, potential areas for 
future research include developing dynamic planning 
strategies to adapt to changing conditions, conducting 
uncertainty analysis to assess variability in processes, 
optimizing production workflows to minimize delays, 
enhancing supply chain integration, implementing real-
time monitoring for proactive intervention, and devising 
risk management strategies to mitigate disruptions.

5. Conclusions and future work 

This study demonstrates the interoperability of BIM 
with automation technologies, enabling prefabrication, 
and progress monitoring in modular construction. The 
incorporation of BIM enables the automated exchange of 
geometric and product data from the model, streamlining 
the prefabrication process. Additionally, BIM integration 
with an RFID-enabled digital inventory and logistics 
management system is implemented to oversee and trace 
the precast component's journey until its assembly on-site.

One limitation of this study on data mapping between 
PXML and IFC for precast fabrication is the potential 
complexity and variability of data structures between the 
two formats, which may require extensive effort and 
expertise to ensure accurate and comprehensive mapping. 
Additionally, discrepancies in data granularity and 
semantics could pose challenges in achieving seamless 
interoperability, potentially leading to inconsistencies or 
loss of information during the mapping process. Because 
different geometrical formulations are used for various 
forms of precast components, there are still some issues 
with the conversion of the geometry information in 
PXML. These issues might be addressed and resolved in 
the future along with further information about the IFC
extension. The study plan also calls for testing the PXML 
code produced by the created Dynamo program in a 
nearby precast factory to ensure that it is valid.

To assess the effectiveness of the suggested 
framework, field trials were conducted on a PPVC 
residential project using RFID. Results confirmed the 
accurate on-site placement of precast units and the 
reliability of sensor-derived data. The research adopted 
an integrated methodology, enabling the real-time 
transmission of data to engineers for decision-making, 
thus optimizing workforce and resource distribution in 
modular construction. It is observed that integrating 
RFID data seamlessly into BIM platforms may require 
significant technical expertise and could pose challenges 
in terms of data synchronization and interoperability, 
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especially when catering BIM design changes. 
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Abstract -
This paper discusses the current methods of Scan-to-BIM,

a process which allows creating a digital representation of ex-
isting buildings for a planning methodology called Building
Information Modeling (BIM). The study covers all stages of
the process, from point cloud generation and pre-processing
to BIM modeling and formatting. We review the work al-
ready done in this area both conventionally and with the
addition of Artificial Intelligence approaches which have sig-
nificantly improved the efficiency and accuracy of the pro-
cess. With a particular focus on Artificial Intelligence, we
explore how these advanced technologies transform and op-
timize every step, offering innovative insights and significant
improvements over conventional methods. Through this in-
vestigation, we aim to provide insights into the capabilities
and constraints of the Scan-to-BIM workflow, and to shed
light on academic advancements and industrial perspectives.

Keywords -
AEC, BIM, 3D Scan, Scan-to-BIM, 3D Point Cloud, Arti-

ficial Intelligence

1 Introduction
In the Architecture, Engineering, and Construction

industries (AEC), Building Information Modeling (BIM)
relates to the creation of a digital representation of
physical and functional characteristics of a building. BIM
accelerates the digital transformation as a knowledge-
sharing, collaborative platform among all stakeholders
throughout the entire building life cycle. Over the
last two decades, the adoption of BIM for building
projects has been continuously growing thanks to many
advantages and opportunities using the approach, such as
automatic quantity estimation, swift responses to design
changes, improved construction schedule visualization,
and enhanced design coordination [1]. However, the
implementation of BIM for existing buildings presents
significant challenges. The primary issues encompass (1)
technological, (2) financial, (3) managerial, (4) social,
and (5) legal aspects [2].

One promising way to address the challenges associated
with BIM for existing structures is the concept of Scan-to-
BIM. Scan-to-BIM streamlines the process of gathering
real-world data and converting it into a BIM-ready
format. By capitalizing on advanced technologies such
as laser scanning and photogrammetry, it eliminates the
need for time-consuming manual data collection, ensures
up-to-date information and reduces the associated costs.

Although already successfully applied in industrial
use cases, Scan-to-BIM remains at the heart of current
research due to many challenges such as manual inter-
vention, lack of interoperability, algorithmic demands,
technological limitations and the significant cost of these
solutions [3][4][5]. Research has been intensifying
with the recent integration of Artificial Intelligence (AI)
approaches, thanks to their ability to speed up the process
and even to remove some of the barriers by simplifying
the processing steps [6][7][8]. However, there are still a
considerable number of obstacles to be overcome before
the process can be fully automated at both academic and
industrial levels.

In this context, our paper presents a short and com-
prehensive state of the art on the Scan-to-BIM workflow,
by inspecting its different stages and providing insight
into their capabilities and current challenges integrating
AI technologies. We highlight the advances made in
the academic world and the state of industry through
the scope of the general contractor Bouygues Construction.

2 State-of-Art

To conduct this state-of-the-art review, we analyzed 106
scientific papers that contribute to the body of knowledge
surrounding Scan-to-BIM through all the stages of the
process. The review was guided by the following top
five keywords: ”Point Cloud”, ”BIM”, ”Artificial Intel-
ligence”, ”Laser Scanning”, and ”3D Reconstruction”.
These keywords were instrumental in filtering the vast
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Figure 1. Scan-to-BIM differents steps

array of literature to focus on the most relevant and
impactful studies in the field. A first observation is the
gap between purely academic papers and those involving
an industrialist in the field. In fact, in our review only 21
papers indicated that they had been written in partnership
with industry or had received industrial funding. Most
of these were software companies and not necessarily
specialized in the construction field.

The Scan-To-BIM process represents the set of oper-
ations required to obtain a BIM model, and is now well
defined in the literature. The process can be segmented
into (1) generating the point Cloud from the existing
structure, (2) pre-processing the data, and (3) creating the
model [3][9]. Furthermore, these stages can themselves
be further divided, as shown in figure 1, including
steps like data acquisition and registration for the first,
various filtering algorithms for the second, and geometry
modeling, or link assignment for the last stage [10].
However, not all of these steps are equivalent in terms
of complexity and know-how, and some of them are
currently the subject of in-depth research.

2.1 Point Cloud generation

The first essential step in creating a BIM model consists
in collecting accurate data from the existing structure.
Several methods are commonly employed for this purpose,
but the two main ones are photogrammetry and lasergram-
metry, which result in a set of point clouds representing
the geometry of the capture [9]. Photogrammetry is often
favored for its speed and cost-effectiveness, while laser
scanning, particularly terrestrial laser scanning (TLS),
excels in delivering high accuracy [3][11]. It is however
important to note that these observations are subject to
change due to the rapid evolution of equipment in this field.

Laser scanning encompasses various categories,
including terrestrial laser scanning (TLS), mobile laser
scanning (MLS), and airborne laser scanning (ALS), each
of them offering specific advantages. For instance, TLS is
ideal for capturing large areas, whereas ALS is preferable

for large-scale data acquisition. A number of scanning
solutions for each category are already available on the
market from companies such as Trimble, Faro and Leica.
The last brand offers all three types of scanner, namely
BLK360 (TLS), BLK2GO (MLS), and BLK2FLY (ALS)
[12]. The choice may depend on the typology of the
building and the given accuracy requirements [13].

The subsequent step is registration. This operation
involves the alignment of point cloud scans taken at
different stations, and their assembly into a unique point
cloud. Some studies use the AI possibility to enhance this
part and make it more efficient and quicker by reducing
the time and resources used by identifying and eliminating
noisy points [14] or improving position matching [15].
Beyond the academic research, the registration is often
integrated into the software solution by the editing
companies because it’s important for industry to have a
complete sequence from the point cloud acquisition to the
point cloud deliverable.

The file format used for point cloud is typically binary
such as PCD (Point Cloud Library) or LAS. Alternatively
it can be an ASCII format like XYZ, or a hybrid format
containing both, such as E57 [3]. All formats allow for the
storage of point information, images, as well as metadata
like timestamps.

In industry, this stage is often mastered and readily ap-
plied. Companies do not hesitate to acquire point clouds
by surveyors, specialized external service providers or on
their own, to produce valuable data which can be used
either for a full Scan-to-BIM or for simpler tasks such as
comparison or visualization.

2.2 Point Cloud Pre-Processing

Once the point cloud is acquired, the raw data should be
refined, compressed and simplified in order to reduce the
following processing costs as illustrate in the figure 2.
To do so, different algorithms have already been studied
and suggested in the literature.
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Figure 2. Pre-processing Filtering: (a) raw data, (b) outlier removal, (c) downsampling with different voxel sizes
[16]

Outliers are data points that considerably deviate from
the expected model, typically signifying errors or extreme
values. Many algorithms and techniques have been
developed to solve these issues. Traditional approaches
dealing with outliers in point clouds include radius-based
statistical suppression and mean-shift clustering [17]
as well as the use of Z-scores with adaptive thresholds
[18]. AI has also become increasingly important in
outlier detection, thanks to statistical approaches based
on density, clustering, learning and ensemble methods
[19]. PointCleanNet uses deep neural networks to identify
outliers and noise, and corrects them to preserve essential
surface details, demonstrating remarkable efficiency even
in dense and varied point clouds [20].

Noise can be described as erratic fluctuations in the data,
often originating from measuring inaccuracies or other
stochastic factors. To mitigate noise, Edge-Aware filtering
or Bilateral filtering can be applied, as well as more
recent approaches such as a high-performance algorithm
preserving sharp features [21]. The use of AI, notably
through approaches such as PointCleanNet, has marked
a significant advance in denoising. Moreover, recent
studies, including one introducing graph-convolutional
representations [22] and local surface estimation via a
deep neural network [23], show how AI can improve the
accuracy and efficiency of denoising, effectively tackling
even complex structured noise.

Downsampling is crucial for reducing data volume
and facilitating further processing. Different approaches,
such as voxelization, subdivide three-dimensional space
into cubes (voxels), enabling a discrete representation of
3D points as volumetric data [24][25]. Although these
methods have been widely used to simplify point clouds,
they can lead to a loss of precision and data, limiting
their effectiveness in demanding applications [26].
The introduction of AI into the field of downsampling
has marked a turning point, with the development of

sophisticated techniques capable of dynamically adapting
the data reduction process while preserving essential
features for downstream tasks [8]. Recent studies illustrate
important progress in this field by evaluating different
downsampling strategies such as 3D Edge-Preserving
Sampling (3DEPS) [27], and by introducing frameworks
capable of handling arbitrary cloud point sizes [28].

2.3 Point Cloud Processing

Segmentation plays a crucial role for Scan-to-BIM in
order to classify and distinguish building elements such
as walls, openings and floors. This process is crucial for
the transformation of the scanned data to a high-level
representation of the environment. In the previous steps,
the algorithms did not differentiate between interior and
exterior environments because they are the same type of
data, but for the segmentation and modeling steps, these
environments are treated differently. As a matter of fact,
the treatment of the exterior (e.g. facade) or interior
(e.g. room) will not be the same due to the different
structural and architectural elements at different levels of
complexity and involvement. Some algorithms such as
RANSAC or similar methods are involved in the treatment
of both typologies but employed differently.

In interior reconstruction, segmentation begins with
the separation of floors, before moving on to delineating
rooms, then walls and slabs, finally addressing the
remaining elements if necessary [4]. This progressive
approach is essential for establishing the overall geometry
of a floor, advising that walls should be segmented first
before rooms are defined [29]. A commonly employed
method for floor segmentation is the use of z-histograms
which generate horizontal slices of the interior space,
facilitating the separation of the structure into individual
floors [30]. This segmentation is followed by that of the
rooms, which progresses from the base of the structure,
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i.e. the floor, and extends towards the elevations [31][32].
However, when reconstructing interior spaces, it is
essential to take into account wall occlusions which can
obstruct the view of certain elements. To overcome this
challenge, specialized algorithms have been designed to
deal with occluded elements, ensuring that no critical de-
tails are missed during the reconstruction process [33][34].

Exterior reconstruction follows a similar approach, seg-
menting buildings according to their relevant components:
facades, roofs and ground surfaces. Facade segmentation,
in particular, can be subdivided to improve information
extraction, by dividing the facade into storeys, then into
uniformly sized tiles, and finally into elements such as
doors and windows [35]. Another approach considers
the entire facade, using feature lines and cell complexes
to determine division boundaries while addressing some
occlusion issues [36]. In addition, segmentation of
exterior point cloud can be achieved using images rather
than scans, as demonstrated by contour and aperture
detection methods [37][38].

The evolution of Machine Learning and Deep Learn-
ing represents a watershed in the efficiency of the
Scan-to-BIM process, automating complex operations
from occlusion detection to large-scale reconstruction.
However, despite its transformative potential, Deep
Learning faces challenges such as the need for manual
design and heavy dependence on available data [6].
The contribution of Machine Learning to the field is
illustrated by the improvement in semantic segmentation,
in particular with the Random Forest (RF) algorithm,
which led to the possibility of semantic segmentation
[39], enabling precise recognition of building elements
and automated generation of models based on predefined
templates [40]. In the specific context of exterior facade
analysis, Deep Learning applied to 2D orthoimages has
facilitated automatic semantic segmentation, combining
initial segmentation and 3D back-projection to obtain
a semantically segmented point cloud. This method,
although efficient, could benefit from images taken from
more advantageous angles and the exploration of new
data sources to improve overall accuracy [41]. At the
heart of the innovations in 3D point cloud processing,
PointNet and PointNet++ offer effective solutions to
overcome the challenges of unstructured and disordered
data (figure 3). By providing accurate segmentation and
classification through a globally invariant representation,
these algorithms play a key role in the detailed analysis
of local features, essential for semantic segmentation
[42][43].

Following these AI algorithms, more recent architec-

Figure 3. Example of PointNet classification [42]

tures such as Graph Convolutional Networks effectively
exploit the graph structure of point cloud data to better
capture local relationships [44]. Dynamic Graph CNN
build a neighbourhood graph at each layer to capture
richer local features [45]. PointCNN uses a convolution
approach to learn a hierarchical representation of the data
[46].

Despite these new and promising algorithms, AI still
needs to overcome a number of challenges, including
the sheer amount of data required for training. Only
few valuable training datasets such as S2DIS (Stanford
2D-3D-Semantics) [47], ScanNet [48] or Paris-Lille 3D
[49] are publicly available. Current research is therefore
turning to innovative approaches using synthetic point
cloud generation in order to enrich the availability of
varied and representative training data [50]. However,
this type of method has its limits in terms of geometric
representations, whether volumetric or in terms of
detail accuracy. As discussed in [6], the success of
Deep Learning highly depends on the relevance of its
input data, and the use of small or synthetic data sets
represents a major handicap for obtaining a stable solution.

As far as industry is concerned, some start-ups, com-
panies and scanner publishers offer solutions based on
artificial intelligence to process the point cloud and ex-
tract all the previous steps. However, this process has not
yet reached maturity, and in most cases, these steps are
performed manually, as they are considered more precise
and important.

2.4 Modeling

The last step of the Scan-to-BIM process is the mod-
eling into usable data such as 3D or BIM. The Level of
Development (LOD) is an industry standard that defines
among other things the degree of refinement for the 3D
geometry of a BIM model shown in figure 4. LOD
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is an important key to completing Scan-to-BIM, as it
defines the accuracy of detail required during acquisition
and is a crucial input for obtaining a consistent BIM model.

Figure 4. Example of LOD in a BIM model [51]

There are several different methods for obtaining a
model from a point cloud that has been segmented and
labelled. The first is parametric modeling, which offers
great flexibility in the manipulation of architectural forms,
particularly useful for facade renovation [52][53]. This
approach emphasizes the importance of adaptability and
reusability in the design process. On the other hand,
semi-automatic methods combine human intervention
with automation, enabling a balance between precision
and adaptability [31] [54] [55]. These techniques aim
to improve the classification and reconstruction of
specific architectural elements, while offering superior
geometric quality. Finally, full automation promises
efficient creation of BIM and parametric 3D models,
significantly reducing the time and effort required for
modeling [33][56]. These approaches focus on accurate
reconstruction of walls and their topology, and on
optimizing the overall connectivity of interior spaces.
These global methods use approaches that can be grouped
into three categories: (1) planar primitive detection, (2)
volumetric primitive, (3) mesh-based reconstruction [3].

The papers therefore typically focus on one type of ty-
pology such as exterior or interior, which corresponds to a
specific industry use case. Also, the type of reconstruction
will depend on the needs, as a mesh reconstruction will
be less accurate than a full BIM, but quicker to obtain for
elementary visualization. Modeling in industry is mainly
done manually, using appropriate software such as Auto-
cad Revit. This can be explained by the fact that existing
algorithms are not yet mature enough, due to a lack of
adaptability, and that industry, through its use cases, does
not necessarily require a complete BIM model. For the
integration of AI in this area, an important future approach
could be the automation of repetitive tasks and the point
cloud quality control, which will be an important issue
in ensuring the accuracy of the data created through the
Scan-to-BIM process.

3 Conclusion

The state-of-the-art analysis attests promising advance-
ments in point cloud generation methods, pre-processing
techniques, segmentation and 3D modeling approaches.
Most literature on Scan-to-BIM targets finished struc-
tures or historic buildings, overlooking its potential in
managing the construction phase. Applying Scan-to-BIM
for monitoring work progress and as-built verification
introduces new challenges in harnessing construction site
data beyond traditional practices. Furthermore, only few
work is dedicated to the overall Scan-to-BIM process.
The different stages presented in figure 1 do not get
the same amount of attention in the literature, which is
understandable for a relatively mature stage such as data
acquisition, but less so for BIM formatting, i.e. translating
the 3D model to a BIM model. As a matter of fact, the
challenges involved in producing a complete BIM model
are different from those for creating a 3D geometry.

The Scan-to-BIM process needs to be improved to
become a complete and automatic process. This includes
addressing existing challenges such as occlusion and
clutter in the point cloud [3], improving the AI in its
design, its training, and in controlling the result [8],
and implementing a complete path among all stages
so that they are no longer independent. In addition,
involving industry to provide data sets and test sites would
significantly speed up the development.

The industry, through the example of Bouygues Con-
struction, is currently not using the solutions proposed in
the literature, for several reasons. The absence of readily
usable off-the-shelf solutions capable of managing the en-
tire process, and the lack of resources to engage themselves
in research are major issues. It is important to recognize
that complete solutions, even addressing only specific en-
vironments or building types would be preferable to the
current manual methods. Our next work will therefore
focus on the implementation of a complete Scan-to-BIM
process for a particular use case, namely the facade in the
context of energy renovation for French real estates.
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From the Semantic Point Cloud to Heritage-Building
Information Modeling: A Semiautomatic Approach
Exploiting Machine Learning. Remote Sensing, 13:
461, 2021. doi:10.3390/rs13030461.

[55] Sungchul Hong, Jaehoon Jung, Sangmin Kim, Hy-
oungsig Cho, Jeongho Lee, and Joon Heo. Semi-
automated approach to indoor mapping for 3D
as-built building information modeling. Comput-
ers, Environment and Urban Systems, 51, 2015.
doi:10.1016/j.compenvurbsys.2015.01.005.

[56] Sebastian Ochmann, Richard Vock, and Rein-
hard Klein. Automatic reconstruction of fully
volumetric 3D building models from oriented
point clouds. ISPRS Journal of Photogram-
metry and Remote Sensing, 151:251–262, 2019.
doi:10.1016/j.isprsjprs.2019.03.017.

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1047

https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-145-2021
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-145-2021
https://doi.org/10.3390/s23052497
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-201-2021
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-201-2021
https://doi.org/10.1109/CVPR.2017.16
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413
https://doi.org/10.48550/arXiv.2104.05706
https://doi.org/10.48550/arXiv.1801.07829
https://doi.org/10.48550/arXiv.1801.07791
https://doi.org/10.1109/CVPR.2017.261
https://doi.org/10.1177/0278364918767506
https://doi.org/10.1016/j.autcon.2020.103144
https://www.structuremag.org/?p=558
https://doi.org/10.1177/14780771211029747
https://doi.org/10.3390/rs13030461
https://doi.org/10.1016/j.compenvurbsys.2015.01.005
https://doi.org/10.1016/j.isprsjprs.2019.03.017


Assessing the Viability of Robotic Disassembly of Building 
Components for Resource Recovery 

Christopher Rausch1*, Seungah Suh1, Nikiforos Repousis1, Nathan Titterington1, Han Nguyen1 

1 Digital Harvest Lab, Fariborz Maseeh Department of Civil, Architectural and Environmental Engineering,  
The University of Texas at Austin, Austin, TX, USA 

c.rausch@utexas.edu, sasuh@utexas.edu, nrepousis@utexas.edu, npt392@utexas.edu, han317734@utexas.edu 
 
Abstract 

The transition towards a circular economy will, in 
large part, necessitate the disassembly and recovery 
of components from existing building stock. Robotic 
disassembly has emerged as a technique in other (non-
building) industries as a method for efficient and 
scalable resource recovery. Since robotic disassembly 
has yet to achieve a similar level of maturity in the 
building industry, this paper presents an assessment 
framework towards this aim. This framework 
harmonizes the demonstrable capabilities of robotic 
systems (via literature synthesis and currently 
available hardware) with suitable deconstruction 
applications (using a case study of a large institutional 
building). The results yield strategic paths forward 
for enabling robotic disassembly of building 
components. 
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1 Introduction & Background 
With global raw material consumption set to double 

by 2060 [1], and the fact that the building sector is 
already the largest consumer of materials globally [2], it 
is imperative to find alternative ways to source and 
conserve materials for building construction. Recovery 
and reuse of building materials is an alternative to the 
current supply chain feedstock of new materials; for 
which disassembly is a fundamental operation to perform. 

In contrast to manual disassembly, automated 
disassembly has emerged as a viable method in many 
applications for its ability to increase disassembly 
efficiency, be implemented at scale, combat labour 
market concerns, minimize costs for retrieving high-
value items, and to perform complex disassembly 
processes (e.g., bespoke fixturing, multiple disassembly 
tools and very small geometric conditions and interfaces), 
among others [3]. Robotic disassembly has been 

successfully applied to numerous products including 
automotive (e.g., batteries, electronic control units, 
printed circuit boards, etc.), electronics (e.g., cell phones, 
circuit boards, LCD monitors, computers), and 
mechanical products (e.g., aerospace components, 
chassis, industrial manifolds, etc.) [4], [5]. The societal 
value created by robotic disassembly includes landfill 
diversion, material conservation for new products, 
creation of new local jobs [6], and functions as a key step 
in the growing the re-manufacturing industry.  

Robotic disassembly in the building sector has yet to 
emerge at a scale similar to consumer and industrial 
product sectors. If realized however, it can overcome 
several key impediments: deconstruction often has heavy 
impacts to humans for the noise, dust, vibration, 
contaminated materials (e.g., asbestos) and debris 
generated, safety concerns, labor shortages, and 
inefficient resource recovery rates [7].  While currently 
ambitious, the ability for robots to initiate or augment 
current disassembly activities presents significant 
opportunities. 

1.1 Robots for Demolition 
Single-task construction robots that are deployed for 

dismantling structures are called demolition robots [8]. 
They are “all-terrain” machinery with a relatively small 
size, which allows them to operate efficiently in the 
challenging conditions of a demolition site. Demolition 
robots are not yet autonomous, due to the complexity of 
their work environment. However, they can be guided 
with remote controls from on-site or off-site personnel 
[9]–[11]. This function is beneficial both from an 
economic and safety perspective. To be specific, 
demolition works are hazardous and highly repetitive, 
thus utilizing robots minimizes the risks for the personnel 
and at the same time increases productivity [9], [11], [12]. 

Demolition robots often have a hydraulic-powered 
arm mounted on wheels, crawlers, or tracks to which 
shears, breakers, crushers, drills, buckets, cutters, 
grapples, and even high-pressure water jets can be 
attached [8], [10]. The first one launched was by PE 
Holmgren and Rivteknik in Sweden, back in 1976. In 
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1981, Brokk produced the first mass-produced model 
(Brokk 250), which was remote-controlled. Brokk still 
continues to manufacture similar models. TopTec has 
specialized in demolition robots since the late 1980s. 
Aquajet and CONJET have developed models for
hydrodemolition since the late 1980s and early 1990s 
respectively. Husqvarna has also been offering various 
options for high ambient temperatures since 2009.

The presented demolition robots are some of the 
currently available products in the industry. However, the 
research is still ongoing, with the goal being to develop 
fully autonomous ones. This might be possible in the 
future as shown by the use of autonomous vehicles for 
excavation, transportation, and finish grading [8], [13]. 
Researchers are still exploring ways to make this happen 
by combining sensors and lasers with sophisticated 
algorithms [9], [12], [14]. The potential autonomy of 
demolition robots would greatly enhance the feasibility 
of deconstruction techniques, thereby facilitating the 
reuse of materials such as concrete [15].

2 Proposed Methodology
This paper assesses the viability of robotic 

disassembly of buildings as a method for supporting 
greater reuse and resource recovery of building 
components.

Figure 1. Active demolition project

The proposed methodology uses a three-tier 
assessment to determine the viability of robotic 
disassembly for building components (Figure 2). First, 
we review prevalent robotic disassembly applications 
and tasks (focusing outside the construction industry, 
where such work is more mature). Next, we assess 
current mobile robot hardware capabilities (using 
manufacturer catalogues) and software requirements 
specifically in the context of on-site selective 

disassembly of building components. Finally, we 
evaluate the viability of specific building components 
that could be subject to on-site robotic disassembly 
within a local geographic context (we analyse materials 
from an institutional building).

Figure 2. Methodology for assessing the viability 
of robotic disassembly of buildings

2.1 Robotic Disassembly Applications/Tasks
In their comprehensive review of robotic disassembly 

applications (which includes digital assistance e.g., 
sequence planning, decision making, vision systems, and 
physical assistance e.g., robotic systems and human-
robot collaboration), Poschmann et al [3] identified 41 
unique robotic disassembly applications. These include 
robotic disassembly of vehicles and electronics; of which, 
the majority of robotic tasks focus on handling, removing 
and separating components. Vision systems emerge as a 
key aspect of robotic disassembly for identifying target 
components, fasteners or conflicts along the disassembly 
path. Another key trend in robotic disassembly is the 
setup and deployment of entire cells which bring 
assemblies (e.g., waste electrical and electronic 
equipment) into a controlled environment to perform 
disassembly operations. It is typically in this context that 
human-robot-collaboration (HRC) systems are most 
prevalent. HRC is often favored even when a-priori 
geometric data is available for assemblies, since a key 
challenge centers on the uncertainty of other conditions 
(whether items are clean, have deviations, or if they are 
still in good working condition) [16]. Across existing 
applications of robotic disassembly, the following trends 
are noted in the literature: (a) maximizing the practical 
use of robots for disassembly occurs in HRC workflows 
[17], (b) the vast majority of applications (>90%) rely on 
accurate and up-to-date a-priori information on the 
assemblies, coupled with high-repetition across tasks [3], 
(c) robotic disassembly is optimized when planned 
upfront in product design [6], and (d) one of the most 
common robot tasks centers on removal of fasteners [18].

Reviewing the state of existing robotic disassembly 
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applications, the following insights can be made for 
application to building components. First, HRC is likely 
required, since buildings possess more variability than 
manufactured products, greater constraints for robots (in 
terms of reach and payload), and less up-to-date digital 
information (e.g., 3D models) for disassembly planning. 
Second, void of accurate a-priori information on 
buildings, additional considerations are required for to 
program sensors and to perform learning in order to aid 
in efficient disassembly operations.

2.2 Mobile Robot Hardware Considerations
Following the guidance for construction robots 

outlined in Dritsas et al. [19], mobility criteria are 
considered feasible when robot weight (including 
platform) is less than 1 ton (1000kg), and when the robot 
reach is equal to or greater than 1m (in the horizontal axis 
direction). From this criterion, we analysed off-the-shelf 
mobile robots (using a library outlined by RoboDK© 
software) which fall into the following categories: 5 DOF 
(degree of freedom) robots, 6 DOF robots, 7 DOF robots, 
Delta robots and Palletizing robots. Without delving into 
the feasible disassembly tasks that each of these robots 
(and robot typologies) can perform, we identified 352 
unique payload vs. reach datapoints from which to 
identify potential disassembly tasks (Figure 3). While the 
reach of each robot examined ranges up to 3280 mm, the 
use of a mobile platform can provide extended mobility 
on-site where needed for certain activities (e.g., mobile 
co-bots, compound robots).

Figure 3. Mobile robot hardware capability 
assessment of 352 unique off-the-shelf robots

The next step in assessing robot hardware capability 
for disassembly is understanding (classifying) which 
types of tasks can be used. Based on general robot motion 
primitives for construction tasks as outlined by [20] (e.g., 
grasping, cutting, drilling and screwing), we propose a 
series of distinct disassembly operations that these robot 
motion primitives can be used for, as outlined in Table 1. 
While these robot primitives require custom end-of-arm 
tooling and programming for unique disassembly 
operations, it can be shown that many primitives already 
used in non-disassembly operations can also be used 
specifically for disassembly operations. For instance, 
screwing primitive could be used for removal of fasteners 
with operations including de-screwing and unbolting.

Table 1. Robot motion primitives for disassembly

Robot Motion 
Primitives 

Robot Disassembly Operations

Grasping Holding/supporting/prying/pulling
Cutting Selective destruction for removal
Drilling Access for cutting tool

Screwing De-screwing, unbolting
(removing fasteners)

2.3 Software Architecture Considerations for 
Robotic Disassembly in Construction

Construction robots generally need to be highly 
adaptable and agile due to greater environmental 
uncertainty and complexity as compared with 
manufacturing applications [21]. This section discusses 
the requirements of the high-level decision-making layer 
of their software [22], and the first two workflows of 
common software programming: environment 
perception and planning [23], as shown in Figure 4. 

For environment perception, robots use various 
sensors such as cameras, laser scanners, and radio-
frequency identifiers (RFID) to collect data. Building 
information modeling (BIM) serves as an additional 
valuable information source for understanding the built 
environment [24]. Robots need to interpret, sense and 
localize based on collected data, detecting objects or 
estimating motions through deep-learning models or 
predefined algorithms, for instance [25]. [26] also has 
proposed a graph-based multi-modal sensor data 
integration approach to enhance real-time state and 
location awareness. Considering how unstructured and 
dynamic construction and demolition sites typically are, 
real-time sensing is crucial, accordingly heightening the 
need for efficient data processing models.

In terms of the planning and decision-making process, 
construction robots should efficiently update their pre-
trained and predetermined motion plans in response to 
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changing (and sometimes unknown) environments. 
Software requirements are influenced by various factors 
such as autonomy level, the number of tasks, and 
required functionalities. For example, fully autonomous 
robots, driven without human interventions, often rely on 
artificial intelligence [8], while non-autonomous robots, 
including pre-programmed and teleoperated robots, are 
operated by deterministic software modules or human 
operation. Regarding the number of tasks, multi-task 
robots demand higher flexibility and learning efficiency 
than single-task robots [27]. Likewise, robots require 
different system configurations based on task types (e.g., 
on-site monitoring, on-site assembly, off-site 
prefabrication) and mobility types (e.g., gantry systems, 
aerial, and terrestrial) [28]. Building disassembly tasks, 
in particular, present additional challenges due to 
significant variations in target components’ conditions, 
type, and geometry compared to the assembly stage [29]. 

To enhance the planning process, previous studies 
have introduced various solutions. BIM has been actively 
explored for task and motion planning, as shown in the 
studies utilizing it to provide detailed task descriptions, 
spatial information, and point calibration for tasks such 
as brick assembly, structural components assembly, and 
indoor wall painting [30]–[32].  Similarly, leveraging 
rich project information from BIM will assist in 
automating detailed disassembly sequence planning. A 
hierarchical reinforcement learning training strategy has 
been developed for more generalized control policies 
[33]. The efficiency of a demonstration-based motion 
sequence learning module in multi-task motion 
sequencing has also been demonstrated [27]. For the 
teleoperation of construction robots, a multi-user 
immersive environment has been explored for interaction 
during excavator teleoperation [34], and a brainwave-
based teleoperation system has been proposed for 
workers in limited movability environment [35]. 

 
Figure 4. Software hierarchy and programming 
workflow of construction robots 
 

2.4 Robotic Disassembly Feasibility Scale 
In light of the high-level hardware and software 

considerations for robotic disassembly of building 
components, we posit a Likert-based robot feasibility 
scale for assessing initial feasibility. This scale uses five 
unique categories: RF0 (no robot feasibility), RF1 
(limited robot feasibility, i.e., 1 task can be supported), 
RF2 (some robot feasibility, 2+ tasks can be supported), 
RF3 (strong robot feasibility, but requires human 
intervention or collaboration) and RF4 (strong robot 
feasibility, requiring little-to-no human support, e.g., a 
fully autonomous solution is probable). To help define 
each of these robot feasibility levels, we consider key 
constraints for disassembly tasks, drawing on experience 
the lead author has from industry work overseeing robot 
cells for fabrication in construction and experience with 
disassembly operations. The considered constraint 
categories are organized into those related to components 
(torque (T) and payload (P)), and those related to 
environment or hardware (reach (R) and spatial (S)), with 
examples defined below: 

• (T): rusted/broken fastener, stripped head on 
fastener, overtightened bolt 

• (R): end effector required location exceeds reach 
capability. For instance, commercial and residential 
buildings often have a floor-to-ceiling height 
between 8-12 feet (2.44 m to 3.66 m). In the case 
where a robot needs to reach the ceiling for 
disassembly, a custom platform might be required 
for current robots. 

• (P): object being moved is too heavy, and or task 
moment (force*distance) exceeds capacity 

• (S): robot arm and end effector hardware does not 
have ability to navigate in confined spaces 
adequately to perform disassembly task 

It is important to note that the proposed robot 
disassembly feasibility scale is based on a specific 
material in isolation from its overall quantity within a 
building. As such, determining overall viability of 
resource recovery potential for a given material may also 
need to account for a minimum threshold of quantity (e.g., 
for supply-demand mapping of specific reuse items).   
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Figure 5. Overview of specific robotic 
disassembly constraints for resource recovery of 
building materials

3 Case Study

3.1 Background
The Erwin Center is an events center located in 

Austin, Texas, built in 1977, and is comprised of a steel-
framed structure, with a precast concrete panel enclosure 
(Figure 6). In addition to its structure, there is a wide 
range of materials and components which can be 
potentially reused including doors, windows, chairs, 
fixtures (electrical, plumbing, mechanical, HVAC), 
gypsum board, electrical equipment, etc. It underwent 
deconstruction and demolition starting in 2023, during 
which time, the authors participated in a building 
material reuse audit with a third-party consultant. 

As part of conducting this audit, priority was given to 
items which were found to have the highest potential for 
reuse based on local market factors, quantity and 
condition of components. Examples of the highest reuse 
valued materials include interior doors, ceiling tiles, 
carpet floor tiles, cabinets, mechanical and electrical 
equipment, light fixtures, network infrastructure and 
newer-condition appliances. Additionally, during the 
demolition phase, selective demolition and disassembly 
were performed to separate and sort many building 
materials for the purpose of recycling, including 
auditorium seating, piping, conduit, plumbing fixtures, 
and light gage wall framing.

Figure 6. Aerial view of the Erwin Center

3.2 Robotic Disassembly Assessment
The authors assessed robotic disassembly feasibility 

of specific materials using the proposed framework, 
identifying potential disassembly operations, known 
constraints and an estimate of overall quantities (we 
adopted a simple low (0-50 items), medium (50-500 
items), and high (500+ items) approach, where overall 
robot feasibility was best for a high quantity of materials 
recovered since the return on investment of a robotic 
system is highest where it can be deployed in a highly-
scalable manner). In cases where there is high value for 
specific material recovery but existing in a low quantity, 
it is assumed that manual (non-robotic) extraction is more 
cost-effective and preferred. The result of this overall 
assessment is shown in Table 2, where the best candidate 
materials for robotic disassembly are highlighted in green, 
candidates with moderate potential are shown in yellow, 
and candidates with poor potential are shown in red.

Table 2. Assessment of robotic disassembly feasibility

Salvage 
Component

Disassembly 
Operations

RF* Known 
constraints**

Quantity

Interior doors De-screwing, 
supporting/ 
handling, 
pulling

RF2 T, P: Hollow 
core: 25lbs, 
Solid core: 50lbs

M

Exterior door De-screwing, 
prying, 
supporting

RF2 T, R: 80" height 
to upper screws, 
P: 100lbs

M

Decorative 
lighting

De-screwing, 
prying, 
supporting

RF2 T, R: ceiling 
height (8-12')

H

Carpet tile Handling, 
prying

RF3 T H

Ceiling tile Handling RF3 R: ceiling height 
(8-12'), S: 
framing for tiles

H

Cabinets De-screwing, 
cutting, 
supporting

RF2 T, P: 200+lbs, S: 
cabinet 
geometry

M
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Sink top with 
fixtures intact

Cutting RF1 S: sink geometry M

Light fixtures Supporting RF0 S: ceiling system 
geometry

H

2x4 wood Cutting, De-
screwing

RF2 T, P: 20lbs H

Mechanical 
pump

De-screwing, 
supporting

RF0 T, P: >500lbs L

Motors De-screwing, 
supporting

RF0 T, P: >500lbs M

Controllers De-screwing, 
supporting

RF0 T M

Transformers De-screwing, 
supporting

RF0 T, P: >500lbs M

Plumbing 
fixtures

Cutting RF1 S: plumbing 
geometry

H

Fire doors De-screwing, 
prying, 
supporting

RF2 T, P: 100lbs M

Electrical 
panel box

De-screwing, 
handling

RF1 T, S: panel 
geometry

M

Exit signs De-screwing, 
handling

RF1 R: ceiling height 
(8-12')

M

Wood fibre 
panel

Handling, 
prying

RF1 T, R: ceiling 
height (30'+)

H

Auditorium 
seating

De-screwing RF1 T H

*RF = Robot Feasibility Factor
**T is listed generally for a range of conditions included 
stripped or rusted fastener, unknown tactile movements, etc.

4 Discussion
Based on the robotic disassembly feasibility 

assessment, carpet tiles, ceiling tiles and auditorium 
seating were found to have the best overall potential for 
resource recovery supported by robots (Figure 7). Of the 
building components reviewed, ceiling tiles and carpet 
tiles had the highest robot feasibility (RF) factor. Both of 
these materials incorporate achievable disassembly 
operations as they are predominately gravity-installed 
(ceiling tiles being supported by a supporting frame, and 
carpet tiles being mounted using a special removable 
double-sided tape). Moreover, the vast majority of robots 
reviewed in Figure 3 can be used to support the removal 
because these components do not have a notable payload 
constraint: ceiling tiles are 2.2kg and carpet tiles are 
0.63kg. The quantity of both materials also plays a 
significant role in its robotic disassembly feasibility 
(there were approximately 22,200 carpet tiles and 41,000 
ceiling tiles). Although both building components are 
increasingly being supported by take-back programs 
(either through the original manufacturer or by third 
parties), current programs typically require the owner or 
onsite contractor to palletize tiles (which includes the 
labor for removal and stacking). This implies that robotic 
disassembly can even contribute to promoting readily 

available resource recovery programs by reducing the 
need for substantial manual disassembly.

The third building component identified as being 
viable for robotic disassembly was auditorium seating. 
While this component had a very low robotic feasibility 
(RF) factor, and despite its potential for reuse being low 
(due to poor item quality), extraction of auditorium 
seating was found to be a significant source of manual 
labor during demolition. Given the necessity to recycle 
the steel in the seating (i.e., many local jurisdictions 
require a minimum waste diversion rate for C&D 
projects), during demolition, 100 workers were brought 
on site for 5 continuous days to remove fasteners and 
grind the base connection of each seat. The labor cost for 
this is estimated at USD $100,000 (based on local market 
labor rate and contractor markup fees). In this case, the 
use of a robotic system to support disassembly not only 
could be used to address the high cost of fastener removal, 
but also reduces safety risk on site for the contractor.

The study demonstrated the potential of the proposed 
viability assessment framework, grounded in existing 
research and industry resources, to identify the feasibility 
of robotic disassembly and the most suitable building 
components. The framework was initially applied to one 
institutional building but can be utilized to evaluate the 
various other building components with different 
contexts.

Figure 7. Carpet tiles, ceiling tiles and auditorium 
seating
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5 Conclusions 
In summary, this paper explored the potential to 

incorporate robots to support the resource recovery of 
building materials at their end of life through disassembly. 
Current approaches for resource recovery in the 
construction industry are driven by either manual labor 
tasks (which include the manual operation of various 
mechanical equipment). Other industries are beginning to 
see the prevalence of robots to aid in disassembly 
operations, however the same level of maturity is not 
currently seen in the construction industry. To fill this 
gap, we proposed a conceptual framework that looks at 
broad applications for disassembly, understanding both 
hardware and software requirements and finally looking 
at the specific constraints posed by different building 
material removal processes. Since the purpose of this 
framework was only to assess high-level feasibility for 
robotic resource recovery, additional design and 
engineering are required to develop robotic systems. A 
case study of a large institutional building found that 
three potential building components could be supported 
by robots for disassembly tasks. In all three cases, manual 
labor was found to be the primary driver for adopting 
robotic support. 

5.1 Recommendations 
A challenge for robotic disassembly in the 

construction industry is that compared with other 
applications (e.g., consumer electronics, automotive 
assemblies, batteries, etc.) the quantity of like-products is 
not as vast and given the physical size and bespoke nature 
of construction techniques, geometric variability can be 
more prolific. As a result, developing fully robotic 
solutions for disassembly of building components is 
likely too prohibitive to pursue from an economic and 
technical standpoint. In fact, fully robotic disassembly 
approaches are also considered to be prohibitive in many 
other manufactured product applications [17]. For this 
reason, human-robot collaboration (i.e., co-bot) solutions 
are often pursued as a pragmatic approach for many 
disassembly applications. Based on our assessment of 
robotic disassembly for buildings, we also recommend 
such collaborative approach. While there are many 
potential applications of robots to aid in disassembly 
planning, it is necessary to consider the practical 
constraints regarding robot torque, reach, payload and 
spatial maneuverability when selecting and designing 
systems. A key limitation in this paper was the robot 
feasibility based on quantity was only based on a single 
building. Given the case study explored was a very large 
structure, with select building materials existing in large 
quantities, one could potentially argue that justification 
of a new robot for disassembly support could be based on 
this building’s material alone. While this of course does 

not factor in numerous prototyping and deployment 
feedback, we recommend that surveying building 
material quantities should be done across a wide range of 
building stock rather than exploring a single building at 
its end of life. Such review will necessitate that specific 
building materials have a high degree of standardization 
in order for the development of robotic systems to be 
used across multiple buildings. Other practical 
considerations need to be factored into the deployment of 
robotic disassembly solutions which we did not explicitly 
cover such as how robots can navigate in 
dynamic/cluttered environments, that need to be 
considered in a full-scale solution. 
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Abstract 
48% of total energy consumption in Europe is used in 
buildings and homes. These are therefore accountable 
for 35% of Europe's total CO2 emissions. 
To solve this problem in a sustainable way, the 
building stock would have to be thermally 
refurbished further. Currently, the annual thermal 
refurbishment rate is only 1% of the total building 
stock, but the sector is already at its production limit. 
One reason for this is the ongoing shortage of skilled 
labour. Robotic systems can help here. In 
collaboration with Fundermax GmbH, St. Veit/Glan, 
Austria, and KUKA AG, Augsburg, a concept was 
developed for a (semi-) automated assembly platform 
that relieves workers of the task of assembling heavy 
façade panels. Systems that have already been 
developed are dependent on a complicated setup. This 
makes it very difficult to use these systems on the 
construction site.  
This research project investigates how existing 
processes can be expanded so that the threshold for 
using robotic systems on the construction site can be 
lowered further. To this end, this work analyses 
existing processes, derives a concept and then 
evaluates it using simulations.
Keywords –
Façade robot; Robotic refurbishment; Automation

1 Introduction
As a result of the energy transition, the topic of 

energy-efficient refurbishment of existing buildings is 
moving further into the focus of public discussion. 
Looking at the potential savings, the building sector 
accounts for 35% of Europe's CO2 requirements. 
However, only just under 1% of the building stock is 
currently thermally refurbished each year, although a 
gradual increase in the refurbishment rate to 4% could 
save 14.4% of Europe's gas demand by 2025 [1].

However, modernisation is a cost-intensive measure 
[1]. There are various options for the subsequent thermal 

modernisation of a façade [2]. Solutions for the 
automated installation of ventilated rainscreen facades 
are being researched as part of the Enable Refurbishment 
4.0 research project. Ventilated rainscreen facades are 
based on a combination of supporting structure, 
insulation and rain protection/optical covering [3]. The 
first step is to examine the extent to which the external 
façade panels, which serve as visual and rain protection 
[2] can be installed (semi-) automatically on the façade.

The individual façade panels, though, weigh up to 
105 kg in some cases (see 2.1). Scaffolding currently has 
to be erected for the installation of the façade elements. 
The façade elements are then lifted to their destination by 
specialised personnel. The panels must be positioned 
very precisely, as deviations are easily recognisable in
the later appearance. Assembly is currently still carried 
out exclusively by hand.

Working on the façade in particular involves a high 
risk for construction site personnel. Risks include: 
Danger of falling from great heights, increased risk of 
injury due to lifting heavy loads, changing weather 
conditions. Automation can minimise these risks [4] and 
counteract the ongoing shortage of skilled workers [5].

Automated activities in the area of façades include 
building maintenance (see 2.2). They can perform 
valuable work, particularly when cleaning large façades. 
Developed systems are guided to the desired position by 
a cable system, among other things. The system for this, 
however, requires a complex installation [4].

As part of the Enable Sanierung 4.0 research project, 
an alternative approach is being developed with the aim 
of enabling the (semi-) automated assembly of façade 
panels. The concept developed utilises a tower crane as a 
lifting device, unlike existing solutions such as the 
Hephaestus CDPR prototype [6]. The project is based on 
a patented gyroscope development, which was developed 
at the Centre Construction Robotics, Aachen, Germany
[7]. The process is exemplary for a range of activities in 
the field of façade modernisation and can be applied to 
other fields.
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In the first step of this work, existing research work 
and its limitations are presented and the reader is given 
an insight into the functional structure of ventilated 
rainscreen facades. The requirements and the developed 
concept are then explained and subjected to an initial 
simulation using Gazebo. The results provide an initial 
assessment of the extent to which the concept can be 
implemented in a prototype.

2 State of the art

2.1 Conventional montage of the façade-
system

Figure 1. 1) Bracket for fastening the rail 2) T-
shaped rail is screwed to the brackets 3) Fastened 
T-shaped rail 4) Rock wool is inserted into the 
intermediate areas 5) Visible panel is connected to 
the T-shaped rail (fastening method: screws, 
rivets, adhesive)

A variety of methods are available for the 
modernisation of façades [2]. This paper only considers 
the ventilated rainscreen facade system. The system can 
react flexibly to the respective requirements, e.g. 
insulation thickness [8]. This is a three-stage system 
consisting of a support layer, insulation layer and 
weathering cladding [3].

The façade system used in the research project is 
described below (see Figure 1):

• Aluminium brackets are attached to a structural 
load-bearing layer (e.g. concrete or stone) at a fixed 
grid spacing (see Figure 1. point 1)

• The insulation can now be applied to the façade (see
Figure 1. point 4). This can be done using a bolt 
setting tool, for instance

• An aluminium T-shaped rail is attached to the 
brackets. The rails can be used to level out any 
unevenness in the façade. The aim is to create a flat 

surface for attaching the cover panels [9] (see
Figure 1. point 2)

• The façade panels are then attached to the T-shaped 
rails. Common methods of attaching the façade 
panels to the T-shaped rails are stapling, nailing, 
screwing and bonding [10]. In order to achieve a 
clean joint pattern, the components must be 
installed precisely. The required tolerance is an 
accuracy of ±20% of the joint width [11]. The 
weight of the façade panels is heavily dependent on 
the actual size of the components. Due to the 
relatively high density of 1450 kg/m3 of the façade 
panels, a common format of (280cm x 130cm) 
results in a weight of 105kg (see Figure 1. point 5)

2.2 Existing façade robots
The field of façade robotics covers a wide range of 

different tasks. These range from inspection tasks to 
assembly works. In general, the following four functional 
principles can be derived according to Kepa Iturralde 
[12].

2.2.1 Cable-guided robots 

A cable-guided parallel robot is guided along the 
façade using actuators. An example of this is the 
Hephaestus Robot (see Figure 2). The cable robot, 
developed for the assembly of façade elements, has a 
high load-bearing capacity. However, it requires a 
complex set-up, as the developers highlight in [4].The 
time required to set up the system is currently the biggest 
obstacle to market readiness.

Graphic derived from: [6]

Figure 2. 1) Façade structure 2, 5) Tension point 
assemblies guide the cable system 3) Platform 
connected by the cable system 4) Cables for lifting 
the platform [6]

2.2.2 Crane-guided systems

Powerful lifting machines lift the robot to the desired 
position on the façade [12]. As part of the research project 
to develop a cable robot for the installation of curtain 
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walls. Tests have shown that the developed cable robot 
has a positional deviation of 22 mm. However, this varied 
within the robot's working range. By recording the 
position with a total station, the error could be further 
reduced [4]. 

2.2.3 Cartesian moving systems 

An assembly platform is lifted to the desired position 
using a linear system installed on the façade. Vertical 
overhead cranes are included in this group. 

2.2.4 Other systems 

This category includes systems and individual 
solutions [12]. One example is the wall-climbing robot 
developed, which can apply a maximum load of 35 kg 
using an electrically activated adhesive [13]. 

2.2.5 Conclusion 

An overview of the solutions developed for façade 
robot systems reveals limitations in the handling of heavy 
panel components. The field of façade robotics covers a 
wide range of different tasks. These range from 
inspection tasks to assembly works.  

The cable-guided robots in particular require a 
particularly complex assembly. Restrictions in the 
accessibility of the platform also complicate its use in 
existing building modernization [4]. The challenges 
mentioned above emphasize the need for further research 
and development in this area in order to develop more 
efficient and practicable solutions. 

3 Robot-Assisted montage approach 

3.1 Process requirements 
The most important aspects resulting from the 

catalogue of requirements developed are explained in the 
following chapter. 

3.1.1 Lifting devices 

The maximum weight of the platform is determined 
by the permissible lifting capacity of the crane. A tower 
crane (L1-24) from Liebherr-Components Biberach 
GmbH, Biberach an der Riß, Deutschland, is used to lift 
the façade plattfom. With a maximum outreach of 25 
metres, the crane can lift 950 kg at the top. The load is 
picked up via a crane hook block. The advantage of the 
crane is its quick assembly on site and the general 
availability of finished crane systems [14]. 

The dynamic forces and the inertia properties of the 
construction crane generate oscillations in the vertical 
direction when a load is moved. The oscillation varies 
depending on the weight, wind, trolley position and 
acceleration (see 4.1). 
 

3.1.2 Rough and fine positioning 

The principles of rough and fine positioning should 
serve as the basis for the development of the façade robot, 
which was already developed in previous project at the 
Centre Construction Robotics, Aachen, Germany. 
According to that the platform should first be navigated 
to its rough position on the façade. Once this predefined 
position has been reached, the KUKA robot (KR 10) 
should carry out fine positioning and place the façade 
panel at its destination. The integrated force-torque 
sensor can help to find the desired alignment. The 
selected robot initially limits the panel weight to less than 
10 kg. 

3.1.3 Assembly process of the panels 

For an initial test of the façade robot, a fixed panel 
format of horizontal: 125cm vertical: 62.5cm was 
selected. The façade element was then glued to the T-
shaped rail. The advantage of gluing as a fastening 
method is that the panels can be prepared in advance with 
the adhesive and can be applied directly to the T-shaped 
rails by the robot without any further intermediate step. 
The fastening method involves two adhesives. A double-
sided adhesive tape from Innotec GmbH & Co. KG is 
applied in such a way that it is later centred on the T-
shaped rails. An even strip of silicone adhesive is applied 
to each side. The purpose of the adhesive tape is to hold 
the façade panel in position until the silicone adhesive 
has cured. The bonding process requires compliance with 
fixed process boundary conditions such as temperature, 
humidity and surface cleanliness [8]. 

With a centre-to-centre distance of the T-shaped rails 
of 62.5 cm, each façade panel rests on three T-shaped 
rails.  This results in a shear load (0.28 N/mm²) of 6,300 
N and a breaking load (0.28 N/mm²) of 8,640 N for each 
façade panel [15]. In addition, the manufacturer of the 
façade system specifies a permissible horizontal 
compressive force of 2.0 kN/m², which results in a 
maximum load limit per façade panel of 1.5 kN [8]. 
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3.2 Concept description

Figure 3. Display of the degrees of freedom of the 
robotic system. The axes that are greyed out 
cannot be controlled. The development is based 
on the patent [7]

The following section explains the overall system 
concept and how it fulfils its function of façade panel 
positioning under these constraints. The basic elements 
of the system and their task as well as a description of the 
assembly process are then presented.

3.2.1 General parameters 

Figure 4. Function diagram of the facade robot. 
1) T-profile rail 2) Upper gripper assembly 
3) End effector 4) Lower vacuum grippers 
5) Frame of the coarse positioning unit 6) KUKA
robot (KR 10) 7) Adjustable load fastening point
8) Rough-positioning-unit 9) Fine-positioning-
unit

When positioning an object in space using a 
construction site crane alone, all six degrees of freedom 
are in principle indeterminate with regard to the accuracy 
required here, as will be explained below.  The concept 
of how these degrees of freedom are controlled is then 
presented. The crane cable results in two pendulum axes, 
which results in an approximate linear degree of freedom 
in the X and Y directions for the object on the crane hook. 
In addition, high loads result in spring pendulum-like 
movements in the Z direction (see Figure 4). A 
construction site crane controls the Z-position of the load 
basically by the length of the crane rope (see Figure 3),
but as described in the tests in (see 4.1), it was shown that 
this positioning in the Z-direction does not meet the 
requirements defined by the process. The vibration 
measurements showed that a sinusoidal carrier frequency 
is found here, which is overlaid by smaller vibrations that 
represent a disturbance variable of the positioning. Initial 
measurements showed that a sinusoidal beam frequency 
is present here, which is superimposed by smaller 
oscillations (see 4.1)

There is also a rotational degree of freedom around 
the Z axis and minor influences due to rotational 
movements around the X axis and the Y axis, resulting 
from the unguided pendulum motion of the mass, which 
are not considered further in the following analysis due 
to their minor influence on positioning (see Figure 3). To 
summarise, there are three linear degrees of freedom and 
one rotational degree of freedom that need to be 
controlled.

One of the main aspects of this project is to utilise 
existing structures of the façade in order to reduce the 
number of degrees of freedom and the complexity of the 
task while maintaining the required high positioning 
accuracy. To this end, the T-shaped rails used in this 
façade system are utilised as linear guides. By means of 
two sliding grippers (see Figure 4. point 2), the entire 
rough positioning unit slides along the T-shaped rails in 
the Z direction, which are already firmly bolted to the 
wall, while the weight is still almost entirely taken by the 
crane.

This concept determines all open degrees of freedom 
with the exception of the translational degree of freedom 
in the Z direction, which is affected by the sinusoidal 
oscillation of the crane. This disturbance is detected and 
compensated for with high positioning accuracy by the 
KUKA robot (KR 10) and a specially developed end 
effector.

By determining the degrees of freedom in this way, 
the weight force and thus the main load of the system 
continues to be borne by the crane and only lateral forces 
caused by wind or vibration superimposition are 
absorbed by the T-shaped rails.
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3.2.2 General design

The following section explains the individual 
assemblies and how they work. 

Upper grippers: The main task of this assembly is to 
secure the rough positioning unit to the T-shaped rails 
while maintaining the mobility of the entire system with 
low friction in the Z direction in order to minimise the 
load caused by the weight of the system on the profile 
rails. This assembly also ensures lateral guidance of the 
system on the façade. (Figure 4. Point 2)

Vacuum grippers: This assembly uses vacuum 
grippers to ensure permanent contact with the already 
installed elements of the lower row of façades during the 
installation process, whereby it should be noted that the 
following façade elements are always installed in the 
positive Z direction. It is installed in the rough-
positioning-unit so that it can move in the Z direction by 
means of a spindle with a movement thread, thus 
allowing the crane to oscillate periodically without losing 
contact with the wall surface and still remaining 
controllable (Figure 4. Point 4). By controlling the torque 
of the stepper motor that drives the linear module, the 
weight of the gripper is compensated as far as possible so 
that the force required to move the carriage along the 
linear guide is minimised.

Adjustable load fastening point: The adjustable 
load fastening point of the system is actively controllable 
along the X and Y axes and, in combination with a force 
sensor at the contact points with the façade and an 
inclination sensor on the outer frame of the system with 
the façade in the form of a closed control loop, ensures 
that any load on the substructure that could occur due to 
uneven loading or dynamic forces is minimised by 
moving the adjustable load fastening point so that the 
entire system is aligned parallel to the façade and the 
forces in the contact points are minimised. (Figure 4.
Point 7).

Robot: The KUKA robot (KR 10) has the task of 
compensating for the movement of the permanent spring-
pendulum-shaped oscillation of the crane and installing 
the façade elements at the desired location with the 
required accuracy. (Figure 4. Point 6)

3.2.3 Process description

For the process presented here, it is necessary that the 
substructure of brackets and aluminium T-shaped rails is 
already attached to the wall. Furthermore, at this stage of 
the project, it is necessary to assemble both the bottom 
row and a lateral vertical row of façade elements in 
advance, which serves as a reference point for the system 
shown here and as the first contact point for the two lower 
vacuum grippers (see Figure 5).

Figure 5. Flowchart of the installation process

The assembly process begins with the movement of 
the rough positioning unit by the construction site crane 
to the starting position. The façade robot is guided to the 
starting position by the site personnel. To ensure the 
lowest possible load on the substructure, the entire rough 
positioning unit is aligned using the adjustable load 
fastening point, as shown in the module description.
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The first contact with the façade substructure is 
established by aligning and closing the upper grippers. 
The lower vacuum grippers are then activated, thus 
reaching the starting position for assembly. Next, the
KUKA robot (KR 10) starts the assembly process of an 
element. As soon as this is complete, first one vacuum 
gripper of the lower assembly is released and moves 
upwards in the Z direction by means of a linear guide 
within the rough positioning unit, while the other gripper 
continues to ensure a fixed connection to the façade and 
the rough positioning unit is connected to the wall at at 
least three points at all times in order to minimise process 
disruptions caused by influences such as wind. When the 
suction pad has reached its upper end position, it is 
reactivated and the second suction pad moves upwards in 
the same way as the first. The entire rough positioning 
unit is now moved up one element height by the 
construction crane and the lower vacuum pads can 
remain attached to the façade thanks to the linear guide, 
so that the fine positioning unit can continue the 
assembly process with a new façade element.

4 Simulation
The developed rough-positioning-unit now needs to 

be tested for functionality. For this purpose, the 
developed system was implemented in ROS and Gazebo.
Gazebo [16] is a powerful physics simulator that can be 
used in combination with ROS (Robot Operation System). 
ROS is a framework in which complex and robust robot 
behaviours can be implemented [17]. In ROS, the 
individual axes were virtually equipped with force and 
acceleration sensors. This allows the corresponding data 
to be recorded in the Gazebo simulation for later 
evaluation and prototype design. It was also possible to 
include the recorded oscillation data from the preliminary 
tests in the simulation

4.1 Recording the oscillation amplitude

Figure 6. Results of the vibration tests. The 
vertical movement was recorded via the distance 
sensor. The frequency was recorded via a video 
capturing

In order to be able to estimate the oscillation 
amplitude of the platform for the simulation, a weight of 
approx. 1000 kg was attached to the construction crane. 
A distance sensor was attached under the component, 
which measured the vertical movement of the component 
over time (see Figure 7 and ). It can be seen that the 
component has a oscillation amplitude of 50 mm and an 
oscillation frequency of approx. 0.5 Hz.

Figure 7. 1) Component weight ~1000 kg 2) 
Distance sensor, which measures the distance to 
the floor, to record the oscillation

4.2 Implementation
A URDF file (Universal Robot Description Format) 

was then generated from the CAD model. The properties 
of the components and joints can be precisely defined. In 
addition, the required sensors for recording the process 
forces can already be implemented [18]. The joints were 
implemented in ROS with the help of ros_control.

Gazebo also enables the implementation of vacuum 
grippers [19]. The two surfaces of the suction pads could 
be provided with the corresponding function in the 
URDF file.

For the simulation, the ventilated rainscreen facades 
also had to be integrated into the simulation environment.
For this purpose, the original dimensions of the T-shaped 
rails and façade panels used in the project were modelled. 
The façade panels were installed according to the 
specified dimensions. The façade system was 
successfully integrated into the simulation environment.
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4.3 Simulation results
The simulation was performed using the internal 

physics engine of the Gazebo simulation software. The 
interpretation of these results is therefore purely 
indicative of the system design specification. The results 
of the simulation provide an initial assessment of the 
system. The following issues were identified by the 
simulation:

Compensation of crane oscillations: A key aspect is 
the ability of the system to compensate for the 
oscillations in the Z direction caused by the crane. Both 
gripping systems were able to keep the rough positioning 
unit constantly controlled. Due to the linear guide on the 
vacuum gripper, the forces were not transferred to the 
gripping system (see Figure 8. 1) Placement of the 
vacuum gripper 2) Stabilisation of the platform 3) 
Simulation of the platform with the determined 
oscillation amplitude. Point 1). As assumed, it can be 
seen that the torque control can compensate for the static 
weight force and the remaining forces are absorbed by 
the facade. 

Precise positioning of the vacuum grippers: The 
precision of the system in positioning the vacuum 
grippers is a critical quality factor (see Figure 8. 1) 
Placement of the vacuum gripper 2) Stabilisation of the 
platform 3) Simulation of the platform with the 
determined oscillation amplitude. Point  3). The vacuum 
grippers could be released individually from the wall and 
moved to the next position accordingly. It is important to 
precisely coordinate the vacuum activation and 
movement of the motors so that the grippers do not shear 
off the façade panel in an uncontrolled movement.

Gripping the T-shaped rails: Gripping the T-shaped 
rails is a complex challenge. The grippers must be moved 
precisely to the target position and then closed firmly so 
that the subsequent movement process along the 
T-shaped rail runs smoothly. In the simulation, the 
T-shaped rails were successfully gripped and the rough 
positioning unit was guided along them. 

Balance control using the adjustable load 
fastening point: The simulation showed that the 

adjustable load fastening point was able to successfully 
shift the centre of mass relative to the attachment point as 
described in chapter 3.2.2 in order to minimise the load 
on the gripping systems.

5 Conclusion and future work
The results achieved in this study show promising 

results. The solution approach of vertical motion 
decoupling clearly stands out from previously developed 
systems and offers a simplification of existing cable 
robots. In further steps, the results of the simulation can 
be analysed in greater depth in a future publication of the 
project results. This becomes relevant when the right 
components are assembled for the first prototype. 

Particularly in the field of building envelope 
renovation, significant growth potential is forecast for the 
coming years [20], and the (semi-) automated solutions 
developed could represent an important addition to the 
construction industry, which is still heavily characterised 
by manual labour [21].

The next steps in this project will be
• Incorporating the simulation results into the 

prototype 
• Simplification of the gripper kinematics 
• Coordination of the individual subsystems of the 

platform, because only if the systems such as the 
vacuum gripper and actuators work in coordination 
with each other can it be guaranteed that the 
platform moves safely on the façade

• Construction of a first prototype 
In addition to the development of the rough positioning, 
the development of the fine positioning is crucial. As 
described under (see chapter 3.2.3), the Kuka robot 
should detect and compensate for vertical movements 
and positioning inaccuracies with the help of force-
torque sensors. Accordingly, an end effector must be 
developed for the robot, which grips the façade panels 
and brings them safely to the façade while working in 
coordination with the robot controller.

Figure 8. 1) Placement of the vacuum gripper 2) Stabilisation of the platform 3) Simulation of the platform 
with the determined oscillation amplitude
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Abstract -
In modern construction sites, tower cranes play a crucial

role but often rely on multiple human operators. Despite
the advancements of the Construction 4.0 era, a compre-
hensive framework for automated tower crane operations is
currently lacking. This study proposes a framework that in-
tegrates a real-scaled construction site and tower crane into
a physics-based simulation in ROS (robot operating system)
framework to enable collision-free motion planning and con-
trol. Specifically, we develop time-varying linear quadratic
regulators (LQR) for trolley and jib control while employing
a proportion-integrated-derivative (PID) method for hoist-
ing control. Additionally, we utilise 5th-order quintic spline
trajectories to plan the desired pose of the payload, reducing
acceleration discontinuities. The framework’s effectiveness
is validated through simulations of a real-scaled tower crane
and construction site equipped with LiDAR sensors. The
results demonstrate that higher-order trajectories effectively
minimise oscillations in unactuated systems. Our scalable
framework holds promise for real-scale operations in the field
of tower crane automation.

Keywords -
Tower Cranes; Automation in Construction Sites; Time-

varying LQR; Robot Operating System (ROS); Underactu-
ated Systems

1 Introduction

Tower cranes (TCs) are indispensable in modern con-
struction sites, serving vital purposes such as lifting and
handling heavy construction materials, precise placement
of concrete, installation of essential equipment and ma-
chinery, and efficient site logistics during construction
processes. In addition, TCs are valuable in various high-
hazard environments, such as shipyards, nuclear plants,
and factory floors, where they facilitate the safe transporta-

tion of high-risk materials. Efficient operation of TCs in
construction and logistics sites minimises operation time
per load and ensures high safety standards for workers
and operators. In this sense, TCs automation and control
can enhance efficiency, improve safety, and optimise pro-
ductivity in construction and logistic sites where multiple
TCs are also considered. Automating the TC’s operations
can minimise human error, precise load control, real-time
monitoring, streamline operations, and reduce risks.

In practice, most industrial TCs are manually controlled
and still rely on various human operators (TC operator, sig-
nalperson and lifting supervisor) despite the availability
of advanced sensing and monitoring systems. The on-
site working environment poses many uncertainties and
variations, challenging efficient TC operations. Failure
in TC operation control can lead to material damage and
pose risks to on-site workers, with an uncertain amount
of time waste and operation cost [1, 2]. Generally, grip-
ping the load, lifting, transporting from one location to
another, lowering, and releasing are the main TC oper-
ations [3]. The most time-consuming operation is load
transport between two locations, and it requires a skilled
operator to minimise the swings and collision of the load
during transportation. Automation of TC operations has
been a research interest in the construction industry to im-
prove efficiency, mitigate risks, and decrease dependence
on human operators.

Numerous studies have delved into various aspects of
automated tower crane control [4, 5, 6, 7, 8, 9]. An adap-
tive control method for tower cranes was developed by
[10, 11, 12, 13] to improve outdoor efficiency by address-
ing parameter uncertainties and disturbances. The robust
control methods for controlling jib, trolley, and hoisting of
TC were developed by [8, 14]. Similarly, the energy-based
methods to develop a regulator controller for achieving the
desired state while minimising the swings in hanging pay-
load can be found in [13, 15, 16] In a separate study, He et
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al. [17] proposed an anti-collision system for tower cranes
that considers the lifting of heavy objects, specifically fo-
cusing on the dangerous area concept of cylindrical heavy
objects to simulate real working situations. For moni-
toring and planning the collision-free lifting operations,
[18, 19, 20, 21, 22] proposed various path planning meth-
ods using CAD and BIM information, specifically focusing
on time efficient and obstacle avoidance while transporting
or lifting from blind spot of crane operators.

The application of computer-aided design and mod-
elling in tower crane operations has facilitated conve-
nient modelling, simulation, and control via physics-based
simulations. This approach enhances tower cranes’ un-
derstanding and motion analysis in full-scale construc-
tion sites. Kang and Miranda [23] developed a physics-
based dynamic model of TCs to improve the understanding
of crane dynamics and develop computer-aided training
methods for crane operators to reduce accidents and en-
hance overall safety.

In this study, a physics-based simulation module for
a tower crane situated in a full-scale construction site
was developed utilising the ROS framework. Subse-
quently, a time-variant Linear Quadratic Regulator (LQR)
control system was proposed to govern the trolley and
jib movements, while a Proportional-Integral-Derivative
(PID) method was employed for controlling the hoisting
action. 5th-order quintic spline trajectories were utilised
to facilitate planning the payload’s desired pose and reduce
acceleration discontinuities. While previous studies have
explored various aspects of tower crane automation, our
work presents a comprehensive framework that addresses
collision-free motion planning, trajectory planning, and
control algorithms.

2 Why ROS?
Robot Operating System (ROS) is a popular open-

source framework for developing robotic systems. It pro-
vides a collection of libraries and tools to help developers
create complex robotic systems. ROS has a wide range of
capabilities, including:

• Hardware Abstraction: ROS provides a hardware
abstraction layer that allows one to write code that
can run on different types of robots with minimum
modifications.

• Message Parsing: ROS provides a message-parsing
system that allows different parts of a robot system
to communicate. This makes it easy to develop mod-
ular systems where various components can be de-
veloped independently. This capability is scalable
to multi-agent configurations, where each agent can
communicate with the master or other agent.

• Simulation: It provides a simulation environment
called Gazebo [24] that allows one to test their code
in a virtual environment before deploying it on a real
robot. Gazebo can simulate the dynamics of a robot,
including the effects of gravity, friction, and other
physical forces like wind and magnetic field. Gazebo
supports various sensors, including cameras, lidars,
sonars, and IMU. This makes it possible to integrate
sensor data into the control algorithms of a robot for
offline development, testing, and validation.

• Scalability: ROS is highly scalable, which means it
can be used to develop robotic systems of different
sizes and configurations. This makes it a versatile
platform for developing automated systems for vari-
ous applications on a small scale and then porting it
to a more extensive system.

• Flexibility: ROS is a flexible platform that allows
developers to create custom modules and libraries
that can be integrated into similar robotic systems.
This makes developing complex robotic systems that
can perform various tasks uncomplicated.

Despite its many capabilities, tower crane integration in
the ROS framework has some challenges. For example,
the tower crane system’s complexity, size, and scale differ
from most systems for what ROS tools are available. Fur-
thermore, the dynamics of the tower crane contain flexible
cable, unactuated swing in radial and tangential directions,
and a complex pulley mechanism. Despite this, the inte-
gration of tower cranes in ROS, presented here, shows
the potential of robotising the tower crane system just like
other robotic systems. Finally, ensuring the safety of the
crane and its surroundings is of utmost importance, and
this requires careful consideration, evaluation and valida-
tion of the control algorithms and sensor configurations
used in the system.

3 Dynamics Model of a Tower Crane
A tower crane (more specifically, a hammerhead TC)

is a five-degree-of-freedom (5-DOF) nonlinear dynamic
system, as shown in Figure 1. 3-DOF are actuated, namely
jib, trolley and hoisting cable. The generalised coordinates
of the jib, trolley and hoisting cable will be 𝛾, 𝑥 and 𝑙,
respectively. Whereas 2 of them are unactuated: radial and
tangential swings. 𝜙 and 𝜃 denote generalised coordinates
of radial and tangential swings, respectively. The jib is the
rotating arm housed over a tower (known as a mast) and
powered by an electric motor with a gear mechanism. The
trolley is housed on the jib and can travel in both inward
or outward radial directions. A cable-driven mechanism
powered by the second electric motor pushes or pulls the
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trolley. A pulley system powered by the third electric
motor enables a tower crane for lifting/hoisting motion.

In this paper, we have adopted the dynamical system
reported by [25]. They used the Lagrangian approach to
study the dynamics of a tower crane. The position vector
of trolley position and payload position is given by:

x𝑃 = [𝑥 − 𝑙 cos(𝜃) sin(𝜙), 𝑙 sin(𝜃), −𝑙 cos(𝜃) cos(𝜙)]𝑇
(1)

x𝑇 = [𝑥, 0, 0]𝑇 (2)

x𝑃 is the position vector of the payload and x𝑇 the position
vector of the trolley. The linear velocity of the trolley and
payload can be calculated as:

¤x =
𝑑x
𝑑𝑡

+ ¤𝛾 × x (3)

Now, the kinetic and potential energies can be written as:

𝑇 =
1
2
𝑚⟨¤x𝑃 , ¤x𝑃⟩ +

1
2
𝑀 ⟨¤x𝑇 , ¤x𝑇 ⟩ +

1
2
𝐽𝑜 ¤𝛾2 (4)

𝑉 = −𝑚𝑔𝑙 cos(𝜃) cos(𝜙) (5)

Here, 𝑚 and 𝑀 are the mass of the payload and trol-
ley, respectively, whereas 𝑔 is the gravitational con-
stant. The generalised displacement vector is q =

[𝑥, 𝜙, 𝛾, 𝜃, 𝑙]𝑇 and generalised forces correspond to
q is F = [𝐹𝑥 , 0, 𝑇𝛾 , 0, 𝐹𝑙]𝑇 .

Lagrangian is the difference of kinetic and potential
energies L = 𝑇 −𝑉 and the Lagrangian equation will be:

𝑑

𝑑𝑡

(
𝜕L
𝜕 ¤𝑞 𝑗

)
− L

¤𝑞 𝑗

= 𝐹𝑗 , 𝑗 = 1, 2, 3, 4, 5 (6)

This will provide the equation of motion (EOM) similar to
the one reported in [25]. The derived equations are com-
plex and highly coupled. To devise the controllers from
these equations, we have linearised the equation of motion
and divided the system into two subsystems for design-
ing two LQR controllers. During the linearization of the
system, we assumed small swing angles, considered the
parameters of each subsystem as time-varying and ignored
the derivative of coupled variables in each subsystem, re-
sulting in 2 simplified subsystems. The controller K𝑇 to
position the trolley and minimise the radial swing angle
will be derived from Subsystem 1 (S1). Where S1 is
defined as:

¥𝑥 + 𝑚𝑡𝜙 = �̄�𝑥 (7)
𝑙 ¥𝜙 + 𝑔𝜙 − ¥𝑥 = 0 (8)

Here, 𝑚𝑡 = 𝑚/𝑀 and �̄�𝑥 = 𝐹𝑥/𝑀 . The controller K𝛾 to
rotate the jib and minimise the tangential swing angle will
be derived from Subsystem 2 (S2), which is defined as:

(1 + 𝑀𝑟𝑥
2) ¥𝛾 − 𝑚𝑟𝑔𝑥𝜃 = 𝑇𝛾 (9)

𝑙 ¥𝜃 + 𝑔𝜃 − 𝑥 ¥𝛾 = 0 (10)

Here, 𝑚𝑟 = 𝑚/𝐽𝑜, 𝑀𝑟 = 𝑀/𝐽𝑜 and 𝑇𝛾 = 𝑇𝛾/𝐽𝑜. The
subsystems S1 and S2 will be utilised in the next section
to derive the time-varying LQR controller for the trolley
and jib positioning.

l

x
M

m

X

Y
Z

Figure 1. Dynamics of a tower crane with the 5
degrees of freedom.

4 Tower Crane Control Methods
4.1 Problem Statement

Here, we aim to design a control strategy that can bring
the tower crane system to the desired states 𝜒𝑑 , 𝚪𝑑 and L𝑑

in finite time whilst respecting the hardware limitations
such as 𝐹𝑥 , 𝑇𝛾 and 𝐹𝑙 . Two LQR controllers, namely 𝐾𝜒

and 𝐾𝛾 and a PID controller, 𝐾𝑙 are designed to bring the
states 𝜒, 𝚪 and L to 𝜒𝑑 , 𝚪𝑑 and L𝑑 , respectively.

4.2 Controller Design

Figure 2 shows the architecture of the proposed con-
trol method. The real-scaled tower crane in the physics
simulation (Gazebo [24] acts as a plant and provides all
states of the system. Three controllers 𝐾Γ, 𝐾𝜒, and 𝐾L are
input with current states and the desired states, and they
output forces 𝐹𝑥 , 𝐹𝑙 and torque 𝑇𝛾 required to apply on the
trolley, payload, and jib for regulating the desired states.
All outputs from the controller pass from the saturation
function to ensure input to the tower crane system couldn’t
exceed the physical limits of the mechanical and electrical
systems. In the proposed control method, the gain ma-
trices for slew and trolley control are recomputed in each
control cycle as the parameter of the subsystems S1 and
S2 are varying with respect to the time. This kind of LQR
implementation is also known as time-varying LQR.
4.3 Trolley Controller

A full-state feedback LQR controller is designed to
control the trolley motion of the tower crane using the
S2. The state space model of the S2 can be writ-
ten as, ¤𝜒 = A𝜒𝜒 + B𝜒𝐹𝑥 and the state vector will be
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𝛘

Plant
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𝛘

Figure 2. Flow diagram of the control methods.

� = [�, ��, �, ��]. Where:

A� =
����
�

0 1 0 0
0 0 −��� 0
0 0 1 0
0 0 − �

� (��+1) 0

����
�

, (11)

B� =
����
�

0
1
0

−1/�

����
�

(12)

The input force on the trolley �� will be computed as:

�� = −�� (� − ��) (13)

Here, �� is the gain matrix and �� the desired states. ��

is computed using the LQR method, where an optimisation
function is minimised to compute the optimal gain matrix
��. The optimisation function for the LQR method is
defined as:

min
∫ (

��Q�� + R��
2
�

)
(14)

Where Q� is a weight matrix to penalise the system states
in order to tune the control performance and R� the weight
for input.

4.4 Slew Controller

For deriving the slew motion control, the full-state feed-
back system will be �� = AΓ� + BΓ�� and the state vector
will be � = [�, ��, �, ��]. AΓ and BΓ are:

AΓ =

�����
�

0 1 0 0
0 0 ����

1+�� �
2 0

0 0 1 0
0 0 − �

�

(
1+�2��

1+�2��

)
0

�����
�

, (15)

BΓ =

�����
�

0
1

1+�� �
2

0
− �

� (1+�� �
2

�����
�

(16)

Where the slew controller generates the input torque ��
for the mast and jib joint. The control signal to regulate
the slew motion, the �� is:

�� = −�Γ (� − ��) (17)

Here �� is the desired state for the jib and tangential
swings. The optimal gain matrix �Γ for the slew con-
troller is computed using the LQR method, as computed
for ��.

4.5 Hoisting Controller

The hoisting controller is responsible for regulating the
height of the payload during the transporting or lifting op-
eration. The hoisting motion is not directly responsible
for inducing motion in unactuated joints (although varia-
tion in cable length can change the natural frequency of
hanging load. But this coupling is not considered here).
A standard PID controller is implemented to regulate the
height of the payload.

�� = � ��� + ��

∫ �

0
��d� + ��

d��
d�

(18)

Here, the � � , �� , �� are the proportional, integral and
derivative gain of the hoisting controller. These values
were manually tuned to obtain optimal performance. ��
denotes the error between the current and desired length
of the cable �� = � − ��

5 Trajectory Generation
The MoveIt provides the collision-free path from the

current state of the TC to the desired state. It ensures that
the planned path avoids the surrounding obstructions and
minimises the mechanical effort of a complete path. When
followed, the planned path is a function of an interpolated
set of joint positions, ensuring collision-free plan execu-
tion. When each set of joint positions in the planned path
is assigned a timestamp, it is called trajectory, and the con-
trollers are required to bring the state of the system to the
planned state at a particular timestamp. Here, the trajec-
tory is obtained from a quintic spline, where each segment
between interpolated path points is a polynomial function
of order 5. This means that the trajectory is differentiable
till the fifth order. Thus, the resulting velocities and ac-
celerations of the trajectory will be a continuous function
which leads to smoother transition of payload from sta-
tionary state to moving state and vice versa, as shown in
Figure 5(g) and 5(h), and Figure 6(g) and 6(h).

6 Results
We have implemented the proposed controller on a real-

scaled version of a tower crane in a physics-based simula-
tion, namely, Gazebo [24]. Gazebo is a highly integrated
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Gazebo

Construction Site

Tower Crane

Sensors

ROS

Moveit

•  Planning Scene
•  Forward/Backward Kinematic
Solver
•  Occupancy Grid
•  Tower Crane Model

Our Controllers

•  Trolley LQR Controller 
•  Jib LQR Controller
•  Hoisting PID Controller 
•  Implemented Trajectory
Tracking in ros_control 

Figure 3. Flowchart of various modules used in the
methodology.

simulation environment with the ROS framework and sup-
ports the ROS’s message parsing mechanisms. This en-
ables the development and validation of robot controllers
and motion planning on a near-to-real system before port-
ing the software to the robots in the real world. Figure 4
shows the planning screen for the physics-based simulated
tower crane. Figure 4(a) illustrates the planning scene of
MoveIt [26]. The tower crane in orange is the desired state,
whereas grey shows the current state of the tower crane.
The coloured voxel displays the occupancy grid, which is
a way to notify the path planner about obstructions in the
space during the planning paths.

Figure 4(b) shows the real-scaled tower crane in Gazebo,
which can incorporate all the inertial and collision prop-
erties of a real tower crane, as well as the friction and
damping values between each joint. It was assumed that
the cable was non-stretchable and that the tower crane
structure was non-deformable (or rigid) during motion.
The hanging payload was free to oscillate in the radial
and tangential direction of the jib. This was achieved by
assuming that a tower crane is a 5-DOF robot (5 joints)
whereas 3 were the actuated joints and two the unactuated
joints.

The proposed framework and controller were validated
in two scenarios: transporting and hoisting the payload
from a blind spot (the part of a site which is not visible to
a crane operator). In Gazebo, a construction site was de-
signed with four under-construction buildings, an array of
LiDAR sensors and a tower crane with payload. 3 LiDAR
sensors were placed around the tower crane mast and 1
in front t of the construction site. Then, their point cloud
data was fused to acquire the occupancy grid, as shown
in Figure 4(a). MoveIt! (motion planner) can consider
the occupancy grid as the obstruction in the space and
plan the path accordingly in order to avoid any collision
between the payload, tower crane and construction site

during motion.

(a) (b)

Figure 4. (a) Planning scene in RViz. (b) Simulated
World in Gazebo

6.1 Transporting the Payload from Blindspot

Figure 5 shows the jib, trolley and hook trajectory
tracking with input forces, input torque and swing an-
gles. MoveIt computed the collision-free path, and then
the trajectory was estimated using a quintic spline (5th
order spline). Quintic spline is differentiable till the fifth
order, thus minimising discontinuities in the derivative of
acceleration (jerk). This induces lesser oscillation in hook
and load at the start of motion. Figure 5(a) and 5(c) show
that the trolley and jib (blue line) follows the trajectory
(orange line) while inducing smaller radial and tangential
swings, as shown in Figure 5(g) and 5(h). Figure 5(h)
shows the radial swing during trajectory tracking and after
50𝑠 (see Figure 5(a)) when the desired trajectory of the
trolley requires higher velocities, resulting in higher radial
swings. However, the controller reduced the swings while
bringing the trolley to the desired state.
6.2 Hoisting the Payload from Blindspot

Figure 6 shows the jib, trolley and hook tracking of tra-
jectory with input forces, torque and swing angles during
the second scenario. MoveIt computed the collision-free
path; then, the trajectory was estimated using a quintic
spline (5th-order spline). Figure 6(a), (c) and (e) show that
the trolley, jib and hook (blue line) follow the trajectory
(orange line) while inducing smaller radial and tangential
swings, as shown in Figure 6(g) and (h). In this scenario,
the desired distance of the trolley was relatively shorter
than the jib and hook; thus, minute radial swings can be
observed from Figure 6(g). The jib’s desired state and
current state are relatively closer in this scenario than the
previous one. Thus, the jib controller inputs the highest al-
lowable torque to the jib at the start and end of the planned
motion in order to efficiently track the planned trajectory.
Still, the tangential oscillation was considerably lower. As
the planned trajectory is differentiable to the fifth order,
the accelerations were continuous, resulting in smooth
transitions of states from rest to motion and vice versa.
The video demonstration of the proposed methods can be
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Figure 5. Transporting Trajectory Tracking. In
graphs (a), (c) and (e), the dotted red line shows
the planned (desired) trajectory and the blue lines in
all graphs show the current state of the TC and input
quantities. 𝜀𝑥 , 𝜀𝛾 and 𝜀𝑙 are the difference between
the desired and current state of trolly, jib and hook.

on https://github.com/muddassir93/ISARC2024_
Demo/raw/main/Demo.mp4.
7 Discussion

This study aimed to assess the potential of imple-
menting the framework for robotic applications in the
context of tower cranes (TCs) and construction sites.
While no direct comparison was made with other TC au-
tomation techniques, the research emphasises leveraging
ROS’s path/trajectory planning algorithms and program-
ming frameworks for TC automation. The successful per-
formance in path planning and trajectory execution show-
cased in the video supports the viability of our proposed
framework.

The assumption of non-stretchable cable and rigid tower
cranes is ideal, but these elements could experience stretch
or deformation. This assumption simplifies the mathemat-
ical modelling and analysis of the system. The proposed
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Figure 6. Hoisting Trajectory Tracking. In graphs
(a), (c) and (e), the dotted red line shows the planned
(desired) trajectory and the blue lines in all graphs
show the current state of the TC and input quantities.
𝜀𝑥 , 𝜀𝛾 and 𝜀𝑙 are the difference between the desired
and current state of trolly, jib and hook.

framework remains valid for several reasons. The cable
stretch and tower crane deformation are relatively smaller
compared to the scale of the TC structure and can often
be neglected. Control strategies and algorithms are ro-
bust and adaptive, enabling them to compensate for these
minor deviations. Future research will incorporate cable
stretch and tower crane deformation into the model. This
can be achieved through advanced mathematical models
or sensor-based feedback control strategies. This will en-
hance the accuracy and reliability of the proposed frame-
work.

Gazebo does not directly support flexible or non-rigid
structures. The flexibility of TC’s structure and rope
can be represented as a link of multiple prismatic (lin-
ear) and revolute joints, allowing for near-to-real dynamic
behaviour but significantly increasing the computation
load on physics simulation. Future research will focus
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on quantifying or estimating the degree of error in both
approaches. Regarding payload orientation, using dou-
ble cables for the hook (reeving) and spreaders for longer
payloads naturally dampens twisting oscillations, leading
to the assumption that the payload orientation follows the
jib’s orientation.

This framework is designed to be modular and scalable,
allowing for easy customisation and adaptation to differ-
ent crane models. The control algorithms and strategies
can be adjusted based on specific crane characteristics,
operational requirements, and dynamic models. How-
ever, scaling and customising the system may pose chal-
lenges, requiring extensive testing, validation, and addi-
tional sensors or hardware components. To tackle these
challenges, we propose comprehensive testing and vali-
dation processes, compatibility with various sensors and
hardware components, and developing advanced control
strategies and algorithms to enhance applicability across
the construction industry.

While the Robot Operating System (ROS) is widely
used, alternative robotics frameworks such as PyRobot,
Orca, Yet Another Robot Platform (YARP), Mobile Robot
Programming Toolkit (MRPT), Robotics Library (RL),
and Dartsim/Dart also offer valuable tools. However, these
alternatives often specialise in specific areas or need more
active development and community adaptation. For in-
stance, PyRobot is an excellent choice for research or ed-
ucation, while Orca, despite its suitability for embedded
systems, has not been developed in recent years. YARP
primarily provides robust communication channels among
various robot components. MRPT is tailored towards mo-
bile robots, and RL exclusively offers a C++ API. These
specialisations and limitations should be considered when
selecting a robotics framework for a particular application.

8 Conclusion

This paper presents a framework for planning the
collision-free path, jerk-free trajectory and control of the
jib, trolley and hoisting mechanism to follow a planned
path using sensory input based on ROS and MoveIt. The
developed framework is validated on a simulated real-
scaled tower crane in Gazebo. Unlike several other path-
planning and controlling approaches, we aim to validate
our methods on a real-scaled tower crane, which poses dif-
ferent challenges. The developed framework is scaleable
to a real system as far as the desired data types are pro-
vided to ROS framework, for example, occupancy grid of
surroundings and all TC states and their first derivatives
in real-time. In the future, we will scale our framework to
a scaled-down version of a tower crane while incorporat-
ing more realistic parameters like joint frictions, TC body
deformation and cable flexibility.
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Abstract –  

The aging of buildings is a global concern, with 
potential risks to human safety and property. 
Building inspection and maintenance are crucial for 
ensuring structural integrity and safety. However, 
traditional manual methods are time-consuming and 
pose safety risks, especially for exterior inspection at 
height. Robotics offer a promising alternative to 
enhance building inspection efficiency and cost-
effectiveness, but still in the early development stage. 
This paper aims to review and analyze the state-of-
the-art design and development of robotics for 
building exterior inspection, referring to the 
literature published in the last two decades. Firstly, 
the review classifies different types of robots for 
building exterior inspection in terms of locomotion 
and adhesion modes, and discusses the capability of 
robots from navigation, obstacle surmounting, wall-
to-wall/floor transition, curved wall climbing, 
grasping, barrier avoidance, and self-protection. 
Secondly, the paper examines the applicability of 
robots to various building materials for inspections 
and summarizes the most typical applications (i.e. 
glass curtain walls, tile walls, and concrete walls). 
Thirdly, the paper discusses the typical data collection 
and analysis methods for building exterior inspection 
using robots. The paper also explored potential 
enhancements for robotic inspection through the 
integration of building information modeling, 
augmented reality/virtual reality, and the 
involvement of human-in-the-loop. Finally, the paper 
summarizes the typical application of robotics in 
building exterior inspection regarding robot types, 
inspection applications, data collection and analysis 
methods, discusses the challenges, and outlines the 
future directions.  

 
Keywords – 

Wall inspection; Building exterior inspection; 
Robotics; Locomotion; Adhesion; Non-destructive 
testing. 

1 Introduction 
The phenomenon of building aging presents a 

significant global concern, as it entails the gradual 
deterioration of both interior and exterior walls, leading 
to potentially severe consequences for human safety and 
property [1]. Compared to interior walls, exterior walls 
are more exposed to environmental factors and external 
forces with issues such as deterioration or delamination. 
Thus, the demand for robotic inspection targeting 
exterior walls is relatively stronger than for interior ones. 
Compared to interior wall inspection, the demolition and 
reconstruction of building exteriors require significant 
financial and labor resources. Traditional approaches for 
inspecting building walls typically involve manual visual 
exams or hammering tests [2]. The inspection tasks are 
performed by human operators who ride on gondolas 
suspended in mid-air and utilize various handheld 
facilities together with telescopes and cameras for the 
inspection [3]. However, these methods present safety 
concerns, particularly when working at elevated heights. 
In recent decades, there has been a growing trend towards 
the adoption of robots for building inspection. In 
particular, robotic inspection offers several advantages, 
including enhanced efficiency and consistency in 
inspection results and presenting a cost-effective 
alternative to manual inspection methods [4]. Human 
operators can remotely operate robots from a secure 
location and obtain the data and images from the facilities 
mounted on the robots [5]. However, robotics for 
building exterior inspection is still an emerging area with 
limited real-world applications. How different types of 
robots could be effectively developed and applied to 
inspect building exterior walls to ensure building safety 
and functionality remains unexplored. 

This paper aims to review and analyze the state-of-
the-art design and development of robotics for building 
exterior inspection, referring to the literature published in 
the last two decades. The objectives were to i) explore the 
different types of robots that are used in exterior wall 
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inspection of buildings and the specific inspection 
applications conducted by robots, ii) examine the 
methods for robots to inspect and detect building exterior 
defects, and iii) identify challenges and future directions 
of robotics for exterior wall inspection of buildings.

2 Methodology
The study was conducted in three major stages.

Firstly, a comprehensive literature review was conducted
to collect information on the utilization of robotics in 
inspecting exterior walls in buildings, focusing on their 
specific applications. Web of Science (WoS) and Scopus 

databases were utilized to search for relevant papers. The 
keywords (robot* OR aerial OR drone OR uav OR 
"unmanned aerial vehicle") AND (wall OR building) 
AND (inspection OR maintenance) were used. Secondly, 
data screening and supplementation were conducted on
the identified papers. Only relevant publications 
regarding robots for building exterior wall inspection 
were kept. Additional articles identified by cross-
referencing were supplemented. Thirdly, content analysis 
was performed to extract relevant information from the 
included papers regarding the types of robots and their 
capability, inspection applications, inspection methods, 
and challenges regarding robots for building exterior 
inspection.

Figure 1. Exemplars of robots utilized in exterior wall inspection.

3 Robots for Building Exterior Inspection
This section focuses on the classification of robots 

and their capability in practical scenarios.

3.1 Classification of Robots
The classification of robots for building exterior 

inspection considers two key aspects: locomotion and 
adhesion mechanisms. Locomotion refers to the 
capability of the robot to move, while adhesion refers to 
its adaptability to building surfaces and materials. Figure 

1 shows some examples of inspection robots developed 
in various types.

3.1.1 Modes of Locomotion

The locomotion systems allow the efficient and 
autonomous mobility of robots during the inspection of 
exterior walls. The selection of suitable locomotion 
depends on the structural and built environment. The 
primary types of locomotion for robots applied for 
building exterior inspection can be classified into 
wheeled, tracked, legged, cable-driven parallel, aerial,
and hybrid.
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Wheeled robots, inspired by automobiles, offer fast 
speed and efficient movement. However, the presence of 
large gaps and inconsistencies on wall surfaces often 
prevents proper contact between the wheels and the 
building surface [6].  

Tracked robots, inspired by tanks, utilize continuous 
treads to achieve basic movement and improve climbing 
stability by ensuring contact with the wall surface. 
However, this locomotion method may lead to increased 
frictional resistance and higher energy consumption [7].  

Legged robots, including bipedal (two-feet), 
quadrupedal (four-feet), and hexapod (six-feet) 
locomotion systems, offer superior adaptability for wall 
surface inspection [8]. However, the utilization of 
multiple legs increases the complexity of locomotion and 
adhesion force control. 

Cable-driven parallel robots, utilizing cables as 
actuators, offer a mechanism for vertical and inclined 
movement control in high-rise building wall inspection 
[9]. However, their reliance on secure anchoring points 
and complex setup processes distinguishes them from 
other wall inspection robots.  

Aerial robots, such as drones and unmanned aerial 
vehicles (UAVs), offer straightforward control 
mechanisms. However, aerial systems encounter 
complexity in maintaining a consistent distance from 
walls during inspection, as challenges from external 
factors like wind and rain arise [10]. 

Hybrid robots, integrating multiple locomotion 
mechanisms, offer enhanced capabilities and increased 
mobility for rapid motion on wall surfaces, obstacle-
spanning, and seamless mode switching [11]. Ogusu et al. 
[12] designed a robot system where a tracked robot 
moves to the front of a concrete wall, while a drone takes 
off and flies vertically against the wall, utilizing a camera 
to capture images. However, the integration of diverse 
locomotion modes and functionalities in hybrid robots 
often poses challenges to control mechanisms [13]. 

3.1.2 Adhesion Methods 

Another distinguished feature of robots for building 
exterior inspection lies in the technologies for adhering 
to building surfaces, mostly applied for climbing-type 
inspection robots [6]. The adhesion methods can be 
classified as active or passive, depending on whether an 
external energy supply is needed to support the robot. A 
more general classification is based on the nature of 
adhesion forces required: pneumatic or air pressure, 
magnetic, biomimetic, and electrostatic [14].  

Pneumatic adhesion methods, including vacuum or 
suction cups and negative pressure, are commonly used 
for climbing flat surfaces [14]. Vacuum adhesion, 
employing suction cups and vacuum pumps, offers 
simplicity and effective wall steps but can be problematic 
on rough or grooved surfaces [2]. Negative pressure 

adhesion, utilizing impellers or eddy currents, provides 
secure attachment but may face potential suction 
chamber leakage on vertical walls [15]. 

Magnetic adhesion is commonly used for inspection 
robots on ferrous surfaces, employing either permanent 
magnets or electromagnets. It allows for rapid 
locomotion and eliminates the need for power application 
but faces challenges in maintaining stable magnetic 
power on non-smooth surfaces and is limited in 
suitability for non-steel structures [16]. 

Biomimetic adhesion methods, inspired by climbing 
animals like cockroaches and cicadas, utilize robust dry 
adhesives based on Van der Waals forces [4]. These 
methods allow robots to attach to various surface 
materials and maintain attachment without power 
consumption. However, they have limitations in terms of 
payload capacity. 

Electrostatic adhesion utilizes compliant electrode 
patterns to generate strong electrostatic forces between 
the robot and the wall surface, allowing for exceptional 
adhesion pressure on uncharged surfaces [17]. While this 
method offers minimal power consumption, and noise-
free operation, it may face challenges of unstable 
adhesion and reduced reliability in the presence of 
external disturbances like wind and heavy rain. 

3.2 Capability of Robots 
The capability of robots for building exterior 

inspection considers seven aspects: navigation, obstacle 
surmounting, wall-to-wall/floor transition, curved wall 
climbing, grasping, barrier avoidance, and self-
protection. Most of these abilities are particularly related 
to climbing-type robots. 

3.2.1 Navigation Ability 

Navigation ability is critical for robots to perform 
building exterior inspection, which includes localization 
and mapping, and path planning.  

Localization refers to the estimation of robot position 
and orientation, while mapping denotes the creation of a 
digital representation of the robot environment, both are 
fundamental processes for robot navigation [18]. Robots 
utilize sensors such as RGB-D cameras, stereo cameras 
and Light Detection and Ranging (LiDAR) to gather the 
environment data for localization and mapping [7]. 
Simultaneous localization and mapping (SLAM) is 
widely used to enable the robot to create a map of its 
environment while simultaneously determining its 
position within the map [19].  

Path planning determines the optimal path or 
trajectory for the robot to navigate from its current 
location to a desired goal location while avoiding 
obstacles [20]. Path planning for robots to conduct 
building exterior inspection often considers factors such 
as finding local optimal paths for defect detection to 
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minimize the energy consumption of the robot and 
navigating the robot safely from building exterior and 
mid-air obstacles [20]. 

3.2.2 Obstacle Surmounting Ability 

The obstacles on the exterior wall mainly include 
grooves and strips. For climbing robots, having a high 
ability to overcome obstacles is essential during the 
design stage of robotic gait planning. For example, Bian 
et al. [4] developed a robot with a gear transmission 
system inspired by cicadas and geckos, incorporating a 
stable gait design for obstacle surmounting. 

3.2.3 Wall-to-Wall/Floor Transition Ability 

The ability of wall-to-wall/floor transition involves 
smoothly navigating and changing position between 
vertical and horizontal surfaces, which is a key feature 
for mobility in inspection robots. Guan et al. [2] designed 
a modular biped robot that can smoothly transit between 
walls by adapting climbing gaits and utilizing suction 
modules for reliable attachment to different surfaces. 

3.2.4 Curved Wall Climbing Ability 

The ability of robots to climb curved walls can 
enhance the efficiency of inspections by enabling them to 
detect complex geometries and reach areas with limited 
human accessibility. Saito et al. [8] developed a flexible-
legged robot with a sucker mechanism that allowed it to 
climb unknown curved walls. 

3.2.5 Barrier Avoidance Ability 

Autonomous barrier avoidance for robots in complex 
outdoor scenes should be considered, especially for 
unknown environments to prevent crashes or falls. For 
example,  Chang et al. [19] developed a robust fuzzy 
logic controller for building inspection robots, enabling 
autonomous navigation and barrier avoidance to achieve 
precise wall-following behavior. 

3.2.6 Grasping Ability 

The setup of grippers is essential as the interacting 
grasping media between the robot and the object. The 
design of grippers should overcome the challenge of 
grasping exterior walls, considering their shapes, 
materials, and roughness [7]. Previous researchers have 
explored various grasping methods. For example, Xu et 
al. [21] designed a cross-structured gripper for climbing 
robot consisting of multiple claws and hooks that can 
slide along the wall surface to locate attachable uplifts. 

3.2.7 Self-Protection Ability 

Protective devices for robots are crucial to ensure 
their safety and stability during operation on the building 
exterior by protecting against overturning during 
climbing, falls, and external objects. For example, Altaf 

et al. [14] designed an inspection robot with protective 
devices, including a support frame, EVA shell, airbag, 
and established a mechanical model to analyze the forces 
involved during a fall. 

4 Inspection Applications  
The applications of robots for building exterior 

inspection are mostly considered for maintaining glass 
curtain walls, tile walls, and concrete walls.  

4.1 Glass Curtain Wall Inspection 
The inspection of glass curtain walls has gained 

increasing attention, driven by concerns surrounding the 
safety risks associated with accidental glass breakage and 
the subsequent hazards of falling glass. Scholars 
proposed a specific design of end-effectors for glass 
curtain wall inspections. Liang et al. [6] introduced a 
robotic system that utilizes vibration response signals 
obtained by knocking the glass with a mechanical arm.  

4.2 Tile Wall Inspection 
Robotic techniques also play a crucial role in the 

inspection of tile wall delamination, which occurs 
between the tiles and substrates due to aging and 
improper installation. Pan et al. [23] proposed an efficient 
method for inspecting the status of tile walls using 
forward-looking infrared technology and camera on 
UAVs. The combination of hammering tests and cameras 
is also commonly employed to identify tile delamination 
caused by bonding degradation and thin tile layers [9]. 

4.3 Concrete Wall Inspection 
Concrete used for wall surfaces can deteriorate over 

time, resulting in issues such as peeling, lifting, and 
cracking. Traditional visual inspection methods for 
concrete surfaces primarily rely on human workers. 
Crack detection and inspection in walls benefit from 
advanced robotic techniques. For example, Wang et al. 
[24] developed an automatic detection of building 
surface cracks using UAV, demonstrating high accuracy 
and potential for practical application. 

5 Inspection Methods 
This section focuses on the inspection methods in 

terms of data collection and data analysis for robots to 
conduct building exterior inspection and defect detection.  

5.1 Data Collection   
Data collection methods primarily utilize non-

destructive testing (NDT) techniques to gather 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1076



 

information without causing damage to the building. 
Essentially, robots offer the platform to equip different 
NDT techniques for data collection, which could reduce 
the impact of human factors and achieve more efficient, 
accurate, cost-effective, and damage-avoided inspection 
of buildings. Typical NDT methods for building exteriors 
are as follows: 1) visual inspection utilizes cameras to 
examine defects that are widely employed in concrete 
wall crack detection [25]; 2) infrared thermography uses 
infrared thermal imagers to detect temperature variations 
for defect identification, which is commonly employed 
for wall moisture and air leakage detection [26]; 3) laser 
scanning emits laser beams to capture three-dimensional 
(3D) point cloud for defect detection, which suits for 3D 
crack dimension detection and localization [27]; 4) 
impact acoustic inspection analyzes sound waves 
generated by impacting the object for defect evaluation, 
and is mostly employed for tile wall debonding and 
integrity detection [9]. 

5.2 Data Analysis 
Based on the collected data, a number of studies focus 

on the development of new algorithms to process and 
analyze different types of inspection data, like RGB and 
thermal images [26, 28, 29], point cloud data [27], and 
acoustic signals [30]. 

Image-based analysis has received the most attention. 
Early research works focus on simple image processing, 
such as greyscale for removing image color information 
and histogram equalization for adjusting image pixel 
value distribution [20]. Recently, deep learning 
techniques, especially convolutional neural networks 
(CNNs) have been successfully developed in the field of 
computer vision, and are widely applied for object 
detection and image segmentation for building exterior 
inspection [7]. For example, Hu et al. [7] proposed deep 
convolutional neural network (DCNN) with reduced 
parameters and low latency for feature extraction in the 
crack detection for an inspection robot; Woo et al. [28] 
utilized the fast and accurate YOLOv5 model for UAV-
based crack detection system for concrete wall inspection; 
Wang et al. [24] proposed a UAV-based approach 
integrating ResNet50 and YOLOv8 for accurate 
detection of concrete cracks on building exteriors. Some 
studies combine traditional machine learning and deep 
learning to achieve more accurate inspection results. For 
example, Chaiyasarn et al. [31] proposed a crack 
detection system that combined support vector machines 
with CNN, achieving a detection accuracy of 
approximately 86% in validation images. 

Point cloud-based analysis extracts relevant 
inspection information from 3D data in depicting object 
geometry for defect detection, which heavily relies on the 
quality of the point cloud data. Some relevant studies 
combined 3D point clouds with 2D images and employed 

image processing techniques for defect detection [7]. For 
example, Yuan et al. [27] developed a novel inspection 
robot with deep stereo vision for 3D concrete damage 
detection and quantification, which employed Mask R-
CNN for the captured RGB imaging data for crack 
segmentation and localization and conducted spatial 
mapping from 2D plane to 3D space coordinates for 
damage quantification. 

Acoustic signal-based analysis utilizes the acoustic 
signals generated by tapping the wall surface. Since the 
collected signals are generally not perfect with 
background noise and missing signals, different data 
processing techniques have been used to address the 
noisy environment and data quality issues. For example, 
Nishimura et al. [30] proposed a novel method to clarify 
the features of hammering sound and propeller noise and 
conducted acoustic analysis of recorded hammering 
sounds collected by a multi-copter type mobile robot for 
defect detection. 

6 Integration with Other Advanced 
Technologies 

This section discusses the integration of inspection 
robots with other advanced technologies such as building 
information modeling (BIM), augmented reality/virtual 
reality (AR/VR), and human-in-the-loop (HILP). 

6.1 BIM 
For managing inspection data and planning 

inspection paths, BIM can be integrated with robots to 
provide rich geometric and semantic information. Tan et 
al. [20] proposed BIM-based inspection area extraction, 
optimized UAV flight path using A star and genetic 
algorithms, and real-time crack identification through 
edge computing and a zoom camera. 

6.2 AR/VR 
AR serves as a valuable tool for visualizing the 

inspection process, enabling efficient remote inspections 
by overlaying models onto captured images [32]. The use 
of AR technology in wall inspection robots allows for 
virtual walkthroughs and real-time visualization. 
Nishimura et al. [30] developed a robot that utilizes an 
AR marker for localization, allowing for precise 
identification of the hammering position on a structure. 

VR can simulate the real environment of buildings, 
enabling operators to identify issues and take appropriate 
actions in a virtual setting. It reduces the need for robotics, 
lowers risks and costs, and provides more practice 
opportunities. Albeaino et al. [33] developed a VR-based 
flight simulator for training drone operators in inspecting 
building exteriors, focusing on flying near targets, 
maintaining stable hovering, and collecting data. 
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6.3 HITL 
HITL generally refers to interactive simulation 

systems that enable direct human intervention during the 
operation of robots or artificial intelligence models [3]. It 
combines human intelligence with machine or robot 
capabilities for risk-free and improved system 

performance, which is preferable for hazardous building 
exterior inspection tasks. For example, Saleem et al. [34] 
investigated human eye gaze patterns during a façade 
damage inspection using eye tracking which should 
facilitate information-sharing and decision-making for 
collaborative human-robot teams for building inspection.

Table 2. Summary of typical robots for building exterior inspection. 

Example Robot type Inspection application Data collection Data analysis 
A multi-chamber adhesive 
climbing robot [6] 

Wheeled with 
pneumatic 

Glass curtain wall 
defects 

Impact acoustic  - 

Alicia3 [35] Wheeled with 
pneumatic 

Concrete wall defects  - - 

CROMSCI [15] Wheeled with 
pneumatic 

Concrete wall defects Visual, cover meter, 
impulse radar 

- 

A four-wheel drive robot [27] Wheeled Concrete wall crack 
assessment 

Visual, laser scanning Mask R-CNN, statistical 
outlier removal filter, KNNs 

An autonomous mobile ground 
robot [7] 

Tracked Concrete wall crack 
defects 

Visual, laser scanning DCNN, random sample 
consensus 

A wall-climbing robot inspired 
by cicadas and geckos [4] 

Legged with 
biomimetic 
adhesion 

Stone and glass curtain 
wall defects 

- - 

A semi-autonomous multi-
legged robot [8] 

Legged with 
pneumatic 

Wooden and tile wall 
defects 

- - 

An electro-adhesive wall-
climbing robot [17] 

Legged with 
electrostatic 

Glass curtain wall 
defects 

- - 

WICBOT [9] Cable-driven  Tile wall bonding 
integrity 

Impact acoustic  ANN 

A UAV-based system [24] UAV Concrete crack defects Visual  ResNet50, YOLOv8 
Quasar™ [26] UAV General moisture, air 

leakage 
Infrared thermography Gaussian low-pass filter 

A UAV-based system [25] UAV General crack defects Visual  CNN 
DJI MJ200 [22] UAV Concrete wall crack 

defects 
Visual  CNN, CycleGAN 

DJI Phantom4 RTK [28] UAV Concrete wall crack 
defects 

Visual  YOLOv5 

ABECIS [36] UAV General crack defects Visual Xception 
DJI Phantom4 [31] UAV Masonry wall crack 

defects 
Visual  CNN, support vector machine 

Microdrone-equipped mobile 
crawler robot [12] 

UAV+tracked Concrete wall crack 
defects 

Visual AWS crack detection AI 
system 

A multi-copter mobile robot [30] UAV+wheeled Concrete wall defects Impact acoustic  Short-time Fourier transform 

7 Discussions 
Based on the review and analysis,  a summary of 

typical robots for building exterior inspection is provided 
in Table 1, covering robot types, inspection applications, 
and methods for data collection and data analysis. The 
findings provide useful insights for research and 
development in robotics for building exterior inspection, 
and are elaborated as below. 

Firstly, prior studies have demonstrated two major 
streams of research regarding robotics for building 
exterior inspection. The first stream focused on 
developing inspection robot prototypes and emphasized 
the mechanical mechanisms of the robots, but many did 
not cover specific data collection and analysis methods 
for inspection [4]. The second stream mainly employed 
UAV as the robotic platform and focused on specific data 

collection and analysis methods for inspection [24]. The 
future direction for improvement could be the integration 
of the two streams to develop comprehensive robotic 
solutions for building exterior inspection. These 
solutions could combine the high flexibility and 
adaptability of robot mechanics with advanced data 
collection and analysis methods for building exterior 
inspection.  

Secondly, most of the research focused on the 
inspection application of concrete crack detection as 
concrete cracks are typically visible and possess distinct 
features that can be effectively captured using imaging 
techniques and analyzed with computer vision algorithms. 
However, many buildings, especially high-rise buildings, 
feature a variety of wall materials rather than being 
limited to a single wall type and still lack comprehensive 
and robust data collection and analysis methods. Besides, 
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glass curtain walls and tile walls are more challenging to 
achieve timely and accurate defect detection [6, 9]. More 
efforts are required to develop adaptable and generic 
solutions for inspection robots integrating different data 
collection methods that are not limited to specific types 
of wall materials or defects.  

Thirdly, only limited studies focused on the 
development of end effectors of the inspection robot to 
enable the multi-functional capability of the robot for 
multiple inspection tasks [7]. In this regard, the 
integration of repair or renovation functions with the 
inspection robots should be considered to guide the 
selection of robot body type and the design of different 
inspection and repair end-effectors as well as control 
mechanisms.  

8 Conclusions 
This paper reviews and analyzes the state-of-the-art 

design and development of robots for building exterior 
inspection. Specifically, these inspection robots are 
classified based on locomotion and adhesion modes, and 
their capabilities are discussed from navigation, obstacle 
surmount, wall-to-wall/floor transition, curved wall 
climbing, grasping, reflective and transparent barrier 
avoidance, and self-protection. The review further 
summarizes the most typical building exterior inspection 
applications for robotics considering the wall materials, 
namely glass curtain, tile, and concrete, and discusses the 
detailed data collection and data analysis methods for 
inspection. Furthermore, the paper explored the potential 
integration of BIM, AR/VR, and HITL for improving 
robotic building exterior inspection. Blending the review 
findings, useful insights are provided regarding robot 
types, inspection applications, data collection and 
analysis methods for building exterior inspection. Future 
research is needed toward comprehensive and tailored 
solutions for robotic building exterior inspection, 
adaptable and generic inspection robots that suit different 
wall materials and defect types, and multi-functional end 
effectors for inspection robots and integration with 
building repair capability. 
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Abstract -
Recent decades have seen remarkable progress in the

field of robotic-assisted construction. Cable-driven paral-
lel robots (CDPRs) emerge as promising tools for automat-
ing construction processes, due to their advantageous fea-
tures such as scalability, reconfigurability, compact design,
and high payload-to-weight ratio. This paper uses a simple
static model to determine the feasibility of a CDPR for over-
clad panel installation in building envelope retrofits. Given
that the building facade needs to be a subset of the CDPR’s
wrench-feasible workspace, we focus on the sensitivity of
the workspace concerning various cable arrangements and
CDPR frame sizes (e.g., height and width extensions). Our
analysis indicates that no cable arrangement satisfies the re-
quirement of complete facade coverage and avoids cable-to-
panel collisions. Thus, frame extension is needed to enhance
coverage. However, in densely populated areas where width
extension is limited by space constraints, height extension
alone is insufficient to guarantee full facade coverage. This
paper pioneers the investigation of CDPRs for panelized en-
velope retrofits, showcasing their advantages and limitations
and paving the way for further research and development.

Keywords -
CDPR, construction robotics, panelized envelope, enve-

lope retrofits

1 Introduction
Buildings account for more than 35% of the total carbon

dioxide emissions in the United States [1]. About 52% of
the existing residential buildings were built before the im-
plementation of the 1980 energy codes [2]. Consequently,
these buildings are more likely to have inadequate thermal
insulation and air barriers, or none altogether [3]. The
absence of adequate insulation and airtightness in these
structures leads to high energy losses through the build-
ing envelope that account for 70% of carbon emissions

∗Notice: This manuscript has been authored by UT-Battelle, LLC, under con-
tract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US
government retains and the publisher, by accepting the article for publication, ac-
knowledges that the US government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this manuscript,
or allow others to do so, for US government purposes. DOE will provide public
access to these results of federally sponsored research in accordance with the DOE
Public Access Plan (https://www.energy.gov/doe-public-access-plan).

Figure 1. Conceptual view of a cable-driven paral-
lel robot for retrofitting a residential building using
overclad panels in a densely populated urban area.

generated locally by households [4]. Therefore, bringing
these outdated structures in line with current energy codes
can reduce energy usage and greenhouse gas emissions
in the building sector. Overclad panel envelope retrofits
using prefabricated panels effectively minimize waste and
improve energy efficiency [5]. Traditional approaches for
installing overclad panels in multi-story buildings typically
involve panels being carried by laborers or hoisted with a
crane and placed at their final location by hand [6]. These
practices incur installation errors, safety concerns for con-
struction workers, low efficiency, and complications in
densely populated urban areas due to limited space and
disruptions to adjacent structures and pedestrians. Robotic
construction provides an alternative for faster, more accu-
rate, and safer installation processes.

The unpredictable nature of typical construction sites
and the need to minimize disruptions to surrounding areas
require an adaptable and compact robotic system. Cable-
Driven Parallel Robots (CDPRs) [7–9] are a type of par-
allel mechanism where several flexible cables suspend the
end-effector. As depicted in Figure 1, CDPRs offer a
compact, small-footprint, portable, and easily reconfig-
urable design, making them ideal for overclad panel instal-
lation in densely populated areas with minimal disruption
to surroundings. Although the effectiveness of CDPRs
at reducing installation time, errors, and costs has been
demonstrated with robotic curtain wall installation [10],
to the best of our knowledge, this is the first paper on
the theoretical optimization of CDPR’s size that broadens
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their applicability in construction within the constraints of
crowded urban environments.

While CDPRs present advantages for panel installation,
they face specific challenges and limitations. Unlike tra-
ditional rigid-link parallel robots, CDPRs uniquely face
the challenge of having cables that can only be driven by
positive tension. This characteristic has spurred extensive
research in design [11], analysis [12], control [13], and
path planning [14]. One particular challenge for auto-
mated overclad panel installation is workspace coverage.
Ideally, the height and width of the CDPR frame should
not exceed the facade dimensions, especially for densely
populated areas as pictured in Figure 1. The frame size
constraints, coupled with cable force limitations, result in
the system being unable to bring the panel to the building
corners. This simulation study investigates all possible
CDPR designs to determine how much facade coverage
the wrench-feasible workspace can achieve. The different
models were defined based on their cable configurations.
For the most promising models, a frame extension analy-
sis was conducted for both planar and special CDPRs to
identify strategies for maximizing coverage.

In the following sections, we begin by reviewing pan-
elized envelope retrofits and CDPRs in construction (Sec-
tion 2). Next, we discuss the details of CDPRs that can
be used for overclad panel installation (Section 3) and
wrench-feasible workspace (Section 4). Finally, Section 5
concludes the paper and outlines our future work.

2 Related Work
In this section, we will first talk about the background

associated with panelized envelope retrofits, then we will
review relevant research on CDPRs in construction.

2.1 Panelized envelope retrofits

With the growing focus on energy efficiency and sustain-
ability, panelized envelope retrofits [5] have emerged as an
essential solution to improve the energy efficiency of older
buildings. This retrofit practice uses prefabricated panels
for overclad installation over the existing exterior walls and
roof. Panelized envelope systems are designed to provide
a more efficient and controlled construction process, as the
panels are produced under controlled conditions, reducing
the potential for on-site errors and improving construction
speed. In addition, this method minimizes disruptions to
occupants since the overclad panels can be installed with
building occupants in place [15].

Traditional approaches for panel installation in multi-
story buildings, such as scaffolding, suspended platforms,
forklift telehandlers, and stationary or mobile cranes, come
with significant drawbacks. They often prove costly, time-
consuming, prone to inaccuracies, and require a large

footprint for equipment. For example, scaffolding and
suspended platforms, while worker-friendly, are slow and
subject to human error, restricting panel size to what can be
manually carried. Cranes offer an alternative for large pan-
els, reducing installation time compared to manual meth-
ods. However, they remain expensive and relatively slow,
with each precast concrete panel taking 15 to 60 minutes
to install [16]. Additionally, their large footprint poses
challenges in densely populated areas. While addressing a
different application, Iturralde et al. [10] investigated the
work time of using CDPR to install a curtain wall module,
reducing installation by 0.51 hours with promising accu-
racy and repeatability. This achievement holds significant
potential to reduce labor costs and increase construction
efficiency. With the potential to significantly improve in-
stallation speed, reduce costs, and enhance safety, CDPRs
are attracting attention for panel installation.

2.2 CDPR in Construction

Recently, CDPRs have been explored in various appli-
cations and fields [10, 17–24]. Due to their desirable
characteristics, such as scalability, reconfigurability, com-
pact design, and high payload-to-weight ratio, they are
widely investigated in construction applications such as
bricklaying [19–21], 3D printing [22], and solar power
plant assembly [23]. For building envelope applications,
in particular, Izard et al. [24] explored the use of a CDPR
for inspecting building facades. However, the robot was
not designed for tight tolerances or heavy payload required
for retrofits. In addition, Iturralde et al. [10] designed and
implemented a CDPR for modular curtain wall installa-
tion in real-world application. They investigated whether
CDPR could install curtain wall modules with sufficient
accuracy and shorten manual installation time. To our
knowledge, no prior research has explored the application
of CDPRs for automated overclad panel envelope retrofits.

3 CDPR for Panelized Envelopes
In this section, we will discuss the specific requirements

for CDPR panel installation. We will then analyze various
methods to achieve these requirements.

3.1 Panelized Envelopes Requirements

Three main requirements are essential for a successful
robotic overclad panel envelope retrofit system. Firstly,
the CDPR should control the panel’s 6 Degrees of Free-
dom (DOF), including translations and rotations around
all three axes. This capability is essential to accommodate
non-flat and non-perpendicular walls encountered in real-
world residential buildings. Secondly, the CDPR should
have enough maneuverability to install panels at any loca-
tion on the facade (including near corners) without posi-
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Figure 2. Geometric definitions for a kinematic
model of a general CDPR design.

tioning cables between the panel and the facade. Thirdly,
the CDPR should have a simple, compact design and a
small footprint given that the available installation space
may be limited to the building dimensions and the space in
front of the building (e.g., sidewalk). Compactness is par-
ticularly critical in densely populated urban areas where
adjacent buildings or narrow sidewalks impose limitations
on the frame size. Simplicity of the frame allows the robot
to be installed quickly without the use of a crane.

The CDPR in Figure 1 fulfills the first and third re-
quirements. However, achieving the second requirement
requires further exploration. To that end, this paper will
study various cable configurations (Section 4.1) and will
consider extending the frame size (Section 4.2) in order to
improve the facade coverage for panel installation.

3.2 CDPR Kinematic Model

In general, a CDPR contains three parts: a fixed frame
described in a world coordinate system A, a mobile plat-
form (e.g., the panel to be installed) described in a local
coordinate system B, and � cables connecting the platform
to the frame. The geometric description of the CDPR is
shown in Figure 2, which defines the following vectors:

• The constant vectors a�∈{1,...,�} denote the proximal
anchor points �� in the frame with respect to A.

• The constant vectors b�∈{1,...,�} , denote the distal an-
chor points �� in the platform with respect to B.

• The platform pose (r, �) is defined by the vector
r, which is the location of the platform’s center of
mass with respect to A, and the rotation matrix � ∈
��3, which represents the orientation of the mobile
platform’s frame of reference B with respect to A.

• The vectors l�∈{1,...,�} represent ideal cables and can
be calculated as l� = a� − r − �b� with respect to A.

• The unit vector along the cable u� = l�/‖l� ‖2.

• The cable forces f� = ��u� , where �� ≥ 0 are the
tensile forces action on each cable � ∈ {1, . . . , �}.

A simple kinematic model can be constructed by solving
the force and torque equilibrium equations as follows:

�∑
�=1

f� + fp = 0 and
�∑
�=1

�b� × f� + �p = 0. (1)

Here, fp and �p are the external forces and torques applied
to the platform. For our particular application, note that
fp = �g and �p = 0, where � is the mass of the overclad
panel. Rewriting Eqn. (1) into matrix form we obtain:

[
u1 . . . u�

�b1 × u1 . . . �b� × u�

]

︸��������������������������������︷︷��������������������������������︸
�T



�1
...

��

︸︷︷︸
f

+
[
fp
�p

]

︸︷︷︸
wp

= 0. (2)

This can be written in a compact matrix-vector form as
�Tf+wp = 0, where the �T is the transpose of the Jacobian
matrix and referred to as the structure matrix, f is the vector
of tensile forces, and wp is the total wrench applied.

3.3 Wrench-Feasible Workspace

The pose (r, �) is called wrench-feasible for a given
wrench wp if there exists a vector f that satisfies:

�T (r, �)f + wp = 0 s.t. 0 ≤ �min ≤ f ≤ �max (3)

where �min and �max denote the lower and upper bounds
for the feasible force range of the cables. Considering the
limited rotation angles required for overclad panel instal-
lation, our analysis assumes that rotation angles are set
to zero. Therefore, the wrench-feasible workspace in our
study can be defined as:

W =
{
r | Eqn. (3) holds with wp =

[
�gT 0

]T
}
. (4)

In general, Eqn. (3) leads to an underdetermined system
with either zero or infinitely many solutions. To estimate
W, a set of poses r was selected from a discretized grid,
and feasibility was determined using linear programming.

4 Analysis of W for different CDPRs
For ease of visualization and understanding, we will

first analyze the wrench-feasible workspace coverage us-
ing a planar CDPR. Figure 3 shows the dimensions for a
1/3 scaled model of a 3-story residential building currently
used at ORNL for building envelope retrofit experiments.
The planar CDPR shown in the left plot of Figure 3 cor-
responds to a 2-translation 1-rotation (2T1R) model with
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Figure 3. Left: planar CDPR for square panel in-
stallation where the frame matches the facade di-
mensions (blue rectangle). Complete coverage is
achieved if the centroid (purple dot) can be moved
within the yellow-shaded region. Right: W (green
area), the red area indicates lack of full coverage.

� = 4 cables. The CDPR frame (blue solid line) has
the same dimensions as the facade and the square panel
(black solid line) can be installed anywhere within the fa-
cade. The yellow-shaded region describes the area where
the panel’s center of mass r (purple dot) needs to be ma-
neuvered to fully cover the facade with the panels. Due to
inherent limitations imposed by the CDPR’s cable arrange-
ment and force restrictions, certain regions of the facade
may be difficult to access by most of the configurations.
We categorize these regions into three types: corners, top
or bottom margins, and lateral bands. The right plot of
Figure 3 shows W in green color for �min = 132.3 N,
�max = 1200 N, and � = 13.5 kg. The red colored area
shows locations where r is required to reach, but there is
no feasible solution for Eqn. (3). For this particular CDPR
cable arrangement, the top left and right corners, the top
and bottom margins, and the side bands of the facade are
not reachable, therefore the model in Figure 3 does not
provide full facade coverage.

The next sections explore two potential solutions to
achieve full facade coverage: adjusting cable configu-
rations and extending the frame size. While this paper
ignores cable-to-cable and cable-to-panel collisions, these
potential issues can be detected, mitigated, or eliminated in
real-world applications through various approaches, such
as optimizing cable routing design, applying advanced
path planning algorithms, and optimizing anchor posi-
tions [7, 25–27]. The following assumptions have been
made: (1) all cables are massless, (2) cables don’t sag and
behave as straight line segments, and (3) the center of mass
of the panel coincides with its centroid.

4.1 Analysis of Cable Configurations

The first method to increase the workspace coverage in-
volves exploring alternative cable configurations. For the

Table 1. �W for most promising planar CDPRs.
Model# 21 13 15 19 11 12 22 4
�W 1 .88 .83 .83 .79 .78 .76 .73

Table 2. Desired spatial workspace definition.
� � �

Prism start corner (m) 0.381 0.381 0.254
Prism end corner (m) 1.447 2.743 0.9652

planar CDPR with 4 cables, the total number of possible
cable configurations is 4! = 24. Figures 4 and 5 illustrate
all possible cable configurations and their corresponding
wrench-feasible workspaces. Let �W denote the wrench-
feasible workspace coverage of the CDPR, calculated as
the area of W divided by the required coverage, i.e., yel-
low area = green + red areas in Figure 3. Table 1 shows
�W for the most promising CDPR models. Note that only
model 21 achieves �W = 1, satisfying the full coverage re-
quirement. By observing all possible cable configurations
we concluded that, to maximize �W , it is advantageous to
connect the proximal anchor to the distal anchor such that
the angle between the cable and the closest frame edge
is maximized. This is especially useful when the panel
needs to reach the corners of the facade. For instance,
if the CDPR in model 4 needs to reach an upper corner,
the upper cables will form a small angle with respect to
the upper frame edge. If the upper cables are close to a
horizontal position, their vertical force component will be
too small to compensate for gravity. To accommodate for
this, the tension on the upper cables needs to increase sig-
nificantly, saturating the upper limit �max and resulting in
an infeasible pose. Therefore, in the planar case, the best
cable configuration that achieves �W = 1 is the following:
{�1 → �3, �2 → �4, �3 → �1, �4 → �2}.

Extending our analysis to the spatial case, we consider
configurations with 8 cables, 8 distal anchors, and 8 prox-
imal anchors. The parameters employed are identical to
those used in the planar case, including a frame depth of
1.219 m and a platform depth of 0.254 m. Note that in
real-world panel installation using CDPRs, the dimension
of the platform may not be the same as the panel itself.
Designing a thicker platform that can carry multiple pan-
els offers a promising approach to reduce the loading time,
which can be a significant bottleneck in the installation pro-
cess. For the spatial analysis, both the CDPR frame and
the region where the panel centroid is to be manipulated
take the form of rectangular prisms. Table 2 summarizes
the dimensions of the desired workspace. Here, the � and
� axes are the same as in Figure 3, while the � axis is
determined following the right-hand rule. Similar to the
previous case, we assumed � = �3×3 for calculating W.

The spatial CDPR case yields 8! = 40, 320 possible ca-
ble configurations. However, 63% of them (25,500) lead to
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1

Figure 4. Visualization of all possible cable configurations for planar CDPRs where the frame corners are attached
to the panel corners. The model numbers are given for reference.

Figure 5. Wrench-feasible workspace W (represented in green) for the corresponding planar CDPRs when
exploring all possible cable configurations. The red area represents a lack of full facade coverage.
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Figure 6. Histogram of �W > 0.5 for cable-to-panel
collision-free spatial CDPR configurations.
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Figure 7. Left: Spatial CDPR model with the largest
workspace. We only show cables between the facade
and the platform for better visualization. Right: W.

cable-to-panel collisions and a substantial portion results
in small workspace coverage. Figure 6 shows a histogram
depicting the distribution of �W for all collision-free con-
figurations with �W > 0.5. This analysis reveals that only
82 configurations, out of the original 40,320, achieve a
�W > 0.5. Due to the retrofitting requirements, position-
ing cables between the panel and the facade is undesirable.
For example, Figure 7 shows the spatial CDPR model
with cable configuration {�1 → �3, �2 → �4, �3 →
�2, �4 → �2, �5 → �7, �6 → �8, �7 → �5, �8 → �6}
that achieves �W = 0.95. However, the configuration
presents an obstruction caused by all the cables between
the facade and the platform, hindering panel attachment
to the facade. Therefore, we focused our analysis on four
specific models that have a large �W but do not have ca-
bles obstructing the panel installation. Such models are
depicted in the first row of Figure 8. From Figures 6 and
8, we can see that achieving 100% coverage of the entire
facade is not feasible. Therefore, we should consider an
alternative solution: CDPR frame extension.

4.2 Frame Extension

Extending the frame size presents another viable solu-
tion for increasing the wrench-feasible workspace. The-
oretically, the frame can be extended along both width
and height, but each approach presents certain limitations.
Height extension can only be applied on top of the building
and can be impacted by wind loads. Width extension is

applied symmetrically to both the left and right sides and
is often constrained by the presence of adjacent buildings.
Several factors, including local regulations, infrastructure
differences, and community dynamics, can influence the
successful implementation of the frame extension. Setting
aside local regulations, in densely populated areas, the
depth of the frame shouldn’t exceed the sidewalk length.
For width extension implementation, it is crucial to ensure
that the extension does not interfere with adjacent build-
ings or have any adverse effects on them. Additionally,
height extension considerations should be mindful of po-
tential high wind effects. To address safety concerns, a
truss-like structure is recommended for supporting the up-
per cantilevers. Furthermore, it is recommended to shield
the frame to prevent pedestrians and workers from harm
in the event of cable snapping. Considering the densely
populated urban environment depicted in Figure 1, height
extension presents a more favorable option due to the lim-
itations inherent in width extension.

To achieve �W = 1, different configurations may re-
quire different extensions. In the planar case, Model 4
requires height and width extensions, while Model 12 only
needs width extension, as illustrated in Figure 9. In the
spatial case, Model S1, as shown in Figure 8, fails to reach
all corners and leaves a significant gap at the top of the
desired workspace. Similar to Model 4 in the planar case,
increasing �W for Model S1 requires height and width
expansions. However, as shown in the third row of Fig-
ure 8, achieving full coverage needs substantial extensions
on both dimensions, potentially impractical for real-world
scenarios. Models S2 and S3 overcome the limitation of
not reaching the top of the facade. However, their W do
not cover the side bands, which demands a width exten-
sion to augment �W . However, the coverage depicted in
plots C(2) and C(3) indicate that even with a 25% width
extension, �W remains below 1. Model S4 successfully
covers the side bands but misses the top and bottom mar-
gins. While a height extension can address the top margin
coverage, the bottom margin remains inaccessible for this
model. When restricted to a single cable configuration,
Model S4 is one of the most promising options for max-
imizing �W . Based on our discussion so far, there is
currently no single spatial model capable of covering the
entire facade area with practical frame extensions. In cases
where multiple cable configurations are permitted, a com-
bination of Models S3 and S4 proves effective in covering
nearly all areas within the required retrofitting space, ex-
cept for the four corner areas. The following section will
explore potential solutions to address this issue. In addi-
tion, depending on the configuration, width or height ex-
tensions may not always be beneficial for increasing �W .
For instance, models S1 and S3 from Figure 8 showcase
scenarios where height extension decreases �W .
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Figure 8. Top: Selected cable configurations. Middle: W without frame extension, the black rectangle indicates
the panel centroid area needed for a complete retrofit. Bottom: �W obtained through frame extension.

Figure 9. Planar CDPR �W comparison for models 4
and 12 with height and width extensions.

5 Conclusion and Future Work
This paper studied the use of CDPRs for automated over-

clad panel installation. To fulfill envelope retrofit require-
ments, we explored strategies for maximizing the wrench-
feasible workspace. Different cable configurations lead to
different wrench-feasible workspace coverage. In general,
both width and height extensions improved the coverage
for a given configuration. However, if width extension is
not feasible, implementing height extension can still im-
prove coverage. This study highlights the importance of
considering different cable configurations and frame ex-
tension to optimize coverage in different scenarios.

Future research will continue to explore strategies to
enhance coverage. Designing reconfigurable anchors of-

fers a potential solution to achieve full coverage. For
instance, the combination of Models S3 and S4 can cover
nearly all the required retrofitting area, except for the four
corners. To address this limitation, one can attach the
distal anchor points to a panel carrier instead of directly
attaching them to the panel. The panels can be attached
off-center on the carrier, with an offset towards the re-
spective corners, thereby compensating for the infeasible
space by the original models. Additionally, approaches
like optimizing panel and carrier dimensions or design-
ing advanced path planning algorithms by strategically
sagging specific cables offer the potential for further in-
creasing workspace coverage. We also intend to expand
our research to incorporate a real-world model, aiming to
offer a more comprehensive understanding of the entire
system. This expansion includes dynamic modeling and
control algorithms to evaluate aspects like the system’s
robustness, autonomy, and applicability to different con-
struction processes, including considerations of economic
viability and long-term durability.
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Abstract – 

This study focuses on developing a data-system 
integration platform tailored for the construction 
phase. It employs application programming 
interfaces (APIs) and a range of sensor devices to 
enhance construction management practices. The 
platform is crafted to cater to various requirements 
while maintaining scalability, utilizing a microservice 
architecture to facilitate seamless integration with 
external systems. A prototype of the platform was 
developed and subsequently assessed for its 
practicality in as-built inspections, receiving positive 
evaluations for its effectiveness and efficiency. 
Additionally, the platform showed its adaptability by 
successfully integrating with external services for 
comprehensive analysis and data collection. Future 
endeavors will focus on customizing the platform for 
diverse applications and collaborating with 
stakeholders to foster its practical implementation in 
construction projects. 

 
Keywords – 

APIs; As-built inspection; Integration platform 

1 Introduction 
The rapid advancement of sensor technology in recent 

years has greatly facilitated the collection of crucial data 
for construction management from worksites. This 
development, coupled with the progression of 
applications designed for data analysis and processing, 
suggests a trend toward the tailored combination and 
usage of these devices and applications to meet the 
specific needs of various construction projects. 
application programming interfaces (APIs) are a key 
method for combining these technological tools. 
However, challenges arise when system integration 
occurs in a one-to-one relationship between API 
providers (e.g., device developers) and users (e.g., 
application developers), as depicted in Figure 1 (above). 

To address this issue, the integration platform illustrated 
in Figure 1 (below) is proposed. This study focuses on 
developing a prototype data-system integration platform 
for the construction phase, aiming to enable the seamless 
integration of devices and applications. 

A critical aspect of developing a data system 
integration platform is defining requirement 
specifications based on user needs. The objective of this 
study is to specify the system requirements for a data-
system integration platform targeting the construction 
phase, develop a prototype, and assess its effectiveness 
through practical application. 

 
Figure 1. Comparison of device and application 
collaboration with and without an integration 
platform (above: without platform, below: with 
platform). 

2 What is data-system integration 
platform 

The evolution of integration platforms is a global 
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phenomenon. Notable examples include DATA-EX [1] 
and the Connector Architecture for Decentralized Data 
Exchange (CADDE) [2] in Japan, and GAIA-X [3] and 
the International Data Spaces Association (IDSA) [4] 
internationally. Industry-specific integration platforms 
are emerging in sectors such as agriculture [5], smart 
cities [6], and the energy sector [7].  

Moreover, the proliferation of cloud computing 
technologies has led to diverse service offerings, 
including infrastructure as a service (IaaS), platform as a 
service (PaaS), and software as a service (SaaS) [8]. 
Gartner, a leading American consulting firm, defines 
integration platform as a service (iPaaS) [6] as a 
comprehensive suite of cloud services that facilitates the 
development, execution, and governance of integration 
flows. These services enable the connection of a variety 
of on-premises and cloud-based processes, services, 
applications, and data within or across organizations [9]. 

This research and development project focuses on a 
data system integration platform tailored for the 
construction phase, categorizing it as an iPaaS. 
Regarding with construction phase, several platforms 
have been proposed and are being implemented like 
Infrakit [10] in Finland and Landlog [11] in Japan. 
Infrakit is one of integration platforms for collaboration 
among stakeholders in construction phase. Using this 
feature, real-time quality control reporting in 
construction projects is being attempted [12]. Landlog is 
one of the integration platforms for utilizing construction 
management information from heavy machinery. This 
platform is developed by 4 companies including 
Komatsu [13] and provide various services for not only 
construction but also construction planning. Compared to 
these cases, this platform is designed as a versatile 
integration tool that allows for the flexible combination 
and utilization of devices and applications in accordance 
with on-site requirements. 

3 Specifications for a data-system 
integration platform 

3.1 Stakeholders of the platform 
Table 1 delineates the attributes and specific 

examples of potential users. These users span a wide 
range, including clients, main contractors, subcontractors, 
and manufacturers, all of whom play integral roles in the 
construction process. Additionally, IT vendors, startups, 
and various manufacturers are identified as key 
stakeholders for the integration of existing applications 
and devices. To cater to the varied demands of these users, 
developers of new services, notably startups and 
construction firms engaged in technological innovations, 
are also considered vital stakeholders. 

3.2 Characteristics of the construction phase 
and issues to be resolved 

Table 2 outlines the unique characteristics and 
challenges of the construction phase. A notable feature of 
this phase is the variability of the supply chain across 
different sites. The inconsistency of the supply chain 
poses a challenge, as it is impractical for all suppliers to 
adopt a specific commercial system. Additionally, 
determining the essential functionalities within a single 
organization is complex, given that main contractors, 
subcontractors, leasing companies, manufacturers, and 
others must jointly consider and implement necessary 
features. To overcome these challenges, the system must 
possess extensibility, the capability to enhance 
functionalities based on each company’s specific needs. 

Table 1 User attributes and representative examples 

Attributes Specific examples 
Users clients, main contractors, sub-

contractors, and manufacturers 
 

Application 
developers 
 

IT vendors and startups 

Device 
developers 

survey instrument manufacturers, 
heavy machinery manufacturers 
and IoT device manufacturers. 
 

New service 
developers 

startups and contractors 

Table 2 Key characteristics and challenges in the 
construction phase 

Characteristics Issues 
Supply chain 
varies by site 

Issue 1: Difficult to use certain 
commercial systems 

Issue 2: Difficult to determine 
the functions required 
by one organization 

 
Single item 
production and 
construction 
methods vary 
depending on site 
 

Issue 3: A wide variety of 
required functions 

Issue 4: The developers can be 
diverse 

Different sensing 
is required for 
each site 

Issue 5: Necessary of data 
collection methods 
from devices 

3.3 System architecture 
To achieve extensibility, it is crucial to modularize 

functions and develop a system that allows for effortless 
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replacement and API integration. To meet this criterion, 
the data-system integration platform utilizes a 
microservice architecture. Microservices are a 
distributed architecture comprising individual service 
components. In the context of the construction phase, as 
indicated as issue 3 and 4 in Tables 2, the required 
functionalities and their developers can vary significantly. 
It is impractical to incorporate all components as 
functions of the data system integration platform. 
Therefore, it becomes necessary to implement 
microservices that can effectively collaborate with 
external systems. 

In considering the integration with external systems, 
the system configuration of the data-system integration 
platform is depicted in Figure 2. This diagram 
categorizes the system into three distinct layers: the 
platform layer, the analysis and processing service layer, 
and the construction management information collection 
service layer. 

The analysis and processing service layer is designed 
to facilitate collaboration between web and desktop 
applications. In this layer, functionalities are represented 
as individual components. Meanwhile, the construction 
management information collection service layer is 
tailored for the interaction between survey instruments 
and internet of things (IoT) devices, with each device and 
instrument being depicted as a component. 

The platform layer consists of the data system 
integration platform and an existing, previously 
developed platform. Within this layer, the data system 
integration platform is equipped with essential functions 
on a component basis. 

  

 
Figure 2. System configuration diagram of the 
data-system integration platform 

4 Prototype development 

4.1 Use case configuration 
The prototype of the data system integration platform, 

targeting the construction stage, has been specifically 
developed for as-built inspections. This use case involves 
a range of users, including construction companies and 
their clients. To ensure the reliability of construction 
management information, the platform envisages API 
integration with a blockchain-based system [15]. Figure 
3 illustrates the system usage flow when conducting as-
built inspections of ICT earthwork and new Austrian 
tunneling method (NATM) construction. 

 

 
Figure 3. System usage workflow for as-built 
inspections 
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4.2 System requirements definition 
In the process of defining system requirements, 

functionalities have been established to adequately 
address two key aspects: the capacity to perform as-built 
inspections and the ability to maintain system 
extensibility. Initially, for the development of a prototype 
capable of as-built inspections, functionalities such as 
visualization, analysis, and required APIs at each stage of 
the system usage flow were determined. 

Table 3 enumerates the specific items targeted for 
visualization and analysis in the prototype, along with 
their respective formats. The visualization function 
encompasses essential features for verifying construction 
management, design, and as-built data. Additionally, for 
analysis purposes, features critical for determining the 
scope of the as-built inspection and for the evaluation of 
the as-built itself are included. 

The focus of this study also encompasses the 
management of large-scale point-cloud data, which is 
essential for construction management information. 
Consequently, analysis functions such as trimming and 
noise removal of point clouds are necessary. The process 
of discrepancy calculation for as-built evaluations, 
involving comparisons between point-cloud data and 3D 
design information, varies depending on the construction 
type. For the trial, as information and communications 
technology (ICT) earthwork was the focal point, a 
specialized as-built earthwork evaluation function was 
developed. The evaluation parameters adhere to the 
standards set by Japan's Ministry of Land, Infrastructure, 
Transport, and Tourism. 

Table 3 Visualization and analysis functions with 
corresponding file formats 

Function File formats 
Visualization 
 3D design 

information 
IFC, LandXML, obj, stl 

 2D design 
information  

dxf 

 Point cloud las, csv, txt, xyz 
 As-built csv 
 Alignment csv 
Analysis 
 Trimming for point 

cloud 
las, csv, txt, xyz 

 Noise removal for 
point cloud 

las, csv, txt, xyz 

 As-built evaluation 
for ICT earthwork 

Input: las, csv, txt, xyz 
Output: csv, json 

To maintain system extensibility, APIs were 
integrated to enable interaction with external services. 
Table 4 outlines the service layers anticipated for 
integration and implementation within these APIs. In the 

integration with the analysis and processing service layer, 
APIs have been developed not only for uploading 
alignment and as-built information but also for retrieving 
various types of data necessary for analysis and 
processing. This allows external applications to extract 
data from the data-system integration platform and store 
their analysis results. In terms of integration with the 
construction management information collection service 
layer, APIs facilitate uploading of point clouds from 
survey instruments. Furthermore, if various data types 
include reference point coordinates, there is an API to 
update these coordinates. Given that diverse types of 
information are uploaded over the network, there exists a 
potential risk of upload failures. To address this, a file 
upload completion notification API has been 
implemented. This API can be accessed by an application 
or survey instrument upon successful data upload, 
providing a confirmation of the upload's completion. 

Table 4 Service layers anticipated for integration and 
associated APIs 

Service layer Implemented APIs 
Analysis and 
processing 
service layer 

- API for uploading alignment 
information 

- API for uploading as-built 
information 

- API for file upload completion 
notification 

- API for getting alignment 
information file list 

- API for getting point cloud file 
list 

- API for getting design 
information list 

- API for downloading file 
 

Construction 
management 
information 
collection 
service layer 

- API for uploading large-scale 
point cloud upload 

- API for updating reference 
points of various files 

- API for file upload completion 
API 

5 Trial and evaluation 

5.1 Setting trial contents 
The trial for this data-system integration platform was 

assessed from two main perspectives: "usefulness for the 
user" and "satisfaction of system characteristics". 
Consequently, two distinct trials were established: "Trial 
1: Evaluation of Usefulness" and "Trial 2: Verification of 
System Characteristics", each aligning with the 
respective perspectives. These trials were conducted as 
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part of the activities of a sub-working group (sub-WG) 
under a committee formed by the Japan Federation of 
Construction Contractors in 2022. The sub-WG saw 
participation from over 20 companies representing a 
diverse range of industry sectors, including main 
contractors, subcontractors, startups, IT vendors, 
manufacturers, and consultants. Trial 1 primarily 
involved main contractors and subcontractors, while 
startups and manufacturers were the focus of Trial 2. 

5.2 Trial 1: Evaluation of usefulness 
For the evaluation of usefulness, a questionnaire 

survey was administered following the testing of the 
prototype. This trial included ten contractors. Test data 
were specifically prepared to ensure that the evaluation 
results were not influenced by variances in construction 
management and 3D design information. Table 5 
presents a summary of these trials.  

The trial encompassed the contractor's 
implementation within the system usage flow (depicted 
in blue in Figure 3), while the client's implementation 
scope (indicated in purple in Figure 3) was executed by 
the study's authors. Figure 4 depicts an example of the 
results obtained by adhering to the system usage flow, 
illustrating as-built information in a color-coded format 
to highlight discrepancies between the design and actual 
construction. It is important to note that for the analysis 
of as-built evaluations, the use of external services was 
intentionally avoided to ensure uniform conditions 
among the participating companies. Instead, the analysis 
function integrated into the prototype was utilized. 

Table 5 Overview of the trial process 

Items Content 
Construction 
method 

- ICT earthwork 
 

Construction 
management 
information 
 (Point cloud) 

- File format: txt 
- Amount of data: 2,856 MB 

(2.9 GB) 
 

3D design 
information 

- File format: LandXML 
- Amount of data: 5 MB 

Content of as-
built evaluation 
information 

- Average value 
- maximum and minimum 

value for discrepancy 
between design and actual 

- Evaluation area, 
- Number of evaluation point 

data 
- Number of rejected points 

 
Figure 4. Illustrative case from the trial. 

The evaluation of the trials was aligned with the 
standards outlined in ISO/IEC 25010 [16]. This 
framework defines the quality characteristics of software 
as evaluation metrics. The questionnaire items, derived 
from these standards, are compiled in Table 6. Notably, 
while operability and willingness to use are not specified 
as quality characteristics by the ISO, they were included 
as crucial aspects for assessing usefulness. Additionally, 
inquiries were made regarding the practicality and 
operability of each function, with the specifics of these 
functions detailed in Table 7. 

A questionnaire was developed, employing a five-
point scale for responses. A score of 5 represented the 
highest rating, while 1 was the lowest. The results, 
depicted in Figure 5, revealed that all users rated the 
effectiveness and efficiency as 5 and 4, respectively. This 
indicates a certain level of effectiveness and efficiency 
achieved for the users. In terms of practicality and 
operability, over 60% of users awarded high ratings for 
all items, with the exception of the analysis operability. 
Free responses concerning the operability of the analysis 
suggested improvements, such as the ability to specify 
the scope for as-built inspections using coordinate values. 
The practicality and operability ratings for each function, 
when compared to commercially available software, 
were likely influenced by factors such as the prototype's 
limited feature implementation, resulting in relatively 
lower ratings. 
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Table 6 Questionnaire items assessing software quality 
characteristics 

quality 
characteristics 

Questions 

Effectiveness - Is it possible to achieve as-built 
inspection works by utilization 
of the system? 

Efficiency - Does the use of the system 
make as-built inspection works 
more efficient? 

Practicality - Do you think the features of 
visualization, analysis, and as-
built information visualization 
are useful in as-built works? 

Operability - Are the features of 
visualization, analysis, and as-
built information visualization 
easy to operate? 

Willingness 
to use 

- If the system is fully 
operational, would you like to 
implement it in your company's 
operations? 

Table 7 Detailed descriptions of each system function. 

Functions Details 
Visualization - Various visualization functions 

such as 3D design information 
and point cloud 

Analysis - Trimming of point cloud 
- Selection of scope for as-built 

inspection 
- analytical functions for as-built 

evaluation 
Visualization 
of as-built 
information 

- The visualization function of the 
analysis results (visualization of 
heat maps) 

- The visualization function of as-
built evaluation information 

 
Figure 5. Questionnaire results analysis. 

5.3 Trial 2: Verification of system 
characteristics 

The system characteristic of extensibility was a 
crucial aspect to be verified in this study. To this end, 9 
companies, including startups and IT vendors, 
participated in the verification process. The focus of this 
verification was on the integration capabilities of the 
data-system integration platform, specifically regarding 
the components of the analysis and processing service 
layer and the construction management information 
collection service layer. 

The external services integrated for this verification 
included a desktop application with an as-built evaluation 
function, laser scanners, and mobile devices capable of 
collecting point cloud data as shown in table 8. 
Integration with these services was facilitated mainly 
using the API provided by the data-system integration 
platform.  

A case study was conducted to demonstrate the 
practical application of this system in the as-built lining 
concrete evaluation for the NATM. The point clouds 
required for this evaluation were of shotcrete and lining 
concrete, with the objective to assess the inner width, 
height, and lining thickness by analyzing these point 
clouds. ENZAN’s Application and iXs’s device is 
utilized for this trial of NATM. 

Table 8 Integrated applications and devices 

Type Developers and suppliers 
Application 
 As-built analysis for 

NATM 
ENZAN [17] 

 As-built analysis for 
ICT earthwork 

FUKUICOMPUTER, 
Inc. [18] 

 Structure from 
Motion/ Multi-View-
Stereo (SfM/ MVS) 
analysis enfine 

SkymatiX, Inc. [19] 

Device 
 Terrestrial laser 

scanner 
iXs [20] [21] 

 Terrestrial laser 
scanner (Using 
Trimble Connect 
[22]) 

Nikon/Trimble CO., 
LTD. [23] 

 Lidar installed on 
mobile 

OPTiM Corporation [24] 

 Unmanned aircraft 
vehicle (UAV)  

Skydio [25] 

 Laser scanner 
equipped on heavy 
machinery 

Fujita Corporation [26] 
Leica Geosystems [27] 
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The integration with the external analysis and 
processing service was accomplished through the 
available API, and the outcomes of the as-built 
evaluation for NATM are illustrated in Figure 6. The 
results show that the essential evaluation information 
could be effectively outputted, enabling a trouble-free as-
built evaluation. The visualization, storage, and 
conversion functions, previously employed in ICT 
earthworks, were repurposed here. For visualization, 
additional line-drawing functions indicating the inner 
width and height were implemented, while the analysis 
function's as-built evaluation program was integrated 
with an external service. This trial successfully 
demonstrated the platform's capacity for functional 
expansion. Furthermore, the trial confirmed the 
feasibility of integrating the platform with various survey 
instruments and mobile device applications. 
 

 
Figure 6. As-built evaluation example for the new 
Austrian tunneling method (NATM). 

6 Conclusion 
The aim of this study was to define the essential 

requirements for a data-system integration platform 
tailored to the construction phase. In pursuit of this 
objective, a prototype was developed, and its practicality 
assessed through various trials. Upon analyzing user 
needs, microservices were selected for their capacity to 
fulfill the system's extensibility requirement, facilitating 
integration with external services via APIs. This 
approach led to the development of a prototype, with 
trials focusing on ICT earthwork and NATM 
construction as practical use cases. The trials 
demonstrated that the system was highly effective and 
efficient in meeting user needs. The verification of 
system characteristics confirmed that extensibility, a key 
system attribute, was successfully achieved. In future 
studies, it will be essential to explore the platform's 
adaptability to a broader range of use cases. In addition, 
it is needed a comparative case study to highlight the 
advantages of the proposed platform over existing 
platforms. Furthermore, ongoing discussions with 
stakeholders involved in the platform's development and 

operation will be crucial for its readiness for broader 
practical implementation in construction projects. 
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Abstract –  

The occurrence of defects during the building 
construction process significantly impacts housing 
quality. One such defect, the distortion of a building's 
framework, affects both sustainability and aesthetics. 
This study presents an automated technique for 
inspecting framework distortion in building 
construction by measuring the angles between walls. 
The proposed method employs a portable data 
acquisition system that allows for dynamic data 
collection. The system's accuracy is enhanced through 
calibration based on terrestrial laser scanning (TLS) 
data as a reference. Point cloud data are registered to 
form a map of the interior space, leveraging a deep 
learning algorithm to visualize framework distortions. 
When tested in an apartment construction 
environment, the method reduces data acquisition 
time compared to the TLS-based approach, while 
maintaining precision with an average angular error 
of 0.28 degrees. This study demonstrates a cost-
effective and accurate solution for defect inspection in 
the construction industry. 

 
Keywords – 

Defect Inspection; Mobile Data Acquisition 
System; Multi-Sensor Calibration; Point Cloud 
Registration; Defect Visualization    

1 Introduction  
Defects occurring during the building construction 

process profoundly affect housing quality. Critical 
defects encompass structural flaws, substandard 
finishing work, inadequate electrical and plumbing 
systems, insufficient moisture and waterproofing 
measures, and faulty mechanical systems [1]. Addressing 
these defects is vital for ensuring the building's safety and 
longevity. Among these, distortion of the building's 
framework is a critical structural defect. It directly 
impacts the building's long-term durability and its 
aesthetic integrity. 

Recent studies have leveraged 2D and 3D computer 
vision technologies along with deep learning algorithms 

to detect building defects more effectively. Wang et al. 
[2] developed a photogrammetry-based pipeline for 3D 
reconstruction of buildings, enabling automated 
identification of building surface defects such as moulds 
and cracks on reconstructed 3D scenes. Guo et al. [3] 
proposed a rule-based deep learning approach for 
detecting façade defects, including cracks, delamination, 
peeling, and spalling. Chow et al. [4] presented an 
automated system for detecting cracks and spalling in 
buildings using mobile data collection, deep learning, 
and scene reconstruction. Tan et al. [5] developed a 
method for integrating crack data from unmanned aerial 
vehicle images into building information models, thereby 
improving the inspection of high-rise building façades. In 
addition, several studies have been conducted to monitor 
various defects in buildings, such as leakage and heat loss 
[6, 7, 8]. Despite the importance of monitoring 
framework distortion, research in this area remains scarce. 
Moreover, there is a lack of technologies that can inspect 
framework distortion accurately and efficiently for on-
site application. Terrestrial Laser Scanning (TLS) is one 
of the accurate methods for quality assurance and control 
in construction [9], and is applicable for inspecting 
framework distortion. However, while this method is 
highly precise, it comes with considerable constraints in 
terms of cost and time. 

To address the above issue, this paper proposes a 
novel approach for accurately and cost-effectively 
measuring framework distortion, as shown in Figure 1. 
We calibrate multiple Azure Kinect DK depth cameras 
using TLS data as a reference, and then acquire point 
cloud data. For visualization purposes, the point cloud 
data are registered to form a map. The angles between 
walls are analyzed from each point cloud data, and these 
values are visualized on the map. A deep learning-based 
registration algorithm is used for the calibration of the 
sensors and the formation of the map. 

 
Figure 1. Overview of the proposed method. 
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2 Methodology 

2.1 Deep Learning-Based Sensor Calibration 
and Data Acquisition 

A backpack platform was developed for data 
acquisition. As shown in Figure 2(a), the platform was 
equipped with multiple Azure Kinect sensors and 
batteries for powering the sensors and a laptop. Four 
Azure Kinect sensors were mounted to broaden the field 
of view for data acquisition. As shown in Figure 2(b), an 
operator can carry the platform to collect data while 
moving around. The point cloud data were saved in the 
MKV file format, and later PCD files were extracted 
from the MKV file. During data acquisition, we ensured 
that the starting and ending positions were identical. 

 
(a) (b) 

Figure 2. A backpack platform for data acquisition; (a) 
hardware configuration, and (b) operational 

demonstration of the backpack platform in field.  

For the extrinsic calibration of multiple Azure Kinect 
sensors, TLS data were used as the ground truth. As 
shown in Figure 3, point cloud data from each of the four 
different Azure Kinect sensors were registered with the 
TLS data. We utilized deep global registration (DGR) 
[10], a deep learning-based registration algorithm, for 
aligning Azure Kinect data with TLS data. Through 
registration, four transformation matrices were obtained, 
which reveal the relative positional relationships among 
the Azure Kinect data.  

The TLS data in Figure 3 were used solely for 
calibration purposes; the data were obtained in a 
laboratory setting. In this study, additional TLS data were 
acquired to serve as ground truth for calculating the 
performance of the proposed defect inspection method 
(Figure 6(b)). The TLS data are different from those in 
Figure 3 and were acquired from an actual apartment 
construction site. 

Once the calibration of multiple Azure Kinect sensors 
was completed using TLS data, there was no need to 
repeat the calibration process. The relative 
transformations among the sensor coordinate systems 
were calculated through calibration, and these calculated 
values remain valid as long as the relative positions of the 

sensors do not change. 

 
Figure 3. Calibration of multiple Azure Kinect sensors 

using TLS data and DGR. 

2.2 Point Cloud Registration for Visualization 
The point cloud data, obtained from the calibrated 

multiple Azure Kinect sensors, were employed to inspect 
the distortion of the building’s framework (detailed in 
Section 2.3). A point cloud map was formed through 
registration, which was later used to visualize the results 
of the angle measurement between walls. Point cloud 
data extracted from the MKV file were sequentially 
registered using DGR. As shown in Figure 4, once all the 
point cloud data were registered, a map of the entire 
interior space could be generated. 

In the initial map, as shown in Figure 4(a), 
misalignment occurred between the point cloud data sets; 
this was due to the failure to recognize that the data 
acquisition starting and ending positions were identical. 
Therefore, we used DGR to register two point cloud data 
obtained at the start and end points of data acquisition, 
thereby calculating the degree of discrepancy (Figure 
4(c)). The amount of discrepancy was propagated across 
all point cloud data between the two data. Ultimately, a 
complete map without mismatch between the point cloud 
data was generated, as shown in Figure 4(b). This map 
was used solely for visualizing defect information and 
was not utilized in defect analysis. 
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Figure 4. Point cloud registration and misalignment 
resolution for visualization using DGR; (a) initial map 
exhibiting misalignment, (b) refined map with aligned 

point clouds, and (c) calculation of the discrepancy 
between start and end point cloud data. 

2.3 Defect Inspection  
Each Azure Kinect data underwent a defect 

inspection process. Figure 5 shows the procedure for 
calculating angles between walls. Using random sample 
consensus (RANSAC), planes were segmented from the 
raw point cloud data. Subsequently, only the vertical 
walls were extracted from these planes, and the angles 
between them were calculated. The angles were 
visualized on the map generated in Section 2.2. During 
this process, angles located in close proximity on the map 
were merged and represented by their average value. 

 

Figure 5. Workflow of point cloud data processing for 
defect inspection in apartment construction. 

3 Experiments and Results 

3.1 Datasets 
Point cloud data for one unit of the apartment were 

acquired at an apartment construction site. The 
effectiveness of the proposed method was validated 
through a performance comparison with the TLS-based 
method. Figure 6(a) and Figure 6(b) show data 
acquisition using the backpack platform developed in this 
study and data acquisition using TLS, respectively. As 
shown in Table 1, a total of five scans were conducted 
using TLS, taking about 25 minutes excluding the time 
to move the sensor. With the proposed method, data were 
continuously acquired for about 3 minutes and saved in 
the MKV file format. From the acquired MKV file, 191 
PCD files were extracted. 
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(a) (b) 

Figure 5. Data acquisition for comparative experiment; 
data acquisition with (a) backpack platform, and (b) 

TLS. 

Table 1. Comparison of data acquisition methods using 
TLS and multiple Azure Kinect sensors: analysis of 

scan frequency, time, and cost. 

Method Number 
of scans 

Total 
acquisition 

time 
(mm:ss)  

Sensor 
prices 

(USD, in 
thousands) 

TLS 5 24:40 
(excluding 

sensor 
relocation 

time) 

38.3 

Four 
Azure 
Kinect 
sensors 

1 2:34 2.5 

3.2 Implementation Details 
When acquiring Azure Kinect data, all sensors were 

synchronized and connected in a daisy-chain 
configuration; this configuration refers to the sequential 
interconnection of pairs of sensors [11]. For registration, 

we utilized the pre-trained DGR algorithm, which had 
been trained on the 3DMatch dataset [12]. For calculating 
the angles between walls, four planes were extracted 
from each point cloud data using RANSAC. When 
executing the RANSAC algorithm, the maximum 
distance for a point to be classified as an inlier was set to 
2 cm and the number of points randomly sampled for 
plane estimation was set to 3. Data acquisition was 
conducted on a laptop equipped with an Intel Core i7-
10750H CPU and an RTX 2060 GPU. Data processing 
was performed on the Ubuntu 16.04 operating system 
with an Intel Xeon Gold 6240M CPU processor and an 
RTX 3080 GPU based on the Python programming 
language. 

3.3 Experimental Results 
3.3.1 Sensor Calibration 

We conducted comparative experiments to validate 
the proposed calibration method for multiple Azure 
Kinect sensors. Figure 7(a) shows the results of a typical 
calibration method using an AprilTag marker and the 
iterative closest point (ICP) algorithm. Figure 7(b) shows 
the results of calibration using the proposed method with 
TLS data and DGR. As shown in the figure, when the 
sensors were calibrated in a typical way, a misalignment 
occurred between the Azure Kinect data. The suggested 
calibration technique addressed this issue, thereby 
enhancing the data quality. 

When performing calibration using the proposed 
method, it was possible to combine point cloud data with 
precision comparable to TLS data, and it eliminated the 
need for labor-intensive processes like AprilTag marker 
detection. Figure 8 shows examples of point cloud data 
from multiple Azure Kinect sensors calibrated using TLS 
data and DGR. 

 
 

 
(a) (b) 

Figure 6. Comparative analysis of Azure Kinect sensor calibration methods; (a) calibration with an AprilTag marker 
and ICP, and (b) calibration using TLS data and DGR. 
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Figure 7. Examples of point clouds from multiple Azure 

Kinect sensors calibrated using TLS data and DGR. 

 

3.3.2 Point Cloud Registration for Visualization 

All Azure Kinect data were combined using DGR to 
form a map, which was then utilized for visualizing the 
results of defect inspection. Figure 9 shows the registered 
point cloud map generated after adjusting the 
discrepancy between the point cloud data sets. The figure 
demonstrates that the created map was precise enough to 
visually comprehend the building's internal elements 
adequately. 

3.3.3 Defect Inspection 

The angles between walls measured from each Azure 
Kinect data were visualized on the registered point cloud 
map (Figure 10). As shown in Table 2, angles between a 

total of 10 pairs of wall surfaces were measured. To 
evaluate the accuracy of the proposed method, the same 
defect inspection process was applied to TLS data. Figure 
11(a) and Figure 11(b) show examples of wall angle 
measurement using the TLS-based approach and the 
proposed method, respectively. The proposed method 
demonstrated an average angular measurement error of 
0.28 degrees when compared against the TLS-based 
approach. 

 

 
Figure 8. Results of point cloud registration for 

visualization using DGR.

 

 
Figure 9. Visualization of calculated angles between walls in a registered point cloud map. 
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(a) (b) 

Figure 10. Examples of wall angle measurements from 
point cloud data; angle measurement using (a) TLS 

data, and (b) Azure Kinect data.  

Table 2. Comparative analysis of wall angle 
measurements from TLS and Azure Kinect data. 

Wall 
pair 

TLS angle 
(degrees) 

Azure 
Kinect 
angle 

(degrees) 

Error 
(degrees) 

1 90.92 90.34 0.58 
2 89.89 89.59 0.30 
3 89.78 89.90 0.12 
4 90.44 89.98 0.46 
5 90.01 89.75 0.27 
6 89.65 89.76 0.12 
7 89.81 90.05 0.24 
8 90.05 89.73 0.33 
9 91.02 91.01 0.01 

10 89.64 90.00 0.36 

3.4 Discussion 
The experimental results demonstrate the potential of 

the developed backpack platform and defect inspection 
technique. However, there is still room for improvement 
in the proposed method through future studies.  

First, there is a need for preprocessing point cloud 
data in the defect inspection process. Noise may occur 
when acquiring data from a distance using Azure Kinect 
sensors. Removing such noise based on the data 
acquisition distance can enhance defect detection 
performance. Statistical outlier removal and radius 
outlier removal are common methods used to remove 
noise from point cloud data. However, these methods do 
not effectively remove scattered noise points that are 
acquired from distant ranges in Azure Kinect data. 
Therefore, using density-based clustering for noise 
removal can be an effective solution.  

Second, the data acquisition platform can be 
improved to increase its on-site applicability. To achieve 
this, several strategies can be employed: using a Mini PC 
instead of a laptop, utilizing efficient batteries to reduce 
weight, implementing real-time data processing for 
defect inspection, redesigning the backpack to reduce 

worker fatigue, and providing visual guides to for data 
acquisition. 

Third, in addition to analyzing angles between walls, 
a wider array of defects should be addressed in future 
studies. Sagging in ceilings and floors is also critical 
defect information, and such defects can be detected 
using the proposed method. In addition to structural 
defects, surface anomalies such as cracks, voids, and 
spalling on the structure's surface can also be detected. 
These surface defects can be inspected using not only 
point cloud data but also by applying vision-based 
methods that utilize images. 

Fourth, the developed technology should be validated 
in more field applications to increase its robustness. The 
proposed method was validated on a single type of 
apartment construction site. There is a need to apply the 
method to a wider variety of building construction sites 
and address the various challenges that arise in the 
process. Such diverse real-world implementations will 
aid in enhancing the applicability of the proposed method. 

Addressing these four key improvement areas could 
significantly enhance the efficacy of the proposed 
method, making it a highly valuable tool in the field of 
defect inspection and building analysis. 

4 Conclusion 
This study proposed a novel pipeline for inspecting 

framework distortion in building construction employing 
multiple Azure Kinect sensors. By calibrating the sensors 
against TLS data and implementing a deep learning 
algorithm for registration, the system created a 
comprehensive 3D map of the building's interior. The 
angles between walls analyzed from the Azure Kinect 
data were visualized on the 3D map. This approach not 
only significantly reduced the time required for data 
acquisition but also maintained a high level of accuracy. 
If the proposed method is further developed, it could 
revolutionize the way building construction projects are 
managed by ensuring effective defect inspection and 
enhanced safety. 

Acknowledgment 
This work was supported by the National Research 

Foundation of Korea (NRF) grant funded by the Ministry 
of Education (No. 2018R1A6A1A08025348) and the 
"National R&D Project for Smart Construction 
Technology (No.23SMIP-A156488-04)" funded by the 
Korea Agency for Infrastructure Technology 
Advancement under the Ministry of Land, Infrastructure 
and Transport, and managed by the Korea Expressway 
Corporation. This research was conducted with the 
support of i-thetto Co., Ltd., and was funded by DL E&C 
Co., Ltd. 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1102



References 
[1] Ministry of Land, Infrastructure and Transport. 

Investigation of Defects in Apartment Buildings, 
Estimation of Repair Costs, and Standards for 
Determining Defects. On-line: 
http://www.molit.go.kr/USR/policyData/m_34681/
dtl.jsp?id=4503, Accessed: 14/12/2023. 

[2] Wang, T., Gan, V. J., Automated joint 3D 
reconstruction and visual inspection for buildings 
using computer vision and transfer 
learning. Automation in Construction, 149: 104810, 
2023. 

[3] Guo, J., Wang, Q., Li, Y., Evaluation-oriented 
façade defects detection using rule-based deep 
learning method. Automation in Construction, 131: 
103910, 2021. 

[4] Chow, J. K., Liu, K. F., Tan, P. S., Su, Z., Wu, J., 
Li, Z., Wang, Y. H., Automated defect inspection of 
concrete structures. Automation in 
Construction, 132: 103959, 2021. 

[5] Tan, Y., Li, G., Cai, R., Ma, J., Wang, M., Mapping 
and modelling defect data from UAV captured 
images to BIM for building external wall 
inspection. Automation in Construction, 139: 
104284, 2022. 

[6] Lee, K., Lee, S., Kim, H. Y., Bounding-box object 
augmentation with random transformations for 
automated defect detection in residential building 
façades. Automation in Construction, 135: 104138, 
2022. 

[7] Chen, J., Lu, W., Lou, J., Automatic concrete defect 
detection and reconstruction by aligning aerial 
images onto semantic‐rich building information 
model. Computer‐Aided Civil and Infrastructure 
Engineering, 38(8): 1079-1098, 2023. 

[8] Puliti, M., Montaggioli, G., Sabato, A., Automated 
subsurface defects' detection using point cloud 
reconstruction from infrared images. Automation in 
Construction, 129: 103829, 2021. 

[9] Tang, X., Wang, M., Wang, Q., Guo, J., Zhang, J., 
Benefits of terrestrial laser scanning for 
construction QA/QC: a time and cost 
analysis. Journal of Management in 
Engineering, 38(2): 05022001, 2022. 

[10] Choy, C., Dong, W., Koltun, V. Deep global 
registration. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition, pages 2514-2523, 
Seattle, Washington, United States, 2020. 

[11] Microsoft. Synchronize multiple Azure Kinect DK 
devices. On-line: https://learn.microsoft.com/en-
us/azure/kinect-dk/multi-camera-sync, Accessed: 
14/12/2023. 

[12] Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, 
J., Funkhouser, T. 3DMatch: Learning local 

geometric descriptors from RGB-D reconstructions. 
In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 
pages 1802-1811, Honolulu, Hawaii, 2017. 

 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1103



Towards Efficient Construction Monitoring: An Empirical 
Study on Action Recognition Models 

Sudheer Kumar Nanduri1 and Venkata Santosh Kumar Delhi1 

1 Indian Institute of Technology Bombay, Mumbai, India 
n.sudheer@iitb.ac.in, venkatad@iitb.ac.in 

 
Abstract –  

Monitoring fatigue is challenging under 
computer-vision-based action recognition due to the 
changes in motion patterns caused by fatigue. 
Particularly in the construction scenario, the motion 
patterns are unique per trade and longer than daily 
life actions, causing challenging scenarios. This paper 
aims to understand the patterns that can guide the 
selection of optimal clip durations for aggregating 
motion features specific to each task. We compare the 
performance of three action recognition models (I3D, 
MViT, and VideoMAE) on different construction 
tasks (excavation, masonry, plastering, etc.) at 
varying clip lengths. We evaluate the models based on 
frame-wise accuracy, sequence predictability error, 
and normalized evaluation duration. Our results 
show that the transformer-based models outperform 
the convolutional neural network-based models. The 
model trained directly over videos performs better 
than those trained on images. Also, the clip duration 
affects the model performance differently depending 
on the task type. Neither the 3s context window from 
the Atomic Visual Actions (AVA) dataset nor the 10s 
context window from the Kinetics-400 dataset is 
suitable for construction tasks. Instead, we suggest a 
variable clip duration between 5s and 7s, which is 
preferable depending on the tasks and model 
architecture. Our work provides insights for 
developing a dynamic and context-aware duration 
selection system for action recognition in construction. 
 
Keywords – 

Action Recognition; Construction Activities; Clip 
Durations 

1 Introduction 
Worker fatigue is a much-studied problem in 

construction, considering the adverse effects on 
productivity, safety, and health. Prior attempts to 
automate fatigue detection utilized computer vision (CV) 
or on-body sensors for collecting necessary data. Sensors 
are limited by the contextual information they can collect. 

For example, an IMU sensor can collect the motion of a 
specific body part to which it is connected. Computer 
vision is a better fit for field application because it can 
collect information from the worker and surroundings 
simultaneously. In CV, current action recognition 
approaches analyze patterns in features aggregated from 
a set of frames. For measuring the duration of a specific 
action, existing works run action recognition on fixed-
length input clips in sequence and append the results. 

In prior works for developing fatigue monitoring, 
work-rest status [1] is set manually for biomechanical 
evaluation of joint movements. In a pragmatic approach, 
manual identification and biomechanical evaluation 
reduce their applicability to real-time monitoring. 
Utilizing the changes in the movement patterns is a better 
approach for automating part of these tasks. 

While conventional understanding associates 
muscular fatigue with a decline in performance, the 
literature suggests that performance is maintained with 
changes in movement patterns under fatigue. Depending 
on the variable selected, movement variability may 
increase or decrease under fatigue [2] [3]. Muscle groups 
behave differently under fatigue [4]. Fatigue diminishes 
the force-producing capacity and the ability for smooth 
and controlled action. This aspect can be utilized for 
fatigue monitoring and skipping biomechanical analysis. 
Humans cannot detect movement variability due to 
cognitive limitations, so computer vision is the best fit. 
However, breaking down the action into small clips will 
not be sufficient for fatigue monitoring as the models will 
lose the context and motion patterns they can use. 

One solution is to adopt a dynamic context-aware 
approach in selecting the clip durations for aggregating 
motion features specific to each task. The dynamic 
selection will improve the detection performance while 
reducing the resource usage for recognition models. 
Context awareness will also be helpful for safety 
monitoring and improve the interpretability of action 
recognition models. In developing a dynamic and 
context-aware selection system, this work focuses on the 
first step of understanding the patterns that can guide the 
selection of clip durations. 
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2 Literature Review 
Though empirical data collection is preferred, two 

significant works have already provided such data in 
construction. The first video-based dataset on 
construction activities [5] is available with 11 action 
classes. Bricklaying and plastering are manually 
identified as 9.8 s of mean clip length, with a variance of 
3.6s for bricklaying and 5.2 seconds for plastering. An 
average clip length of 6.8s is observed in the case of all 
11 activities, with a variance of 2.7 s. In a later dataset 
[6], the average activity lengths for bricklaying with sub-
activities ranged between 27.33 and 33.30 frames. 
Considering a 25 FPS video or 30 FPS video, which are 
the standard practices, these range to only one second of 
video. The plastering application has 50 frames, which 
comes close to 1.5 to 2 seconds of video. This difference 
in clip duration is a significant concern. The subsequent 
models developed using the datasets are expected to learn 
correctly from the motion patterns available within the 
dataset. This assumption makes it difficult to transfer the 
model trained on the first dataset to the second dataset. 
Thus, it is preferable to study the performance of 
different models on standard datasets to identify suitable 
selection patterns. Developing a new dataset needs to 
consider this aspect to reduce potential bias. 

Recent approaches to action recognition utilize three 
seconds as a fixed clip length following the Atomic 
Visual Actions (AVA) dataset [7] standards. The AVA 
dataset focuses on the action recognition of a single 
person in a frame with a context window of one and a 
half seconds before and after the frame. The smaller 
context window enables fine-scale annotation and 
improves the action boundary precision. The dataset 
contains 430 15-minute video clips, 1.58 million class 
labels, and 80 classes. The dataset is built from movies 
without actual construction-related actions. 

Another important dataset is the Kinetics-400 [8], 
which has 400 action classes. It has 306,245 clips sourced 
from YouTube videos, mostly from amateur 
videographers. Thus, it also provides variety in how the 
action is performed, along with the clothing, pose, and 
other parameters. Each clip lasts around ten seconds, 
providing a context window of 5 seconds before and after 
the keyframe. Some of the action classes in the dataset, 
like ‘laying bricks’, ‘plastering’, ‘welding’, and ‘bending 
metal’, can be utilized for evaluating construction action 
videos. For this reason, in the current work, we utilized 
the models with pretraining using the Kinetics-400 
dataset. 

CV-based action recognition models utilize four 
major algorithmic approaches - Convolutional Neural 
Networks (CNN), Recurrent Neural Networks (RNN), 
Transformers, and Graph Neural Networks (GNN). 
Transformer-based models provide the most accurate 
results and can be considered the latest upgrade over 

RNNs. GNNs need human joint key points to create 
graph nodes for analysis. However, they have yet to be 
proven to perform better than the Transformers, which 
utilize frame features similar to CNNs.  

Two-stream inflated 3D ConvNet (I3D) is a CNN-
based model proposed along with the Kinetics-400 
dataset [9]. It performs well and is considered a baseline 
for models and datasets developed afterward. Multiscale 
Vision Transformers (MViT v2) is a Transformer-based 
image classification model [10] extended for video 
classification. Video Masked Autoencoders with dual 
masking (VideoMAE v2) are also transformer-based 
models but are built with a specific focus on video data 
for all types of tasks on videos [11]. Both transformer 
models utilize 3D convolutions to convert the video 
frames into patches for training and testing. After 
conversion, both models use attention networks to 
identify patterns from the data. 

3 Methodology 

3.1 Data Collection 
The study focuses on evaluating CV models on 

standard construction processes. Processes selected 
include excavation, scaffolding, formwork, 
reinforcement, concreting, masonry, and plastering. The 
videos are carefully chosen from YouTube, with actions 
relevant to the processes. The selection of the videos 
considered video clarity, showing critical activities in the 
operations without cropping and focusing on the workers 
doing the actions. Activities within the processes are 
identified concerning construction literature while 
ensuring a representative dataset capturing realistic 
scenarios. A total of 14 videos, ranging from 00:15 to 
26:50 minutes (average 08:11 min), are utilized for the 
current study. Most videos have a 30 FPS frame rate and 
1280x720 frame dimensions. Other valuable details are 
presented in Table 1 below, and the example frames for 
each task category are presented in Appendix 1 for 
reference. 

The videos are then annotated for the ground truth 
labels. However, the ground truth labels are a subset of 
action classes from the Kinetics-400 dataset. This subset 
comprises actions that can be observed in construction 
sites. For example, Kinetics-400 does not have any 
formwork-related class label. In the video of formwork, 
the annotated labels include classes like ‘moving 
furniture’, which has the keyword ‘moving’ relevant to 
the action context. 

However, several frames only fall under some of the 
subsets of the action labels. These frames are marked 
with a new class named ‘Background’. Frames that show 
transitions, empty land, and other problems are marked 
in this class. 
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Table 1 Frame Count & Task Category of Dataset Used 

File Name Task Category FPS Total Frames 
CONC_2 Concreting 30 30425 
EXCV_2 Excavation 29.94 450 
EXCV_6 Excavation 30 3709 
EXCV_7 Excavation 30 16382 
FMWK_2 Formwork 29.97 17069 
FMWK_4 Formwork 30 12651 
MASO_2 Masonry 25 4065 
MASO_3 Masonry 30 48304 
MASO_4 Masonry 29.97 24581 
PLAS_1 Plastering 30 18151 
PLAS_2 Plastering 30 4350 
RFMT_2 Reinforcement 29.97 8364 
RFMT_3 Reinforcement 29.97 2131 
SCFL_1 Scaffolding 30 15010 

3.2 Model Selection 
The three action recognition models mentioned in the 

literature section (i3D, MViT v2, VideoMAE v2) are 
utilized for comparative analysis. All three models are 
utilized from the same open-source toolbox, MMAction2, 
based on PyTorch, to standardize the comparison. 
Transformer-based models typically have more 
parameter count and can perform better in general. 
However, a comparison with the CNN model will help us 
evaluate the strengths and weaknesses when applying the 
models to construction scenarios. The I3D model is 
trained directly on the Kinetics-400 dataset. The MViT 
model is primarily an image detection model, and hence, 
it is pre-trained on the ImageNet dataset before training 
on the Kinetics-400 dataset. The VideoMAE v2 model 
architecture makes it difficult to train with small datasets. 
Hence, it is trained with larger hybrid datasets, and the 
classification head is trained for the Kinetics-400 dataset. 
Other model details are presented in Table 2 below. Thus, 
comparing the performance of models also helps us 
compare the Kinetics-400 dataset with the construction 
scenario. 

Table 2 Model Details 

Model Sampling 
protocol FLOPs Params 

I3D 10 clips x 3 crop 43.5G 28.0M 
MViT 5 clips x 1 crop 225G 51.2M 
MAE 5 clips x 3 crops 180G 87M 

A high-performance computer with 2xIntel-Xeon G-
6348 CPU and 4x64 GB RAM is used. The available 

GPUs are not utilized as the work focuses only on model 
evaluation, and no training is involved. 

3.3 Evaluation Parameters 
The two parameters mentioned in Table 2 – floating 

point operations (FLOPs) and parameters (Params)- 
indicate model performance. Lower FLOPs and Higher 
Params are the best combinations for CV models. 
However, a few other considerations also come into play 
while evaluating the model throughput. The two most 
important considerations are the model architecture and 
input variations. 

The current work evaluates three aspects - the models’ 
performance on different construction tasks at varying 
clip lengths. Models and Tasks are detailed in the earlier 
subsections. Clip length is the final variable discussed in 
the present subsection.  

When a video is chunked into multiple clips, two 
other parameters that can be useful are the gap duration 
between two subsequent clips and the overlap duration of 
the first clip over the second clip. In general, a gap 
between clips increases the speed at the cost of accuracy, 
and overlap increases the accuracy by providing 
additional context at the cost of reduced speed. However, 
the actual performance might differ due to the model and 
input variations. 

For the current work, clip lengths of 1s, 3s, 5s, 7s, 9s 
are utilized to cover various temporal scales. Overlaps 
and gaps are not mixed; when the overlap is present, a 
gap is not considered, and vice versa. Overlaps chosen 
are 0s, 2s, and 4s, provided they are always less than the 
clip duration. For a 1s clip, overlap cannot be 2s as it is 
the same as a 3s clip length and takes in more features 
than expected. The gaps chosen are 0s, 1s, 10s. In general 
practice, gaps are provided such that the frame rate is 
only 1 Hz, that is, a gap of 1s. However, larger gaps can 
be considered for the action of longer durations, typically 
observable in construction sites. A 10s gap is chosen to 
verify whether a large gap will be helpful. With the given 
conditions, 22 combinations are formed for durations.  

In prediction, the gap durations will have no outputs. 
This approach improves model performance by reusing 
the last frame results for all frames within the gap 
duration. Overlap durations only provide the context for 
current frame prediction, so there is no effect on the 
outputs for each frame. 

3.4 Evaluation Criteria 
Evaluation is based on the accuracy of models 

without any fine-tuning or transfer learning to avoid any 
biases from additional training. Doing so will also help 
maintain classification consistency, even when the 
specific class labels are absent in the pre-trained dataset. 
Hence, the dataset prepared is utilized for model output 
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evaluation. 
Three evaluations are made on the model’s overall 

predictions and task-wise predictions - Frame-wise 
evaluation, Sequence-wise evaluation, and Time duration 
evaluation. Frame-wise evaluation captures the model’s 
qualitative performance per frame. Sequence-wise 
evaluation captures the model's sensitivity to the motion 
pattern changes surrounding the frames. Finally, the time 
duration evaluation captures the model’s quantitative 
performance per frame. By comparing the results of these 
three criteria, analysis is carried out to compare 
construction tasks and extract useful patterns. 

Frame-wise evaluation matches the current frame 
prediction with manual annotations. Accuracy is the ratio 
of total positive to total positive and negative 
classifications for a given action. The models are bound 
to provide noisy predictions for frames annotated as 
‘Background’. So, the frame prediction is skipped in 
evaluation for accuracy, but the duration is considered for 
measuring model prediction performance. Although a 
multi-class confusion matrix can be utilized, we use the 
simple metric given the choice of models and a small 
dataset. 

The methodology followed for the sequence-wise 
predictions is as follows. The previous frame (A) and 
current frame (B) predictions together form the 
consecutive clip for evaluation. The confusion matrix is 
built based on whether the sequence is correctly predicted, 
as shown in the table below. 

Table 3 Confusion Matrix for Sequence-Wise 
Evaluation 

Predicted 
Sequence 

True Sequence 
A-B A-A 

A-B TP FP 
A-A FN TN 

The prediction should correctly capture the change in 
actions for good sensitivity. Hence, the change in action 
class is marked as positive, and no change is marked as 
negative. If consecutive clips have different actions, but 
the same classifications are provided, a ‘False Negative’ 
is considered, and when a different classification is 
provided, a ‘True Positive’ is considered. Suppose 
consecutive clips have the same actions, but a different 
classification is provided for the second frame. In that 
case, a ‘False Positive’ is considered, and a ‘True 
Negative’ is considered if the same classification is 
provided. 

In general, accuracy and precision metrics are 
evaluated from the confusion matrix. An issue with these 
usual metrics occurs when comparing the sequential 
predictions. The change in the action may be detected at 
a very different frame than annotations. This can occur 
due to changes in the frames, which are invisible to the 

human eye or missed easily during annotations. Hence, a 
different metric is developed for the specific case using 
the same elements of the confusion matrix. 

𝑃𝐶 =  (𝑇𝑃 + 𝐹𝑃)/(𝑇𝑁 + 𝐹𝑁) (1) 
𝐴𝐶 =  (𝑇𝑃 + 𝐹𝑁)/(𝑇𝑁 + 𝐹𝑃) (2) 

𝑆𝑃𝐸 =  (𝑃𝐶 / 𝐴𝐶) –  1 (3) 

Where, 
TP = True Positive 
TN = True Negative 
FP = False Positive 
FN = False Negative 
PC = Predicted Changes 
AC = Actual Changes 
SPE = Sequence Predictability Error 

 
In cases where the actual changes can be zero, that is, 

no changes in the actions in the video, the denominator 
will be considered as 1 to overcome the division by zero 
error. Also, the predicted changes can be far more than 
actual changes. The sequence predictability error must be 
close to zero. 

Finally, the time duration evaluation compares the 
durations for inference of all the models over the clip 
duration combinations specified earlier. The time taken 
per inference is captured and averaged for each model, 
video, and task. As we compare video clip size variations, 
considering the number of evaluations made within each 
variation will provide a better metric for model 
performance evaluation. The average duration per video 
is divided by the total number of evaluations made within 
the video to evaluate the performance. 

𝑇𝑁𝐸  =  100 ∗  𝑇𝐴𝐸  / 𝑁𝐸 (4) 

Where, 
TNE = Normalized Evaluation Duration, in seconds 
TAE = Average Evaluation Duration, in seconds 
NE = Total number of evaluations 

 
Figure 1 Annotation and Evaluation Methodology 

The annotation and evaluation methodology is 
depicted in ‘Figure 1’ above, except the duration 
evaluation. 

Task 1 Task 2 Task 1 Task 2 Task 3 Task 4 Task 1

Class 1 Class 3 Class 3 Class 4 Class 3 Class 9 Class 9

P N N

TP TP FP TN

Class 1 Class 8 Class 1 Class 8 Class 3 Class 3 Class 3

Frame-wise Accuracy & Sequence Predictability Error

Actual Task

Prediction

Evaluation

Annotated Class

Metrics

Literature

Model

Manual

Dataset

N P P N

TP FN
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4 Results

4.1 Frame-wise Evaluation
The overall model performances are unexpectedly 

low. The best-performing model is MAE with 56.42%, 
followed by MViT model with 49.27%, and I3D model 
with 43.13%. The clip overlap and gap durations show 
slight improvements but do not form any meaningful 
patterns in frame-wise accuracy. Models offer good 
performance for tasks with action classes available in the 
Kinetics-400 dataset. Across models, the average 
accuracy stays in a similar ratio, as shown in ‘Figure 2’
below.

Figure 2 Average Accuracy Percentage Per Task 
Type

The need for more accuracy indicates disagreement 
between manual annotations and model predictions for 
action classes unavailable in the pre-trained dataset.
Utilizing the results from the top three tasks – Excavation, 
Masonry, and Plastering, the frame-wise accuracies are 
reported in ‘Figure 3’ below.

Figure 3 Model-wise Average Accuracy 
Percentage Per Clip Duration

The I3D model shows a considerable increase in 
performance with an increase in the input clip duration. 
After 5-second clip length, a plateauing of I3D 
performance and a decrement of MViT performance can 

be observed. The decrement in the MAE model might be 
related to the fact that it is trained on datasets beyond the 
K-400 dataset, owing to its architectural needs.

4.2 Sequence-wise Evaluation
Models might capture more action transitions than 

annotated ones because they can see more details than 
humans. However, the duration, overlap, and gap 
combinations also affect the predictive capabilities due to 
the sampling strategies for testing. A 10-clip x 3-crop 
strategy takes ten clips from the given video, crops three 
different zones within each clip, and utilizes the 
information for prediction. Thus, a longer video duration, 
an overlap, and a gap between clips will all provide 
different features.

The Sequence Predictability Error (SPE) of models 
for different durations is presented from ‘Figure 4’ to 
‘Figure 6’ below. The negative predictability shows that 
the models predict less than the actual, and positive 
values indicate that the models predict more. Being 
closer to zero is preferred, as the models are expected to 
perform best in correctly identifying sequences.

Figure 4 Duration-wise Sequence Predictability 
Error of Models

Figure 5 Gap Duration-wise Sequence 
Predictability Error of Models
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Figure 6 Overlap Duration-wise Sequence 
Predictability Error of Models

As the duration increases, the predictability of the 
models – I3D and MViT- improves. However, the MAE 
model over-predicts the number of changes in the video. 
A slight gap in the durations improves the predictability, 
but too much will throw the models far away. Also, a 
slight overlap improves the predictability.

4.3 Time Duration Evaluation
The models are compared with different clip lengths 

and durations and presented in ‘Figure 7’ below.

Figure 7 Average Evaluation Duration Per Model 
at Different Clip Lengths

The I3D, a CNN-based model, shows a linear 
increase in the evaluation duration with increasing clip 
lengths. Combined with the need for more accuracy 
beyond 5 seconds, using large clip lengths for CNN-
based models is not valuable. The Transformer-based
models do not show any linear increase and are stable 
across the clip lengths.

Although evaluation duration increases with time, 
that is the case when there is no overlap. Additional 
overlaps of 2 and 4 seconds did not show the same 
incremental behavior in performance time. One 

exception is the 9-second limit for the video clips. The 
I3D model took longer in any duration-overlap 
combination while evaluating the clips of length 9 
seconds. But beyond the 9 seconds, the evaluation 
duration reduces.  There is no clear explanation for this 
behavior.

Figure 8 Gap Duration-wise Normalized 
Evaluation Durations of Models

From ‘Figure 8’ above, having a large gap between 
clips increased the normalized evaluation duration across 
all models. Technically, the models consider each clip a 
separate video and only predict the action within the clip 
context. But, the behavior here suggests that the models 
utilize the previous videos as context.

4.4 Task-wise Evaluation
Breaking down the model performance task-wise, 
‘Figure 9’ below shows the different performance of 
models for the tasks.

Figure 9 Average Accuracy Percentage per Task 
Type for Models
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ability to evaluate model performance systematically. 
However, MViT performs well for concreting and 
scaffolding, while MAE performs well for formwork.

Task-wise evaluations are focused only on the best-
performing tasks. The models show different behavior 
under different clip durations as presented in Table 4.

Table 4 Average Accuracy of Models for Best 
Performing Task Types under Different Clip Lengths

Task Type Model Clip Duration (in seconds)
1 3 5 7 9

Excavation
I3D 66 68 74 72 76

MViT 92 92 94 95 93
MAE 100 95 94 94 95

Masonry
I3D 77 74 76 75 77

MViT 77 77 76 75 71
MAE 95 96 96 95 96

Plastering
I3D 58 71 75 80 74

MViT 73 76 77 76 78
MAE 90 89 87 84 89

Table 5 Average Accuracy of Models for Best 
Performing Task Types for Overlap-Gap Combinations

Task Type Model Overlap - Gap Combinations
0-0 0-1 0-10 2-0 4-0

Excavation
I3D 72 70 78 73 64

MViT 93 93 92 95 94
MAE 95 96 94 95 97

Masonry
I3D 76 76 75 77 77

MViT 74 74 79 74 73
MAE 95 96 95 96 96

Plastering
I3D 67 75 69 75 81

MViT 76 76 76 77 78
MAE 87 88 89 86 88

The rounded-off average accuracies for overlap-gap 
duration combinations is presented in Table 5 above. For 
the I3D model, increasing the overlap duration increases 
the model performance for plastering tasks but decreases 
accuracy for the excavation task. A 2-sec overlap in the 
I3D model improves the performance when the clip 
durations are below 9 seconds.

Comparing the task-wise sequence predictability of 
the models, it was observed that the plastering task has 
too many change predictions than actual. The results are 
presented in ‘Figure 10’ below. Across the tasks, none of 
the models can predict the number of changeovers 
sufficiently. Although performance for formwork tasks 

seems promising, the high background percentage might 
also lead to this erroneous evaluation.

Figure 10 Task-Type wise Sequence 
Predictability Error of Models

Separating the task-wise performance, each model 
shows a different pattern for the duration. Results from 
the comparison are presented in ‘Figure 11’ below. The 
excavation task takes most of the time for evaluation, 
followed by reinforcement and plastering.

Figure 11 Normalized Evaluation Duration per 
Task Type for Models

5 Discussion
Summarizing the results across models, duration 

combinations, and task types, a few patterns are found 
useful. Frame-wise accuracy suggests that the 
Transformer models are the best-performing models. The 
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MAE model, which is trained on videos directly, 
performs better than MViT, which is trained on images 
and extended to videos. For I3D, a CNN-based model, 
the clip duration affects the performance by providing a 
larger context window. However, a 5-second limit occurs 
across models trained on images. The context window of 
5 seconds seems sufficient for our use cases.  

For the I3D model, the excavation task with a context 
window of 5 seconds and the plastering task with a 
context window of 7 seconds perform best. However, the 
exact durations are the worst performing for the MAE 
model. The MAE model is best performing for clips of 
short durations. 

For excavation and masonry, providing a gap 
between clips increased the accuracy, but extra overlap 
increased the accuracy for plastering. This suggests that 
the motion patterns within the former two actions are 
highly repeated, whereas, for the latter, a considerable 
difference occurs. 

In the sequence predictability, higher clip durations 
increase the predictability of the I3D and MViT models 
but reduce the MAE model. A slight gap or overlap in the 
durations improves the predictability. 

For most tasks, all the models predict less than actual 
sequence changes. Only for the plastering task, the 
models predict more than the actual. This might be a one-
off case and needs further investigation. The excavation 
and reinforcement tasks have higher evaluation durations 
than the average model performances. 

In the concreting activity videos, the actions are the 
concreting of a floor slab and a road. The most repetitive 
actions are dumping the concrete and evening 
(smoothing) the surface. The annotations given are 
‘unloading the truck’ and ‘sweeping the floor’, 
considering the closeness of these labels to the actions. 
However, most model detections classified the surface 
evening as ‘digging’. The motion patterns relevant to 
these two classes need to be differentiated. Similarly, 
most formwork tasks are annotated under ‘moving 
furniture’ since they involve moving and fixing the 
components. The best-performing model, MAE, detects 
some of these actions as ‘building shed’ and ‘bending 
metal’. 

There is no pre-training involved in the study, and the 
annotations are mapped to nearest action class of the 
Kinetics-400 dataset. Consequently, the accuracy results 
in task-wise results are not useful for concreting, 
formwork, scaffolding and reinforcement works. Since 
the focus of the current work is on temporal precision 
rather than frame level accuracies, some useful 
interpretations can be derived from the task-wise results 
of these actions also. The sequential predictability error 
identifies how well the model can detect the action 
switching from one to the next. Even in the mapped 
action classes, the actual action is irrelevant, and only the 

change of action is important. From the task-level results, 
a negative SPE is seen in most cases suggesting that the 
models predict less switches than that can be detected by 
the manual annotators.  Also, the normalized evaluation 
duration results hint at a possible correlation with the 
video clip lengths. The smallest video clip of excavation 
has only 450 frames and the results of excavation point 
to a very high duration for evaluation. However, this is 
contrary to the general expectation that a smaller clip can 
be evaluated faster. There is no relation found between 
the accuracy and duration because the accuracies are very 
less for the reinforcement work yet the action class took 
higher duration for evaluation. For the action classes 
existing in the dataset and are directly related to 
construction activities like masonry, plastering and 
excavation, results across all evaluations are useful. 

These observations lead to the development of a 
classification system for tasks and models. Excavation 
tasks can be predicted better with 5-second context 
windows but need too much time for prediction. 
Plastering tasks can be predicted best with 7-second 
context windows, but the number of switches detected 
can be far higher than actual. Masonry tasks can be 
predicted with 5-second context windows without any 
drawback. Overall, additional overlap or gap increases 
the prediction performance on speed and accuracy. 
However, models trained on video datasets directly 
perform the best. If the sequence changes are not a 
particular concern, then using the video data-trained 
models with the least clip durations will improve the 
model performance dramatically. However, if sequence 
predictability is the primary concern, the transformer-
based model trained on the image dataset will work best 
with a clip duration between 5 and 7 seconds. 

Overall, this work suggests that neither the 3-sec 
context window from the AVA dataset nor the 10-sec 
context window from the Kinetics-400 dataset is suitable 
for construction tasks. Instead, it is a variable that needs 
to be carefully evaluated and considered for better 
performance.  

The study offers useful insights for the construction 
organizations adopting automated visual surveillance for 
applications like fatigue and safety monitoring. One of 
the important components of such systems is the worker 
action recognition model. Action recognition is a 
resource-intensive task, requiring the model to classify a 
fixed set of frames from the input videos into relevant 
actions. Changing the fixed set of frames to a variable set 
according to the task is a valuable optimization. Consider 
an analogy: Suppose you watch a live stream of your 
favorite action-oriented sport. Usually, there is a 
minimum of 30-second delay in live streaming the sport, 
depending on the technology. Now, imagine a computer 
watching the live match at the location, informing you 
whether there is any useful action in progress. If it can 
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analyze the match faster and more accurately, your cost 
and time will also be saved. In the game, two people can 
be doing different actions simultaneously, one running 
towards the opponents and another standing in some 
corner for quite some time. We too, focus on the running 
person rather than the standing person. By enabling the 
computer to focus on the running person, we can save the 
cost and time of operating the computer while increasing 
accuracy. Our proposed approach is one such method to 
achieve this. By remembering how humans move for 
different tasks, the computers can speed up their 
performance, by using smaller clip lengths for important 
actions and vice versa. Using technical terminology, the 
proposed method improves the speed of action 
recognition by aligning the clip durations with task-
specific motion patterns. This strategic optimization 
reduces the data analysis costs while increasing the speed 
of evaluations for the organizations. Also, some action 
recognition models depend on upstream models like 
object detection. When these upstream models cause 
erroneous detections or missed predictions, our 
methodology can improve the action recognition as the 
systems can still make correct predictions due to the 
varying clip lengths according to the task. 

6 Limitations and Future Work 
Compared to other related works on action 

recognition for construction activities, this study stands 
out in its comprehensive evaluation of different models 
and clip durations. While most previous studies have 
focused on a single model or a fixed clip duration, this 
study provides a more nuanced understanding of how the 
model performance varies with the clip duration and task 
type.   

However, like all studies, this one also has its 
limitations. The study is based on a limited number of 
construction tasks and a specific dataset on which the 
selected models are pre-trained. The generalizability of 
the findings to other tasks or datasets remains to be tested. 
The reliance on YouTube videos for data collection may 
only partially capture the complexity and diversity of 
construction activities in real-world scenarios. Future 
studies could benefit from using a dataset collected 
directly from construction sites. The study does not 
discuss potential challenges such as sensitivity to noise, 
occlusion, camera motion, or lighting conditions, which 
are common in construction sites. It is expected that the 
videos collected from YouTube will include these issues 
in the dataset. 

The need for correct labels for all the tasks limits the 
applicability of the pre-trained models directly. Yet, the 
work proceeds to utilize the model, and as a result, the 
respective estimates for tasks like reinforcement could 
have yielded more useful clip duration estimates. 

However, these observations proved helpful in studying 
the model performance for these tasks. The higher 
evaluation time for reinforcement tasks and higher 
accuracy of the MViT model for concreting and 
scaffolding compared to the MAE model are useful 
predictions for further work. 

Lastly, the sequence predictability error metric 
measures the total number of predicted sequence changes. 
It does not capture the sensitivity of correctly identifying 
the change precisely at the annotated frame. This is an 
approximation, considering that the models might see the 
frames in videos differently than humans and capture 
more details for their analysis. Future studies can also 
modify the metric and measure the duration between 
annotated and predicted change for more sensitivity. 

There are several promising directions for extending 
this work. One possibility is to incorporate more 
construction tasks into the study to validate further and 
refine the findings. Another possibility is to create a 
dataset of the same set of actions with varying execution 
time and use the dataset for evaluation following the 
methodology discussed in the current work. If the 
performance of models depends on execution time also, 
then the context-awareness of models can add another 
dimension of variance. For example, a dataset of masonry 
work is created with action lengths between 3 and 9 
seconds. The context-aware systems can identify the 
mean and variance from this dataset. In a future 
application, the system can consider this variance while 
varying the clip lengths. Another direction is to develop 
a new dataset with more accurate and diverse annotations, 
which could help to improve the model’s performance 
and robustness. Fine-tuning or transferring the models to 
the construction domain could also be explored to exploit 
the domain-specific knowledge and data. Finally, other 
datasets (like AVA), modalities (using skeletal frame, 
optical flow), architectures for action recognition, and 
tasks (recognition, segmentation, localization) could be 
investigated. Evaluation for different mechanization 
levels (manual, tools, equipment, machinery) can be done 
for more detailed analysis. Additionally, the application 
of these models to other tasks, such as safety analysis or 
productivity assessment, could be explored. 

7 Conclusion 
This paper compares three action recognition models 

for construction activities: I3D, MViT, and VideoMAE. 
The models are evaluated on a YouTube video dataset 
covering seven standard construction processes. The 
paper analyzes the effect of clip length, overlap, and gap 
on the model performance, using frame-wise accuracy, 
sequence predictability error, and normalized evaluation 
duration as the criteria. The results show that the 
transformer-based models outperform the CNN-based 
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model in accuracy but have different sensitivity to the 
clip duration and motion patterns. The paper also 
suggests that the optimal clip length for construction 
action recognition is between 5 and 7 seconds, depending 
on the task and the model. The paper contributes to 
understanding the strengths and weaknesses of different 
action recognition models for construction scenarios. It 
provides insights for developing a dynamic and context-
aware selection system for clip durations. 
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Abstract 

Regular inspections, effective management, and 
timely maintenance are critical issues to ensure 
bridge safety and quality. Currently, visual inspection 
remains the predominant method employed 
worldwide for bridge inspection. However, visual 
inspection heavily relies on the training, experience, 
and subjective judgment of inspectors, leading to 
inconsistent assessments. When applying deep 
learning techniques to assist in identifying bridge 
crack formations, challenges persist. Some images 
may not clearly display the crack's location. Infrared 
thermography, with its non-contact, non-destructive 
properties, effectively detects surface delamination in 
concrete bridges. However, most research employs 
higher-spec infrared thermography, which comes 
with higher instrument costs and less economic 
viability. Hence, this study aims to investigate the 
feasibility of using lower-spec infrared thermography 
to detect surface delamination in concrete bridges as 
well as analyze the potential of using lower-spec 
infrared thermography results to assist AI image 
recognition of bridge surface defects. 

 
Keywords – 

Infrared Thermography; Bridge Inspection; 
Concrete Defects; Passive Infrared Thermography 
technology; AI Image Recognition 

1 Introduction 
Regular inspections, effective management, and 

timely maintenance are critical issues to ensure bridge 
safety and quality. Currently, visual inspection remains 
the predominant method employed worldwide for bridge 
inspection. However, visual inspection heavily relies on 
the training, experience, and subjective judgment of 
inspectors, leading to inconsistent assessments. 

As for the literature review related to this research 
objectives, Yahui Liu et al. (2019)[1] propose a deep 
hierarchical convolutional neural network (CNN) to 
detect the concrete crack without using thermal imaging 
cameras. Chia-Chi Cheng et al. (2008) [2] use infrared 

thermography associated with elastic waves to detect 
concrete structure defects in the lab. Using this elastic 
waves in the lab maybe not suitable for this research 
utilizing to the bridge. This study utilizes the test method 
modified from ASTM [3]  to detect cracks in concrete 
using infrared thermography. Rocha and Povoas 
(2017)[4] just review the state of the art using infrared 
thermography to inspect the concrete bridges. However, 
the infrared instruments used in these literature [3,4] are 
too heavy and large to be employed on unmanned aerial 
vehicles (UAV). For next further research objectives, it 
will be utilized a lighter and smaller infrared instrument 
to employ the defect detection with UAV. Nevertheless, 
there is still a significant challenge to overcome AI image 
recognition. Previous literature has highlighted the 
effectiveness of thermal imaging cameras in detecting 
concrete bridge surface spalling. Currently, this study 
first aims to investigate the feasibility of employing low-
standard infrared thermal imaging cameras (lighter and 
smaller) to detect concrete bridge surface spalling and 
support AI image recognition technology in bridge 
inspections. In the further research, this lighter and 
smaller infrared instrument can be easily to be employed 
to the defect detection with UAV. 

Based on laboratory research and on-site inspections 
of bridges, the FLIR E5 infrared thermal imaging camera 
has demonstrated the recommended measurement 
distance of 1 to 2 meters. While it may not be suitable for 
measuring shallow-depth and small-area defects, it 
excels in effectively detecting various shapes of spalling 
and supporting AI image recognition. Consequently, 
employing low-standard infrared thermal imaging 
cameras for the detection of concrete bridge surface 
spalling and integration with AI image recognition 
technology in bridge inspections appears to be a feasible 
approach. 

2 Methodology 

2.1 Research Procedure 
This research first comprehends the background of 

bridge inspection and infrared inspection in Taiwan. It 
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describes the research motivations, objectives, scope, and 
limitations, followed by a literature review that gathers 
relevant domestic and international studies along with 
pertinent theories. After the literature review, laboratory 
experiments and on-site bridge inspections will be 
conducted. In the laboratory experiments, dimensions of 
test specimens and defect sizes will be determined based 
on multiple domestic and international studies. Test 
specimens will be created according to the actual 
composition of Taiwanese concrete bridges (designed 
strength of 350 kgf/cm²). The entire process of specimen 
creation, including template assembly, material 
preparation, mixing, defect model creation, grouting, and 
final curing, will be executed independently. During the 
first phase of experiments, equipment suitability (FLIR 
E5, shown in Figure 1 and 2)) for measurement 
dimensions and distances will be determined based on the 
analysis results. The second phase will primarily explore 
whether defects of different shapes can be detected 
similarly. The third phase will involve redesigning and 
creating new specimens, conducting thermal imaging 
analysis to assist Deepcrack AI image recognition, and 
drawing final conclusions. In the bridge inspections, 
identical measurement and analysis methods will be 
employed to derive conclusive results. 

 
Figure 1. FLIR tools/tools+ software screenshot 

 
Figure 2. FLIR tools/tools+ Software editing model 

2.2 Bridge Crack Inspection Experiments 
2.2.1 First-Phase of Experiment 

The concrete specimens in this study will be 
fabricated to match the actual design strength of 
Taiwanese concrete bridges, which is 350 kgf/cm². The 
dimensions of the concrete specimens will be 60×70×10 
cm³, with the defective portions made using perlite 

boards whose sizes vary according to the experimental 
phases. The concrete mix will have a water-cement ratio 
of 0.55, requiring 18.9 kg of cement, 11.1119 kg of water, 
29.8918 kg of mainland sand, and 41.2113 kg of coarse 
aggregates. 

Passive infrared thermography will be utilized in this 
phase of experiments. The prepared specimens will be 
laid flat in an area devoid of shadows and exposed to 
direct sunlight. When capturing images, the concrete 
specimens will be positioned upright, and the FLIR E5 
infrared camera will conduct two sets of captures every 
half hour. Each set will encompass five measurement 
distances (1m, 2m, 3m, 4m, 5m). Image capture sessions 
are scheduled from 11:00 a.m. to 2:00 p.m. and from 7:00 
p.m. to 9:30 p.m. A distance meter, UNI-T LM80, will 
ensure the infrared camera is perpendicular to the 
specimen, and an infrared thermometer, TECPEL-
DIT300B, will measure the surface temperature of the 
specimen. 

2.2.2 Second and Third-Phase Experiments 

In this phase of the experiment, passive infrared 
thermography will be employed, and the fabricated 
specimens will be laid flat in an area without shadows 
and exposed directly to sunlight. During the capture 
process, the operator will stand on an A-frame ladder and 
utilize the FLIR E5 infrared camera to capture images in 
sets every half hour. Each set will involve two 
measurement distances (1m, 2m), and the image capture 
sessions will occur from 3:00 p.m. to 5:00 p.m. A 
distance meter, UNI-T LM80, will ensure the infrared 
camera is perpendicular to the specimen, and an infrared 
thermometer, TECPEL-DIT300B, will measure the 
surface temperature of the specimen. 

2.3 Data Collections 
The temperature data acquisition through thermal 

imaging will be performed using FLIR tools to obtain the 
average temperature of the defect (T_i) and the average 
temperature around the defect (T_S). The steps are as 
follows: 

(1) Import the desired image into FLIR tools (using 
defect number 1 for demonstration purposes). 
Double-click to open the image and enter the 
operating interface. Switch the image mode to 
digital thermal camera (visible light image). 

(2) In the visible light image within the digital 
thermal camera mode, use the temperature 
measurement function to select the area of the 
defect for measurement. This action will yield 
the average temperature of the defect. For 
demonstration purposes using defect number 1 
from the first set of specimens (refer to Figure 3), 
the average temperature (T_1) of defect number 
1 (Bx1) is measured to be 42.5°C. 
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Figure 3.  Example of selecting defect temperature 

value in the visible light image 

 

1. The selected area on the defect measures 40×40 
(Figure 4) in pixels, representing 1600 temperature 
values within the selected area. When comparing 
the 40×40 (pixels) area to the actual defect size of 
10×10 (cm²), there exists a 4:1 ratio. Therefore, in 
this study, the perimeter of the defect is 
extrapolated to 3 centimetres from the defect 
distribution (Figure 5), meaning the real size is 
16×16 (cm²). FLIR tools utilize a size of 64×64 
(pixels). In this example, after the selection process, 
the overall average temperature (T_A) within the 
64×64 (pixels) area is measured at 41.9°C (marked 
as Bx2 in Figure 5). 

 
Figure 4. Diagram illustrating defect selection in 

digital thermal camera mage mode 

 
Figure 5. Diagram illustrating selection in infrared 

imaging mode 
2. However, the overall average temperature value 

(𝑇!) within the selected 64×64 (pixels) area in Step 
3 includes the temperature of the defect itself. To 
obtain the defect's surrounding average temperature 
(𝑇#)required for this study, this temperature should 
be deducted. Therefore, by employing the following 
formula: 

𝑇$ =
𝑇! × 𝐴% −∑ 𝑇& × 𝐴&'

&()

𝐴% −∑ 𝐴&'
&()

 
(1) 

𝑇$ : Defect surrounding average temperature 

𝑇! : Overall average temperature 

𝑇& : Defect average temperature 

𝐴% : Total area 

𝐴& : Defect area 

𝑖 : Defect numbe 

The obtained defect surrounding average temperature 
(𝑇# )is 41.52°C. According to the defect assessment 
method adopted by ASTM-D4788 in this study, to 
identify concrete defects in thermal imaging, the 
temperature of the defect must differ by at least 0.5°C 
from the adjacent area. In the demonstrated example, the 
temperature difference (∆*)is calculated by subtracting 
the average temperature of defect number 1(𝑇)) from the 
defect surrounding average temperature (𝑇#), resulting in 
0.98°C. As this value is greater than or equal to 0.5°C, it 
indicates that defect number 1 in this example has been 
successfully detected as a defect. 

∆*	= 𝑇)−𝑇$ = 0.98 ≥ 0.5 (℃) (1) 

 

3 Research Results 
In both the first and second phases of the experiment, the 
research results will be presented using line graphs (as in 
Figure 6) and pie charts (as in Figure 7). The third stage 
will involve the use of line graphs and bar charts for 
discussion purposes. For on-site bridge inspections, 
discussions will be presented in tabular form. The 
following is a summary of the three stages of the 
experiment. 

 
Figure 6. The line graph for defect number 4 of the third 
set of specimens, taken at a distance of 1 meter on the 

thermal image between 3:00 p.m. and 5:00 p.m. 
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Figure 7. Pie chart depicting the detection rates of 

different defect shapes at a distance of 1 meter. 

3.1 Result of first-phase experiment 
1. The relative area of the defect's depth significantly 

affects detection outcomes, with sizes smaller than 
1 centimeter in depth proving less detectable by the 
FLIR E5 infrared thermal imager utilized in this 
study. 

2. Defects with a depth of 3.5 centimetres but an area 
smaller than 1 square centimetre are challenging to 
detect with the equipment employed in this research. 

3. The recommended measurement distance for the 
equipment used in this study is between 1 to 2 
meters, allowing for the detection of a broader 
range of sizes. The average measurement error is 
also smaller, consistently below 5%. 

4. The detection rate in this stage of experiments was 
notably low, attributed to insufficient sunlight 
exposure. Adjustments in measurement timings 
during the second stage aim to enhance the 
detection rate. 

3.2 Result of Second-phase experiment 
1. For the thermal imager FLIR E5 utilized in this 

study, the detectability at a measurement distance 
of 1 meter is 93%, and at 2 meters, it is 90%. This 
indicates a substantial increase in detection rates 
during the 3:00 p.m. to 5:00 p.m. period compared 
to the first stage's imaging sessions from 11:00 a.m. 
to 2:00 p.m. 

2. The FLIR E5 thermal imager employed in this 
research can detect not only rectangular defects but 
also various other shapes, aligning with practical 
applications in bridge inspection. 

3.3 Result of Third-phase experiment 
1. Infrared thermal imaging results indicated a 

recognition rate of 38% for the fourth set of 
specimens (pure cracks) and 88% for the fifth set 

(cracks with localized delamination). This suggests 
that the presence of localized delamination around 
cracks contributes to enhancing passive infrared 
thermal imaging detection. 

2. In Deepcrack AI image recognition, the detection 
rate for the fourth set of specimens (cracks) stood at 
100%, surpassing the detection rate of 88% for the 
fifth set (cracks with localized delamination). This 
indicates that localized delamination might 
potentially lower the detection rate in Deepcrack AI 
image recognition. 

3. During false defect recognition in Deepcrack AI 
image recognition, the misjudgement rates for the 
fourth set of specimens (pure cracks) and the fifth 
set (cracks with localized delamination) were 63% 
and 50%, respectively. However, in infrared 
thermal imaging, the misjudgement rates for both 
were 0%. 

Based on the above, it's evident that infrared thermal 
imaging effectively assists AI image recognition in 
defect detection. Defects with very shallow depths or 
small areas may not be detectable by the FLIR E5 
infrared thermal imager used in this study. However, 
given that practical applications often prioritize 
identifying larger or deeper defects that pose higher risks, 
the method used in this study is suitable for bridge 
inspection practices. 

4 Conclusion 
1. Based on the experimental results, this study 

recommends using the FLIR E5 infrared thermal 
imager for imaging at an optimal measurement 
distance of 1 to 2 meters. This range effectively 
detects larger, deeper, and variously shaped defects 
posing higher risks. 

2. Laboratory research and on-site bridge inspections 
indicate that the FLIR E5 infrared thermal imager is 
less suitable for measuring defects with shallower 
depths or smaller areas. However, defects with 
shallower depths or smaller areas do not 
significantly impact bridge safety. 

3. The detection rate significantly improves during 
imaging sessions between 3:00 p.m. and 5:00 p.m. 
compared to those from 11:00 a.m. to 2:00 p.m., 
suggesting that using passive infrared thermal 
imaging for defect detection is advisable when the 
subject has adequate exposure to heat. 

4. The study observed that elongated and small-area 
defects resembling cracks are less detectable by the 
FLIR E5 infrared thermal imager used in this 
research. However, the presence of localized 
delamination around cracks enhances the 
effectiveness of passive infrared thermal imaging. 

5. In the third stage of experiments, it was found that 
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the presence of localized delamination around 
cracks improves the detection rate of passive 
infrared thermal imaging but lowers the detection 
rate of AI image recognition. Additionally, AI 
image recognition exhibits a significantly higher 
false defect identification rate compared to infrared 
thermal imaging. 
The contribution of this work is to confirm that 

smaller and lighter infrared devices can enhance the 
accuracy of detecting concrete cracks. These smaller and 
lighter devices can be easily installed on unmanned aerial 
vehicles in the future research to conduct real-time bridge 
inspection work. 
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Abstract  

 
Freeway work zones with lane closures can cause 

traffic disruption and congestion with increased 
travel time, safety risks, and emissions. Variable 
speed limit (VSL) control has been widely studied to 
mitigate the negative impacts of work zone lane 
closures. To ensure effective VSL control, accurate 
detection of traffic conditions is important. However, 
stationary sensors from distant upstream or merging 
areas of a work zone can only provide location-based 
detections, which may not be sufficient for effective 
VSL control. Therefore, this study proposes a VSL 
control system for a smart work zone with a weighted 
traffic density estimation algorithm using data from 
stationary sensors and connected vehicles (CV). With 
location-based traffic detections from distant 
upstream and merging areas of a smart work zone, 
data from CVs in locations between the stationary 
sensors are used to obtain the weighted density. This 
weighted density is then fed to a feedback VSL 
controller, which can dynamically define the 
appropriate speed limits to reduce the negative 
impacts of the work zone closures. The proposed VSL 
controller was implemented and evaluated under a 
calibrated freeway work zone environment using the 
traffic simulator SUMO. The results show that the 
system can provide accurate traffic density estimation 
and effectively improve traffic mobility, safety, and 
environmental sustainability near the work zone area. 

 
Keywords – 

Variable Speed Limits Control; Stationary 
Sensors; Connected Vehicle; Weighted Traffic 
Density; Smart Work Zone 

1 Introduction 
Freeway work zones play an important role in 

maintaining and upgrading freeways. However, closing 
one or more lanes in a work zone area can cause 
bottlenecks and traffic disruption near work zone areas. 
This disruption can easily lead to congestion, increased 

travel time, safety risks to motorists and work zone 
workers, emissions, and fuel consumption. Therefore, 
developing an effective strategy and mitigating the 
negative impacts of work zones is essential. 

Variable Speed Limit (VSL) control is one of the 
Intelligent Transportation Systems that has been studied 
to improve traffic conditions near work zone areas. By 
generating dynamic speed limits, VSL control can 
regulate the travel speeds of vehicles approaching a work 
zone to alleviate the impacts of capacity loss due to lane 
closures. Different VSL controllers have been developed 
using control strategies such as rule-based [1], feedback-
based [2], and reinforcement learning [3] approaches. 
These VSL controllers rely on accurate traffic condition 
detections to ensure the control effectiveness. 

Stationary sensors can detect traffic conditions at 
fixed locations. Many VSL controllers have used traffic 
measurements by fixed sensors near work zone areas to 
achieve control objectives [4][5]. In practice, fixed 
sensors may be present at distant locations upstream of a 
work zone and may not provide accurate traffic 
measurements in work zone areas. However, sensors at a 
smart work zone's merging area can detect traffic 
conditions immediately upstream of a work zone. The 
density variations between locations of distant upstream 
and merging areas of a work zone can hardly be estimated 
using stationary sensors unless dense stationary sensors 
are installed, which is cost-prohibitive. 

Connected vehicles (CVs) can provide real-time 
traffic state observations along their travel path. When a 
CV travels through work zone areas, the vehicle can 
become a probe sensor, sending the location and travel 
speed to fill the gap between the stationary sensors. Many 
approaches have used massive data from connected 
vehicles to estimate traffic states [6] [7]. However, work 
zones particularly short-term work zones exist for a 
limited period of time, which makes it challenging to 
collect a large amount of historical CV data for traffic 
state estimation.  

This paper proposes a VSL control system with a 
weighted traffic density estimation algorithm for a smart 
work zone using stationary sensors and CV data. CV data 
is used to bridge the gap that exists between the data from 
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sensors located at distant upstream and the ones in 
merging areas of a smart work zone.

The rest of this paper is organized as follows: studies 
on VSL control and density estimation are reviewed first.
Then, the development of the weighted density approach 
and VSL controller are discussed in the Methodology 
section. Later, the system evaluation and results are 
discussed. Finally, the conclusion and future work are 
presented in the conclusion section.

2 Background and Literature Review
A hypothetical freeway smart work zone scenario in 

which one lane is closed is shown in Figure 1. Due to the 
capacity loss, traffic congestion occurs at the merging 
area of the work zone with a queue propagating upstream. 
The work zone is a smart zone with two sets of stationary 
sensors.  Traffic Sensor (TS) 1 is a stationary sensor that 
is present upstream of the work zone, and TS 2 is the 
smart work zone stationary sensor at the merging area of 
the work zone. CVs capable of transmitting speed and 
location, along with conventional vehicles with no 
connectivity travel through the work zone area from free 
flow to congested and then recover to free flow once they 
pass the bottleneck area. 

Figure 1. Layout of a Hypothetical Freeway Work 
Zone with Stationary Sensors and CVs

The traffic queue forms first at the merging area and 
then propagates upstream. Since it takes time for the 
queue to reach the location of TS 1, the traffic states 
detected by TS 2 could be heavily congested, while the 
traffic states from TS 1 could be free flow. The 
discrepancies in traffic detections from stationary sensors 
due to different sensor locations could impact the 
effectiveness of VSL Control.

VSL control has been studied to mitigate congestion 
near bottleneck areas with lane closures. The control 
strategies can be broadly categorized into rule-based [1],
feedback-based [2], and reinforcement learning-based [3]
controllers. Rule-based VSL controllers, such as the 
fuzzy-logic controller [8], post speed limits using pre-
defined rules and thresholds of traffic flow, density, and 
speed. The control objective, such as the critical traffic 
density [2], is used by feedback-based VSL controllers to 
obtain speed limits. Reinforcement learn-based VSL 
controllers leverage learning algorithms and traffic 

measurements to train a model and generate dynamic
speed limits to reduce travel time [3]. All these VSL
controllers require accurate traffic state measurements.
However, the types of traffic sensors, e.g. stationary 
sensors and probe vehicles, and the locations of sensors 
are commonly not investigated in such studies. The 
sensor factors could impact the accuracy of traffic state 
estimation near work zone areas and, consequently, the 
effectiveness of VSL control. 

Dense stationary sensor installation could 
approximate the continuous measurements in space to 
provide higher accuracy in traffic state estimation.
However, the high installation and maintenance costs are
prohibitive for smart work zone systems. Instead of dense 
sensor installation, mathematical models, such as 
observers, are developed to provide traffic estimations 
using nearby sensors when sensor detections are missing 
[9][10]. For such models, the traffic fundamental 
diagram is calibrated to minimize the discrepancies 
between model-generated and real sensor data so that 
model-generated traffic state estimations can be used by
applications such as VSL control [11]. However, traffic 
congestion can easily occur near work zone areas due to 
capacity loss, which leads to frequent traffic state 
transitions from free flow to congestion when a queue 
starts forming or from congestion to free flow when a 
queue starts resolving. This traffic state transition would 
make it difficult for mathematical approaches to estimate 
traffic state accurately between the locations of stationary 
sensors.

CVs travelling through work zone areas can be 
considered as probe sensors to estimate traffic transition 
between the locations of stationary sensors. Relying on 
the conservation law of traffic flow, the traffic state is 
estimated using the spacing and speed of CVs [12]. A
deep convolutional neural network approach is studied to 
estimate traffic speed and congestion qualitatively and 
quantitatively using a large amount of historical probe 
vehicle data from different congestion scenarios [13]. [7]
proposes a macroscopic model to estimate the traffic 
states of that segment based on the CV market 
penetration rate. These approaches use probe vehicles 
with either advanced onboard sensors like radar to track 
the headway between vehicles or a large amount of 
historical CV data to estimate traffic states. However, 
advanced onboard sensors may not be always available 
on CVs and lack of a large amount of historical CV data 
could occur due to the limited time periods of works 
zones, which would make it challenging to apply these 
probe sensors approaches and accurately estimate traffic 
states near work zone areas.

In this study, a VSL control system with a weighted 
density estimation algorithm was developed.
Considering stationary sensors and CVs, weighted 
density is calculated and fed into a VSL controller. 

Emergency 
Lane Work Zone Conventional 

Vehicle

TS 2

Connected 
Vehicle

Traffic
Sensor (TS)

TS 1

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1121



Specifically, sensors from distant upstream and merging 
areas of a smart work zone are used to obtain location-
based traffic densities. Then, the weight of two location-
based densities is derived using CV vehicles between the 
two sensor locations based on kinematic wave theory. 
The system proposed in this study mainly offers the 
following contributions:

• It investigates whether sensor locations have any 
impacts on VSL control. The effectiveness of VSL 
control is evaluated using fixed sensors at distant 
upstream and merging areas of a work zone.

• It provides weighted traffic density estimations for 
VSL control. The weight is calculated using CVs
based on kinematic wave theory.

• It produces good VSL control performance, despite 
the impacts of stationary sensors locations at distant 
upstream and merging areas of a work zone. The 
system evaluation shows consistent improvement in 
mobility, safety, and sustainability.

3 Methodology
The effectiveness of VSL control relies on the 

accuracy of traffic state estimation using traffic sensors 
near work zone areas. A VSL control system with a 
weighted density algorithm is illustrated in Figure 2. The 
weighted traffic density is obtained using stationary 
sensors and CVs to approximate traffic density at a work 
zone area. By using this weighted density, a VSL 
controller is designed to regulate traffic speeds. The
framework of the proposed system is discussed, followed 
by traffic density estimation and VSL control in the 
subsequent subsections.

Figure 2. VSL Control System Framework

A feedback-based VSL controller is developed with 
critical traffic density as the control objective. The VSL 
controller processes the critical density and weighted 
density error to calculate speed limit. These speed limits 
regulate vehicle travel speeds and influence traffic 
conditions in the vicinity of the work zone area. This 
study assumes a regulatory VSL system with the full 
driver compliance.

The weighted density component of the framework

effectively approximates the traffic density within the 
work zone area. The baseline traffic density is detected 
from sensors at the distant upstream and the merging area
and then is adjusted by weights that are calculated using 
the speed and location of CVs. The weighted density is 
obtained by applying the weight to traffic density from 
stationary sensors. 

Comparing the error between the critical density and 
weighted density, VSL control will generate dynamic 
speed limits to minimize the error. This proactive 
approach ensures that the traffic flow can sustain the
maximum work zone capacity, thereby enhancing traffic 
conditions without inducing a capacity drop [14]. The
capacity drop phenomenon occurs when a queue forms at 
the bottleneck area leading to increased capacity loss [15].
Details of the estimation of the weighted traffic density 
and VSL controller are presented in the subsequent
sections.

3.1 Traffic Density Estimation
Traffic sensors at a work zone's distant upstream and 

merging area can detect location-based traffic density. 
However, the two sensor locations may have a density 
discrepancy, as illustrated in Figure 1. A weighted 
density is calculated using CVs based on kinematic wave 
theory to address this discrepancy. 

The traffic state transition is shown in the triangular 
fundamental diagram in Figure 3.

Figure 3. Traffic States from Fundamental 
Diagram

The triangular fundamental diagram has the free flow 
branch with densities smaller than the density 𝜌𝑟 and the 
congested branch with densities larger than the density 
𝜌𝑟 .States a, d, and c lie on the free flow branch while 
States b and 𝑏′ lie on the congested branch.  State a
represents high traffic demand, which is higher than the 
work zone capacity 𝑏′ at the congested status. Because 
the demand is higher than the road capacity, congestion 
occurs at the merging area and leads to the capacity drop 
phenomenon. Traffic flow further drops to State b. State
c represents low traffic demand, lower than the work 
zone capacity so that the queue forms due to congestion 
can be resolved. State d represents the same work zone 
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capacity at the free flow status. 𝑣𝑏 and 𝑣𝑓 represent travel 
speeds at the State b and a respectively. State d and c 
share the same free-flow speed 𝑣𝑓 with State a. Traffic 
density 𝜌𝑎 under free flow status and 𝜌𝑏 under congested 
status for State a and b are also illustrated in Figure 3. 
The VSL control objective is to maintain traffic flow at 
the work zone capacity State d without a capacity drop. 
The work zone critical density 𝜌𝑐𝑟  as the VSL control 
goal corresponding to State d is shown in the figure as 
well, which will be discussed in detail under the VSL 
Control section below. 

Figure 4 illustrates the traffic state transition from the 
space-time diagram under the kinematic wave. The 
bottleneck location is bold in blue. Two traffic sensors, 
as shown as grey blocks in Figure 4, are located in two 
areas, one close to the bottleneck at the merging area and 
the other at the distant upstream of the bottleneck. When 
the high traffic demand reaches the bottleneck, a queue 
forms at the bottleneck area and transfers the traffic state 
from a to b. This queue propagates upstream at the 
shockwave speed 𝜔𝑎𝑏 . When the low traffic demand c 
appears and meets at the queue, this queue starts 
resolving and propagating downstream towards the work 
zone at shock wave speed 𝜔𝑐𝑏 . Once the queue is 
resolved, the traffic state c will prevail along the work 
zone area. 

 
Figure 4. Traffic States from Space-time Diagram 

From Figure 4, traffic states at two traffic sensors are 
different until the queue propagates upstream and reaches 
the distance upstream of the work zone. Consequently, 
the traffic densities 𝜌𝑚𝑎(𝑘)  and 𝜌𝑚𝑏(𝑘)  from 
measurements of sensors located distant upstream and 
merging area of the work zone respectively, likely face 
discrepancies before the queue reaches the sensor 
location distant stream. Therefore, a weighted density 𝜌𝑤 
is calculated using Equation (1) below.   

 

𝜌𝑤(𝑘) = (1 −  𝛼(𝑘))𝜌𝑚𝑎(𝑘) + 𝛼(𝑘)𝜌𝑚𝑏(𝑘) (1) 

 
The discrete time step is represented by k. The weight 

𝛼(𝑘)  is applied to traffic density 𝜌𝑚𝑎(𝑘)  and 𝜌𝑚𝑏(𝑘) 
detected by traffic sensors at time step k to calculate the 
weighted density 𝜌𝑤(𝑘).  

To obtain the weight 𝛼(𝑘), the speed and location 
transmitted by CVs are utilized. In Figure 4, at time step 

k, the length of the queue from the bottleneck is 𝑙1 and 
the total distance between two traffic sensors is 𝑙2 . 
Because of the queue propagating upstream, at the 
congested area within the queue 𝑙1, vehicles travel at the 
speed 𝑣𝑏  while vehicles outside the queue but between 
two traffic sensors 𝑙2  travel at the speed 𝑣𝑓 . Therefore, 
the ratio of 𝑙1 and 𝑙2 is used to calculate the weight as 

 

𝛼(𝑘) = 0.5 + 0.5 𝑙1(𝑘)/𝑙2(𝑘) (2) 

 
From Equation (2), the weight 𝛼(𝑘) equals 0.5 when 

the queue length is 0, meaning the same weight is applied 
to traffic densities detected by sensors at distant upstream 
and merging areas of a work zone when there is no queue 
or congestion. Only traffic density from the merging area 
is used when the queue reaches the sensor located distant 
upstream. Therefore, more weights are assigned to the 
sensor at the merging area when the queue becomes 
longer.  

To determine the location of a queue 𝑙1(𝑘), the speed 
and location of CVs are used. We assume the speed of 
CVs is similar to conventional vehicles, as studied in [7]. 
Then the length 𝑙1(𝑘) can be approximated in Equation 
(3) as the distance between a CV, which is at the furthest 
upstream of the bottleneck travelling below a speed 
threshold 𝑣𝑡𝑟  , and the location of the bottleneck. 𝑙𝑖,𝐶𝑉  
represents the distance between a CV and the bottleneck. 
This CV satisfies the requirement in Equation (4) where 
the CV 𝑙𝑖,𝐶𝑉(𝑘) is not larger than 𝑙2 and speed 𝑣𝑖,𝐶𝑉(𝑘) is 
not higher than 𝑣𝑡𝑟 . 

 

{

𝑙1(𝑘) = max (𝑙𝑖,𝐶𝑉)

𝑙𝑖,𝐶𝑉(𝑘) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 𝐶𝑉 𝑎𝑛𝑑 

𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘

 (3) 

 

{
𝑙𝑖,𝐶𝑉(𝑘)  ≤  𝑙2

𝑣𝑖,𝐶𝑉  ≤  𝑣𝑡𝑟
 (4) 

 
The speed threshold 𝑣𝑡𝑟  is obtained using Equation 

(5). 

𝑣𝑡𝑟 =
𝑣𝑓 + 𝑣𝑏

2
 (5) 

 
The free flow speed 𝑣𝑓  and speed 𝑣𝑏 at state b can be 

obtained from the fundamental diagram in Figure 3. It 
should be noted that there may be cases where no CVs 
travel below the speed threshold 𝑣𝑡𝑟  or no CVs are 
available between the two traffic sensors located at 
distant upstream and merging areas due to a low market 
penetration rate. In those cases, the same weights are 
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assigned to traffic densities detected by the two stationary 
sensors at different locations. 

3.2 Variable Speed Limit Control 
3.2.1 Controller 

A feedback VSL controller [16] can generate 
dynamic speed limits by controlling traffic density at a 
work zone area towards the control objective, which is 
the critical density 𝜌𝑐𝑟 as shown in Figure 3. When the 
traffic state can be maintained at State d in Figure 3, the 
flow rate can be preserved at the maximum work zone 
capacity without causing a capacity drop.  

The VSLs can be calculated using Equations (6) and 
(7) below. 

 

𝛽(𝑘) = 𝛽(𝑘 − 1) + 𝐾(𝜌𝑐𝑟 − 𝜌𝑤(𝑘)) (6) 
 

𝑣𝑣𝑠𝑙(𝑘) = 𝛽(𝑘)𝑣𝑣𝑠𝑙(𝑘 − 1) (7) 

 
The factor 𝛽(𝑘) is calculated using the factor 𝛽(𝑘 −

1)  from the last time step and the error between the 
weighted density 𝜌𝑤(𝑘) and the critical density 𝜌𝑐𝑟. The 
parameter K is the gain applied to the density error. By 
applying the factor 𝛽(𝑘) to the speed limit 𝑣𝑣𝑠𝑙(𝑘 − 1) 
from the last time step, the current speed limit is obtained. 

The setup of this feedback VSL control system 
consists of a VSL control zone, acceleration zone and 
work zone. VSLs are posted at the VSL control zone to 
regulate traffic speed while vehicles passing the VSL 
control zone into the acceleration zone can accelerate to 
free flow speed before entering the work zone. Readers 
can refer to [13] for more details of this VSL control zone 
and accelerate zone setup. 

3.2.2 Speed Limit Constraints  

Constraints are considered when VSLs are applied in 
practice. The following constraints are included in the 
VSL control system: 

• Speed limits are within the range of the minimum 
𝑣𝑚𝑖𝑛  and the maximum 𝑣𝑚𝑎𝑥 Speed limit. 

• Speed limits are discrete values rounded to the close 
integer speed limits at the incremental speed ∆𝑣. 

• Speed limits between two consecutive time steps 
are within the maximum incremental speed. ∆𝑣𝑚𝑎𝑥 . 

• Speed limits control time interval is ∆𝑡, so frequent 
speed limit changes can be avoided. 

4 Experiment and Results 

4.1 Experimental Setup 
The proposed system was evaluated using a calibrated 

freeway work zone segment on SR99 northbound in 
California. The freeway segment has a maximum speed 
limit of 105 km/h (65 mi/h). A work zone with a closure 
of one of the three lanes was observed starting from State 
Postmile (PM) 19.7 on May 3, 2018, as shown in green 
in Figure 5. Traffic congestion occurred in the presence 
of the work zone. A 2.2 km freeway segment upstream of 
the work zone and a 650 m two-lane work zone was built 
in the simulation environment under the traffic simulator 
SUMO. The traffic network was calibrated using travel 
speed and flow from loop detectors in California Freeway 
Database at work zone areas under the static speed limit 
[17].    

Two loop detectors were added in the simulated 
freeway segment to study the impacts of stationary 
sensors and CVs. One set is located 500 m upstream of 
the work zone [18] and acts as the stationary sensor at a 
distant upstream of the work zone. The other set was 
added 50 m upstream of the work zone and acted as the 
stationary sensor at the merging area. Both loop detectors 
can detect traffic density at respective locations every 15 
s. The market penetration rate of CVs was set as 10% to 
transmit speeds and locations as probe sensors. The 
length of the VSL control zone and acceleration zone 
were set as 850 m and 550 m, respectively. The lengths 
of the VSL control zone and acceleration zone could 
range from 500 m to 1 km, as studied in [14]. Further 
studies on more selections of sensor locations near work 
zones could be assessed in future work. 

 
Figure 5. Freeway Work Zone on SR99 
Northbound in California 

The fundamental diagram was calibrated with free 
flow speed 𝑣𝑓 , critical density 𝜌𝑐𝑟 , the threshold speed 
𝑣𝑡𝑟,  as 105 km/h (65 mi/h), 50 veh/km, and 65 km/h. The 
gain K was selected as 0.01 via extensive tests. The 
maximum speed limit 𝑣𝑚𝑎𝑥 , minimum speed limit 𝑣𝑚𝑖𝑛 , 
incremental speed ∆𝑣 , and the maximum incremental 
speed ∆𝑣𝑚𝑎𝑥  and control time interval ∆𝑡 were selected 
as 105 km/h (65 mi/h), 24 km/h (15 m/h), 8 km/h (5 mi/h), 
8 km/h (5 mi/h) and 60 s.  

4.2 Results Analysis 
To demonstrate the effectiveness of the proposed 
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VSL control system, four scenarios are considered in the 
simulation: 1) no VSL control, in which the traffic 
conditions were collected as the baseline; 2) VSL control 
with only the stationary sensor at distant upstream of the 
work zone; 3) VSL control with only stationary sensors 
at the merging area of the work zone and 4) VSL control 
with stationary sensors at distant upstream and merging 
area of the work zone and CVs. The calibrated freeway 
work zone segment was first built using the traffic 
simulator SUMO. An interface TraCI was used to 
communicate with SUMO to retrieve simulated vehicle 
and network data and update speed limits [19]. Traffic 
demand for the simulation was generated as follows. The 
simulation was run for 600 s as the warm-up period. 
Simulation data from this warm-up period was discarded. 
Then, the simulation was run for 5400 s. The low traffic 
demand of 3000 veh/h was generated for the first 1200 s, 
and gradually increased to 3700 veh/h at 1800 s and 
maintained at this high demand for 1500 s. Following the 
high demand, traffic demand gradually reduced to 2500 
veh/h at 3900 s and dropped to 2000 veh/h until the end 
of the simulation. 

The traffic density within the acceleration zone 
upstream of the work zone under the four scenarios can 
be found in Figure 6.  

The black dash line refers to the traffic density 
collected using the traffic simulator, which is used as the 
density reference. The detected density refers to the 
density outputs from the stationary sensors while the 
weighted density is derived from outputs of stationary 
sensors using Equation (1).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Traffic Density Comparison under (a) no 
control (b) VSL control with stationary sensors at 
distant upstream (c) VSL control with stationary 
sensors at merging area (d) VSL control with both 
stationary sensors and CVs 

 
Figure 6 shows that the density under no control 

increases to around 150 veh/km when traffic demand is 
high and reduces to around 20 veh/km when the low 
traffic demand appears at the end of the simulation. 

Despite VSL control being in effect under scenarios 
(b) and (c), traffic density has reached above the critical 
density and caused some control failure when traffic 
demand is high. This control failure is mainly due to 
impacts of sensor locations. Under scenario (b), because 
stationary sensors are located at distant upstream of the 
work zone, sensors cannot detect congestion in a timely 
manner before 1800 s when a queue has already formed 
at the work zone at around 1500 s. This congestion 
detection delay causes a delay for VSL control, and 
consequently, the queue is not effectively resolved. 
Under scenario (c), although traffic congestion is 
detected once the queue forms at the work zone area, it 
overestimates traffic density between 1500 s and 2200 s, 
which shows that the detected density is significantly 
higher than the density reference. This overestimation 
restricts traffic heavily and causes more traffic to enter 
the work zone, and congestion cannot be effectively 
resolved.  Under scenario (d), the weighted density can 
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provide relatively more accurate density estimation for 
VSL control. Accordingly, VSL control is more effective 
under scenario (d) with density remains around the 
critical density. 

The density estimation error analysis of scenarios (b), 
(c), and (d) can also be found in Table 1. RMSE of Traffic 
Density. The results show that scenario (d) has the lowest 
RMSE (root mean square error) of density. 

Table 1. RMSE of Traffic Density 

Scenario  Density (veh/km) 
(b) 23.1 
(c) 15.0 
(d) 8.2 

The speed profile upstream of the work zone, the 
work zone, and downstream of the work zone under all 
four scenarios can be found in Figure 7. The time-space 
diagram of Figure 7 is color-coded by travel speeds. The 
speed color-coded bars on the right of the sub-figures use 
different colors representing different travel speeds from 
0 (dark red) to 110 km/h (dark blue). Different vehicle 
travel speeds are shown on the time-space diagram of 
Figure 7. Traffic congestion occurs under no control 
scenario and the queue propagates towards upstream first. 
Then, when the traffic demand reduces, the queue 
propagates downstream until it is fully resolved. Under 
scenario (b), the queue forms only at the beginning of the 
congestion around 1800 s due to the delay of traffic 
density, while under scenario (c), the queue forms when 
higher traffic demand reaches the work zone due to 
traffic density overestimation. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Speed Profile under (a) no control (b) 
VSL control with stationary sensors at distant 
upstream (c) VSL control with stationary sensors 
at merging area (d) VSL control with both 
stationary sensors and CVs 

Scenario (d) shows limited congestion occurs in the work 
zone area, and vehicles can remain at high travel speed 
once passing the control zone. 

The performance of the VSL control system in terms 
of travel time, NOx, CO2 emissions, fuel consumption 
and time-to-collision risks is also assessed for the four 
scenarios as shown in Table 2.The travel time, NOx, CO2 
emissions, and fuel consumption were obtained using the 
built-in libraries with default models [19]. The time-to-
collision risks were calculated using the minimum 1.5 s 
as the safe distance [13]. 

Table 2. VSL Control Performance 

Scenario 
Travel 
Time 
(min) 

NOx 
(kg) 

CO2 
(t) 

Fuel 
(l) 

Time-to-
Collision 

(%) 
(a) 3.0 1.0 2.6 882.8 11.5 
(b) 2.7 0.9 2.4 775.8 2.5 
(c) 3.2 1.0 2.6 821.1 2.5 
(d) 2.6 0.9 2.4 767.6 0.7 

 
Scenario (d) shows the consistent improvement in 

travel time, NOx, CO2 emissions, fuel consumption and 
time-to-collision risks. However, scenario (c) causes 
longer travel time compared to the no-control scenario, 
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while the lower fuel consumption and time-to-collision 
risks than no control scenario are shown. Scenario (b) 
also demonstrates consistent improvements, which are 
not as significant as the scenario (d). 

5 Conclusions  
A VSL control system for a smart work zone with 

CVs is proposed in this study to address the discrepancies 
in traffic detections from different stationary sensors. 
Traffic densities from stationary sensors at the distant 
upstream and merging area of the work zone are 
weighted by applying kinematic wave theory and using 
speed and location transmitted from CVs.  The weighted 
density approximates traffic density at work zone areas 
with lower estimation error. While the discrepancies 
caused by the locations of stationary sensors negatively 
impact the VSL control performance, the weighted 
density ensures the effectiveness of VSL control. The 
results show the proposed VSL control system can 
consistently improve traffic mobility, safety, and 
sustainability near work zone areas. 
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Abstract -
Recently, vision-language research has gained significant

interest by successfully connecting visual concepts to natu-
ral language, advancing computer vision-based construction
monitoring using a wide variety of text queries. While vision
language models demonstrate high capability, performance
degradation can be expected when adapting the model to
the ever-changing construction scenarios. In contrast to the
source image-text pairs, it is more challenging to cover the
multitude of potentially involved objects and their naming
conventions for construction activities. To bridge the domain
gap, this study aims to collect construction-specific image-
text pairs of building elements and related site work based on
the ASTM Uniformat II. The image-text pairs of 641 activities
in Uniformat are retrieved from the LAION-5B dataset based
on the image and text embeddings using CLIP with two differ-
ent prompts. Then, the collected images are labeled at the im-
age level to conclude the requirements of the vision-language
datasets for further development. Based on the results, a
vision-language dataset, VL-Con, consisting of image-text
pairs for construction monitoring applications is proposed
with the aid of a construction semantic predictor and prompt
engineering. The proposed VL-Con dataset can be accessed
through https://github.com/huhuman/VL-Con.

Keywords -
Vision-Language Dataset; Construction Monitoring;

Foundation Model

1 Introduction

Vision tasks such as scene understanding and object
recognition have been widely studied for automation in
construction monitoring [1]. A significant amount of real-
ity capture data is collected to generate actionable insights
for construction monitoring [2]. Supervised learning mod-
els, such as Mask R-CNN [3] and SegFormer [4], have
been predominantly adopted in the past decade [5], neces-
sitating large-scale annotated image datasets with hard-
coded indexes of the target objects. The results can be

utilized to compare with BIM or 4D BIM for progress
monitoring. However, for recognition at a finer level (e.g.,
image segmentation), labeling images is extremely expen-
sive, and such large-scale datasets still remain unavailable
in the industry [6]. Without details in project schedules
in today’s Virtual Design and Construction (VDC) and
Project Control practices, the lack of formal definitions
around what needs to be segmented in photos causes the
gap between different construction monitoring applica-
tions.

Applications based on supervised learning methods
are limited to pre-defined classes and require extensive
post-processing to derive actionable insights. Integrating
knowledge from different models or enhancing their ca-
pability to broaden the recognition scope proves to be a
challenging task. While the AEC/O research community
has been focusing on these application-driven challenges,
the AI community has worked on developing foundation
models, such as MAE [7] and GPT-4 [8], respectively for
vision and language understanding. In this research line,
emphasis has been placed on self-supervised techniques,
allowing models to learn from large-scale data without
any annotation. Well-trained foundational models can be
seamlessly adapted to generate fine-grained segmentation
masks for various objects [9] and to create a chat agent
capable of handling diverse requests [10]. The robust-
ness and generalization of learned knowledge enable the
applications for a wide range of downstream tasks.

Since large language models (LLMs) have achieved re-
markable success in language understanding through self-
supervised learning from the billion-scale training corpus,
the robustness of text embeddings has turbocharged the
development of open-ended vision systems by incorporat-
ing arbitrary text queries. Vision-language models have
gained increasing interest in enhancing vision understand-
ing by aligning image features with text embeddings in
the latent space. Radford et al. [11] proposed the vision-
language model, CLIP, using linear projection to map the
outputs of the image and text encoders through contrastive
pre-training. CLIP under natural language supervision has
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shown promising zero-shot transfer performance on var-
ious public image datasets. Peng et al. [12] used CLIP
features to segment 3D points according to their similar-
ities to text queries, enabling open-vocabulary scene un-
derstanding. Tsai et al. [13] fine-tuned the CLIP model to
translate construction safety-related semantics in images
to textual information for site inspectors. These studies
have demonstrated a more applicable user interface that
facilitates the direct extraction of actionable insights, po-
tentially advancing computer vision-based applications for
construction monitoring.

Despite the recent breakthrough of the vision-language
models, their performance on the construction scenes re-
mains untapped, leaving room for potential improvements
in the current vision system. Considering that most vision-
language models are trained with a wide variety of image-
text pairs instead of specific domain knowledge, the mod-
els may not contain enough construction knowledge to be
adapted to downstream tasks for construction monitoring.
To address the issue, this paper leverages the CLIP model
to collect images according to the text embeddings of the
building construction activities in the Uniformat standard.
The Uniformat standard encompasses eight main activities
related to building construction. The clip-retrieval
[14] API is employed to retrieve the top ten search results
from the LAION-5B dataset [15]. To provide the model
with additional textual clues regarding construction se-
mantics, a second round of image collection is conducted
using the prompt template "A photo of {activity}
in construction" to observe any noticeable improve-
ments. Consequently, about 6200 images of 641 cate-
gories are collected in each round. Each retrieved image
is reviewed whether it is correct or is within the con-
struction context. Zero-shot performance of CLIP on the
construction image classification dataset [16] is presented.

The results show that even using the prompt template
instead of contextless activity names, the CLIP model is
still not good enough at retrieving correct images for the
target activity as well as zero-shot classification. Improv-
ing the prompts in this way only ensures the retrieval of
construction-related content and not for the correct cat-
egory. To further improve the dataset, strategies aiming
for enhancing text prompts and visual construction seman-
tics to obtain more accurate images are proposed. Similar
to [11], where different context prompts are ensembled to
enhance the zero-shot performance, three different prompt
templates are used to increase the opportunities of retriev-
ing the correct images of the work activities. Additionally,
a construction semantic classifier is developed to remove
non-construction images by estimating the score of how
an image is construction-related. Both of the two strate-
gies expedite the image collection of the proposed VL-Con
dataset and help ensure the quality of the collected images.

Based on the enhanced image retrieval through CLIP
API, the images of different activities are collected and
reviewed, and another round of manually image collection
on web is conducted to finalize our dataset. Only 142
of the 641 activities have additional 5 images from the
manual collection because some activities are considered
ambiguous (e.g., specialty and supplementary activities)
or cover too broad range of definitions (e.g., high-level
activities). Note that the reason could also be why the
previous collections fail to find proper images to some
activities. By comparing the collected images of dif-
ferent activities at different round through large vision-
language model and our manual collection, the gap in
image features is significant and highlights the need of
more construction-specific image-text pairs to improve
in-domain knowledge. To adapt the large-scale vision-
language models to construction monitoring applications,
such datasets containing construction knowledge would
be required. As a preliminary and pioneer work, the
proposed VL-Con dataset is publicly available through
https://github.com/huhuman/VL-Con.

2 Related work
2.1 Computer vision in construction monitoring

In construction progress monitoring, reality capture
data were collected to be compared against BIM or 4D
BIM for tracking element changes and confirming project
schedules. Pal et al. [17] estimated the completion per-
centage of building construction progress in combination
of site images, reconstructed point clouds, and BIMs.
These efforts have been constrained by low LOD across
various model disciplines of BIM and a lack of details
in project schedules. Jung et al. [18] proposed a trans-
former model to ensure the consistency among project
schedule data by aligning them with Uniformat classifi-
cations. Núñez-Morales et al. [19] generated synthetic
images from high-LOD BIMs to help develop supervised
learning models recognize different under-construction el-
ements as the well-annotated datasets satisfying a certain
quantity and quality to train the models are not available.
Despite transfer learning from another pre-trained super-
vised model with large-scale datasets, Lin et al. [20] pre-
sented that the dataset bias may prevent the model from
learning construction-specific contents, and the transfer-
learning Faster R-CNN even had poorer performance than
the one trained from scratch on bridge defects.

Inspired by LLMs, vision foundation models using self-
supervised learning techniques have shown promising re-
sults and become popular alternatives. He et al. [7] pro-
posed masked autoencoders (MAE) following the idea of
masked language modeling to pre-train the large vision
model with a wide variety of image data without labels.
Kirillov et al. [9] proposed the large-scale dataset of 1B
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Figure 1. Overview of the image collection and labeling

Table 1. The label distributions of the two collected image sets
Label A B C D E F G Total

"{activity}"
Correct 18.6% 48.8% 62.6% 28.4% 21.7% 33.0% 43.2% 37.7%

Incorrect but related 30.4% 18.8% 23.1% 10.2% 15.1% 11.7% 14.3% 16.5%
Incorrect 51.0% 32.4% 14.3% 61.4% 63.2% 55.3% 42.5% 45.8%

Total 494 738 854 1677 503 528 1352 6146
"{activity} in construction"

Correct 26.0% 50.1% 53.4% 26.1% 21.5% 25.5% 44.1% 36.4%
Incorrect but related 54.7% 34.3% 40.1% 29.0% 24.2% 34.5% 26.0% 32.6%

Incorrect 19.3% 15.7% 6.5% 44.9% 54.2% 40.0% 29.9% 31.1%
Total 494 738 854 1677 503 528 1352 6212

masks and 11M images to develop the segment anything
model (SAM) using MAE pre-trained vision transformer
as the image encoder for class-agnostic segmentation. Tak-
ing advantage of the robustness of such vision foundation
models, Ahmadi et al. [21] combined SAM with U-Net
to enhance crack detection in concrete. Ge et al. [22]
fine-tuned SAM for crack segmentation to improve cross-
dataset generalization.

However, a number of challenges still hinder the com-
puter vision-based applications for construction monitor-
ing, including (1) lack of available ground truth segmenta-
tion for relevant physical assets in reality capture datasets
and (2) lack of formal definitions around what needs to be
segmented in pictures in the first place. Vision-language
models that take the advantage of robust language under-
standing have broadened vision understanding to alleviate
the limitations. The extracted image features reflecting the
context relationship can be more easily adapted to various

construction scenes.

2.2 Vision-language in construction monitoring

Before vision-language foundation models emerge, re-
search has been focused on interpreting construction im-
ages in the form of natural language. For example, image
captioning that can directly generate actionable insights
for construction monitoring has been studied in the past
decade. Without the robust text embeddings from founda-
tion models, creating new and meaningful textual labels
or captions of various construction scenes is the core hin-
drance. Xiao et al. [23] proposed the image captioning
dataset for common construction machines and their ac-
tivities. Liu et al. [24] proposed the image captioning
dataset of five construction activities with the details of
worker actions and safety gears. Zhai et al. [25] created
the image captioning dataset for perceiving unsafe behav-
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ior of workers in construction.
The reviewed image captioning methods mostly adopted

the encoder-decoder architecture to perform image-to-text
translation, where CNN models were used as the image
encoder, and RNN models were used as the text decoder.
Bang and Kim [26] extracted features of object regions
from drone images through Faster R-CNN as the image
encoder and decode the features using LSTM to produce
dense captioning. Wang et al. [27] used Mask R-CNN as
the image encoder and LSTM with the attention layer as the
text decoder for construction works, including masonry,
reinforcement steel bar tying, and tiling. The adopted
single-modal models were only trained with their proposed
datasets to connect the representations across vision and
language. As the studies focused on specific scopes and
scenarios, the learned knowledge of their fully supervised
models was limited to the adopted datasets.

The limitations of the encoder-decoder architecture
made the applications difficult to be scaled. In con-
trast, Radford et al. [11] proposed the dual-encoder model,
CLIP, to first jointly train text and vision encoders with
numerous image-text pairs of a wide range of cases. By
bridging multi-modal understanding through natural lan-
guage supervision, the vision-language model was capa-
ble of handling various scenarios with more robust image
embeddings. A text decoder can be specifically trained
for a downstream task that needs text generation [28].
As being a promising alternative, the feasibility analysis
of the vision-language foundation model for construction
monitoring applications is needed to explore and validate
model’s understanding of construction contexts.

3 Vision-Language Understanding of Con-
struction Context

3.1 Data collection and labeling

This paper retrieves the corresponding images using the
Uniformat work item as the text query from the LAION
dataset through their clip-retrieval [14] API (see Fig-
ure 1). The default parameter values are adopted to search
and rank the images, including aesthetic scoring. Addi-
tionally, the keyword, ”in construction”, is prepended to
the original names as text queries to collect the images in
a second run. This is expected to provide more semantic
clues of construction and help improve the performance
because some of the names are not exclusive in the con-
struction industry, and the model does not specifically
learn to recognize them.

After that, this paper manually review every image and
classify them into three groups: (1) correct - the image
represents the corresponding activity, (2) incorrect but
related - the image does not indicate the corresponding
activity but contains construction semantics, (3) incor-
rect - the image is not related to any construction activi-

ties. Figure 1 illustrates the examples of the defined three
groups.

Table 1 presents the summary of the dataset over eight
different main activities. As presented, only about one-
third of the images are correctly retrieved for the given con-
struction activities. Despite the increase in the ratio of the
class of incorrect but related as shown in Figure 2 when us-
ing the prompt "{activity} in construction", the
overall accuracy is not significantly improved. As a result,
construction-specific image-text pairs are needed to en-
hance the construction knowledge for developing a more
robust foundation model in the construction domain.

Figure 2. Image retrieval results with and without
”in construction”

3.2 Zero-shot performance on construction images

The zero-shot performance of the CLIP model on con-
struction images is evaluated by the BCS dataset [16],
which contains about 212,000 photos of buildings and
construction sites for classification. To evaluate the under-
standing of construction contexts, 104,484 images of 54
categories for construction sites in the BCS dataset are em-
ployed to perform the zero-shot classification. The image
numbers of different classes are Bridge (6752), Site fence
(4980), Wood floor (4808), Ordinary Door (4568), etc.
As stated in [11], the same prompt for zero-shot transfer
to existing image classification datasets, "A photo of a
{label}.", is used to wrap the inputs instead of using
contextless class names.

Cheng et al. [16] has achieved the top-1 accuracy of up
to 94.7% on the dataset by a fully supervised model while
zero-shot CLIP underperforms by over 35%. The CLIP
model only achieves the top-1 accuracy of 59.39% and
top-3 accuracy of 81.41%. Figure 3 presents the zero-shot
accuracy distribution over different categories. Among
all the categories, the model has the highest accuracy of
99.40% for Site vest and the lowest accuracy of 0% for
U-steel. The U-steel images are mostly misclassified into
other steel-related classes, such as Sheet steel and Angle
steel. The situation infers that the lack of construction-
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specific knowledge limits the model to only recognize
general contents. The professional terms with only minor
differences significantly confuse the model. The evidence
can be found as the top-3 accuracy is increased by over
20%.

4 VL-Con: Vision-Language Dataset for
Construction Monitoring

4.1 Requirements of vision-language datasets

Based on the CLIP’s understanding of construction
context, construction-specific vision-language datasets
are required to enhance the construction knowledge.
Through manually inspecting the collected images, Fig-
ure 4 presents that potential causes of the poor perfor-
mance on image retrieval. The requirements of the vision-
language dataset preparation reflecting the issues for con-
struction monitoring are summarized as follows:

1. Ambiguous description/name of work activity
Although construction knowledge is required to un-
derstand the semantics of the activities, some of their
names are too ambiguous to be easily interpreted even
by people with construction backgrounds. The names
become more abstract when the corresponding activ-
ities are at a higher level because they need to cover
various children’s items. To keep the simplicity, only
a few words are used to define the whole scope, lead-
ing to failures in capturing the semantics behind the
words without any additional context. For example,
in the adopted Uniformat system, Floor Construc-
tion (B1010), Roof Construction (B1020), and Stairs
(B1080) are all sub-items of Superstructure (B10).
Figure 4(a) demonstrates that the CLIP model fails
to retrieve correct images of the superstructure but
is capable of recognizing other common words like
floor and roof. Consequently, prompt engineering is
needed to include more context for CLIP to retrieve
more correct images.

2. Missing photos of work activity
Though the examples of image retrieval show correct
semantics, more construction-related and progress-
detailed images are expected. Most of the activities
suffer from missing photos in the training data be-
cause the construction activity or corresponding as-
semblies contain numerous components and steps.
The issue limits the model to return only the photos
of finished states or irrelevant content. Figure 4(b)
shows that this is especially true for any categories as-
sociated with ”supplementary” or ”specialties”. For
example, Exterior Wall Specialties (B2090) include
below-grade egress, window wells, and any kind of
finished product tangent to the exterior wall [29].

The exhibited semantics overlapped with other cat-
egories such as Exterior Fabrications (B2080.70)
leading to failures in differentiating between each
other, whereas exterior fabrications are more about
column covers or decorative finishing directly ap-
plied onto the wall. This phenomenon can also be
attributed to the ambiguous nature of the activity
names. Without specific images that demonstrate the
difference between such similar sub-categories, even
engineers could be confused with the definitions.

3. Searching preference for construction needs
In the adopted CLIP image retrieval, the image qual-
ity can be determined by the aesthetic predictor, en-
suring the retrieved images are closer to what users
are expecting. A photo of a document copy or pro-
cedure diagram may get a low score and be ranked
behind because such an image contains less vision
information, meaning little object information is in-
cluded. For example, Figure 4(c) shows the image
retrieval results of heat generation under different
aesthetic score thresholds and average weights. As
searching preference could significantly impact im-
age retrieval, the construction-specific preference can
be developed to help retrieve more correct images of
our interest to build the vision-language dataset.

4.2 Prompt engineering and construction semantic
classification

To improve image retrieval of the Uniformat ac-
tivities, three different prompts with more details
are used: (1) "A photo of {activity}, a type of
building construction activity", (2) "A photo
of {full-activities-hierarchy}", and (3) "A
photo of {activity}, revit". The first and second
one is to replace the previous ”in construction” keyword
with more specific definitions of the activities. The fi-
nal one is taking advantage of the exclusive word in the
construction industry to force the retrieved images to be
related to construction while the images are mostly about
virtual scenes. The enhanced prompts can help collect
more potentially correct image-text pairs as presented in
our final proposed VL-Con dataset.

For the semantic predictor, the original image retrieval
already employed the aesthetic predictor to ensure the im-
ages contain more useful information and significant ob-
ject appearance instead of diagrams and flow charts. This
paper trained a ResNet-18 model for binary construc-
tion semantic classification with the previously labeled
dataset of Uniformat categories, followed by the prompt
"{activity} in construction". After removing du-
plicate images, nearly 5000 images were then separated
into an 8 to 2 ratio for training and validation sets. The
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Figure 3. The zero-shot top-1 and top-3 accuracy of different classes

Figure 4. The examples for the requirements of vision-language datasets

images were all resized to 224 by 224, and the training set
was augmented with random crop and random horizontal
flip. The model after 25 epochs achieves the accuracy
of 73.63% on the validation set with a wide range of im-
ages associated with various categories in the Uniformat.
Figure 5 demonstrates the model predictions and scores
of the construction semantics of the images. One no-
ticeable feature of this very simple trained model is to
identify diagram-like images or ”unrealistic images” and
filter more realistic scenes such as those of construction
sites.

With the two proposed strategies, another three rounds
of image collection are conducted, and the retrieved im-
ages are firstly filtered by the proposed construction se-
mantic predictor. After that, manual inspection is still
required to finally complete the vision-language dataset
for enhancing construction knowledge of foundation mod-
els. Note that because some of the activities may not
exist in the LAION-5B dataset, the image retrieval pos-
sibly fail to find any correct images of those activities.
In that case, another image sources will be needed in the
future to acquire the corresponding photos of the activi-
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ties. To ensure certain quantity and quality of the dataset,
the dataset additionally include 5 images for each of 142
activities manually collected through the web. The final
VL-Con dataset are publicly available and scalable, allow-
ing other researchers to add more image-text pairs to any
of Uniformat categories.

Figure 5. Construction semantic classification

5 Conclusions
This paper conducted preliminary analysis of vision-

language understanding of CLIP to construction scenes
with regards to Uniformat. The images from the LAION-
5B dataset were retrieved using the CLIP model to as-
sess its applicability of understanding construction scenes.
Upon detailed review of the retrieved images, the limita-
tions of the existing vision language model were identi-
fied: appropriate prompt to maximize the likely result,
insufficient images that precisely describe all the activities
in Uniformat, and inability to contextualize construction
scenes from images. To address these limitations, two
strategies, prompt engineering and a semantic classifier of
construction scenes, were proposed to complete the vision-
language dataset for construction monitoring. Another
manual image collection is also conducted to further en-
hance the dataset. The final VL-Con dataset was released
to provide the basis for further method development and
model training benchmark. As a pioneer work for adapting
vision-language models to construction monitoring appli-
cations, the dataset can be scaled by adding more images
for any of the activities, boosting the construction-specific
foundation models.
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Abstract 

As machinery assumes a critical role in modern 
construction, particularly in Singapore’s 
development initiatives, maintaining excavators 
becomes paramount. Despite the prevalence of faults 
within this equipment, the scarcity of skilled 
mechanics compounds the challenge of timely 
diagnoses and maintenance. Leveraging deep 
learning methodologies, this research endeavors to 
analyze audio signals from excavators, aiming to 
identify distinctive patterns indicative of faults. 
Unlike existing studies primarily relying on vibration 
signals, this research focuses on audio signals for 
excavator fault prediction. Challenges involving 
ambient noise in construction sites and limitations in 
dataset size and imbalance compel the need for robust 
machine learning models capable of accurate fault 
diagnoses. The proposed methodology involves 
dataset collection, audio signal processing, feature 
extraction, and neural network training to 
differentiate normal operation from faulty conditions. 
This study delves into the application of machine 
learning and signal processing techniques to discern 
excavator conditions, aiming to classify their 
operational state as either faulty or operational. With 
an achieved 89.33% accuracy, 94.74% precision, and 
85.71% recall, the method demonstrates promising 
performance. This research offers the potential to 
fortify excavator maintenance practices, potentially 
mitigating the impact of faults on construction 
productivity and costs. 

 
Keywords – 

Excavator Maintenance; Deep Learning; Fault 
Detection; Audio Signal Processing 

1 Introduction 
Throughout history, both equipment and labor have 

constituted essential components within the built 
environment [1]. The utilization of manual labor in 
construction has perennially remained a cornerstone. 
However, with technological advancements, the reliance 

on manual labor diminishes, giving way to a greater 
dependence on cutting-edge machinery at construction 
sites. These machines facilitate construction processes, 
fostering heightened productivity and long-term cost 
savings. Unlike humans, susceptible to fatigue, 
machinery operates tirelessly, accomplishing tasks 
equivalent to multiple human capacities without 
succumbing to exhaustion. Nevertheless, machines are 
susceptible to distinct forms of fatigue, manifesting as 
engine overheating or operational stress due to 
inadequate maintenance, leading to component faults. 

This study aims to investigate excavators, extensively 
used across Singapore, particularly as the government 
endeavors to intensify subterranean development and 
coastal land reclamation. A prevalent challenge arises 
from the difficulty in instilling a sense of ownership and 
care for excavators. Primarily, excavator operators do not 
possess ownership, potentially impeding their 
understanding of how malfunctioning machinery impacts 
project outcomes, thus neglecting proper maintenance. 
Further compounded by demanding project schedules, 
these excavators endure heavy utilization, increasing 
susceptibility to faults necessitating servicing and upkeep. 
Unfortunately, only a select few excavator brands 
demonstrate prolonged durability with minimal 
maintenance costs.  

Optimal excavator maintenance, beyond routine 
servicing, necessitates pre-empting potential faults. 
Minor issues such as hydraulic oil or radiator water 
leakage, or even loose bucket attachments, have the 
propensity to escalate into significant problems, 
potentially damaging the excavator if not promptly 
addressed. However, amidst a scarcity of foreign 
domestic workers and the industry’s shift toward 
technologically advanced machines, the availability of 
experienced mechanics capable of accurately diagnosing 
and rectifying excavator faults diminishes. This makes 
manual diagnosis of excavator faults more difficult and 
troublesome.  

To address this challenge, an effective approach 
involves deploying advanced machine learning 
techniques to autonomously discern machine activities or 
construction equipment by analyzing their distinctive 
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sound patterns [1]. The progression of machine learning 
methodologies has facilitated fault detection successfully 
across diverse machinery, encompassing construction 
excavators. Typically, sensor fusion strategies, such as 
employing microphone arrays to capture machine-
generated sounds, are utilized to gather audio signals. 
Even a single microphone holds the capability to capture 
sound from multiple machines. 

While machine learning models leveraging sound 
signals have demonstrated success in domains like rotary 
machines [2] and combustion engines [3], their 
application specifically to excavators remains to be 
explored. Prior studies on excavator fault prediction [4], 
primarily relied on vibration signals as the primary input 
data. Contrary to vibration signals, audio signals are more 
intuitive and simpler to collect. However, the prevalent 
ambient noise within construction sites significantly 
undermines sound detection accuracy, complicating fault 
detection via sound signals. Therefore, establishing a 
dataset acquired in relatively quiet environments, 
encompassing both normal operating conditions and 
faults, becomes imperative as a standard resource for 
fault diagnosis. 

Moreover, machine learning techniques rely on 
extensive, well-balanced datasets to construct highly 
accurate models. However, practical scenarios often 
present challenges in collecting such vast datasets. 
Instead, smaller and imbalanced datasets tend to be more 
common. Regrettably, limited research explores 
excavator fault detection efficacy using such data 
configurations. Hence, it becomes imperative to devise 
robust machine learning methodologies capable of 
effectively diagnosing excavator conditions, even when 
working with small and imbalanced datasets. 

The primary objective of this research is to classify 
excavators as either faulty or operational through the 
utilization of signal processing methodologies in tandem 
with deep learning techniques. The process involves 
collecting faulty diagnosis datasets, denoising audio files, 
extracting audio features, and training a neural network 
to distinguish between normal operation and faulty 
conditions in excavators. Subsequently, the neural 
network’s classification efficacy will be assessed using a 
validation dataset, employing pertinent evaluation 
metrics. An underlying assumption integral to this 
research involves acknowledging that the model's 
predictive capacity may not extend to anticipating 
excavator faults in their nascent or imminent stages, as 
the recordings of faults are already captured in their final 
state. 

2 Related Work 

2.1 Machine Fault Detection 
The utilization of diverse sensor signals for machine 

fault detection has witnessed significant advancements in 
recent years. Leading researchers, such as Janssen & 
Arteaga (2020), have adeptly leveraged machine-
learning methodologies to identify faults in rotary and 
structural machinery [5]. Signals play a crucial role in 
discerning activity and vibrations in large-scale mining 
and material handling equipment, where effective 
vibration management is paramount to mitigate the risk 
of potential mine collapses during ongoing excavation 
and movement. Wieckowski et al. (2020) utilized the Fast 
Fourier Transform (FFT) to convert vibration waveforms 
from the time domain to the frequency domain, 
subsequently devising a vibration control algorithm [6]. 

MEMS (Micro-Electro-Mechanical Systems)-based 
vibration sensors have gained widespread adoption 
across various applications, showcasing their 
effectiveness in accurately recognizing activity across a 
spectrum of equipment types [7]. However, the practical 
challenges associated with directly attaching these 
sensors to equipment, especially for smaller machinery 
or construction tools like concrete cutting saws and small 
concrete mixers, cannot be overlooked [8]. Additionally, 
the typical deployment of vibration sensors for individual 
machines presents limitations [9], particularly in 
scenarios where multiple machines operate concurrently. 
In contrast, an audio-based system offers a solution by 
obviating the need to attach a microphone to each 
machine, instead relying on strategically positioned 
microphones throughout the site. 

Therefore, audio signals have emerged as valuable 
data resources for activity recognition and fault detection. 
Typically, this methodology adheres to a standard 
framework: (1) recording audio data using a single 
microphone, (2) utilizing FFT and Inverse Fast Fourier 
Transform (IFFT) to denoise the audio and extract 
pertinent features within specific time frames by 
transitioning between time and frequency domains, and 
(3) training a machine-learning algorithm using these 
extracted features [1]. Furthermore, pioneering 
techniques, such as employing a mobile microphone for 
spatial information in machine condition monitoring, 
have been explored [5]. The utilization of an array of 
multiple microphones has also proven effective in 
predicting the position of a mass on a vibrating plate, 
emulating structural flaws or engine imbalances. Its data 
processing involves employing peak-finding methods 
and three-dimensional imaging techniques. Collectively, 
these research findings underscore the efficacy of 
leveraging microphone signals as a valuable tool for fault 
detection and condition monitoring across a spectrum of 
diverse applications. 
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2.2 Sound-based Classification Using Neural 
Network 

Acoustic sensors offer distinct advantages over other 
sensors due to their affordability and ease of placement, 
rendering them highly practical for event classification 
[10]. The collection of ambient sounds through simple 
microphones or sensors has paved the way for advanced 
signal-processing models. Consequently, there has been 
a surge in research focused on classifying construction 
work, machine types, and detecting faults using sound-
based methodologies, driven by their cost-effectiveness 
and widespread applicability. 

There have been studies in the literature focus on 
sound-based Construction Site Monitoring (CSM), 
aiming primarily at identifying activities or classifying 
brands and models of working machines. Multiple 
methodologies have been developed, often using 
Machine Learning (ML) approaches [11], [12]. Some 
commonly employed methods include Support Vector 
Machines (SVMs), k-Nearest Neighbors (k-NN), 
Artificial Neural Networks (ANNs), Hidden Markov 
Models (HMMs), and Gaussian Mixture Models (GMMs) 
[13]. 

Recently, deep learning methods using Neural 
Network become much more popular with their 
promising results. The most used model in the field of 
DL is the Convolutional Neural Network (CNN). 
Maccagno et al. employed a CNN-based model to 
classify different types and brands of machines on 
construction sites, obtaining 97.08% accuracy [14]. 
Similarly, Scarpiniti et al. presented a deep recurrent 
neural network (DRNN) model to classify five classes of 
multiple vehicles and tools using sound signals, reporting 
97% accuracy [15]. While the mentioned studies exhibit 
promising advancements in classifying machine types 
and brands based on sound, an area that remains 
unexplored is the utilization of audio signals for fault 
detection. Despite the successes in identifying 
construction equipment and activities through sound 
analysis, there is a lack of research focused on leveraging 
these signals specifically for detecting faults or 
malfunctions within construction machinery such as 
excavators. 

2.3 Imbalanced Data Processing 
Conventional machine-learning techniques 

commonly rely on training models using balanced 
datasets, ensuring an equitable number of data samples 
for each class. Such datasets facilitate unbiased learning 
and streamline model performance evaluation. Many 
fault detection studies leverage extensive datasets 
encompassing several thousand samples for each class. 
However, datasets collected often exhibit imbalance, 
particularly when certain classes are rare, leading to 

limited samples representing these rare occurrences. 
Imbalanced datasets markedly affect model quality, 
resulting in poorer predictive performances for the 
minority class and potential overfitting to training 
samples, constraining the model’s ability to generalize 
during testing [16]. This limitation is crucial, especially 
when the accuracy of predicting the minority class holds 
more significance than that of the majority class, 
particularly in scenarios where the cost of false negative 
predictions for the minority class is substantial [17]. 

Hence, various methods have emerged to address 
imbalanced datasets, primarily within the realm of data-
level methods aiming to enhance the performance of 
standard machine learning algorithms. Resampling, a 
prevalent data-level technique, aims to rectify class 
distribution imbalances. 

Random over-sampling is a widely used technique 
where, for instance, Hensman and Masko (2015) applied 
this approach to an image dataset by randomly 
duplicating minority class samples until reaching a 
balanced representation [18]. Results indicated that 
random over-sampling notably enhanced model 
performance, akin to that of a balanced dataset. An 
advanced technique, Synthetic Minority Over-sampling 
Technique (SMOTE), generates synthetic samples 
derived from the minority class data to alleviate 
overfitting issues typically associated with regular over-
sampling [19]. While commonly used, SMOTE’s 
efficacy has raised concerns. Sharma et al. (2018) 
indicated that in highly imbalanced classes (e.g., ratios 
around 1:1000), SMOTE-generated samples might 
negatively impact model performance by incorporating 
features overlapping with the majority class [20]. Elreedy 
and Atiya (2019) supported this observation, noting that 
due to SMOTE’s nature, synthetic samples for very small 
or high-dimensional classes become less representative 
[21]. Nonetheless, despite its drawbacks, SMOTE 
improves classification, albeit not to the extent of a 
balanced dataset. 

 

 
Figure 1. Overview of the proposed method 

 

Data Collection 
(single microphone)

Data Preprocessing
(data labeling + SMOTE)

Feature Extraction 
(MFCC)

Fault Detection
(CNN-based)

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1138



3 Method 
Figure 1 presents an outline of the proposed method 

of diagnosing excavator conditions. Generally, the 
methodology comprises four key steps: a) data collection; 
b) data preprocessing; c) feature extraction; and d) fault 
detection. Detailed explanations of each of these steps 
follow in the subsequent sections. 

3.1 Data Collection  
Audio data from excavators was gathered using a 

single microphone to capture the noise emitted during 
their operation. Microphone placement differed based on 
whether the excavator was idle or in operation. For idle 
instances, the microphone was positioned in close 
proximity to the fault, while during operation, it was 
placed at a safe distance of 1 to 2 meters from the 
excavator. Given that most microphones possess 360° 
sensitivity [9], the utilization of a single microphone 
suffices for data collection in this study. However, for 
more complex on-site implementation scenarios, 
employing an array of consistently positioned 
microphones may represent a more effective strategy. 

The study encompassed examinations of both “Good” 
and “Bad” conditioned excavators. “Good” noises 
represent well-conditioned excavator sounds without 
apparent faults, while “Bad” noises represent sounds 
indicative of faults. These faults encompass various 
issues such as hydraulic leakage in the arm, boom hose 
bursting, low engine power, control valve spool leaks, or 
visual indicators like smoke emanating from the 
excavator. Some faults manifest audibly, such as 
hydraulic leaks or hose bursts, while others are visually 
detectable, like smoke emissions.  

3.2 Data Preprocessing 
To enable the subsequent machine learning 

methodology, it was imperative to initially label the 
gathered dataset. Before audio recording, skilled 
mechanics conducted diagnostic assessments on the 
involved excavators. Their expertise and valuable 
insights into the excavators’ conditions were pivotal. 
Based on their evaluations, each file was meticulously 
labeled either as “0” denoting normal operational status 
or “1” indicating a faulty condition in the excavator. 
Furthermore, the reasons behind the faults were 
meticulously documented during this process.  

Apart from data labeling, the imbalanced dataset is 
another issue. Neural network effectiveness is hindered 
by small or imbalanced datasets, which are common in 
machine learning due to challenges in acquiring large, 
representative samples. Addressing this, an enhanced 
oversampling technique, SMOTE, was employed on 
minority classes. SMOTE generates synthetic samples by 
interpolating minority class samples with their nearest 
neighbors of the same class, creating similar yet distinct 
synthetic samples. This mitigates overfitting risks, 
enhancing the model’s generalization capability [19]. 

3.3 Feature Extraction 
Mel Frequency Cepstral Coefficient (MFCC) 

methodology was employed for audio signal feature 
extraction. Unlike the widely used Fast Fourier 
Transform, MFCC is designed to mirror human hearing 
capabilities. Human auditory perception of frequency 
increases logarithmically, meaning what’s perceived as a 
uniform frequency increase to humans isn’t linear. 
Additionally, human hearing is more adept at 
distinguishing lower frequencies compared to higher 
ones. MFCC efficiently captures unique features from 
recorded audio signals by employing the Mel scale, 
where lower-frequency coefficients possess greater 
spacing, while higher-frequency coefficients have 
narrower spacing, mimicking human hearing properties  
[22]. The Mel scale ensures that sounds equidistant on 
the scale are perceived as equally spaced by humans [23]. 
Leveraging MFCC, the model can learn crucial sound 
features indicative of faults. 

3.4 Fault Detection 
For fault detection in excavators, a binary 

classification approach - normal operation versus faulty - 
was undertaken. Utilizing MFCC spectrograms, specific 
spectrogram values at each point served as inputs. A 
proposed CNN-based neural network, depicted in Figure 
2, was employed. Each convolutional layer utilized 
ReLU as the activation function. Max-pooling layers 
downsampled convolved features to save processing time 
and reduce image size. At each step, maximum values 
within each window were pooled into an output matrix. 
The model utilized binary cross-entropy as the loss 
function and the Adam optimizer. To optimize the 
performance of the proposed neural network, 
hyperparameter tuning was utilized. 
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Figure 2. Proposed CNN structure

4 Validation
The dataset comprises 305 audio files of varied 

durations, spanning 1 to 88 seconds, recorded using a 
single microphone positioned according to the 
operational status of each excavator. Included in this 
dataset are recordings from diverse excavator brands 
such as Caterpillar (CAT), Sumitomo, Kobelco, Hitachi, 
Yanmar, Volvo, and Doosan. The excavators ranged in 
size from 5-tonne mini excavators to 38-tonne large 
excavators. Among the 305 files, 187 are classified as 
“good,” indicating excavators in optimal working 
condition, while the remaining 118 files are categorized 
as “bad,” representing excavators experiencing faults, 
which ranged from singular to multiple faults 
concurrently. These faults encompass various issues such 
as hydraulic leakages in excavator arms, burst boom 
hoses, low engine power, control valve spool leakages, 
smoke emissions, and others. While some faults, like 
hydraulic leakages, emit distinct sounds, others are only 
identifiable through visual cues like alarm lights or 
smoke emissions. Figure 3 shows some samples of the 
collected audio data, including excavators in normal 
operation and excavators with different types of faults.

a) Excavator in normal 
operation

b) Excavator with fault

c) Excavator with 
hydraulic fault

d) Excavator with engine 
fault

e) excavator with aircon 
fault

f) Excavator with 
mechanical fault

Figure 3. Samples of the recorded excavator 
operations

After preprocessing, the original imbalanced dataset 
has been expanded to 374 samples, with 187 “good” 
noises and 187 “bad” noises. To validate the proposed 
method, the dataset is divided into two subsets: an 80% 
training dataset and a 20% test dataset. Evaluation of the 
proposed network’s performance uses three key metrics: 
accuracy (see Equation (1)), precision (see Equation (2)), 
and recall (see Equation (3)). Accuracy denotes the ratio 
of correctly predicted observations (True Positives) to the 
total number of observations. Precision isolates the actual 
positive instances from the predicted positive dataset. 
Recall computes the count of true positives among all 
identified positives, including true positives and false 
negatives. Notably, in this study, recall holds more 
significance than the other metrics, as a false negative 
could significantly impact the excavator’s lifespan if 
faults remain unidentified and unresolved.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

(1)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(2)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3)

*TP: true positive; FP: false positive; TN: true 
negative; FN: false negative.

Figure 4. A sample of the MFCC spectrogram

Following the application of MFCC, the resulting 
MFCC spectrogram serves as the input for the proposed 
neural network. Illustrated in Figure 4 is a sample of the 
generated MFCC spectrogram. The X-axis delineates 
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time, while the Y-axis represents the distinct MFCC 
coefficients. Additionally, it depicts frequencies 
transformed into Mel scale values, a logarithmic 
representation of signal frequencies. Each plotted point 
in the diagram signifies a specific MFCC at a precise 
moment in time. This spectrogram offers a visual 
portrayal of sound in the Mel scale, presenting an 
alternative to the frequency domain. 

5 Results and Discussion 
The findings presented in Table 1 demonstrate the 

model’s good performance across both the training and 
test datasets. The training accuracy achieved 98.32%, 
while the test accuracy maintained a robust 89.33%. In 
terms of precision, the training and test sets displayed 
values of 97.35% and 85.71%, respectively, indicating 
the model’s ability to minimize false positives, ensuring 
accurate positive predictions. Moreover, examining 
recall metrics reveals significant effectiveness. The 
training set exhibited a recall of 99.32%, while the test 
set maintained 94.74%. These results suggest the model’s 
proficiency in capturing the majority of positive 
instances without missing many, highlighting its 
consistent performance on unseen test data. 

The model’s ability to generalize without overfitting 
is evident, showing consistent predictive power across 
various datasets. Figure 5 further illustrates the evolution 

of these metrics across epochs, depicting a rapid decrease 
in training and validation loss from the initial epochs, 
eventually converging to minimal values with a slight 
gap between the two losses. This presents an efficient 
learning ability of the proposed network. 

The implementation of the proposed automatic fault 
detection method carries profound implications for 
machinery productivity and cost-effectiveness. By 
prioritizing the minimization of false-negative results, 
especially in the context of fault detection within 
excavators, this method significantly mitigates the risk 
associated with undetected faults. Such oversights can 
lead to operational disruptions, downtime, and potential 
safety hazards, all of which can incur substantial costs 
and impair machinery productivity. 

By ensuring the timely identification and resolution 
of faults, the proposed method helps avert catastrophic 
failures that could result in extensive financial losses and 
pose risks to end-users. This proactive approach not only 
safeguards equipment integrity but also enhances 
operational efficiency by minimizing unplanned 
downtime and maintenance efforts. Moreover, the 
reliability, effectiveness, and accuracy demonstrated by 
this model underscore its capacity to optimize machinery 
performance and reduce operational expenses. By 
providing early and precise fault detection capabilities, 
this method enables maintenance interventions to be 
strategically planned, thereby minimizing costly repairs 
and maximizing equipment uptime. 

  
a) Accuracy b) Precision 

 
 

c) Recall d) Model loss 

Figure 5. Results of the training and test process of the proposed CNN 
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In essence, the successful implementation of the 
proposed automatic fault detection method not only 
bolsters machinery reliability and safety but also 
translates into tangible benefits in terms of enhanced 
productivity and cost-effectiveness. Its robust 
performance positions it as a valuable asset for fault 
detection in excavators, offering significant potential for 
improving overall operational efficiency and profitability.  

Table 1. Results of the proposed CNN 

Dataset Accuracy Recall Precision 
Training 98.32% 99.32% 97.35% 

Test 89.33% 94.74% 85.71% 

6 Conclusion  
This paper presents a CNN-based network designed 

for excavator fault detection using audio signals. The 
sound of excavator operations is captured through a 
single microphone, and expert mechanics assist in 
diagnosing the excavators’ statuses. Both normally 
functioning excavators and those with faults are recorded, 
with subsequent data labeling based on the mechanics’ 
assessments. To address dataset imbalance, the SMOTE 
oversampling method is employed to balance the dataset. 
The extraction of frequency features from audio signals 
is accomplished through the generation of MFCC 
spectrograms. These spectrograms serve as input for the 
proposed CNN-based network. The evaluation of the 
network’s performance employs accuracy, precision, and 
recall metrics, demonstrating good generalization and 
robustness in excavator condition recognition. 

This study contributes to leveraging machine learning 
applications to improve excavator serviceability. The 
COVID-19 pandemic highlighted Singapore’s heavy 
reliance on foreign manual labor, resulting in significant 
downtime and project slowdowns. There is a growing 
consensus that a paradigm shift in site operations is 
necessary, especially considering the migration of talent 
to other sectors, potentially reducing expertise in this 
industry. Implementing machine learning could alleviate 
dependency on senior mechanics for fault identification. 
It could empower on-site engineers or workers to 
recognize fault-related sounds promptly, enabling 
immediate servicing to prevent excavator breakdowns. 

A limitation of this study lies in the range of its 
dataset. As previously mentioned, audio data capturing 
excavator operations was acquired using a single 
microphone within a relatively quiet environment with 
minimal ambient noise. There is merit in extending the 
dataset to encompass a diverse range of real-world 
conditions, particularly those characterized by higher 
levels of background noise, to further validate the 
proposed method. Apart from gathering data from real-
world conditions, acquiring a comprehensive range of 

normal operation sounds holds significant value in 
enriching the dataset. This augmentation can enhance the 
rationality of fault diagnosis and provide additional 
support for anomaly detection, which presents itself as a 
potential avenue for future research exploration. 
Additionally, the data labeling process relied on expert 
input, which can be time-consuming and labor-intensive, 
particularly as the dataset expands. This process could be 
streamlined by implementing automated or semi-
automated labeling procedures.   

In terms of future research directions, a more granular 
classification of faults into major and minor categories 
could yield substantial insights. Moreover, an in-depth 
analysis of the network’s discriminatory capabilities 
across varied fault scenarios is warranted. Additionally, 
expanding efforts to correlate specific faults with their 
respective excavator brands, leveraging an augmented 
dataset, could enhance the network’s proficiency in 
accurately identifying excavator-specific faults. The 
inclusion of datasets spanning a broader spectrum of 
excavator models holds promise for enriching research 
outcomes. 
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Abstract –  

Maintaining energy performance of ageing 
building stock has become a global priority towards a 
more environmentally sustainable future in the age of 
climate change. Unmanned Aerial Vehicle (UAV) 
equipped with thermal camera is increasingly used 
for building inspection. However, scant attention has 
been paid to the satisfactory image acquisition 
strategy for a rigorous building energy audit. To 
narrow this research gap, this paper undertakes a 
comparative analysis of the impact of three primary 
features of UAV thermal image collection strategies 
on accurate thermal anomaly evaluation. Firstly, a 
laboratory-scale building featuring artificial thermal 
anomalies was developed and constructed. Then, 
UAV thermal images were collected under various 
inspection conditions, examining features including (1) 
temperature difference between interior and exterior 
environments, (2) ground sampling distance (GSD), 
and (3) UAV oblique angle. GSD herein refers to the 
GSD of the collected UAV thermal images. The 
collected thermal images underwent a comprehensive 
analysis and comparison to understand the influence 
of the three features. The results suggest that: (1) 
thermal images collected with highest interior and 
exterior temperature difference are recommended for 
identifying all potential thermal anomalies; (2) a GSD 
of within 𝟓 𝒎𝒎  is recommended to ensure the 
visibility of thermal damages in the collected thermal 
images; (3) a multi-scale thermal image collection 
strategy is recommended for an efficient and accurate 
evaluation of thermal anomalies, especially minor 
defects; (4) a UAV oblique angle within 𝟑𝟎°  is 
recommended to ensure a high image contrast 
between damaged and undamaged areas on the 
inspected façade. 

 
Keywords – 

Building energy audit; Unmanned aerial vehicle 
(UAV); Aerial thermography; Image acquisition 
strategy 

1 Introduction 
Reducing energy consumption and greenhouse gas 

emission has become a global priority in the age of 
climate change. The built environment currently 
accounts for around 30% of global final energy 
consumption and over 33% of global energy- and 
process-related 𝐶𝑂2  emission [1]. Maintaining the 
energy performance of ageing buildings is crucial 
towards an environmentally sensitive and sustainable 
future. In recent years, considerable research efforts have 
been made to understand the building façade energy 
performance and conduct timely maintenance. 

Thermal anomalies in building façades, such as heat 
loss and insulation failure, are the primary reasons for 
poor energy performance [2]. One commonly used 
method to diagnose these thermal anomalies is infrared 
thermography (IRT), which captures thermal images 
representing surface temperatures [3]. IRT has been 
widely used for building energy audits, considering its 
non-invasive nature [4]. Thermal anomalies generally 
feature significant variations in the surface temperatures, 
which are easily identifiable in thermal images [5]. 
However, traditional terrestrial or hand-held IRT requires 
inspectors to physically visit the site, which is time-
consuming, labour-intensive, and subject to safety risks, 
especially when it comes to hard-to-reach areas, such as 
high-rise buildings. 

With the rapid evolution and use of Unmanned Aerial 
Vehicle (UAV) technology, aerial thermography has 
become a safe, cost-efficient, and fast solution for 
collecting close-range thermal images of building 
façades [6]. Thermal anomalies, such as thermal bridges, 
heat loss, and insulation failure, can be automatically 
extracted from UAV-collected thermal images through 
digital image processing [7] and deep learning [8] 
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algorithms. Additionally, a 3D thermal model can be 
generated to facilitate a comprehensive understanding of 
the building energy performance [9]. 

A key factor in achieving successful UAV 
thermography for building energy audits is the 
implementation of a suitable image acquisition strategy, 
i.e., UAV flight path planning [10]. Two primary factors 
should be considered during the path planning, i.e., UAV 
oblique angle and ground sample distance (GSD) [11]. 
Theoretically, collecting close-range thermal images 
with a perpendicular view to the inspected surface is 
recommended [12]. However, meeting these conditions 
during real-world UAV-enabled building inspections can 
be challenging since: (1) UAV needs to maintain a safe 
distance to the inspected façades to avoid collisions; (2) 
as the GSD decreases, the inspection distance decreases 
and the inspection duration increases significantly, 
posing constraints on completing the inspection within 
the UAV's flight time; and (3) surrounding obstacles, 
such as trees and power lines, may obstruct areas that 
would allow the UAV to achieve a perpendicular view. 
Therefore, it is crucial to understand the influence of 
different UAV inspection configurations on inspecting 
thermal anomalies. 

Current practices have examined the influence of 
UAV oblique angle in thermal image-based 3D 
reconstruction [13] and surface temperature 
measurement [14], while its impact on detecting thermal 
anomalies stays unrevealed. Pan et al. [15] obtained 
similar thermal anomalies detection accuracy from 
images with an inspection distance of 5 m and 10 m. 
However, this observation was based on relatively large 
thermal anomalies with a dimension larger than 1.5 m. 
Additionally, Mayer et al. [11] investigated the influence 
of different UAV settings (e.g., flight speed, oblique 
angle and inspection distance) on the quality of the 
collected thermal images. However, their analysis 
focused only on the overall quality (e.g., image resolution, 
coverage, and contrast) of thermal images with a large 
field of view, and thus failing to provide insights in the 
optimal UAV configurations for close building thermal 
inspection and anomaly detection. 

In addition to the UAV configurations, the 
environmental conditions also play a vital role [16]. 
Particularly, a minimum temperature difference of 10 ℃ 
between interior and exterior environments is 
recommended for thermal building inspection [12]. 
Although this temperature difference can be achieved by 
conducting inspections during night or early morning 
with heating system switched on [16], this time restraint 
severely impedes the widespread use of UAV-enabled 
building energy audits. Therefore, it is vital to explore the 
feasibility of identifying thermal anomalies from images 
collected with a relatively low difference in interior and 
exterior temperatures.  

To better understand the influence of different factors 
on accurate thermal anomaly inspection, it is crucial to 
collect thermal images with known thermal anomalies 
under various conditions. However, collecting these 
thermal images during real-world building inspections 
presents challenges. To address this issue, this study 
designed and developed a laboratory-scale building with 
artificial thermal anomaly (e.g., sub-surface insulation 
failure and surface deterioration). Thermal images were 
further obtained under different UAV oblique angles, 
GSD, and interior and exterior temperature differences. 
The collected thermal images were subsequently 
analysed to compare the influence of different image 
acquisition strategies. 

The structure of this paper is organised as follows: 
Section 2 presents the design and production of the 
laboratory-scale building model. Section 3 describes the 
laboratory experiment. Results and discussions are 
illustrated in Section 4. Finally, Section 5 summarises the 
findings with a conclusion. 

2 Laboratory-scale building 
To support the comparison of different image 

acquisition strategies for UAV-enabled building 
thermography, a laboratory-scale building was 
developed, as shown in Figure 1. Timber buildings have 
garnered global popularity due to their unique attributes, 
such as eco-friendliness, widespread availability, and 
relative ease of handling [17,18]. As such, a timber 
building was selected as the subject for this laboratory 
investigation. The structure decided upon was a single-
panel timber-frame wall element, composed of three 
layers: a timber frame, a single-sided sheathing board, 
and thermal insulation [19,20]. This research primarily 
focused on thermal anomalies in an individual wall, thus 
the dimension and shape of the building are considered 
less significant and are designed in reference to [21]. A 
timber frame with a dimension of 600 𝑚𝑚 × 600 𝑚𝑚 ×
600 𝑚𝑚 was first assembled, and further, the plywood 
panels with a thickness of 7 𝑚𝑚  were affixed to the 
timber frame to form the façade exterior, as demonstrated 
in Figure 1(a) and (b). Additionally, 25 𝑚𝑚  thick 
polystyrene ThermaSlab, with a thermal resistance rating 
of 0.66 𝑚2𝐾 𝑊⁄ , was applied to the façades and roof for 
insulation purposes. 

It should be noted that conventional timber-based 
walls used in construction industry often incorporate a 
building wrap, also known as membrane, which serves 
primarily to weatherproof the structure by blocking 
rainwater while allowing for vapour transfer to mitigate 
condensation [22]. However, its impact on the building 
energy performance is minimal compared to the thermal 
insulation layer, particularly given that the laboratory 
investigation takes place indoors, absent of any rain or 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1145



vapour. Therefore, to simplify the construction process, 
the building wrap was excluded. 

Two types of thermal anomalies on building façades, 
i.e., surface deterioration [23] and sub-surface insulation 
failure [21], were added in the laboratory-scale building. 
Figure 1(c) shows the surface deterioration with various 
dimensions, achieved by accurately cutting the surface 
panel using a laser cutting machine. Additionally, 
insulation failures, such as missing and thin insulations, 
were achieved by manually cutting the ThermaSlab, as 
shown in Figure 1(d). Particularly, for the thin insulation, 
the thickness of the insulation was reduced to 10 𝑚𝑚. 
Detailed dimensions of the artificial thermal anomalies 
are summarised in Table 1. It should be noted that 
although the laboratory-building was downscaled, the 
anomalies were designed to mirror real-world 
dimensions for accurate representation. 

 
Figure 1. Laboratory-scale building with artificial 

anomaly: (a) exterior; (b) interior; (c) surface 
deterioration; (d) sub-surface insulation failure. 

Table 1 Artificial thermal anomalies 

Thermal anomaly Dimension 

Surface deterioration 150 𝑚𝑚 × 100 𝑚𝑚 
150 𝑚𝑚 × 50 𝑚𝑚 
150 𝑚𝑚 × 20 𝑚𝑚 
150 𝑚𝑚 × 10 𝑚𝑚 
150 𝑚𝑚 × 5 𝑚𝑚 

Missing insulation 200 𝑚𝑚 × 100 𝑚𝑚 

Thin insulation 200 𝑚𝑚 × 100 𝑚𝑚 

3 Laboratory experiment 
Laboratory experiments were further conducted using 

the developed building model. Figure 2(a) provides an 
overview of the laboratory experiment. The UAV 
adopted in this study is DJI Mavic 2 Enterprise Dual, 
equipped with a dual camera system for capturing 
thermal and RGB images simultaneously. The RGB 
camera has an image resolution of 4056 × 3040, and the 
thermal camera has a resolution of 640 × 480. It should 
be noted that the thermal camera was calibrated and 
registered with the RGB camera in our previous work [9]. 

During the experiments, a fan heater was utilised to 
warm up the building interior, as shown in Figure 2(b). A 
wireless temperature sensor was used to monitor the 
interior temperature. By combining with the exterior 
temperature (approximately 20 ℃) measured by another 
sensor, the temperature difference can be measured. 
Additionally, AprilTag [24] was attached to the building 
façade to calibrate the collected images and measure their 
corresponding GSD. The experiment mainly includes 
three cases, each related to a different inspection feature, 
i.e., interior and exterior temperature difference, GSD 
and UAV oblique angle. 

 
Figure 2. Laboratory experiment: (a) test overview; 

(b) building interior heating and temperature 
monitoring; (c) different UAV oblique angles. 

Case 1 aimed to compare the influence of various 
interior and exterior temperature differences. The UAV 
maintained a distance of 2 𝑚 (corresponding to a GSD of 
around 3 𝑚𝑚) and a perpendicular view to the inspected 
façade. Then, the heater was turned on to gradually warm 
up the building interior. Thermal images were collected 

(a) (b)

(c) (d)
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Polystyrene 
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as the temperature difference increased. 
Case 2 focused on studying the influence of different 

GSD. After the building interior was warmed up and the 
temperature was stabilised, thermal images were 
collected with a perpendicular view to the inspected 
façade and at varying distances ranging from 1 𝑚 to 9 𝑚 
to achieve a GSD ranging from 1.5 𝑚𝑚 to 13 𝑚𝑚.  

Case 3 examined the influence of different UAV 
oblique angles, as shown in Figure 2(c). The experiment 
was conducted at a distance of 2 𝑚 (corresponding to a 
GSD of around 3 𝑚𝑚) and with a stable interior and 
exterior temperature difference. The maximum UAV 
oblique angle was set at 50°, considering that thermal 
images collected with a larger oblique angle have a 
massive field of view and are rarely used for actual 
building inspection. 

4 Results and discussion 
This section demonstrates the laboratory experiment 

results and discusses findings regarding the image 
acquisition strategy for UAV-enabled building energy 
audit. 

4.1 Temperature difference 
Figure 3 shows the thermal images collected to 

identify insulation anomalies under different temperature 
differences, ranging from 1.6 ℃  to 19.5 ℃ . It can be 
observed that the presence of missing insulation becomes 
noticeable at a temperature difference of 3.8 ℃, while 
thin insulation requires a higher temperature difference 
of approximately 8.1 ℃. Particularly, the colour of the 
thin insulation closely resembles the undamaged façade 
area surrounding the missing insulation, even at higher 
temperature difference of over 14.5 ℃. This similarity 
may be attributed to a small gap between the façade panel 

and insulation layer, allowing heat transfer from the 
missing insulation area to the surrounding area. This 
effect is particularly prominent at high temperature 
differences exceeding 14.5 ℃ , where the missing 
insulation areas appear red and a small surrounding area 
stands out with a deep yellow colour, indicating a higher 
temperature. Additionally, as the temperature difference 
increases, the missing insulation areas becomes more 
distinguishable. Thus, it is recommended to capture 
thermal images with a higher temperature difference for 
identifying and quantifying missing insulation. 

Thermal images collected for identifying surface 
deteriorations under different temperature differences are 
displayed in Figure 4. Surface deteriorations, even small 
defects, start to appear at low temperature differences, 
such as 3.7 ℃. As the temperature difference increases, 
surface deterioration becomes more noticeable. Similar 
to the missing insulation, the surrounding area of the 
surface deteriorations also exhibits a different colour 
compared to other undamaged façade areas. Particularly, 
with a significant temperature difference exceeding 
11.9 ℃ , surface deterioration with relatively large 
dimensions, such as over 20 𝑚𝑚 , becomes 
distinguishable (i.e., red colour) compared to the 
surrounding areas (i.e., deep yellow colour). This means 
that a higher temperature difference allows accurately 
identifying and quantifying these surface deteriorations. 
However, smaller surface deteriorations, such as 10 𝑚𝑚 
and 5 𝑚𝑚  defects, stay merged with the surrounding 
areas, making it challenging to accurately extract and 
segment them, even at an extremely high temperature 
difference of 22.6 ℃ . Therefore, although small 
deteriorations can be visible in thermal images, 
accurately quantifying these deteriorations poses a 
challenge. Collecting thermal images with a smaller GSD 
may help with identifying minor anomalies, which will 
be discussed in the following section. 

 
Figure 3. Thermal images of insulation anomalies under different temperature differences: GSD of around 3 𝑚𝑚 

and UAV oblique angle of approximately 0°. 

Temperature difference increasing

Missing insulation Thin insulation
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Figure 4. Thermal images of surface deterioration under different temperature differences: GSD of around 

3.3 𝑚𝑚 and UAV oblique angle of approximately 0°. 

 
Figure 5. Thermal images of insulation anomalies under different GSD: temperature difference of around 18 ℃ 

and UAV oblique angle of approximately 0°. 

 
Figure 6. Thermal images of surface deterioration under different GSD: temperature difference of around 29 ℃ 

and UAV oblique angle of approximately 0°. 

To summarise, an interior and exterior temperature 
difference exceeding 8 ℃ is required to detect various 

thermal anomalies, including minor defects, such as thin 
insulation. As the temperature difference increases, 

Temperature difference increasing

Surface deterioration

GSD increasing

Missing insulation Thin insulation

GSD increasing

Surface deterioration
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thermal anomalies become more noticeable in the 
collected UAV thermal images. Therefore, it is advisable 
to conduct building inspections with the highest 
temperature difference to achieve maximum thermal 
image contrast between damaged and intact areas. 

4.2 GSD 
To understand the influence of GSD in the UAV-

enabled building thermography, thermal images were 
collected with a GSD ranging from 1.5 𝑚𝑚 to 16 𝑚𝑚, 
as shown in Figure 5 and Figure 6. The missing insulation 
remains visible as a distinct red colour, even with a GSD 
of 1.5 𝑚𝑚 , as shown in Figure 5. However, the thin 
insulation starts to blend with the undamaged areas when 
the GSD reaches 6.6 𝑚𝑚 . Similarly, small surface 
deteriorations of 5 𝑚𝑚 , 10 𝑚𝑚  and 20 𝑚𝑚  become 
invisible with a GSD of 6.6 𝑚𝑚 . Additionally, even 
large surface deteriorations of 50 𝑚𝑚  and 100 𝑚𝑚 
disappeared from the thermal image taken with a GSD of 
10.2 𝑚𝑚 . This may be due to the thin insulation and 
surface deteriorations exhibiting a smaller temperature 
difference compared to the undamaged areas, as they are 
relatively minor thermal damages compared to the 
missing insulation. Based on these observations, a GSD 
of within 5 𝑚𝑚  is recommended to ensure that all 
thermal damages are visible in the collected thermal 
images. 

However, a smaller GSD may be needed to accurately 
measure and quantify these thermal damages, especially 
with regard to minor thermal anomalies. For example, 
surface deterioration with a width of 10 𝑚𝑚  is 
distinguishable as red colour in the thermal image 
collected with a GSD of 1.6 𝑚𝑚, while starting merged 
with the surrounding areas (appearing as deep yellow 
colour) with a GSD of 3.2 𝑚𝑚, as shown in Figure 6. 

Therefore, a multi-scale thermal image collection 
strategy is recommended considering the limited flight 
time of most UAV (around 30 mins). Specifically, 
thermal images may first be collected with a GSD less 
than 5 𝑚𝑚  distance to identify all possible areas with 
thermal damages on building façades. Then, close-range 
thermal images with a smaller GSD should be taken 
around these identified areas to ensure accurate detection 
and measurement of the thermal damages. Considering 
that most commercial UAV can not fly too close to the 
inspected surface due to safety concerns, it is 
recommended to develop customised UAV (e.g., wall-
climbing UAV [25]), that are specifically designed for 
collecting close-range images. 

4.3 UAV oblique angle 
Figure 7 and Figure 8 display thermal images 

collected from various UAV oblique angles, ranging 
from 0° to 50°. Although thermal anomalies stay visible 

in the thermal images, even with a large oblique angle of 
50° , the contrast between the damaged and the 
undamaged façade areas decreases as the oblique angle 
increases. Particularly, when the oblique angle reaches 
30° , the missing insulation starts to blend with the 
surrounding areas, as shown in Figure 7. This could be 
attributed to the fact that a large oblique angle may 
capture reflections from other sources, thereby reducing 
the ability to accurately capture the emissivity of the 
target surfaces [14]. Additionally, as the UAV oblique 
angle increases, the field of view of the thermal images 
also increases significantly, covering unwanted 
backgrounds. These backgrounds can also reduce the 
image contrast of the target areas. Therefore, a UAV 
oblique angle within 30°  is recommended when 
collecting thermal images for building energy audits. 

 
Figure 7. Thermal images of insulation anomalies 
under different UAV oblique angles: temperature 

difference of around 16 ℃ and GSD of 
approximately 3.3 𝑚𝑚. 

UAV oblique angle increasing
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Figure 8. Thermal images of surface deterioration 
under different UAV oblique angles: temperature 

difference of around 28 ℃ and GSD of 
approximately 3.3 𝑚𝑚. 

5 Conclusion 
This paper compared three features of image 

acquisition strategies of UAV thermography for building 
energy audit. A laboratory-scale building with artificial 
thermal anomalies, such as sub-surface insulation failure 
and surface deterioration, was first developed. 
Furthermore, thermal inspections were conducted under 
various conditions, such as different UAV oblique angles, 
GSD, and interior and exterior temperature differences. 
The results indicate that: 

(1) An interior and exterior temperature difference 
exceeding 8 ℃ is necessary to identify potential 
thermal anomalies from UAV thermal images. 
Conducting building inspections with the highest 
temperature difference is advisable to achieve 
maximum thermal image contrast between 
damaged and intact areas. 

(2) A GSD of within 5 𝑚𝑚, is required to ensure the 
visibility of thermal anomalies in the collected 
thermal images. A multi-scale thermal image 
collection strategy is recommended to ensure 
efficient and accurate measurement of various 
thermal anomalies, especially minor defects. 

(3) An UAV oblique angle of within 30°  is 
recommended to be maintained during the thermal 

building inspection. 
The comparison presented in this paper has some 

limitations and room for improvement. As an ongoing 
research project, future work will involve quantitatively 
evaluating thermal damage detection from the collected 
thermal images and investigating the interferences 
between the three features. Additionally, given the 
relatively straightforward nature of the constructed 
laboratory-scale building, forthcoming investigations 
will involve field studies on real-world buildings, which 
may contain more complex anomalies, to validate the 
identified image acquisition strategies. 
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Abstract -
The monitoring of construction progress is crucial for en-

suring project timelines, budget adherence, and quality con-
trol. Traditional methods often involve manual inspection,
which is labor-intensive and prone to human error. We in-
troduce NeRF-Con, an innovative approach utilizing Neural
Radiance Fields (NeRF) to automate the process of construc-
tion progress monitoring. NeRF-Con can infer images that
render the construction site with a level of quality compara-
ble to reality by utilizing NeRF, which synthesizes novel views
of complex scenes from a sparse set of images. Additionally,
by employing a segmentation model, NeRF-Con can compare
these rendered images with BIM to evaluate the progress of
the work. This capability is achieved by training the model
using handheld smartphone-captured video. This paper de-
tails a method for applying NeRF in real construction sites
with data collection, pre-processing, and progress evaluation.
In assessing the model’s performance, comparisons are made
with data from mobile-LiDAR, stand-LiDAR, and BIM. With
this research, we suggest potential future studies in applying
NeRF models to construction progress monitoring systems.

Keywords -
NeRF; 3D Computer Vision; Deep Learning; Segmenta-

tion; Construction Progress Monitoring

1 Introduction

In the field of construction, progress monitoring stands
as a essential work ensuring timely and cost-effective
project delivery. The advent of advanced AI and deep
learning technologies has initiated a new era of innova-
tion in this domain, enabling automated progress moni-
toring with remarkable accuracy and efficiency. In recent
years, AI advancements utilizing computer vision, such as
object detection and instance segmentation for construc-
tion object recognition, have been increasingly adopted,
transforming traditional monitoring techniques with au-
tomated, data-driven approaches. Among these advance-
ments, Neural Radiance Fields (NeRF) [1] have emerged

as a innovative approach in the field of 3D data processing
and visualization. This study introduces NeRF as a deep
learning model that excels in synthesizing photo-realistic
images by considering light and material properties, ren-
dering images on novel views in construction sites or built
environments that closely replicate real-life visuals. The
integration of NeRF into construction progress monitoring
marks a significant advancement, providing a method that
not only improves visual comprehension but also greatly
contributes to the automation and precision of tracking
construction progress.

For automating construction progress monitoring, the
integration of vision sensors and deep learning methods
has drastically changed traditional approaches. Beginning
with the use of traditional image processing skills like fil-
tering, edge and corner detection to analyze site images [2],
the approach has evolved to incorporate deep learning for
object detection [3] and segmentation [4]. This advance-
ment significantly improves the accuracy of construction
progress assessments from 2D sensors by enabling more
precise comparisons of site images with designs derived
from Building Information Modeling (BIM).

Furthermore, the progression in construction monitor-
ing has greatly benefited from the adoption of 3D scanning
technologies like LiDAR [5], which have revolutionized
the field by enabling comprehensive three-dimensional
site captures. These methods allow for detailed and pre-
cise comparisons between ongoing construction and BIM
designs. Advancements such as real-time 3D point cloud
mapping with Simultaneous Localization and Mapping
(SLAM) [6], further enhance geometry analysis in con-
struction environments. Combining these cutting-edge
3D scanning techniques with AI and deep learning signif-
icantly improves the accuracy and efficiency of construc-
tion monitoring, setting a new standard in the industry.

While previous studies in automated construction
progress monitoring have significantly utilized 2D and 3D
sensing technologies for gathering building or construction
site data, they commonly entail transforming scanned data
into a 2D image with orthogonal view [4, 7, 8]. However,
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challenges remain, such as: 1) Achieving efficiency and
quality in rendered parallel 2D images. The creation of
parallel 2D images from RGB cameras is a detailed, rule-
based process requiring manual refinement. Moreover,
while LiDAR or SLAM methods often lack the realistic
appearance of actual images, resulting in lower quality
renderings. 2) The cost and user-convenience of data ac-
quisition. Methods such as SLAM, which utilize robotic
or drone sensing, necessitate predefined operational paths.
Compared to manual, hand-held capture, these methods
are operationally more complex and constrained by envi-
ronmental factors like limited pathways or airspace, reduc-
ing their feasibility in diverse construction environments.

To address the issues of existing 2D and 3D sensor-based
methods in automated progress monitoring, we propose
an approach utilizing NeRF. This approach utilizes deep
learning to achieve a degree of realism in spatial render-
ing that significantly exceeds the capabilities of traditional
methods. A key advantage of our methodology is the use of
smartphone-captured video as input. Furthermore, our ap-
proach is not limited to rendering the site in 3D; it also gen-
erates orthogonal views, which can be directly compared
with BIM for accurate construction process monitoring.
Our NeRF-based method’s ability to generate both realis-
tic 3D renderings and orthogonal views establishes it as
a versatile and effective solution for construction progress
monitoring. We further enrich our research by testing
and comparing various NeRF models—vanilla NeRF [1],
Instant-NGP [9], and Nerfacto [10]. Utilizing the Nerfs-
tudio [10] platform, we efficiently train and visualize our
models. Our research includes the collection and analysis
of data from two different indoor scenes and one outdoor
scene, all derived from actual built environments. Our
main contributions are:

• We utilize the concept of neural radiance fields
(NeRF) to comprehend the 3D spatial information
of construction sites and render images from novel
views that closely resemble the actual environment.

• We demonstrate the use of a common smartphone
camera, easily handheld and maneuvered, to capture
videos in a user-friendly and uncomplicated manner.
These videos are then used as the input for NeRF
model training.

• We evaluate and apply the NeRF model in various
built environments, including indoor and outdoor set-
tings, specifically for the purpose of automated con-
struction progress monitoring.

2 Background

2.1 Automated progress monitoring

Computer vision technology has increasingly been ap-
plied in automated construction monitoring. Initial ap-
proaches involved image processing techniques like edge
detection and deep learning-based object segmentation to
compare material edges with as-designed BIM [2, 3, 4].
The focus then shifted to LiDAR-based 3D scanning [5],
providing detailed site comparisons with BIM, typically
evaluated using Root Mean Square Error (RMSE). Ad-
vancements continued with SLAM [6], using moving
robots capable of capturing diverse scenes, thereby en-
hancing segmentation and detection for more accurate
progress tracking against as-designed BIM. Recently, Pal
et al. [8] employed vanilla NeRF [1] to generate ortho-
graphic views of under-construction elements, performing
semantic segmentation to monitor construction progress
in comparison with BIM designs. In this paper, we utilize
various NeRF models such as vanilla NeRF, Instant-NGP
[9], and Nerfacto [10].

2.2 Neural Radiance Field (NeRF)

Neural Radiance Fields [1], or NeRF, represent a novel
approach in the field of 3D scene reconstruction from 2D
images. Traditionally, rendering realistic 3D objects in-
volved the use of expensive 3D scanners or photogramme-
try that transform images into voxel, point cloud, or mesh
forms, NeRF introduces a novel approach in novel view
synthesis. In recent, research in the field of 3D computer
vision is largely centered around the use of NeRF. First,
Vanilla NeRF [1], as the foundational model, utilizes an
Multi-Layer Perceptron (MLP) with 8 linear layers, of-
fering a distinctive approach to 3D scene representation.
It processes 3D coordinates through positional encoding
to enrich the input data, thereby enhancing the details
captured in the scene. This architecture extracts density
outputs and integrates ray viewing directions, allowing
the final RGB output to dynamically reflect how the ap-
pearance of objects changes with the viewer’s perspective.
Building on this, Instant-NGP [9] innovates by encod-
ing coordinates with HashMap and Linear Interpolation
to significantly reduce computational load and accelerate
training. This approach efficiently creates feature vectors
from selected coordinates and auxiliary values, stream-
lining the MLP processing. Finally, Nerfacto [10] builds
upon previous NeRF advancements by combining several
techniques for real data capture of static scenes. It in-
tegrates camera pose refinement, per-image appearance
conditioning, proposal sampling, scene contraction, and
hash encoding.
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Figure 1. Overview of NeRF-Con pipeline for construction progress monitoring

3 Method

Fig. 1 shows our NeRF-based method for automated
construction progress monitoring, starting with data col-
lection. This model is then trained to accurately ren-
der photo-realistic 2D images of the site from novel per-
spectives, aiming for realistic visualizations of the 3D
space. The final comparison stage involves aligning
NeRF-generated images, potentially orthographic views,
with BIM designs, employing instance segmentation for
precise progress assessment. This method, leveraging
NeRF’s strengths in 3D spatial representation and image
synthesis, offers a novel, accurate, and efficient approach
to quantifying construction progress.

Figure 2. Visualization of the actual move path for
capturing a video (above) and the Nerfacto model
application on the Nerfstudio platform (below)

3.1 Data collection

For video capture in construction progress monitor-
ing, various methods are employed, such as smartphones,
drones, and robots, which can be hand-held or integrated
into automated systems. We predominantly utilize the
iPhone 15 Pro, chosen for its high accessibility and ef-
ficiency, and employ COLMAP [11], a structure-from-
motion (SfM) technique, to extract camera poses from
image sequences. This approach, as depicted in Fig. 2,
involves using SfM, a photogrammetric method, to esti-
mate three-dimensional structures from two-dimensional
images. The process identifies key features across images
and uses their relative motion to infer depth and struc-
ture, with a focus on the epipolar line, which indicates the
trajectory of a point in one image across another, based
on camera movement. COLMAP processes video frames
to generate accurate 3D coordinates and view directions
for the camera, constructing a 3D point cloud of the site
and determining the camera’s position and orientation for
each frame. This method maintains the practicality and
convenience of data collection, ensuring regular monitor-
ing feasibility across various environments without spe-
cialized equipment. The detailed process guarantees a
precise representation of the construction site, facilitat-
ing high-precision training of the NeRF model, aligning
with our goals for efficient and comprehensive construc-
tion progress monitoring.

3.2 NeRF application

The fundamental concept of NeRF [1] involves sam-
pling points in a 3D space along rays that emanate from
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Figure 3. The architecture of the Nerfacto model

the camera’s viewpoint. These sampled points are used to
estimate both the color and the density at every location
through the scene, which are then composited into a final
image via volumetric rendering techniques. The input to
a NeRF model typically includes the 3D coordinates of
sample points, the direction of the viewing rays, and any
appearance features that characterize the scene’s proper-
ties, such as lighting or texture. The output is the rendered
2D image that approximates the real-world scene from the
camera’s perspective. Fig. 3 shows Nerfacto [10] model’s
pipeline for NeRF application at construction sites by cre-
ating photo-realistic images from captured videos.

3.2.1 Piecewise Sampler

The rendering pipeline begins with the Piecewise Sam-
pler, selecting sample points along camera rays to evalu-
ate the scene. It distributes half of the samples uniformly
within a distance of 1 (unit distance) from the camera, en-
suring a detailed sampling of nearby areas. The remaining
samples are placed with increasing step sizes, effectively
scaling the sampling frustums and allowing for a broader
coverage that includes distant objects without compromis-
ing the sampling density for closer areas. This two-part
approach can be expressed as:

�� =

{
�

�/2 if � ≤ �
2 ,

� (�) if � > �
2 ,

(1)

where � is the index value of the samples, �� is the
distance from the camera, � is the total sample count,
and � (�), a monotonically increasing function, adjusts the
samples based on conical frustum.

3.2.2 Proposal Sampler

After the initial sampling phase, the Proposal Sampler,
utilizing two density functions, refines the sample loca-
tions. Its primary goal is to maximize sampling around
surface boundaries, which are crucial for the scene’s visual
accuracy. These density functions, constituting the Den-
sity Field, guide the sampling process. Each density func-

tion in the Proposal Sampler is an MLP that receives 3D
coordinates as input and is combined with hash encoding.
This structure is designed to provide a coarse representa-
tion of density, which is crucial for efficient sampling. The
density function can be expressed as:

�(x) = Θdensity(�(x)) (2)

where x is a spatial coordinate, � is a hash encoder
[9], Θdensity is MLP for density and �(x) is the estimated
density at that location. The hash encoding transforms the
3D coordinates into a suitable format for the MLP, enabling
it to compute the density. The two density fields in the
Proposal Sampler work together to concentrate sample
points around significant areas like surface boundaries.
The design of these density fields focuses on capturing only
a coarse representation of scene density. This approach
is sufficient for guiding the sampling process, ensuring
that the model concentrates computational resources on
the most important aspects of the scene without being
burdened by the intricacies of high-frequency details.

3.2.3 Nerfacto Field

The Nerfacto Field is an integral component of the ren-
dering pipeline that takes as input the 3D coordinates x,
the view direction d, and the appearance features f, and
outputs both the color � and the density �(x) at the given
spatial location. For extracting the RGB color, the Ner-
facto Field employs a neural network function which can
be expressed as:

� (x, d) = ΘRGB (�(x), �� (d), f) (3)

where ΘRGB is MLP for density, �� is the spherical har-
monic encoding of the view direction, and the appearance
features f capture the variations in scene appearance such
as lighting and material properties. The density �(x) is
inferred using the same equation to Eq. 2.
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3.2.4 Volumetric Render

The last stage in the pipeline is the Volumetric Render,
which integrates the density and color information along
the rays to form the final rendered image. This integration
can be described by the following equation:

RGBfinal =

∫
𝜌(x) · 𝐶 (x, d) 𝑑x, (4)

where the integration is performed along the ray path,
accumulating the product of density and color to yield the
final pixel color value. The rendered color RGBfinal is
then compared to the ground truth image’s RGB values,
using the L-2 distance as a loss function during the train-
ing process. This loss function quantifies the difference
between the rendered image and the actual image, guiding
the optimization of the network parameters to minimize
these discrepancies.

We delve into the application of NeRF for creating 2D
novel images. These orthogonal projected images offer a
distinctive view of construction sites. Utilizing the NeRF
model, we efficiently segment building elements through
the semantic-segment-anything [12]. This segmented out-
put is then compared with 2D plane images derived from
BIM model, which similarly employ orthogonal projec-
tions. By evaluating the segmented outcomes from the
NeRF model against those from BIM, we are able to not
only gauge construction progress with great precision but
also visually confirm the consistency with the original de-
sign. This approach provides a layered insight into project
development, facilitating a thorough comparison between
what was planned and what is being constructed.

4 Experiments
4.1 Dataset

Our study involved three experiments - two indoors and
one outdoors - using an iPhone 15 Pro for data collec-
tion. In the first indoor experiment, a 90-second site video
was captured for NeRF model training, complemented by
a 120-second mobile LiDAR (iPhone 15 Pro) scan and a
210-second FARO LiDAR scan, the latter offering higher
accuracy but at a significantly higher cost (50x expen-
sive) than mobile LiDAR. The scanning time differences
between mobile LiDAR and FARO LiDAR are due to
their operational designs. Mobile LiDAR, a handheld de-
vice, necessitates manual navigation for comprehensive
site imaging, conversely, FARO LiDAR, a stationary sys-
tem, automates image capture from all directions.

The second indoor experiment used a 120-second video
capture and the last outdoor experiment used a 20-second
video. Notably, in each experiment, we downsampled the
video frames to one-third of the total frames for both train-
ing and testing, dividing the data in a 0.9 to 0.1 training-to-

testing ratio. This methodology created a diverse dataset,
integrating various technologies for a comprehensive as-
sessment of our NeRF-based monitoring system.

4.2 Implementation details & Metrics

We utilize the Nerfstudio [10] platform for train and
visualization, and our experiments involved three NeRF
models – Nerfacto, instantNGP, and vanilla NeRF – to
compare their performance. Common settings across
these models included 200k iterations and 4096 for
train/test number of rays per batch. For Nerfacto and
instantNGP, the optimizer used was Adam with a learning
rate of 0.01. In contrast, vanilla NeRF utilized the RAdam
optimizer, featuring a lower learning rate of 0.0005. These
models were trained on an NVIDIA RTX4090 GPU, using
PyTorch version 2.0.1 and CUDA 11.8, ensuring efficient
computation and model optimization.

To evaluate the performance of our models, we em-
ployed three key metrics: PSNR (Peak Signal-to-Noise
Ratio), SSIM (Structural Similarity Index Measure), and
LPIPS (Learned Perceptual Image Patch Similarity) [13].

• PSNR: Expressed in the logarithmic decibel scale,
with values typically ranging from 20 to 30. Higher
values indicate better image quality.

• SSIM: Values range between -1 and 1. A value of
1 indicates perfect similarity between the test image
and the reference image. SSIM assesses visual im-
pacts based on luminance, contrast, and structure,
aligning more with human visual perception than
PSNR.

• LPIPS: Scores typically range from 0 to 1, where
a lower score indicates greater perceptual similarity
between compared images. Unlike PSNR and SSIM,
LPIPS leverages deep learning models to better ap-
proximate human visual perception.

4.3 Results

In our research, we conducted a comparison using two
different LiDAR sensors with NeRF-based approaches.
One of the LiDAR sensors is a mobile LiDAR embedded in
the iPhone 15 Pro, utilizing Pix4Dcatch for analysis. The
other is a stationary Faro LiDAR, known for its exceptional
precision and high cost. In contrast, for our NeRF-based
approaches, we used a smartphone or drone equipped with
only a RGB camera. Thus, we experimented with three
different NeRF models’ rendering image quality (Tab. 1)
related to creating the parallel view images and performed
an additional comparison between NeRF, stable LiDAR,
and BIM with SAM [12] (Fig. 5). We also visualized the
infeasible result from the mobile LiDAR (Fig. 6).
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Figure 4. Qualitative comparison of three NeRF models on three different scenes
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Figure 5. Visualization of semantic segmented results on 2D orthogonal images from three different sources

Method PSNR ↑ SSIM ↑ LPIPS ↓
exp#1 : smartcity room (indoor)
NeRF 10.8 0.68 0.64
Instant-NGP 30.7 0.91 0.20
Nerfacto 31.0 0.92 0.19
exp#2 : corridor (indoor)
NeRF 14.7 0.63 0.71
Instant-NGP 24.8 0.74 0.35
Nerfacto 24.4 0.73 0.37
exp#3 : under construction (outdoor)
NeRF 11.4 0.43 0.93
Instant-NGP 16.8 0.56 0.38
Nerfacto 19.1 0.57 0.22

Table 1. Quantitative comparison of three NeRF
models on three different scenes

We trained three distinct NeRF models - vanilla NeRF,
Instant-NGP, and Nerfacto - in diverse environments: a
smartcity room (indoor), a corridor (indoor), and an under
construction site (outdoor). The results, detailed in Tab. 1,
exhibit a notable trend as the spatial scale increases from a
confined room to a more expansive corridor and then to an
open outdoor space, there’s a discernible decrease in model
accuracy, as reflected by metrics such as PSNR, SSIM,
and LPIPS. This pattern suggests that the complexity and
size of the environment negatively impact the rendering
quality of these models. In particular, the outdoor scene
(exp#3) highlighted the strengths of the Nerfacto model. It
achieved a PSNR of 19.1 and an LPIPS of 0.22, surpassing
the Instant-NGP model, which managed a PSNR of 16.8
and an LPIPS of 0.38. Furthermore, the qualitative visual
results in Fig. 4 corroborate this finding, showing that in
the construction site scene of exp#3, Nerfacto outperforms
Instant-NGP, providing relatively superior visual quality.

Figure 6. Visualization of semantic segmented re-
sults on 2D orthogonal images from mobile LiDAR

Fig. 5 presents a comparison of parallel view images
from different sources. The NeRF image was obtained
from the Nerfacto model in exp#1, alongside 2D views ac-
quired from stand-LiDAR and BIM models. These images
were further processed using the SAM model. This com-
parison highlights the practical utility of applying segmen-
tation to NeRF-generated images, considering the higher
cost and lower usability of stable LiDAR sensor. We also
tested scanned images from mobile LiDAR shown in Fig.
6, but the resolution of images acquired from mobile-
LiDAR are inferior compared to stand LiDAR or NeRF.
Therefore, we can use smartphones to easily capture visual
information at construction sites and then utilize NeRF and
SAM models to visualize the level of progress.
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5 Conclusion
In conclusion, this study has successfully demonstrated

the efficacy of Neural Radiance Fields (NeRF) in automat-
ing construction progress monitoring, marking a signifi-
cant leap over traditional methods. By leveraging NeRF-
Con, we have shown that it is possible to generate photo-
realistic, 3D rendered images from simple smartphone-
captured videos, offering a more efficient, accurate, and
cost-effective solution compared to existing 2D and 3D
sensor-based methods. The application of NeRF in vari-
ous environments - small room, corridor, construction site
- proves the robustness and versatility. The integration
with segmentation models to compare these renders with
BIM designs, ensuring more precise and automated mon-
itoring of construction progress. In conclusion, our pro-
posed methods, NeRF-based rendering and SAM-based
comparison with BIM, can enable more efficient project
planning and facilitate communication among construc-
tion site stakeholders.

In future work, we aim to address two main challenges:
the decline in NeRF model’s rendering accuracy with in-
creased spatial scale, especially outdoors, and the cur-
rent reliance on only qualitative SAM result images for
progress monitoring. Our focus will be on optimizing
NeRF’s application for large outdoor sites and develop-
ing quantitative assessment methods, such as completion
percentages, to enhance automated progress monitoring.
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Abstract – 

Construction projects rely on several technologies 
for progress monitoring of projects. Among these 
technologies, Computer Vision (CV) based 
technologies are gaining popularity as they enable 
direct acquisition of physical site data. There are 
numerous devices available using vision-based 
technologies. Several studies have attempted to 
compare these technologies to identify 
appropriateness to meet the project requirements. 
However, there is no structured framework to 
compare and select a CV-based data acquisition 
device based on the requirements of a project. To 
develop a framework, it is critical to identify the 
factors and associated metrics that enable a 
systematic device comparison. Through a systematic 
review of literature of comparative studies on CV-
CPM technologies this work identifies several factors 
and defines the metrics that form the basis for a 
structured framework.  An approach to forming the 
framework based on these factors is also proposed.  

 
Keywords – 

Progress monitoring technologies; Computer 
Vision; Data acquisition; Comparative framework; 
Literature review 

1 Introduction 
Effective progress monitoring is crucial during a 

construction project’s life cycle to control cost and time 
overruns. Further, prompt and accurate progress updates 
from a site avoids stakeholder disputes and related 
complexities by eliminating unexpected circumstances. 

 Data acquisition is a crucial step in progress 
monitoring process, which contributes for accurate 
project control. Project control data is increasingly being 
obtained through automated data acquisition 
technologies. Among these, Computer Vision (CV) 
based technologies are gaining significance as they have 
the potential to capture the physical state of a site [1,2].  

There are several devices in the present-day market 

for acquiring as-built status based on CV-based data 
inputs. These devices range from hand-held portable – 
low-resolution ones to tripod-mounted high-resolution 
ones.  Correspondingly, the outputs of these devices can 
be used for different levels of progress monitoring. These 
levels could vary from basic visualization to detailed 
quantification of as-built components. Four levels of 
progress monitoring have been defined by earlier studies 
[1]. Identifying a suitable device suitable for the required 
level of progress monitoring specified for a project is an 
important requirement.  

Existing papers have focused on the comparison of 
specific technologies, [3] or devices [4]. For a robust 
implementation, first, there is a need to systematically 
structure this comparison of the data acquisition devices 
and, secondly, create a framework to select the suitable 
device given an intended level of progress monitoring for 
a project. Hence, this paper aims to:  

1. Review the existing studies on the comparison of 
various devices and technologies. 

2. To identify the factors that enable a systematic 
comparison of automated data acquisition 
technologies for Computer Vision based 
Construction Progress Monitoring (CV-CPM). 

The paper is structured as follows. In Section 2, the 
review methodology is initially discussed and then a table 
listing the various comparative studies and factors 
considered for technology comparison is presented and 
discussed. In Section 3, the metrics for each of the factors 
are defined and an approach to develop a structured 
framework is outlined. Discussion on the work is 
presented in Section 4 and followed by summary and 
future work in Section 5. 

2 Review of Literature 

2.1 Methodology 
The reference literature for the review was collected 

from the Scopus database using a keyword search-based 
method followed by snowballing technique. Out of 312 
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results from the Scopus database and 24 papers from the 
snowballing technique, a total of 42 papers were 
identified through the PRISMA methodology [5], and an 
exhaustive review with analysis was performed. In this 
review, the papers that focuses on CV-CPM and specific 
comparison of data acquisition devices were included. 
The chronological distribution of the selected papers 
varies from 2011 to 2023, with majority concentrated in 
the years 2021, 2022 and 2023. 

The search attributes used in the review with the 
keywords used and search scope are as shown in Table 1. 
The relevant articles for the construction domain were 
filtered after reading the abstracts. The filtered articles 
were considered for meta-analysis. 

Table 1. Search attributes 

Search attributes Values used in the search 
Databases  Scopus 
Language English 
Duration 2012-2023 

Type  Journal and conference articles 
Keywords Construction, Automated 

progress monitoring 

2.2 CV-based data acquisition devices 
As mentioned in Section 1, CV-CPM is an emerging 

field focusing on information retrieval through visual 
inputs. These inputs include digital images, videos, 
thermal images, as-built point clouds (PCs), panoramas, 
and photospheres.  

Major CV-based techniques include fixed 
surveillance, photogrammetry, videogrammetry, range or 
depth imaging and 3D laser scanning, each with their 
own advantages and limitations [1,2]. In all these 
technologies, the acquired data as image frames or point 
clouds are retrieved in multiple file formats compatible 
with corresponding processing software.  

These technologies are combined with suitable 
mounting options including Unmanned Aerial Vehicles 
and Unmanned Ground Vehicles to enable progress 
monitoring for construction projects. There are numerous 
popular devices of varying combinations of the above-
mentioned technologies and mounting options being 
used in the industry for efficient progress monitoring. 

To develop a framework for comparing CV-based 
device for varied requirements of progress monitoring, 
the first step is to perform a detailed literature review of 
existing specific comparative studies.  

As presented in Table 2, eighteen studies are 
reviewed in detail to identify the devices being compared 
along with the technology categorization of these devices. 
The devices that are included consists of 3D laser 
scanners (Terrestrial- TLS and Mobile- MLS), iPhone or 
iPad LiDAR sensors, digital cameras, depth camera, etc.  

It is to be noted in the reviewed studies that some of 
the researchers identified a third reference in their study 
as a benchmark [3,4,6–15], whereas others evaluated a 
particular device in comparison to another device, 
keeping the latter as a reference [16–19]. In a few studies, 
both the above cases are evaluated [20,21]. In all three 
cases, the benchmark or reference is mentioned in the 
table. The table is further organized based on the 
technologies compared, grouping the similar technology 
comparisons together. 

Most of the studies focused on comparing devices 
working on the same CV-based technology [3,6–8]. 
However, in studies where cross-technology 
comparisons were done, the images captured using depth 
or digital cameras were subjected to photogrammetric 
reconstructions where the input data is converted to as-
built point clouds [12–14]. Further, these point clouds 
were compared to the directly obtained point clouds from 
the laser scanners or LiDAR sensors.  

Various quantitative and qualitative factors, based on 
which the comparison is performed in the studies, are 
also stated in Table 2 along with the methodology 
adopted for comparison in the studies. It is interesting to 
note that a significant portion of the studies focuses only 
on quantitative factors [4,6,8,13,16–21] with a 
comparatively lesser studies taking into account both the 
factors [3,7,9–12,14,15].  

The results from these studies are not included in the 
table, as the focus of the work is to identify and document 
the factors that were used for comparison and define 
suitable metrics than can be used to quantify the factors.  

Both the quantitative and qualitative factors, listed in 
the table, must be suitably quantified based on their 
context.  This will form the basis for a structured 
comparison framework. However, the scope of this 
article is limited to the characterization of quantitative 
factors, as provided in Section 3. 

3 Metrics for quantitative factors 
The major quantitative factors identified earlier are 
summarized in Table 3. These factors include resolution; 
accuracy; time; surface coverage; cost; system storage 
and device moving speed. The corresponding metric that 
can be used for quantification  of  these  factors  are also  
mentioned in the table along with the description to 
quantify them.  

It can be noted that different studies use one or more 
factors to compare the devices along with different 
terminology for the same methods. All studies examined 
accuracy for comparison, with the majority also 
addressing resolution and quantifying them using various 
metrics, as depicted in Table 3. Accuracy ensures the 
reliability of data capture, while resolution determines 
the  level of  detail  and clarity in  the  output. Given  their
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fundamental importance, they emerge as pivotal factors 
in device selection. Factors like surface coverage, cost, 

system storage, and device moving speed are explored 
only by a few studies for comparison. 

Table 3. Quantitative factors and corresponding metrics 

Factors Metrics Description Papers 

Resolution 

3D density of points Number of points per unit volume / Total number of 
points in the target object 

[7,9,12,14, 
18,19] 

Number of points / 2D 
density of points 

Number of points per unit square / Total number of 
points in the target area [6,8,9,13,18] 

Average percentage 
completeness 

Dividing the surfaces of the reference model into small 
regions and the existence of points is checked [13,15] 

Consecutive point 
distance / Point spacing 

Distance between two consecutive points 
(Absolute/average) [8,9,18] 

Accuracy 

BIM/mesh to cloud 
distance analysis 

Average distance between one PC and the closest 
surface in 3D BIM/mesh [15,21] 

C2C distance analysis 
C2C distances are determined by calculating the mean 

of all Euclidean distances between the nearest 
neighboring points of two-point clouds 

[6–9,11,14, 
16–21] 

Local precision / 
roughness 

Distance analysis between the points and their best-
fitting plane [8,16,18,21] 

 M3C2 analysis Multiscale Model to Model Cloud Comparison [15] 
3D BIM distance 

analysis 
Building the BIM model from the PC (Scan-to-BIM) 

and comparing its dimensions with reference dimension [8] 

Error in distance 
measurement 

Percentage/absolute/average error in measurement of 
distances as compared to the reference [3,4,9–12] 

Average error / 
Average percentage 

error 

Distance between a point from the surface of the 
reference model where this point is supposed to be 
located / error between the object parameters with 

respect to the reference model 

[10,13,17,20]  

Time 

Total time per setup - [3,12,13] 
Preparation time - [3,10] 
Scanning time - [3,4,7,10] 

Post-processing time - [3,4,10,13] 
Surface 

coverage - Points are orthogonally projected on the corresponding 
surface to construct a 2D shape [21] 

Cost - Costs of actually purchasing or renting the devices 
(May also add man-hour cost as per time) [3,12,13] 

System storage File size on the system - [12,18] 
Device 

moving speed Range of the speed The speed of moving the device at which errors are 
least [10] 

3.1 Device Comparison 
To compare devices, the factors identified in Table 3 

can be weighted based on the project requirements such 
as project type and complexity, required level of progress 
monitoring, and level of details to be captured.  Using 
these, the weighted average of factors can be calculated 
for a particular device, and this can be used to compare 
devices and select the appropriate option for the project. 

The methodology for device comparison and 
selection is shown in Figure 1. Table 4 illustrates an 
example for the comparison approach, with a few factors 
as  an  example  for  selecting  between  two  devices. The 

weights can be determined using the Analytic Hierarchy 
Process (AHP). However the weights presented in the 
table are hypothetical, and the specifics of weight 
estimation are not addressed in this paper, but are a part 
of ongoing research. The third and fourth columns of the 
table denote High, Medium, or Low values for each 
device, with corresponding numerical values of 3, 2, and 
1 respectively. For factors where lower values are 
preferable, such as time, the numerical values are 
inverted to appropriately represent High, Medium, or 
Low. Finally, a weighted average of factors is computed 
for each device and compared, leading to the conclusion 
that Device 1 should be selected in the given example.
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Table 4. Example of the comparison approach for device selection

Factor Factor Weight Device 1 Device 2 Weighted value Device 1 Weighted value Device 2
Resolution 0.2 3 (High) 2 (Med) 0.6 0.4
Accuracy 0.5 2 (Med) 1 (Low) 1.0 0.5

Time 0.3 1 (High) 3 (Low) 0.3 0.9
Weighted Average 1.9 1.8

Figure 1. Methodology for device selection

4 Discussion
In the reviewed literature, a notable gap exists as the 

range of the devices are not evaluated Range of the 
device is one of crucial quantitative factors that should be 
considered based on field study and site conditions.   

Most of the literature reviewed in this paper has 
conducted the field experiments to compare the devices 
on a site that is available based on convenience.  These 
sites vary in monitoring requirements and physical 
conditions. As a result, developing a standardized 
benchmark for the devices is not possible. There is a need 
to develop a standardized testbed that would allow for the 
systematic comparison of devices under controlled 
physical conditions, including factors such as lighting 
and different types of construction. This will ensure a 
more comprehensive and reliable evaluation, of data 
acquisition devices.

The qualitative factors are discussed by lesser studies 
as compared to the quantitative factor. However, several 
significant qualitative factors have been identified, 
including ease of use, influence of lighting, influence of 
object materials, visual quality, training need, and more. 
These factors play crucial roles in assessing the overall 
performance and suitability of devices. While this paper 
has addressed quantitative factors, more work is required 
to characterize the qualitative factors.  Using both the 
quantitative and qualitative factors, a holistic framework 
for CV-based device comparison to meet progress 
monitoring requirements of a project can be developed.

5 Summary and further work
This paper provides a systematic review of 

comparative studies on CV-based data acquisition 
technologies and devices from the relevant publications 
to understand the state-of-the-art in this domain.

Based on the comparative studies reviewed, key 
quantitative factors and the measurement metrics are 
identified.  However, qualitative factors should also be 
included in developing a systematic device comparison 
and selection framework. 

It is proposed that these factors can be weighted based 
on project requirements and scores for devices being 
considered for a project can be computed. These scores 
can assist in selecting the appropriate device.

Ongoing work is focused on developing a decision 
support system using this holistic framework.  As a part 
of this framework, models for comparing performance of 
a mobile hand-held device with a terrestrial laser scanner 
is also being developed through a field-based study.
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Abstract –  

The integration of measurement systems and sensors 
is critical to advancing construction automation 
processes and aligning digital models with physical 
production realities. However, incorporating field 
measurement and inspection tools into digital 
fabrication is challenging due to the dynamic nature 
of construction sites. While point cloud sensors have 
been widely used in field robotics, there is still 
potential for more accurate, flexible measurement 
systems for component assembly. This paper presents 
progress in integrating an automated, precise 
measurement system into a robotic fabrication 
process to facilitate adaptive process planning and 
control, focusing on the prefabrication stage of 
structural steel assembly and node prefabrication. 
The implemented scanning system, a typically static 
1D laser line profiler, is attached to an industrial 
robotic arm. Unlike traditional full system integration 
approaches, we adopt an extensible distributed 
network approach, that considers the sensor and 
robot as separate modular systems. By leveraging 
automated calibration and synchronization between 
robot and sensor, we achieve a 3D-capable approach.  
Our work describes an overarching, streamlined 
system that covers the entire process from calibration 
over registration up to mesh reconstruction, that 
proposes a modular integration through a network 
communications middleware. This will allow faster 
component replacement and system retooling without 
the need for typical hard wiring or embedded 
computation, allowing better integration or extension 
for potential multi-sensor data fusion. In addition, we 
propose an edge detection system for potential 
automatic adaptive weld path generation. 

Keywords – 
Line scanning, Robotics, Internet of Things, IoT, 

3D Point Cloud, Sensor Calibration 
 

1 Introduction 
The Architecture, Engineering, and Construction 

(AEC) industry continues to evolve at a rapid pace, 
marked by the integration of innovative materials, 
methods, and new technologies. The increasing 
requirements of sustainability, high performance 
functionality, and complexity of structural forms is 
driving an ongoing digitalization in the industry. As new 
techniques emerge, they become an integral part of 
pushing the limits and reducing the constraints of 
manufacturability. This introduces new physical and 
digital systems that need to be integrated with low 
barriers to utilization, especially in manufacturing and 
construction phases where digital fabrication is becoming 
a more essential part of production. With the integration 
of digital processes comes the need for more data 
regarding processes, to both ensure quality, that is in need 
of precision due to the dominance of manual inspection 
in the industry, as well as monitor progress for 
optimization of production workflow. Monitoring of 
construction processes has been recognized as a critical 
factor in minimizing uncertainties [1].  

Robotics have emerged as a transformative force in 
inspection and monitoring of prefabrication processes. 
Following research shows the potential in quality 
assurance of construction components through 3D laser 
scanning, such as [2], where non-contact measurement 
technique utilizing terrestrial laser scanning (TLS) is 
utilized, [3], proposes a comprehensive method 
integrating building information modelling (BIM) and 
3D laser scanning technology, to assess the dimensions 
and quality of precast concrete panels, and [4] introduces 
a refined metric for evaluating point cloud quality in 
automated construction progress monitoring using the 
Scan-vs-BIM method. Most research in the area of 
construction application delves into the quality assurance 
by not explicitly detailing the 3D data gathering 
procedure. 

 For the visual inspection sensor integration to 
kinematic systems, two primary configurations are 
commonly utilized; eye-in-hand and eye-to-hand [5]. 
Each configuration offers distinct advantages. Eye-in-
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hand approach, which is utilized for the scope of this 
paper, ensures accuracy at tool center point (TCP) scale 
but offers limited environment sight, while eye-to-hand 
provides panoramic visibility albeit with slightly reduced 
precision at manipulator TCP.[5] 

For the application of high-precision industrial 
inspections, line scanning sensors (1D, linear sensors, 
laser profilers) are widely implemented, where a single 
line of measurement points is collected at each exposure 
[6]. In order to integrate such measurement systems with 
other type of tools and systems, they need to be calibrated 
context-aware. A dynamic measurement system, where 
the laser profiler is integrated with a 6-DoF robotic arm, 
as opposed to the movement of a linear conveyor belt in 
the factory setting, requires precise identification of real-
world coordinates for line scan image data, referred to as 
geo-referencing or mapping [7].  

Achieving this requires accurate calibration of a 
sensor's intrinsic characteristics and extrinsic parameters. 
This is crucial considering that slight inaccuracies in 
calibration results in major deviations of scanned 
measurements based on changes due to orientation and 
distance to the object that is scanned. A method for 
compensation of measurement inaccuracies is the 
registration of line measurements against the already 
measured object. Within a distributed approach, the 
Internet-of-Things (IoT) aspect of implementation, the 
synchronization between robotic sensor positioning and 
the measurement is another important aspect that needs 
to be considered.  

  While using an IoT enabled or rather a distributed 
networked approach through an Industry 4.0 
communication layer creates this additional challenge of 
data synchronization it also has a number of advantages 
such as: 

▪ Easy retrofit for existing systems 
▪ Easy expansion and replacement of sensor systems 
▪ Capabilities for multi-sensor data fusion and 

mapping of data from multiple sources 
▪ Easy upgrade of data processing systems 
▪ Independence of data acquisition, processing, and 

visualization 
▪ Data exchange for sensor-based process adaptation 

This paper investigates the streamlined calibration of 
a 1D laser profiler and its integration with robot 
kinematics via IoT for precise 3D scanning. Our 
approach includes a modular system with IoT 
communication for synchronization, covering the entire 
process from calibration over registration up to mesh 
reconstruction. We further propose an edge detection 
method for adaptive weld path generation based on 
existing geometry. 

2 Methodology and Evaluation 
This section delves into the steps of implementing 

and setting up the required environment, starting from 
physical assets, tool calibration, IoT adaptation and 
finalizes at software development documentation a well 
as the results. 

The test environment consists of KUKA KR30-3 F 6-
axis robot arm equipped with Keyence LJ-X8400 Line 
Profiler measurement head, that is connected to the 
Keyence Raw Data Output Controller LJ-X8000A with 
dedicated cabling. The controller connection to a data 
processing computer is achieved through an Ethernet port. 
This project software is developed in Python 
environment, with the implementation of mainly 
Keyence LJ-X8000A Communication Library, Open3D, 
NumPy, Paho-mqtt, and SciPy-Spatial libraries amongst 
other peripheral packages. 

The industry 4.0-compliant communication layer and 
IoT infrastructure is established through the use of Cloud 
Remote Control (CRC), developed by Robots in 
Architecture Research [8]. The CRC framework enables 
distributed registration, state, and command 
communication of various assets and facilitates easy 
integration of automation components to simplify the 
addition of new devices and replacement of devices in 
automated processes.  

This setup ensures seamless data integration, 
enabling robots, devices, and sensors as network-
connected things to communicate status and control 
commands to a centralized or multiple distributed control 
units in a local intranet. It also enables secure, gateway-
controlled remote access to production environments and 
cloud computing. These potential features of remote 
access have not been realized in the approach described, 
and the benefits of Intranet-of-Things communication are 
more apparent. 

The reference geometry to be scanned is a to-be-weld 
steel node connection, consisting of a perpendicular SHS 
40x40x3 mm square tube and RO 42.5x2.5 mm round 
tube at 45º angle, on the upper surface of a HEA 200 steel 
beam, point weld for initial alignment as depicted in 
Figure 1. 

 
Figure 1. Used reference object; steel node 
section. 
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2.1 Setup Environment 
In the following section, the main components of the 

setup and the deployment process are described.  

2.1.1 Tool Calibration  

A Keyence LJ-X8400 Line Profiler measurement 
head is attached to the robot flange as shown in Figure 2. 
The device has a reference distance of 380 mm with 
measurement range of ±60mm in Z-axis and 210mm of 
line length at the reference distance1. Since the laser 
pointer is enclosed in the profiler itself, the reference 
distance and the middle of the line is chosen to be 
calibrated as TCP (where X is 105mm and Z 0mm). 
Unlike the traditional 4-point calibration method, where 
a sharp, physical calibration reference point is utilized in 
the robot work environment, the laser calibration is done 
by referring to a reflective marker and luminance values 
at given spot. The reason behind this is the occlusion 
between reflective mirror and laser projection at 
detecting sharp objects, as previewed in Figure 3. 
1 keyence.com/products/measure/laser-2d/lj-x8000 last visited 21/11/2023. 

 
Figure 2. Keyence LJ-X8400 Line Profiler Head 
attachment to the flange of KUKA KR30-3 F 
Robot arm 
 

 
Figure 3. Preview of measurement occlusion and 
calibration 

The proposed methodology of referring to a single 
reflective point is done by masking a reflective marker to 
a single tiny point and moving the laser middle to the 
reflective marker (see Figure 4 and Figure 5). 

 
Figure 4. Scanning of reflective marker and 
masking to single point of reference 

The achieved calibration point exhibits a 
measurement deviation of 0.19mm. The ABC 2-Point 
calibration procedure is conducted relative to a pre-
calibrated robot base frame, a planar 300mm x 300mm 
steel plate of thickness 4mm.  

 
Figure 5. Determination of reflective marker 
center 

The process involves aligning the laser consecutively 
with the planar surface edge for yaw axis (KUKA A), 
horizontal alignment in the scanned profile diagram over 
for pitch axis (KUKA C), and moving the robot along a 
trajectory, perpendicular to the laser projection, ensuring 
constant average height along the trajectory line for roll 
axis (KUKA B), as illustrated in Figure 6. 

 
Figure 6. Calibration of orientation in Euler Angle 
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2.1.2 CRC Implementation of Robot 

The objective of Cloud Remote Control (CRC) within 
the context of Industry 4.0 communication is to facilitate 
modular plug & produce work cells for robotic and other 
automated production systems. Therefore, the IoT part of 
CRC establishes a semantic networking interface for 
communication. This necessitates both seamless 
expandability and accessible adaptability of the 
automation equipment, such as KUKA industrial robot 
arm and various actuators as well as sensors. Central to 
this communication framework is the utilization of the 
JSON data format with standardized device-specific 
topics, enabling the seamless integration of novel devices 
into the system [8]. 

CRC establishes an Industry 4.0 communication or 
rather information layer based on the publish-subscribe 
model through MQTT (which can however be transferred 
to any publish subscribe communication protocols such 
as OPC-UA). This communication layer enables users to 
direct commands to specific devices by unique identifier 
while allowing devices to broadcast their statuses, 
facilitating coordination among various assets. The 
system integrates KUKA industrial robot arms, 
controlled via JSON strings sent to the 
"devicename/cmd" channel, managing diverse robot arm 
motions and commands. Moreover, device-specific states, 
such as selected tools, TCP velocity, and robot TCP 
frames, are consistently published to the 
"devicename/state" topic at approximately 50 Hz, 
ensuring effective synchronization and monitoring of 
device statuses within the defined environment. 

2.1.3 CRC Integration of the Line Scanner 

The software solution is designed to be integrated 
within the Cloud Remote Control (CRC) framework as 
an additional IoT device. As stated in the previous 
chapter, this framework enables seamless orchestration 
among individual assets within a workspace, facilitated 
by a control unit. Irrespective of the configuration or 
spatial arrangement of physical assets, the framework 
ensures wireless coordination among them. 

For sensor systems the CRC differentiates between 
two basic types streaming and triggered sensors. As 
streaming sensors continuously stream their 
measurement data directly within their state message, 
these are only used for simple sensors that do not create 
too much load on the network. Triggered sensors can be 
identified by a command support, these sensors will only 
send out new data, if the appropriate command is sent. 
Figure 7 presents implemented commands that are 
supported by the processor for the 1D-Line sensor are as 
follows: 
▪ "CapturePointCloud": Initiates the acquisition of a 

series of line scans to construct a 3D point cloud scan 
while the robot is in motion.  

▪ "ExportPointCloud": Saves the recorded Point Cloud 
data locally in .txt and .pcd formats and generates 
a .stl mesh: 

▪ "ClearPointCloud": Erases all recorded instances of 
point clouds. 

▪ "CaptureSingleLine": Captures the current linear scan 
and stores the resultant point cloud data locally. 

▪ "DetectEdge": Executes the edge detection script 
within the program, offering a preview of the results 
in an Open3D window. 

 
Figure 7. Line-Scanner Processor software 
architecture through MQTT 

2.1.4 Device Synchronization 

The need to synchronize laser profiler linear scan data 
with the robot TCP to acquire accurate 3D point cloud 
scans of specified objects is accomplished by 
transforming the sensorial data to the robot tool position 
in close to real time. To facilitate this process, a dedicated 
class called 'Transformer' has been developed. 

The CRC robot controller integrates the robot as part 
of the network and streams the TCP values of the active 
tool in the KUKA frame data format {"X":0, "Y":0, "Z":0, 
"A":0, "B":0, "C":0} under the topic "robotname/state" 
approximately every 20 milliseconds. The Transformer 
class is initialized with the current TCP. This incoming 
data is then translated into a transformation matrix, thus 
allowing the transformation of the currently received 
instance of point cloud data from the Open3D library to 
seamlessly align with the calibrated robot TCP. 
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To synchronize the data from the different devices, 
the Point-Cloud-Processor adds arrival time stamps to the 
received data. Other forms of time synchronization using 
the NTP or PTP protocols are possible to account for 
network latency, but the results did not show the need to 
implement distributed clock synchronization. The use of 
timestamps at the time of measurement with 
synchronized clocks will be part of future research. 
However, the arrival timestamps are used to compare and 
align the laser profile data with the TCP. 

2.1.5 Scanning and Meshing 

The scanner was positioned approximately at a 
distance of 380mm from the geometrical center of the 
scan object. A total of 6 scanning paths are defined by a 
spherical coordinate system around this center with a 
range of ±40º in φ (KUKA C) and ±20º in θ (KUKA B) 
orientation. The scans were performed with a TCP speed 
of 3mm/sec (see Figure 8) and a linear path length of 
150mm for each individual scan trajectory. The scanning 
trajectory, point cloud registration, and meshing is 
application and geometry dependent, the goal with the 
proposed node connection is to scan the intersections for 
the generation of welding paths. 

First, the recorded mesh is down-sampled by a small 
value for the local deviation of each scan point (e.g., 0.5 
mm) to account for scanner accuracy. Next, the point 
normals are estimated and aligned using Open3D 
functions to ensure consistent face orientation. 

The mesh construction process uses the Poisson 
surface reconstruction method proposed by Kazhdan in 
2006 [9] as implemented in Open3D. After the 
construction phase, the resulting mesh undergoes an 
additional smoothing process without compromising the 
authenticity of its shape [10]. Together, these filters 
contribute to the refinement of the mesh, ensuring a 
smoother appearance while preserving the true structure 
derived from the original point cloud data. 

 
Figure 8. Constructed mesh preview with 6 scans, 
total  computation time 8 minutes at robot speed 
of 3mm/sec. 

2.2 Point Cloud Registration 
The TCP shows an observable calibration error of 

0.19 mm as further described 2.1.1 Tool Calibration. 
Despite its seemingly small value, this variance has 
significant implications for the alignment of the acquired 
data relative to the robot's base coordinates. 

Figure 9 and  Figure 10 show four different scans 
from two perspectives, each taken from previously 
mentioned 6 linear scan paths (2.1.5 Scanning and 
Meshing), to illustrate the noticeable differences in the 
results. 

 
Figure 9. Comparison of four scans, from varying 
scanning angles, represented in red, orange, green 
and blue colored point clouds. 

 
Figure 10. Close up comparison of four scans, 
from varying scanning angles, represented in red, 
orange, green and blue colored point clouds, 
visible unmatched points marked in black squares. 

These visual representations indicate that all four 
scans are approximately aligned with the robot base 
frame in the context of world coordinates. While 
acknowledging the potential for improving global 
alignment through initial reference geometry, this 
discrepancy was ignored for the purposes of this work. 

Upon closer inspection, as presented in Figure 10, 
there are noticeable misalignment of points between the 
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point cloud collections. Such difference of orientation 
induces noise during meshing, consequently amplifying 
inconsistencies between the physical model and its 
digital representation. 

To ensure increased quality results with minimal 
noise, an introduced approach involves employing a local 
point cloud registration method between captures, 
specifically leveraging the Open3D Multiway 
Registration[11]. This implementation integrates voxel 
down-sampling to optimize computation time while 
preserving data intensity. The optimization process is 
iterated twice: first to identify and prune uncertain 
alignments, then to refine the graph alignment. 

Given the nature of linear point cloud scans, this 
implementation favors point-to-plane transformation 
estimation over the point-to-point Iterative Closest Point 
(ICP) registration method.  

Figure 11 below shows a comparison between the 
meshed representations of six individual scans (shown in 
blue) and their counterparts after registration (shown in 
green). The contrast is present, where the surface quality 
and differs significantly, between the noisy unregistered 
point cloud and the registered point cloud collection with 
increased cleanliness. 

 
Figure 11. Mesh reconstruction without 
registration (top left) and with registration (top 
right) and at the bottom, corresponding deviation 
to the digital geometries presented in a gradient 
from green (less surface deviation) to red (more 
surface deviation) 

The resulting registered 3D point cloud captures, 
and mesh construction provide a complex digital 
representation of the physical object and enable a wide 
range of data interpretation algorithms to be applied. In 
recent years, various researches have focused on the 

interpretation of point cloud data for gap detection[12], 
line segment extraction[13] and object detection[14] . 
Subsequent chapters will go through a simplified 
approach of edge detection algorithm for potential 
welding path generation as mentioned before. 

2.2.1 Development of Edge Detection Approach  

Integration of an edge detection process as described 
in [15][16]enables the extraction of vital information 
from the recorded point cloud data. As for the proof of 
concept, an edge detection approach is implemented 
within this project. The applied methodology within this 
paper leverages the eigenvalues of individual points, 
considering a specified number of neighboring points, to 
identify directional changes present at the edges within 
the collection [17]. 

A number of neighbor correspondences assigned as 
property for each point within the cloud and eigenvalues 
were calculated in each neighborhood, to be filtered by 
the distinctive eigenvalue changes, and masked with 
color red as to be seen in Figure 12. 

 
Figure 12. Potential candidates for detected edges 
depicted in red colored points. 

Subsequently, potential edges are clustered using the 
Density-Based Scan Algorithm [18] implemented as part 
of Open3D, facilitates the grouping of the best-suited 
candidates in close proximity. The parameter of 
maximum correspondence distance to neighbors within a 
potential cluster is set to factor of 2.1 of the down-
sampling value. Colored clustering is presented in Figure 
13. 

 
Figure 13. Density-based clustering of potential 
edges, represented in varying colors. 
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3 Outlook and Future Work 
This proposed system presents an ideal solution for 

conducting detailed scans within smaller-scale 
assemblies. It can be seamlessly integrated with wide-
range, 3D point cloud cameras mounted on robots to 
facilitate initial determination -offering global awareness 
to the robot- of the precise locations where detailed scans 
are to take place. An exemplar 3D detection workflow 
can be determined as Figure 14.  

 
Figure 14. Potential 3D scanning workflow based 
on the relation between scan precision and range. 

Beyond its visual quality assurance capabilities, this 
system opens doors for further advancements through the 
introduction of various algorithms tailored for detailed 
scanning. Potential optimizations of the system as well as 
a more comparative analysis of the chosen algorithms for 
each step will be part of future research. Beyond this 
some proposed developments could include: 

1. Layer Inspection and Height Comparison: 
Specifically designed for wire-arc additive 
manufacturing applications, this algorithm can 
focus on analyzing sub-millimeter differences 
present in each layer, ensuring precise monitoring 
and quality control. 

2. Crack Detection and Repair: A potential 
algorithm can address critical applications such as 
detecting cracks on steel bridge trusses and 
subsequent repair through welding, enhancing 
structural integrity and safety. 

3. Deflection Analysis: Targeting welded workpieces, 
this application can conduct comprehensive 
deflection analysis. It identifies and analyzes 
deformations in assembly parts caused by high heat 
output, ensuring the structural integrity of the 
affected components. 

4. Individualized Scanning path planning: Due to 
the directional and scalar limitations of the linear 
scanner, a path planning approach based on 
geometrical properties of the scanned objects, can 
be implemented to overcome the occluded parts at 
each individual scan. 

4 Conclusion 
Research and implementation of visual systems in 

robotics area all over the industries have been 
predominantly focused on global localization of mobile 
robotics. Such advancements benefit the construction 
industry as well, however, there's a noticeable absence of 
specific inspection methods catering to detailing, joining, 
and assembly in smaller scale. Additionally, the dynamic 
nature of construction environments necessitates 
adaptable process setups. 

This paper presents a promising approach to enhance 
the capacity of a high-precision, single-dimensional laser 
profiler sensor by integrating it with a 6-DoF motion 
system, a robotic arm. The incorporation of IoT enables 
both systems to function independently and facilitates 
potential reconfiguration of the motion system, allowing 
for the potential of different types of kinematics-capable 
robots integration. 

The results of the paper proved that the consistency 
in scale and detail as well as the location, relative to the 
robot base, of the scanned object with the physical world 
conditions. Additionally, the IoT infrastructure showed 
that the integration of various systems can be 
standardized, through a simplified M2M framework. 
While this proposed application lacks the real-time 
capability of model reconstruction, due to the high-loads 
of point cloud computation and the software only being 
deployed on prototyping level, the potential of 
implementing the controller software on cloud level and 
communication layer through potential 5G infrastructure 
remains to be implemented in the future development of 
this ongoing research project. 

The precise comparison of digital to physical world 
can lead to new paradigms of individualized production 
in steel prefabrication. Enhanced automated inspection 
and quality control in steel construction assembly can 
streamline the regulation and safety assurance that is 
widely done manually in construction industry. This 
paper contributes to the foundational aspects of 
automating the digitalization process of real-world 
conditions, presenting a pathway for potential 
advancements in steel prefabrication within the 
construction sector in near future. 
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Abstract –  

The quality inspection of adhesive of Exterior 
Insulation Finishing System (EIFS) is important 
because poor adhesive can lead to detachment of the 
insulation. Computer vision-based inspection stands 
out as a notable alternative. Recently, imaged-based 
deep learning model are widely used for the 
automated monitoring and inspection in construction 
field. To train the model, the relevant large datasets 
are essential. However, collecting datasets in the 
construction site is hazardous because of inherent risk 
of accidents. Also, synthetic datasets method which is 
one of alternatives to solve this problem are focused 
on fixed and regular shaped objects. To address these 
challenges, this study analyses the validity of synthetic 
datasets in terms of segmentation of adhesive in EIFS, 
which has irregular shape. For instance segmentation, 
the datasets were divided into two groups: (1) real 
datasets, composed of 100 actual photos, (2) mixed 
datasets, which combined 50 randomly sampled 
images from both synthetic datasets and real datasets. 
The mAP@50 of instance segmentation for real 
datasets and mixed datasets is 87% and 99%, 
respectively. This study prove that synthetic datasets 
can effectively train segmentation models, enabling 
the recognition of irregularly shaped objects and 
enhancing overall performance. 
 
Keywords – Synthetic datasets, Image-based deep 
learning, Instance segmentation, Exterior insulation 
finishing system 

1 Introduction 
Exterior Insulation and Finishing System (EIFS) is a 

method of covering the entire exterior of building. There 
are primarily two methods for applying EIFS: the dry and 
wet processes. The wet process, the most common 
method, involves attaching insulating material to the 
structure, which is coated with an adhesive such as 
mortar [1,2]. Poor adhesive performance can lead to 

detachment of the insulating material. However, 
inspecting the application quality with limited 
supervisory personnel at construction sites is labor-
intensive and virtually impractical in terms of time and 
cost. To address this challenge, automating the inspection 
of adhesive using deep learning-based computer vision 
can significantly enhance productivity by minimizing 
manpower and costs [2,3]. 

The relevant large datasets are essential for the deep 
learning. Existing open-source image datasets such as 
Common Objects in Context (COCO) [4] and the 
Stanford 2D-3D-Semantics Dataset [5] are available but, 
there are no datasets related to construction site, 
particularly, EIFS. Additionally, acquiring image 
datasets in construction site is difficult due to the inherent 
risk of accidents at construction sites. Moreover, the 
images obtained are often disordered and cluttered [6].  
As an alternative, using web crawling techniques to 
acquire images allows the rapid collection of a large 
number of photos without visiting construction sites. 
However, a significant issue arises with the time-
consuming process of labeling these images to transform 
them into a dataset suitable for training in computer 
vision [6,7].  

Recently, a novel approach has been proposed to 
overcome the challenges previously mentioned: synthetic 
image modeling, which involves creating datasets for 
specific fields. By synthesizing in artificial modeled 
virtual environment, desired scenes can be created. The 
synthesized scenes are already data-encoded, thus 
reducing efforts for labeling and annotation [3,7,8]. 
However, existing studies have focused on fixed and 
regular shaped objects, thus applying instance 
segmentation with synthetic datasets of irregular shaped 
object is not explored well. 

The purpose of this study is to conduct foundational 
research on the effectiveness of training an image 
segmentation model for segmenting dab and insulation in 
EIFS utilizing synthetic data, comparing the performance 
between real datasets and mixed datasets combining 
synthetic datasets. 
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2 Related Work 

2.1 Computer vision in construction.

With the advancement of datasets and the 
corresponding development of computer vision, 
applications in the construction industry have also 
evolved. AI, along with more sophisticated object 
detection and segmentation techniques, not only reduce 
tedious, human-error-prone tasks but also lead to 
improved research in terms of labor intensity and time 
consumption.

Computer vision facilitates rapid and accurate 
material quantity estimation, thereby aids progress 
monitoring. Li et al. (2021) [9] proposed a real-time, 
cost-effective rebar counting scheme using the YOLOv3 
detector. Wang et al. (2021) [10] utilized surveillance 
video to track information of precast walls such as 
numbers and position, transmitting the data in the 
Building Information Model (BIM) to achieve automatic 
progress using timestamp methods.

In the early stages of computer vision application in 
construction safety management, it primarily focused on 
determining the use of personal protective equipment
such as workers' hard hats. Fang et al. (2018) [11] 
conducted research on non-hardhat-use detection using 
100,000 photos from far-field surveillance at 
construction sites. Additionally, research on classifying 
cracked or damaged buildings has been actively pursued. 
Silva et al. (2018) [12] proposed a model that uses deep 
learning image classification to differentiate between 
concrete photos with and without cracks. Gao et al. (2018) 
[13] conducted structural damage recognition through 
spalling condition checks and evaluation of damage 
levels.

In the construction field of quality inspection, Xia et 
al. (2024) [14] conducted research on First Floor 
Elevation estimation using the YOLOv5 model and 
mobile LiDAR point clouds. Chen et al. (2021) [15] 
investigated quality of building faç ade using photos 
obtained from unmanned aerial vehicles.

2.2 Synthetic datasets related to construction
industry 

While computer vision has evolved alongside the 
advancement of datasets, there has been a shortage of 
datasets related to the construction field [6,7]. Acquiring 
real image data poses risks due to the nature of 
construction sites, also labeling acquired images 
manually requires significant time and labor. 

To address this challenge, lots of research has been 
conducted to train computer vision models using 
synthetic datasets created using various methods related 
to construction sites. Soltani et al. (2016) [3] proposed a 

method to separately synthesize excavators and 
backgrounds. They found that, compared to traditional 
annotation methods, auto-annotation reduced the 
required time. Neuhausen et al. (2020) [8] aimed to create 
synthetic datasets using Blender to track worker 
productivity and safety management. Hong et al. (2021) 
[16] utilized the BIM model to generate synthetic 
datasets for infrastructure scenes. While these studies 
provided direction and validated the utility of synthetic 
datasets for computer vision, they focused on large 
objects. Lee et al. (2023) [17] conducted research of
safety monitoring through synthetic datasets focusing on
small-sized personal protective equipment detection
using the Unity game engine. 

Particularly, Wang et al. (2023) [18] studied synthetic 
datasets for rebar instance segmentation. They compared 
the performance using a Mask R-CNN model with 
various combinations of real datasets and synthetic 
dataset, concluding that experimental groups composed 
with both real and synthetic datasets appropriately are
more robust for instance segmentation than using only 
real datasets.

Although these studies sufficiently validated the 
utility of synthetic datasets in the construction industry 
for computer vision, they targeted fixed and regular 
shapes (e.g., excavators, rebar, etc.). Therefore, in this 
study, we aim to create synthetic datasets for EIFS 
instance segmentation, targeting irregularly shaped 
objects that may vary in appearance over time, and 
validate their utility accordingly.

3 Methodology
This study analyses the effectiveness of training an 

image segmentation model using mixed datasets
combined with synthetic data, compared to real datasets. 
Instance segmentation model was applied to segment dab
and insulation in an image, thereby the classes were set 
as insulation and dab. Figure 1 illustrates the shape of 
EIFS.

Figure 1. Ribbon and dab method
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As illustrated in Figure 2, the framework can be divided 
into two main phases. First, during the dataset 
manufacturing stage, photographs are collected from 
both real EIFS construction sites and virtual construction 
sites where EIFS is ongoing. Then, mixed datasets are 
made with synthetic datasets and randomly sampled real 
datasets. Both real datasets and mixed datasets are 
augmented before instance segmentation stage to prevent 
overfitting. Second, in the instance segmentation stage, 
the YOLOv8 model is used to train the datasets. The 
trained weights are then utilized to compare area 
segmentation in actual EIFS construction sites.

3.1 Data Manufacturing 
To test the efficacy of synthetic datasets, the 

experimental datasets were divided into two control 
groups: (1) 100 numbers of realistic images from the 
construction site, and (2) a mixed dataset of 50 realistic 
and 50 synthetic images. For the real datasets, we visited 
three different EIFS construction sites, to acquire images 
for train model and testing. Labeling and annotation was 
carried out using Roboflow [19], and augmentation was 
performed to prevent overfitting. 

Figure 3. Images and annotation using Roboflow

Synthetic dataset environment was created using 
Unreal Engine 4, and the dataset synthesis model was 
developed utilizing the algorithm of NVIDIA's Deep 
Learning Dataset Synthesizer (NDDS) [20,21].

As illustrated in left side of Figure 4 virtual 
construction site was created using Unreal Engine 4. For 
the variation of datasets such as shade adding, point of 
view, worker’s position were conducted. The right side 
of Figure 4 shows the annotation of the image. Every 
single color of image represents the class which is 
divided respectively and automatically connected the 
components of Unreal Engine 4.

Figure 4. Virtual construction site of Unreal
Engine 4(left) annotation of the image(right)

3.2 Instance Segmentation
The You Only Look Once (YOLO) model is one of 

the most renowned models for one-step object detection 
capabilities, offering rapid detection speed and high 
accuracy. The latest version of the YOLO series is 
YOLOv8 [22], which replaces the C3-module with C2f-
module for robust gradient flow, adopts a discrete head 
structure, these modifications greatly improve the 
detection accuracy.

YOLOv8-seg is an instance segmentation model 

Figure 2. Framework of Study
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derived from YOLOv8. YOLOv8-seg consists of five 
models: 8n-seg, 8s-seg, 8m-seg, l-seg, and x-seg. Starting 
with the lightest model, 8n-seg, the amount of 
computation increases gradually towards 8x-seg. 
Consequently, mAP and processing speed also increase.
The selected model was YOLOv8x-seg in this study, 
which is the highest accuracy model in the aspect of mAP.

4 Experimental Study

4.1 Evaluation Metrics
In this section, we aim to discuss the results of tests 

conducted using YOLOv8 to evaluate the validity of 
instance segmentation in both real datasets and mixed 
datasets. The data were split into training, validation, and 
test datasets at a ratio of 80:10:10. The parameters for the 
training model were set as follows: 200 epochs, a 
learning rate of 0.01, and a batch size of 16.

The performance metric for the segmentation 
algorithm was mean Average Precision at 50 (map@50). 
Average Precision (AP) is the area under the precision-
recall curve for a specific class, and the mAP is the 
average of these AP values across all classes. The 
map@50 specifically refers to the mAP calculated with 
an Intersection over Union (IoU) threshold set at 0.5, 
meaning that predictions must overlap at least 50% with 
the ground truth to be considered correct. The equation 
of AP, mAP are demonstrated below.

AP = ݈݅݉
՜∞

(ܴ െ ܴିଵ) ܲ



ୀଵ

= න (ݎ)
ଵ


Ԝ݀r (1)

mAP =
1
ܰ
ܣ ܲ

ே

ୀଵ

(2)

The Intersection over Union (IoU) is calculated as the 
ratio of the area of overlap between the Ground Truth and 
the Detection to the sum of their areas (Equation(3)) 

IoU =
Area of Overlap
Area of Union

precision =
ܶܲ

ܶܲ + ܲܨ
recall =

ܶܲ
ܶܲ + ܰܨ

(3)

(4) 

(5)

True positive (TP) refers to the count of instances 
correctly predicted as true by the model, false positive 
(FP) denotes instances wrongly predicted as true while 
they are false, false negative (FN) represents instances 
incorrectly predicted as false that are actually true. 
Precision (Equation(4)) is the proportion of correct 
predictions among the results predicted by the model, 
while Recall (Equation(5)) is the proportion of actual true 
instances that the model correctly predicts as true. Both 

Precision and Recall are adjusted based on the confidence 
level setting used as the model's decision criterion. 
Raising the decision criterion increases Precision, 
whereas lowering it enhances Recall.

4.2 Test of Real Datasets
The result of Real datasets at the best confidence level, 

the values of precision, recall and map@50 are 0.89, 0.96, 
and 0.87 respectively. The highest performance at the 
198th epoch are depicted in the Confusion Matrix shown 
in the following Figure 5. According to the confluence 
matrix, the model trained by real datasets predicted the 
dab well at 1.0, while the prediction of insulation was 
relatively low at 0.71.

Figure 5. Confusion matrix of real datasets

4.3 Test of Mixed Datasets
The results of the 100 numbers of mixed datasets

which is composed with 50 numbers of synthetic datasets
and 50 randomly sampled real datasets. The Precision, 
Recall, and map@50 at the best confidence level are 0.99, 
0.94, and 0.95, respectively. The confusion matrix in the 
subsequent Figure 6 illustrates the performance outcomes 
for the mixed datasets dataset using the model that 
achieved its peak performance at the 175th epoch.
According to the confusion matrix, it can be seen that 
model trained by synthetic datasets predicted well as 1.0 
for both dab and insulation.

Figure 6. Confusion matrix of mixed datasets
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4.4 Comparative Analysis
The difference in map@50 between real datasets and 

mixed datasets was more marginal than expected. 
However, the trends observed in YOLOv8’s validation, 
as shown in Figure 7, indicated distinct learning patterns 
for real datasets and mixed datasets. While the number of 
datasets may not be sufficient, obtaining real datasets
involved visiting construction sites to capture 
photographs, as mentioned in the introduction, which 
presents hazards and challenges in image labeling. In 
contrast, with synthetic datasets, just a few clicks can 
modify the environment, allowing for the manufacture of 
datasets with varied characteristics.  

Figure 7. Prediction of real EIFS image with
model trained by real datasets (left) and mixed 

datasets (right) 

5 Conclusions 
This study analyzed the effectiveness of training a 

deep learning model for segmenting irregular shaped dab 
and insulation in EIFS utilizing synthetic datasets, 
compared to real datasets. In this study, images of EIFS 
in construction sites were acquired from both real world
and virtual environments to create datasets. To evaluate
the segmentation performance of EIFS, the subjects were 
categorized into two classes, dab and insulation, and 
trained using the YOLOv8x-seg model. The map@50
results used as performance indicators for real datasets
and mixed datasets were 0.87 and 0.95, respectively.

Utilizing synthetic datasets can reduce the risk of 
visiting construction sites with safety accidents. Also, 
generating synthetic datasets enable the creation of 
various compositions, environments, and scenarios with 
little effort. Furthermore, research suggested
segmentation of irregular shaped object and potential 
model robustness as well. Thus, proposed method can be 
utilized in other applications such as concrete crack.

For further research, the effectiveness of applying 
synthetic datasets in the instance segmentation on various 
objects will be explored with a large size of datasets. 
Additionally, the comprehensive automatic supervision 
model will be studied as well as segmentation of ribbons

with dab and insulation, to calculate the area of EIFS 
segments in pixels. 
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Abstract – Processes on construction sites are 
characterized by a high proportion of manual work, 
rapid variability and harsh working conditions. As a 
result, the level of digitalization and automation as 
well as productivity is low. In the near future, digital 
assistance and documentation systems will be used to 
counteract these shortcomings. To achieve this, 
machines must be able to learn more about their work 
processes and pass this information on to information 
systems. Innovative sensor systems for recording 
machine performance are in demand. Digital (BIM) 
models of the objects to be built offer the possibility of 
providing target quality data for machine operation 
and storing the achieved quality data after 
construction.

In soil compaction using vibratory plates, soil 
stiffness is still recorded manually today, although 
automated recording would be conceivable. Relevant 
input and output variables for the compaction process 
are to be collected for the soil compaction application. 
On this basis, a sensor system for determining soil 
stiffness during compaction is designed and built as a 
prototype. This will result in a multivariable system 
with influencing, measured and target variables 
(virtual sensor), which can be used for the structured 
development of statistically meaningful test series to 
determine the correlation between measured values 
and the quality of the compaction process (soil 
stiffness). Robust algorithms for recording and 
transferring the degree of soil compaction during 
compaction were derived from the tests on the chair's 
own test site and demonstrate that measuring the 
absolute soil stiffness during compaction with 
vibratory plates is possible. This conclusion provides 
the basis for increased quality, automation and digital 
continuity of future earthworks.

Keywords – 
Virtual Sensor; Compaction; Soil Stiffness;

Automation

1 Introduction
Compaction is a quality-defining subprocess of 

earthworks. As other construction processes today, it 
involves multiple manual workflows and is rarely 
digitized. An excavator prepares the earth surface 
specified in building plans and the specifications that has 
to be compacted according to norms. Subsequently, the 
compactor has to be placed in the area that should be 
compacted. The area is compacted and after completion 
the resulting ground stiffness is measured. Depending on 
the measurements the compaction is continued or the 
measurement receipts are documented in the construction 
diary and the compactor is removed from the area. The 
following construction processes rely on the documented 
data e. g. in building on the created surface. Figure 1 
visualizes the compaction process of today.

Figure 1: Current compaction process in 
earthwork construction

On top of the high degree of manual work in this 
process and the incontinuity of the information flow 
along the process, there is potential to fusion the process 
steps “receive compaction order”, “compact surface”, 
“measure ground stiffness”, “accept surface”, and 
“document ground stiffness”, by developing a 
compaction quality control system. This system should 
receive the target ground stiffnesses from a BIM-model, 
measure the ground stiffness during compaction, and 
document the as-built ground stiffnesses in the BIM-
model. Therefore, the research question of this paper is 
“How can a virtual construction equipment sensor 
reliably determine the soil stiffness during compaction in 
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earthwork construction?”. 
In order to answer the research question, this paper 

will present the State of Science and Technology (2) on 
the compaction process, compaction progress 
determination and technical functionality of equipment-
integrated methods. The state of the art is subsequently 
extended through the description of the development of a 
virtual sensor (3). The developed virtual sensor is 
validated in compaction test series (4). Finally, the paper 
closes with a discussion, conclusion and outlook. 

2 State of Science and Technology 

2.1 Compaction Process 
According to Richter and Heindel [1] soil compaction 

is a process, reducing the material’s porosity while 
simultaneously enhancing its load capacity. Thereby, 
many different parameters influence the compaction 
process. The most significant being the soil type and 
grain size distribution, as well as the water content inside 
the material and the compaction equipment used [2–4]. 

The compaction effect produced by vibratory plates 
is based on the short repeal of friction between individual 
grain particles because of the vibrations. This leads to a 
rearrangement of the material bulk into a tighter packed 
substrate [1, 4]. To generate the vibrations on such 
equipment, one or more excitation shafts with an 
eccentric mass are coupled to an engine and transfer them 
into the ground via the base plate. If two or more shafts 
are used, changing their respective phase angle to one 
another results in a change of working direction, because 
of a different resulting force vector. Therefore the worker 
can easily manipulate the driving direction of the 
compactor [2, 5, 6]. 

2.2 Compaction Progress Determination 
Measuring the achieved soil stiffness after the 

compaction with vibratory plates is mostly done by hand 
after the job is completed. Therefore, if an insufficient 
ground stiffness value is detected, the affected area has 
to be reworked. The used ground stiffness measuring 
methods often require special equipment and trained 
workers to ensure an accurate result. Among the most 
used control methods are the Proctor-test according to 
DIN 18127 [7], the static plate load test (DIN 18134) [8], 
the dynamic plate load test with the light weight 
deflectometer [9] as well as various different field tests 
based on replacement procedures and cut out soil samples 
in DIN 18125-2 [10]. Furthermore, radioactive radiation 
deflection methods [2, 3] and the measurement of seismic 
waves according to [2] and [4] can be considered a valid 
option to determining the compaction state. The absolute 
compaction value of the underlying surface can be 

evaluated using such methods. 
The exception to the rule is made by an effort done by 

the different manufacturers of vibratory plates to 
incorporate soil stiffness measurement systems on their 
equipment [11–15]. These systems are derived from 
well-established continuous compaction control systems 
used on roller compactors [1, 16, 17].  

However, due to the nondeterministic vibration 
behaviour of compaction plates [11] and the cyclic loss 
of ground contact, the methods on vibratory plates lack 
the precision and reliability of their roller compactor 
counterparts. Furthermore, in contrast to the previously 
described conventional systems, with machine-based 
approaches it is only possible to detect the soil stiffness 
increase from one pass to another. The measured 
compaction states are therefore called relative 
compaction values. 

Because these systems provide the base of research in 
this paper, the next part of the state of technology is 
dedicated to the basic functionality of soil stiffness 
measurement systems on vibratory plates. 

2.3 Technical Functionality of Equipment-
integrated Methods 

The patents described in [11–14] are all based on the 
collection and analyzation of vibrations on various 
different parts of the equipment. For example, the relative 
movement of the upper mass to the lower mass. The 
measured accelerations are then further processed by 
different filters and mathematical methods to ensure a 
stable output value. However, the detailed execution of 
the system complexity and sensor architecture varies 
vastly between the different manufacturers. The Bomag 
system [13] is able to predict the relative compaction 
increase quite simply by calculating the quotient of two 
characteristic parts of the observed vibration. On the 
other hand, looking at the approach from Wacker Neuson 
[14] with their Compatec system, a compaction value is 
calculated from solution of the three dimensional 
differential equations of motion. For those, the expected 
contact force vector between the ground plate and the soil 
has to be predicted based on the contact area and the 
rotation of the base plate. Furthermore, the contact area 
relies on an estimation itself.  

These highly complicated calculation algorithm and 
the complex construction circumstances led to an 
impractical result due to too many uncertainties. 
According to further research, the compatec system is not 
used on any currently available vibratory plates from 
Wacker Neuson, but only in a much simpler version. An 
other approach by Weber [12] matches the current 
machine vibrations with the taught in values in an 
internal database. To ensure an accurate relationship 
between the measured and reference values, the exact 
correlation for each construction project has to be 
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determined by a calibration test ahead of the compaction 
work. 

In conclusion, none of the above-described systems 
are able to determine an absolute compaction value 
which can be used to validate the executed work for every 
part of the compacted area.

3 Virtual Sensor Development
This chapter explains the development process of the 
virtual sensor hardware and the corresponding software. 
In addition, the setup of a first test environment, allowing 
for simultaneous testing and development of the sensor, 
including the experimental procedure are discussed. At 
the end, the gathered data is processed and analyzed, to 
derive a compaction value based on the ground stiffness 
from the measured sensor data. 

3.1 Hardware 
To determine a suitable hardware setup for measuring 

parameters correlating with the soil stiffness, a
compaction influence parameter overview was 
established. Afterwards, fitting sensor solutions 
measuring the individual aspects are researched and 
structured in a morphological box (see Figure 2). Other 
variables such as mounting position, additional user input 
and possible correlation partners are added. 

Figure 2: Morphological box

A multicriterial evaluation compares the different 
possibilities regarding their cost, technical feasibility,
and suitability for implementation in series production 
machines. On top, sensors for measuring moisture and 
the grain sizes of the material were adapted from similar 
use cases and bench tested in individual experiments.

In the end, two different sensor setups were derived 
from the morphological box. One uses inertia 
measurement units (imus) to gather vibration information 
of the upper and lower mass simultaneously. The other 
one measures the acoustic emissions of the plate during 
compaction with a highly sensitive microphone. For 
sensor communication and power supply, a 
microcomputer in form of a raspberry pi 4 is utilized. 
This also acts as a communication interface with an 
external computer via a Wi-Fi-hotspot and VNC-server.

The mounting position of all sensors is in the middle 
of the backside of the machine to ensure short wires and 
a minimal influence of the exhaust system on the 
recorded sound data (see Figure 3).

Figure 3: Sensor placement on the vibratory plate

3.2 Software 
The software package contemplating the physical 

sensors is composed of different parts for every 
application. As the imu’s are coupled to the raspberry pi 
via a separate microcontroller based on an esp32-pico 
chipset, the work from Tanaka [18] is adopted to fit the 
needs of this research. In addition, the audio software 
‘audacity’ is installed on the raspberry pi for capturing 
the noise emissions.

For recording the acceleration data transmitted via 
USB from the sensor’s microcontroller, the raspberry pi 
uses the terminal emulator ‘Putty’. This enables the 
storage of the six individual acceleration data in an excel-
file.

3.3 Test Site Setup
Besides the hard- and software setup, at suitable test 

area is required for doing the data collection test runs. 
The test site consists of a temporary compaction field 
made up of mixed-particle sized gravel, located on the 
concrete floored outdoor test area of the chair. The 
compaction area is constrained on one side by large 
concrete blocks and sloped on the other. This ensures an 
easy loosening up of the compacted material with a wheel 
loader. For faster material handling times, the test setups 
are made up alternating both sides of the middle 
separation layer. The material height for the different test 
fields varies from 30 to 50 cm depending on the desired 
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experiment goal.
In addition, ten marks spacing one meter each are 

placed on the concrete blocks to help guide the exact 
measuring position of the conventional compaction 
determination method as a reference. Therefore, a 
dynamic plate load test with the light weight 
deflectometer model ZFG 2000 by ZORN with 300 mm 
base plate diameter and a 10 kg drop weight is used, 
because its widely spread application on real world 
construction sites and its ease of use.

Figure 4 shows a sketch of the utilized test site setup
and the position of the reference marks (MP). 

Figure 4: Test site setup, machine sketches from 
[19] and [20]

For all the test runs in the initial batch of experiments, 
a heavy remotely controlled compaction plate of type 
Wacker Neuson DPU110rLec970 [21] with a maximum 
centrifugal force of 110 kN, an operating weight of 
around 810 kg and a base plate width of 970 mm was 
used. After placing the equipment at the end of the test 
field, back and forth passes are carried out. In between 
each alternation, the achieved ground stiffness values are 
measured at the reference points inside the lane.

3.4 Data Collection 
The experiments took place in cold but mostly dry 

weather. In total, eight different test fields were created 
with a cumulated amount of 30 passes with the vibratory 
plate. Table 1 gives an overview of the individual setups 
for each experiment.

Table 1: Test fields and their setups

Name Number of 
passes

Material 
height

Direction of 
first pass

Field 0 4 50 cm Forwards
Field 1 6 50 cm Backwards
Field 2 5 50 cm Forwards
Field 3 4 50 cm Backwards
Field 4 4 30 cm Forwards
Field 5 2 30 cm Backwards
Field 6 2 30 cm Forwards
Field 7 3 30 cm Backwards

3.5 Evaluation Algorithms 
The first step of analyzing the measured data is 

creating a reference value curve for the dynamic ground 
stiffness from the light weight deflectometer. The 
individual data points can be connected to form a 
continuous line, as it is not expected, that the soil stiffness 
jumps rapidly. Furthermore, outliers due to measurement 
errors have to be considered when evaluating the sensor 
data in comparison to the references.

To get a feel for the gathered sensor data, the 
acceleration values and the audio recording are first 
plotted in their time representation. From those 
depictions it is possible to determine the different work 
modes of the equipment, such as idle, engine run-up and 
compaction operation. The plot also reveals the overflow 
of the imu on the lower mass due to an insufficient
measuring interval of the imus. 

For further analysis, Kuttner and Rohnen [22]
differentiate between methods in the time domain and 
methods in the frequency domain. The Fourier analysis 
is a prominent representative of a frequency domain 
method for analyzing dominant vibration parts and their 
harmonics. For best results, it is recommended to prefilter 
the signal with a lowpass filter whose parameters are set 
with the Nyquist-Shannon-Theorem in mind [22].
According to Werner [23], the resolution of the resulting 
frequency spectrum when looking at a time discrete 
signal can be improved by using zero-padding. 

Other closer looked at methods include different 
envelope techniques, such as described by Kuttner and 
Rohnen [22], but also statistical procedures. In this case 
the focus lies on the distribution of the amplitude density 
depicted as an histogram [24] and counting methods 
based on the rainflow-principle [25]. 

In addition, Takami et. al. [26] as well as Kanokogi 
and Takami’s [27] approach of matching sensor data into 
a given group or to a reference value via neural network 
machine learning were also explored. It is remarked by 
the authors, that due to Wolpert and Macready’s [28] no-
free-lunch-theorem, every machine learning network has 
to be adopted to the specific problem, otherwise the full 
potential cannot be exploited.

Most of the before mention methods applied to the 
measured sensor data, does not lead to any visible 
differences when looking at data from low and high 
ground stiffness. However, by examining the Fourier 
spectrum of the acceleration values, there is a
significance in the vertical vibration of the upper mass in 
the low frequency area. Upon closer inspection, the 
dominant frequency may well be the eigenfrequency of 
the upper mass, when compared to the experiments and 
simulations from Lohr [29]. Furthermore, the frequency 
and amplitude of this deep vibration changes with the soil 
stiffness the plate is driven over and therefore is also 
visible in the audio data. For this main finding in the first 
set of experiments, the further evaluation of the 
correspondence shall be explained in more detail.

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1185



The sensor data is lowpass filtered at first and then 
divided into sections of equal time length. Each section 
is analysed with a fast Fourier transform (fft) algorithm 
[22, 23] and the peaks and frequency of the dominant low 
end are extracted. Due to no direct analytical correlation 
between these peaks and the soil stiffness, a genetic 
algorithm (ga) is set up to optimize the data processing 
and the parameters of an analytic correlation function. 

The ga is an evolutionary algorithm inspired by 
natural selection and survival of the fittest. It was 
developed by Goldberg in the 1980s and is widely used 
for such optimization problems [30]. 

When used on the data of one test field, the achievable 
correlation values are quite decent for the best parameter 
sets. Transferring the same algorithm to a yet unknown 
data set does unfortunately not provide the same 
performance. There were different promising parameter 
sets tested on all the available data, but the resulting 
values did not converge. 

In summary, the first tests failed to meet the 
requirements in terms of a compaction value correlated 
from the sensor data. However, a lot of lessons were 
learnt about the test environment, as well as the sensor 
data and its analyzation methods. For example, the 
methods from Takami et. al [26] as well as their 
predecessors Kanokogi and Takami [27] seem to be a 
promising pre-processing for the measurement data. 
Overall, machine learning algorithms are most promising 
to classify the pre-processed data. 

This knowledge is put to use when enhancing the test 
setup and sensor system for a follow-up experiment. 

4 Verification & Validation 
In this chapter, the changes to the test setup based on the 
gathered experience from the previous research is 
presented. Also, the second round of data collection and 
its analysis is discussed. 

4.1 Improved test setup 
The first major change for the second round of data 

collection is the switch to a smaller vibratory plate for 
higher resolution in the individual compaction passes. 
From now on, a preproduction sample from Wacker 
Neusons new DPU6560 range with a maximum 
centrifugal force of 65 kN, an operating weight of 475 kg 
and a base plate width of 600 mm is utilized. In addition, 
the overflowing imu-sensor on the lower mass is 
upgraded to a much more capable unit.  

As the operating system on the raspberry pi is 
switched to ROS2, it now supports an interface to an 
existing GNSS position measuring system via real-time 
kinematics positioning. Through this add-on it is possible 
to exactly track the machine’s position and correlate it 
with the measured sensor data and the reference values 

from the plate load test.  
On the test site side, the total length of the area is 

enlarged to ensure adequate areas for the start and stop of 
the compaction plate. Therefore, the impact of the startup 
and stop processes on the measured parameters can 
minimized. 

4.2 Data collection 
As the evaluation of the first data set showed, that it 

is fortunate to have a large number of passes on each test 
field, the test procedure is slightly adopted. Instead of 
doing only 2 or 3 passes on a field with 30 cm of material, 
the bulk height is kept constant at 50 cm throughout the 
whole test. In combination with the lower compaction 
power of the smaller plate, more passes per field can be 
executed. Table 2 shows the chosen parameter sets for 
each individual test field. It should be highlighted, that 
the passes on field 4 and field 5 are all carried out in the 
same direction to eliminate one additional variable when 
analysing the data. 

Table 2: Test field setups for the second round of data 
collection 

Name Number of 
passes 

Direction of 
first pass 

Compaction 
strategy 

Field 1 12 Forwards Alternating 
Field 2 11 Forwards Alternating 
Field 3 8 Backwards Alternating 
Field 4 11 Forwards Forwards 
Field 5 7 Backwards Backwards  

4.3 Data evaluation 
For the data analysis from the second set of tests, the 

methods from Takami et. al [26] as well as their 
predecessors Kanokogi and Takami [27] mentioned in 
subsection 3.5 are applied in more detail.  

The goal is to discretise the measured soil stiffness 
values into different classes and matching the 
corresponding sensor data signal intervals from the imus 
with the help of machine learning algorithms. 

Due to a different compaction behaviour depending 
on the working direction of the plate, two separate 
algorithms have to be trained in order to achieve the best 
possible results. For training, the data sets from field 4 
and field 5 are used, as these are obtained while keeping 
a constant driving direction. In order to prepare the data, 
the signals are first filtered and then divided into 10 equal 
length section corresponding to the 10 measuring points 
for the reference values. Afterwards, each section is 
transformed into the frequency spectrum using the fft-
algorithm.  

To classify the data, the dynamic soil stiffness values 
measured with the light weight deflectometer are 
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grouped into four equal sized intervals spanning the 
whole measuring range. These classifications in 
combination with the pre-processed frequency spectra
are then input into the algorithms as training data. 

In an iterative measure, various different algorithm 
parameters are obtained, from which the most promising 
are used for validation of this method on the remaining 
data sets.

4.4 Algorithm validation 
In this chapter, the previously derived parameter set 

for the algorithms are tested on the so far unused data sets 
from fields 1-3.

The results of this generalization are all quite close 
together with the best parameter set for the forward 
working direction having a correct classification rate of a 
little over 80 %. When looking at the backward working 
direction, the performance is with close to 70 % a little 
bit lower. This may be caused by a smaller available data 
set for training in the beginning and therefore not being 
able to find an algorithm configuration with the same 
level of sophistication.

When combining the performance of both algorithms,
76 % of all data generated in the second batch of 
experiments are classified correctly. Figure 5 shows the 
confusion matrix of the combined algorithms for data 
analysis. The diagonal shows all correctly classified data 
samples and below/on the right the performance of each 
row/column is summarized in percent.

Figure 5: Confusion matrix of the combined 
algorithms

Looking at the confusion matrix, the validation of the 
developed algorithms can be seen as a success. The 
falsely classified data is close to the diagonal, which 
shows, that these samples were placed in the 
neighbouring class. This may happen due to the real 
value being close to one of the class borders. From a total 
of 480 data samples only 11 (2,29 %) are not located
close to the diagonal.  

5 Discussion, Conclusion & Outlook
As the algorithm is able to determine the interval of 

more than three quarters of all measurement data sets to 
their actual soil stiffness values, the previously set goal 
was achieved. The algorithm matches the reliability 
asked for in the research question “How can a virtual 
construction equipment sensor reliably determine the soil 
stiffness during compaction in earthwork construction?”. 
The algorithms in combination with the sensor hardware 
(subsection 3.1) forms a virtual sensor, that is able to 
accurately determine the absolute ground stiffness of 
compacted soil in our test study. 

The findings of this publication are limited in the 
amount of tests and data that were used. Exemplarily, 
only one kind of soil was used in the test runs and the 
sensor was mounted on two different vibratory plates. 
Until there are no further experiments with other 
vibratory plates and material, the significance of these 
findings is limited to the scope of the presented test runs. 
However, the findings of our research project indicate 
that measuring ground stiffness during compaction is 
possible with our current virtual sensor, which will be 
optimized in forthcoming studies and iterations.  

The results of our research have shown that reaching 
the main goal of reducing the high degree of manual work 
in the compaction process and creating a continuous
information flow along this process is possible. The
virtual sensor for compaction quality control forms the 
basis for combining the process steps “receive 
compaction order”, “compact surface”, “measure ground 
stiffness”, “accept surface”, and “document ground 
stiffness”. The functionality of the envisioned 
compaction quality control system is depicted in Figure 
6.

Figure 6: Functionality of the envisioned 
compaction quality control system

Future research should focus on increasing the 
classification accuracy of the algorithms and a cost and 
quality optimization of the hardware in use. Additionally, 
more tests have to be carried out to determine the 
performance of the virtual sensor in other equipment and 
soil combinations. In order to transform the current 
compaction process into the envisioned system, BIM-
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model interfaces have to be crated [31] and the value of 
the solution has to be demonstrated to practitioners in 
order for the system to be accepted by them.  
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Abstract – 
This study aims to compare between onsite and 

offsite construction 3D printing (C3DP). For this 
purpose, the Systematic Literature Review approach 
(SLR) was employed. The review which was based on 
studying 48 sources identified six categories to classify 
the motives and barriers for the two C3DP techniques; 
cost, transportation, design flexibility, workers and 
materials, production process, and environmental 
considerations. The literature identified the cost as 
the main factor that influences the choice between the 
two techniques. The presented list of motives and 
barriers is helpful to support decision-making in 
C3DP projects. 

 
Keywords – 

Additive Manufacturing, 3D Printing, 
Construction Management, Modular Construction, 
Offsite Construction, Literature Review. 

1 Introduction 
Three-dimensional printing (3D printing) and 

Additive Manufacturing (AM) are synonymous terms 
referring to a process that builds objects layer by layer 
from 3D model data, deviating from subtractive 
manufacturing methodologies [1]. The origin of this 
technology can be traced to Japanese researcher Hideo 
Kodama's writings, with Charles Hull developing the 
first commercial 3D printing machine, the 
Stereolithography fabrication system [2]. Over time, 3D 
printing has transitioned from producing prototypes to 
facilitating the serial production of parts across diverse 
fields, resulting in the global 3D printing sector's revenue 
exceeding $10 billion in 2021, with expectations to 
surpass $50 billion by 2030 [3,4]. 

The construction industry, characterised by 

challenges such as low productivity, safety concerns, and 
environmental issues, can benefit significantly from 3D 
printing applications [5–8]. Its capacity to create 
customized structures not easily achievable with 
conventional methods, coupled with enhanced design 
flexibility and adaptability to changes, positions 3D 
printing as a transformative solution [6,9–11]. 
Furthermore, its ability to save time in design and 
construction processes makes it an ideal choice for 
emergency shelters [12]. Despite the substantial initial 
capital required for 3D printing equipment, cost savings 
in materials management, labour, and other associated 
expenses contribute to its economic feasibility [6]. 
Reports suggest that using 3D printing in housing 
construction can result in savings of up to 35% of the total 
house price in the UK [13]. 

Beyond economic advantages, 3D printing offers 
substantial sustainability benefits. Opportunities to 
reduce waste generation, employ eco-friendly materials, 
and decrease greenhouse gas emissions contribute to a 
more environmentally friendly construction approach 
[14,15]. Socially, the comfort, safety, and working 
conditions of construction workers can be improved 
through the application of 3D printing technology 
[12,16,17]. 

Construction 3D Printing (C3DP) encompasses two 
distinct approaches: onsite and offsite. Onsite C3DP 
involves the direct fabrication of building units at the 
designated construction site, where 3D printers are 
strategically positioned, autonomously producing the 
structured building with automated control—a process 
resembling typical industrial production. In contrast, 
offsite C3DP takes place away from the construction site, 
with units or components manufactured in a separate 
factory using automated 3D printers. These prefabricated 
components are then transported to the construction site 
for assembly, marking a clear distinction between 
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industrial products and construction products. The onsite 
method emphasizes in situ construction, allowing for 
immediate and tailored building creation, while the 
offsite approach prioritizes prefabrication within a 
controlled environment before assembly at the 
construction site [18,19]. Figure 1 distinguishes between 
the processes of offsite and onsite C3DP. 

The growing interest in Construction 3D Printing 
(C3DP) is evident in the existing literature, which 
extensively covers various aspects such as materials, the 
automated process, challenges, and usability across 
different project types and locations [12,20,21]. However, 
there has been a notable gap in the exploration of the 
distinctions between offsite and onsite C3DP. Delving 
into this topic and comprehending the motivations and 
barriers associated with each type would contribute 
significantly to the existing body of knowledge. This 
exploration is crucial not only for advancing academic 
research but also for providing valuable insights to 
practitioners, clients, decision-makers, and companies 
involved in C3DP projects. Understanding the potential 
outcomes and implications of choosing between offsite 
and onsite C3DP can inform strategic decision-making, 
leading to the enhancement of project performance. 
Consequently, this study aims to bridge this gap by 
offering a comprehensive comparison of the factors 
influencing both offsite and onsite C3DP. 

 
Figure 1. C3DP approaches (a) Offsite, and (b) Onsite 

[19,22]. 

2 Research Methodology 
In pursuit of the study's objectives, the methodology 

utilized was the Systematic Literature Review (SLR). 
The SLR was chosen to guarantee an impartial selection 
of sources, transparency, and the ability to repeat the 
process [23–25]. Following the guidelines of the 
"Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses" (PRISMA), the SLR is structured 
around three primary phases: identification, screening, 
and eligibility [25]. The procedural steps involved the 
exploration of sources using the following terms: 

(“3d Printing” OR “3D Print” OR “additive 
manufacturing” OR “additive construction” OR 
“concrete print” OR “concrete printing”) AND 
construction AND (modular OR modularity OR offsite 

OR “off-site” OR “off site” OR onsite OR “on site” OR 
“on-site”). 

As depicted in Figure 2, the search yielded a total of 
191 sources. Among them, 32 studies were either 
unrelated to construction or did not directly address 3D 
Printing (for instance, papers focusing on 3D printing in 
other fields or listing it among various applications in 
construction). After searching the keywords, titles, and 
abstracts, a full-text search was conducted. During this 
phase, any results lacking information on onsite and 
offsite 3D printing were excluded. Upon completing the 
eligibility phase, the final count of included studies stood 
at 48. 

 

Figure 2. The SLR approach 

3 Results 
The results of the study were organized based on five 

main categories as explained below: 

3.1 Cost 
The cost of the two types of C3DP has received the 

highest attention in the literature. Yang et al [26] 
presented a detailed comparison between the expected 
cost in conventional construction, offsite, and onsite 
C3DP projects. Based on their study, the time cost of 
C3DP is an important motive that needs further 
investigations to identify its impact. This is because it is 
one of the main factors that affect the company's 
expenses and motivates its transition toward 3D Printing. 
Their study also provided the different composition of the 
3D printing cost in onsite and offsite projects. Offsite 
C3DP cost consists of printing stage cost and assembly 
stage cost. The printing stage cost includes management 
costs, manufacturing costs, printing costs, transport costs, 
and value-added tax. The assembly stage cost includes 
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construction and installation expenses, procurement 
expenses of equipment, and other expenses for 
engineering construction. Onsite C3DP cost consists of 
procurement expenses of equipment, construction and 
installation expenses, and other expenses for engineering 
construction. In turn, Besklubova [27] focused on the 
comparison between logistics costs in onsite and offsite 
C3DP. The study identified different factors that affect 
the cost in the two types of projects such as the proximity 
of the supplier, the size of the building, and the need for 
customization. It highlights material transportation costs 
as the dominant factor in logistics expenses, with 
equipment transportation costs being less significant for 
low-story buildings. More specifically, Onsite 3D 
printing proves economically superior for low-story 
buildings situated near suppliers, while offsite is 
advantageous for high-rises and distant suppliers. 
Alternative 3D printer technologies, notably the robotic 
arm, demonstrate a remarkable 96% cost reduction for 
onsite printing. Offsite 3D printing excels in customized 
or remote projects, offsetting high transportation 
expenses. Conversely, onsite 3D printing is cost-effective 
for nearby projects with minimal customization. Material 
transportation costs dominate logistics expenses, making 
onsite 3D printing more feasible for low-story buildings. 

3.2 Transportation 
Transportation plays a pivotal role in the dynamics of 

3D printing construction, both onsite and offsite. The 
type of printing method, the size of the project, available 
transportation infrastructure, and the location of the 
construction site all play a role in determining the most 
appropriate transportation strategy. Onsite printing 
eliminates numerous logistical processes and preparation 
tasks associated with traditional construction methods 
[28]. As a result, onsite production allows for the 
immediate construction of larger structures without 
transportation concerns [29]. Additionally, the use of 
prefabricated elements, often results in damaged parts 
during transit, requiring on-site repairs and increased 
labour. This explains why some contractors prefer on-site 
printing to avoid damages, over-engineering, and added 
costs associated with transportation [29,30].  However, it 
may be less stable due to changing environmental 
conditions [29]. Onsite 3D printing is highly dependent 
on weather conditions due to the impact on the drying and 
shrinkage processes [29]. Moreover, accidents while 
transporting the printer may happen [12,29,31]. 

In turn, offsite 3D printing introduces complexities 
due to increased transportation needs, impacting costs. 
Besklubova [27] found that transportation expenses 
could nearly double in the offsite scenario when 
compared to onsite printing. Despite this, offsite 
construction offers advantages such as improved process 
control, part quality, safety, and simultaneous 

manufacturing and construction schedules [12,29]. 
However, transportation constraints, especially in remote 
environments, remain a challenge. The impact of weather 
on the transportation routes is also nonnegligible [12].  

3.3 Workers and Materials 
On-site and off-site C3DP present distinct labour and 

safety considerations. On-site printing helps reduce the 
demand for on-site labour by theoretically allowing the 
printing of entire building structures. While traditional 
construction roles may decrease, the need for specialized 
personnel to install, calibrate, and oversee 3D printing 
equipment remains. As a result, onsite 3D printing might 
be faced with the challenge of the experts’ availability or 
the increased cost due to the need to provide training for 
workers [31–33]. 

Automation in on-site printing is expected to enhance 
safety by reducing hazardous tasks and providing a 
controlled environment. In contrast, off-site 3D printing 
involves prefabrication in a factory, potentially 
impacting on-site labour less than traditional methods. 
Safety benefits are attributed to lower risks and reduced 
congestion in a factory setting [12,29]. It is worth 
mentioning here that safety improvement in both types of 
systems is one of the main advantages of 3D Printing; 
contrastingly, a reduction in labour force and job 
opportunities may lead to political instability [31]. 

Concerning materials, using printable material 
remains the topic that received the highest attention in the 
literature for both types of 3D printing. The research in 
this field covered several aspects aiming at utilizing 
locally sourced materials when accessible, minimizing 
the need for material transportation to remote areas and 
reducing inventory levels [5,8,34,35]. Onsite 3D Printing 
might help maintain natural local materials. However, the 
availability of local printable materials remains very 
challenging [12,19,31]. Additionally, the choice between 
offsite and onsite 3D printing heavily depends on the type 
of material. For instance, concrete is widely used in 
offsite 3D printing due to versatility, strength, and 
availability.  Prefabricated 3D printed components’ 
performance can be optimized using reinforcement or 
specialized mixtures to improve extrusion and layering 
and ensure proper flowability and structural integrity. 
They can also integrate additives such as fibres to 
improve crack resistance during transportation and 
enhance workability [12,19,35].   

3.4 Design Flexibility 
Design flexibility allows C3DP to adapt to the needs 

of every project. The ability to modify, alter, and adjust 
the design details in a significant reduction in costs, 
materials, and labour during manufacturing [31,36,37]. 

C3DP offers more flexibility in modelling compared 
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to traditional construction methods [20]. By providing 
the opportunity to adjust to every conceptual design and 
location, C3DP brings solutions to the local environment, 
positively impacting the regions [12,31]. 

Design flexibility plays a pivotal role in both on-site 
and off-site C3DP. Some of the advantages include the 
capacity to create customized elements, different shapes, 
features, and textures. C3DP has proven to be a valuable 
competitor to prefabrication in terms of cost-
effectiveness and time efficiency. Simultaneously, C3DP 
can develop shapes that would be difficult or impossible 
to create using traditional methods. The use of 
specialized software and tools to optimize design is 
emphasized, allowing C3DP to optimize design and 
reduce risks during production [19,35,38]. 

Another advantage of C3DP, in comparison with 
conventional construction, is its ability to manufacture 
complex designs [20]. Design flexibility has positive 
effects in terms of efficiency and process time [39]. 
Further considerations of the design reflect on the use of 
local materials and labour. The C3DP manufacturing 
process addresses challenges related to skill development 
and technology adoption [40]. 

3.5 Production Process 
C3DP increases efficiency and productivity 

compared to conventional construction. It can be used to 
automate many tasks involved in the production process. 
An advantage of C3DP is the capacity to print entire wall 
elements or other structural components in one piece, 
reducing the need for traditional construction methods 
such as formwork and scaffolding [41–44]. 

During the production process, several distinctions 
between on-site and off-site are addressed. On-site C3DP 
shows a significant improvement in terms of time 
efficiency compared to traditional construction methods, 
based on the elimination of assembly work and the fact 
that C3DP elements can dry while other activities are 
performed simultaneously. Several authors reflect on the 
potential of C3DP to be used in remote locations, offering 
a solution for housing shortages in those areas. Remote 
environments pose a challenge for C3DP due to local 
weather conditions and logistical complexities. On the 
other hand, off-site C3DP has the potential to become a 
solution as a manufacturing method for pre-fabricated 
modular buildings [12,19,43]. 

Another advantage of C3DP in off-site manufacturing 
is the flexibility during the design and production process, 
allowing builders to create different geometries and 
automate C3DP elements for mass production [29]. Off-
site C3DP manufacturing allows builders to control 
external conditions for better results during printing 
[19,43]. 

3.6 Environmental Considerations 
Concerning environmental impact, only a few studies 

have evaluated the environmental life cycle of C3DP [12]. 
The primary concern regarding the environmental impact 
of C3DP lies in material development, with concrete 
representing a significant percentage of CO2 emissions 
in C3DP [26,27,29,45]. The creation of new materials is 
crucial for the success of this technology [40]. 

New applications for C3DP depend on material 
properties, such as strength and durability. Some authors 
reflect on the potential benefits of C3DP in reducing 
waste and the environmental footprint of concrete [45]. 
The use of this technology allows builders to develop 
materials locally by using local aggregates. C3CP also 
provides the opportunity to cycle waste streams from 
other industries, improving circularity in the system [46]. 

A reduction in environmental and economic impact is 
evident. More studies need to be developed around the 
environmental life cycle assessment of C3DP materials 
[47]. C3DP optimizes the construction process and 
reduces material usage, time, and transport, directly 
impacting a reduction in CO2 emissions [26,27,48]. 

Further research on the environmental impact of 
C3DP needs to be conducted to reflect the differences 
between on-site and off-site printing. Both scenarios 
represent an improvement in environmental impact [19]. 
On one side, off-site printing allows developers to control 
environmental conditions and reduce risks during 
manufacturing [19,35]. On the other hand, several 
limitations around on-site C3DP are illustrated, including 
environmental conditions, equipment and material 
transportation, the use of a mixing system, and material 
preparation at the location, posing challenges to the 
implementation of C3DP on-site [38,41,48].  

4 Discussion and Conclusions 
3D printing in construction represents a ground-

breaking innovation that aims to build more efficient, 
flexible, and sustainable production practices in the 
construction sector. As the technology continues to 
evolve and gain wider adoption, its influence on the way 
we conceptualize, design, and construct structures is 
expected to expand significantly. This paper aims to 
support the decision-making process in the construction 
of 3D printing projects. This is by conducting a review of 
the related literature to compare the onsite and offsite 3D 
printing techniques. The analysis of the results of this 
study revealed various motives and barriers for both 
techniques (as shown below in Table 1 for Onsite C3DP 
and Table 2 for Offsite C3DP). These motives were 
organized based on six categories: cost, transportation, 
workers and materials, production process, design 
flexibility, production process, and environmental 
considerations.  
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Table 1. Onsite C3DP Motives and Barriers 

Category Motives Barriers 
Cost Reduction of 

components 
transportation 

costs 
minimization of 

preparation 
tasks 

Lack of 
redundancy in 

process and 
hardware, 
specialized 
equipment 

costs, 
maintenance 

and repair costs 
Transportation Elimination of 

the risk of 
damage to 

prefabricated 
components 

during 
transportation, 

minimization of 
waste, 

conservation of 
natural 

resources 

Potential 
damage during 

the printer's 
transit, 

shortages of 
skilled labour, 
workers' safety 
considerations 

in managing and 
maintaining 3D 

printing 
equipment, need 

for training to 
build skills 

Workers and 
Material 

Enabling larger 
structures to be 

built without the 
need for 

transportation, 
improvement of 

quality, 
production 

speed, and site 
safety 

Component 
design 

limitations in 
terms of size 

and complexity, 
interruptions if 

3D printing 
experiences 

technical issues, 
quality control 

challenges 
Design 

Flexibility 
Onsite 

modification 
Weather 

dependency 
leading to 

interruptions, 
noise pollution, 
dust, and debris 

on-site 
disruption 

Production 
Process 

Elimination of 
assembly work 

Interruptions if 
3D printing 
experiences 

technical issues, 
quality control 

challenges 
Environmental 
Considerations 

Reduction in 
carbon 

transportation 
emissions, use 

Weather 
dependency 
leading to 

interruptions, 

of sustainable 
materials 

contributing to 
environmentally 

conscious 
practices 

noise pollution, 
dust, and debris 

on-site 
disruption 

 
Table 2. Offsite C3DP Motives and Barriers 

Category Motives Barriers 
Cost Reduced labour 

costs, reduction 
in transportation 
expenses, ability 
to reach remote 
areas without 

transporting the 
printer, avoiding 
stoppages due to 
needed printer 
maintenance, 
especially in 
remote areas 

Transportation 
expenses for 

moving 
components 
from off-site 
facilities to 

construction 
locations, 

assembly costs 
(e.g., crane 

costs), risk of 
damage to 

prefabricated 
components 

during 
transportation, 
transportation 
limitations for 

large-scale 
items/componen

ts/machines 
Transportation Reduction in the 

need for 
transporting raw 

materials and 
printers to 
multiple 

construction 
sites, ability to 
reach remote 
areas without 

transporting the 
printer, avoiding 
stoppages due to 
needed printer 
maintenance, 
especially in 
remote areas 

Worker safety 
concerns in the 
factory, extra 

cost for training 
in the factory 

Workers and 
Material 

Availability of 
workers and 

stability of staff, 
reduction of 

material waste 
by optimizing 
the production 

Design 
constraints for 
transportation, 

design 
limitations on 

complexity and 
component size 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1194



process, ability 
to standardize 

items 
Design 

Flexibility 
Ability to 

standardize 
items 

Dependency on 
off-site facilities 

Production 
Process 

Repeatability 
and ability to 

make 
continuous 

improvement, 
improved site 

safety, 
scalability to 
accommodate 

changes in 
project scope 

Risks related to 
production 

delays, supply 
chain 

disruptions, or 
changes in 

project 
requirements 

Environmental 
Considerations 

Reduction in 
waste 

generation and 
energy 

consumption 

Weather 
dependency 
during the 

transportation or 
assembly, 

carbon 
transportation 

emissions 

Analysing Table 1 and Table 2 shows that some of the 
presented factors are not exclusively related to 3D 
printing. They can be considered generally when 
comparing onsite and offsite practices in construction. 
Examples of these factors cover safety concerns and 
logistics arrangements in factory environment or onsite.  

The review of the literature showed that cost is a 
significant factor in the decision of whether to use onsite 
or offsite 3D printing construction. However, it is not 
possible to say definitively that one technique is more 
cost-effective than the other, as the choice depends on a 
variety of factors, including the location of the project, 
the size of the project, the need for customization, the 
need for standardized components, weather conditions, 
quality control measures, safety considerations, and the 
availability of human resources. 

For example, Onsite C3DP is generally more cost-
effective for low-story buildings located near suppliers, 
while off-site printing is typically more economical for 
high-rise buildings and projects in remote locations. 

In addition to cost considerations, it is important to 
weigh other factors, such as the potential to empower 
local human resources and create new job opportunities 
for local citizens. This is particularly important in areas 
that require development strategies. 

The current study has several limitations. Firstly, it is 
based on a review of the literature and does not include 
findings from other methods, such as interviews. 
Secondly, the study focuses on listing the main motives 
and barriers without detailing the specific scenarios 

behind these results. For example, the study does not 
provide a detailed comparison between the cost of 
different items in both techniques or the emissions 
associated with each technique. Thirdly, the study does 
not focus on a specific location or, printing method, or 
material. Neither does it focus on a specific type of 
material. The presented comparison between offsite and 
onsite 3D printing may cover many other items if 
focusing on concrete, for instance. Examples of these 
factors include the ability to improve the mechanical 
performance of concrete, availability of additives, 
possibility of reinforcement, recyclability, and usability 
of materials at the end of the project life. Future studies 
should address these limitations by focusing on specific 
materials or using a variety of methods, including case 
studies, to provide more detailed and nuanced insights 
into the decision of whether to use onsite or offsite C3DP. 
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Abstract 

Buildings are responsible for a huge amount of 
negative environmental impacts at the End-of-Life 
(EoL) stage because of the massive global production 
of waste. Therefore, there is an urgent need for 
developing design systems to decrease waste 
generation by facilitating the reuse and recycling of 
building materials. Building Information Modeling 
(BIM) has been demonstrated to be an effective tool 
for enhancing building performance at the different 
life cycle stages. However, the implementation of BIM 
for assessing the EoL stage of building projects is still 
underdeveloped. One important activity on the EoL 
stage is disassembly planning for reuse of building 
components and building renovation. The aim of this 
study is to develop the framework for a BIM Model 
View Definition (MVD) for disassembly planning. 
First, we developed a framework for an MVD for the 
disassembly planning of buildings based on the 
literature review in the field. Then, we proposed a 
workflow for implementing the MVD, as well as the 
validation procedures. In the end, the MVD was 
validated by compiling the information of a BIM-
based disassembly model. Results of the case study 
show that the presented approach is efficient for 
corroborating the syntax, semantic structure, and 
information content of BIM models. 

 
Keywords – 

Model View Definition, disassembly information 
modeling, Building Information Modeling, circular 
economy 

1 Introduction 
The significance of reusing building components and 

systems has increased because the construction industry 
is annually accountable for around 40% of the global 
consumption of natural resources and the redirection of 
40% of waste to landfills [1]. To address this challenge, 
technological advancements such as Construction Waste 
Management (CWM), Materials Passports (MP), Product 

Recovery Management (PRM), and Life Cycle 
Assessment (LCA) have been introduced in the last 
decades [2]. These innovations aim to enhance the rates 
of reusing and recycling building components. 
Nevertheless, the adoption of building components and 
system reuse remains limited, primarily due to a lack of 
research on reclamation protocols and the absence of 
standardized procedures [3]. In this matter, disassembly 
planning is a strategic approach for the recovery of 
building components and systems for their future reuse 
or recycling [4-8]. Disassembly planning involves 
identifying the necessary sequential steps for taking apart 
a building, delineating deconstruction activities, and 
arranging them in a logical order. 

Unfortunately, disassembly planning for buildings is 
not as advanced as in other industries such as 
manufacturing, automotive, and electronics [4,9]. The 
definition of the information and data structure that a 
disassembly model must contain are critical for the 
implementation of disassembly planning methods and 
theories. In the following sections we present a 
framework for defining the information definition for 
disassembly planning of buildings in the context of 
Building Information Modeling (BIM). 

2 Background 

2.1 Disassembly planning for reuse of building 
components and building renovation 

The potential benefits of building renovation rely on 
the fact that it is possible to take away components from 
an obsolete building and then repair, reuse, 
remanufacture, or recycle them. Planning for 
disassembly plays a key role in the building renovation 
process where the disassembly planning sequence, as 
well as the disassembly methods to recover target 
components, have to be performed in an efficient way. 
The objectives are to reduce building costs and to 
increase the reuse times for building components. If the 
design for disassembly is too complex or time-
consuming, the associated economic and environmental 
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costs could be higher than installing new components. 
This field has been studied in the manufacturing industry 
since the last decade, concluding that disassembly 
planning can reduce the time and cost associated with 
disassembling products [10]. Figure 1 shows the 
comparison of the material flows through the building 
lifecycle stages for the traditional approach of building 
demolition versus the disassembly planning approach. 
Building demolition produces large amount of waste with 
the possibility to recycle some material. In contrast, 
selective disassembly enables the direct reuse of 
buildings in different levels of decomposition (e.g. reus 
of a building, a subsystem, a component). Table 1 shows 
the generic classification of product disassembly 
methods, as well as the literature review of the applied 
theories to find the optimum, or near optimum, 
disassembly path for non-destructive disassembly 
methods.

Materials 
extraction

Operation

Demolition Disassembly &
Deconstruction

Repurposing

Disposal

Production

Construction Renovation

Operation

Recycle

Figure 1. Building lifecycle stages: Demolition 
versus disassembly planning

Table 1. Disassembly planning methods and models for 
non-destructive disassembly optimization
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Complex wave propagation algorithms [11-13]
Less complex transition matrices, mixed integer 
linear programming, and genetic algorithms 
[14,15]
Disassembly sequence structure graphs (DSSGs) 
and expert rules [16]
Disassembly precedence graphs and linear 
programming models [17]
Genetic algorithms optimisation [18,19]
Ant colony optimisation [20-22]

Pa
ra

lle
l d

is
as

se
m

bl
y

Directed AND/OR graphs and linear 
programming [23]
AND/OR graphs and constraint programming 
[24]
Petri nets and network searching algorithms [25]
Liaison graphs and grouping genetic algorithms 
[26]
Fuzzy-rough set mapping model, Disassembly 
factors and Disassembly membership functions 
[27]

In accordance with disassembly planning, the process 
of planning the dismantling of an existing asset is known 
as deconstruction project planning. Hübner et al. [28] 
provided a comprehensive literature overview of project 
planning methods for deconstruction of buildings as well 
as some research gaps in this field. The authors classified 
the existing deconstruction planning methods according 
to specific construction project objectives. The proposed 
project objectives are time, cost, resources, risk, and 
quality, which, in turn, have been the main performance 
indicators on the field of construction project 
management. Their study presents a full-range variety of 
methods for the decision-making process on strategic and 
operational deconstruction planning, based on the 
optimization of single or multiple project objectives. In 
comparison to the manufacturing industry, just few 
disassembly planning methods have been developed for 
buildings and building subsystems. This have limited the 
implementation of disassembly planning for building 
projects.

2.2 BIM Model View Definition use cases in 
construction

Building Information Modeling (BIM) is a data-rich, 
object-based, intelligent, and parametric digital 
representation of a building, from which views 
appropriate to various users’ needs can be extracted and 
analysed to generate feedback and improvement of the 
facility design [29]. In the last decades BIM has been 
implemented in diverse research fields in construction 
such as design visualization, construction reviews, 
structural analysis, design coordination, planning of 
trades and systems, construction scheduling and 
sequencing, among others [2,30]. The standard BIM data 
structure is known with the name of Industry Foundation 
Classes (IFC) schema. IFC is an open, international 
standard (ISO 16739-1:2018), meant to be usable across 
a wide range of hardware devices, software platforms, 
and interfaces for many different use cases [31]. 

A Model View Definition (MVD) is a subset of the 
overall IFC schema to describe data exchange for a 
specific use or workflow, narrowing the scope depending 
on the need of the receiver [32]. An IFC View Definition, 
or MVD, defines a subset of the IFC schema, that is 
needed to satisfy one or many exchange requirements of 
the AEC industry. Some examples of MVDs for specific 
exchange requirements are quantity take-off view, 
structural design to structural analysis, indoor climate 
simulation to HVAC design, architectural design to 
thermal simulation, architectural design to 
circulation/security analysis, energy analysis view, 
among others [32]. 

For a long time, everyone could create their own 
MVD and approach software vendors to implement it. 
This created a situation with several MVDs that have 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1199



been created that are not interoperable with each other 
and need additional efforts for implementation in 
software tools. Therefore, the MVD structure is now 
regulated by the buildingSMART International (bSI) 
Standard [33] and has been implemented in numerous 
BIM interoperability studies [34]. The aim of MVD is to 
specify exactly which information is to be exchanged in 
each exchange scenario and how to relate it to the IFC 
model [33]. The development of MVDs for new purposes 
in the construction industry is highly recommended by 
bSI to help satisfy arising industry needs, explore 
limitations in current approaches, and propose new 
necessary extensions [34]. According to Son et al. [35], 
the number of MVDs is still too small considering the 
number of information exchange scenarios required by 
the industry. Even though, disassembly planning has 
been recently implemented using BIM in multiple tools 
and methods [36,37], none of them have described the 
structure for IFC data exchange. In this paper, we argue 
the need for the development of an MVD for disassembly 
planning for enabling the use of BIM for the assessment 
of dismantling operations. The conformation of an MVD 
can use existing extensions of the IFC schema, add new 
extensions, add additional restrictions, and overrule 
others. 

3 A framework for a MVD for 
disassembly planning of buildings 

The proposed research approach is developed in three 
main stages. In the first stage, a literature review was 
carried out to determine the necessary information for 
disassembly planning of buildings. The objective of this 
first stage is to define the subset of information needed 
for developing a disassembly planning assessment for 
buildings. In the second stage, we develop the MVD. 
Then we propose the workflow for the implementation of 
a disassembly planning MVD for BIM models. This 
workflow describes the main concepts, actors, and 
information flow for the use case of disassembly 
planning. In a final stage, we present a validation 
approach of the disassembly planning MVD. We present 
the results of a case study as a functional demonstration 
of the proposed methodology and the proposed 
technology. Figure 2 displays the proposed research 
approach as well as how the sections of this study are 
organized. 

3.1 Parameters for disassembly planning for 
buildings 

In previous studies, Sanchez et. al [36,37] developed 
a literature review for identifying the key parameters for 
BIM-based disassembly planning of buildings. In these 
studies, the authors identified three stages in the BIM-

based disassembly planning process. The three stages are 
the preprocessing stage, the analytical model, and the 
performance analysis. In each one of the stages, the 
authors identified the key parameters (information 
packages) for disassembly planning models. Figure 3 
shows the workflow for implementing disassembly 
planning MVD for BIM models, and Table 2 shows the 
stages and parameters for BIM-based disassembly 
models. For the purposes of this study, we use the 
proposed key parameters in Table 2 as the basis for the 
information package for the MVD for disassembly 
building models. It is worthy to mention that this list of 
parameters can be expanded according to the 
requirements for BIM assessment. 
 

Start
Conceptual 

disassembly model 
design

Software 
implementation 
(BIM model)

Information 
requirements

Solution 
design 
(MVD)

IFC model

Disassembly sequence 
planning results

Disassembly 
planning method 

approach

Disassembly 
analytical 

model

Semantic enrichment for 
disassembly models

 
Figure 3. Workflow for implementing 
disassembly planning MVD for BIM models 
(*MVD-Model View Definition, BIM-Building 
Information Modeling, IFC-Industry Foundation 
Classes) 

3.2 Disassembly planning MVD development 
The parameters of the MVD information package are 

described and mapped according to the existing IFC 
entities (IFC4) (see Table 2). The parameters can be 
categorized according to the nature of the source of the 
information such as existing (E), new (N), or retrievable 
(R). The existing parameters are embedded in the BIM  

Literature review: 
Disassembly planning for 

buildings  

Disassembly planning 
MVD for BIM models

Validation approach in a 
BIM environment

Information for 
disassembly building 

models 

Instance and type BIM 
parameters

• MVD for disassembly 
planning

• IFC schema extensions

Semantically enriched 
BIM disassembly model

1 2 3

 
Figure 2. Research approach for a MVD for 
disassembly planning of buildings (*MVD-
Model View Definition, BIM-Building 
Information Engineering, IFC-Industry 
Foundation Classes). 
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Table 2. Key parameters for BIM-based disassembly planning of buildings 

 
 Parameter Description Source IFC Schema Type*  

Pr
ep

ro
ce

ss
in

g 

Global disassembly model Unique descriptor for 
identifying all the parts. 

[5,9,10,40] IfcGlobalUniqueID E 

Disassembly part type Component (c) or connection 
(f). 

[5,9,10] IfcBuiltElement; 
IfcElementComponent 

N 

Disassembly part id. Numerical identifier for part 
types (e.g., c1 , f1 ). 

[5,9,10,40] IfcGlobalUniqueID, 
IfcBuiltElement; 

IfcElementComponent 

N 

Hosted components Components attached to a host 
component. 

[5,9,40] IfcRelConnectsElements N 

Hosted connections Connections attached to a host 
component. 

[9,40] IfcRelConnectsElements N 

Connection disassembly Type of connection. [5,10,40] IfcRelConnectsWithRea
lizingElements 

N 

Fastener constraint type Extraction constraints. [9,10,40] IfcElementComponent N 
Physical interface Type of connection. [10,40] IfcRelConnectsWithRea

lizingElements 
E 

Global coordinate system Global reference system of the 
model. 

[9,10,40] IfcCoordinateReference
System 

E 

Local coordinate system Local reference system of each 
part. 

[10] IfcObjectPlacement E 

Assembly elements location Location of each part in the 
coordinate system. 

[9,10] IfcLocalPlacement N 

A
na

ly
tic

al
 m

od
el

 

Structural composition Structural interdependence of 
components. 

[5,9,40] IfcElementAssembly N 

Graph data structure Abstract representation of a 
disassembly model. 

[5,9,10,40] IfcRelDecomposes N 

Extraction directions Directions for removing any 
part. 

[9,10] IfcElementAssembly E 

Object geometry (2D, 3D) Virtual representation of BIM 
elements (parts) 

[9,10,40] IfcProductRepresentati
on 

E 

Physical constraints Constraints of a part in any 
extraction direction. 

[9,10] IfcShapeRepresentation N 

Modular subassemblies Group of parts that conforms a 
disassembly module. 

[10,40] IfcProductRepresentati
on 

E 

Working space Space for a human worker to 
develop disassembly works. 

[5,9,10] IfcElementAssembly N 

Pe
rf

or
m

an
ce

 

Disassembly tool Equipment for disassembly 
works. 

[10] IfcRelSpaceBoundary N 

Disassembly method Mode of disassembly works. [10,40] IfcPropertySet N 
Environmental impacts (LCA) Life Cycle Assessment (LCA) 

per building component. 
[9,10,40] IfcPropertySet R 

Disassembly time Time for disassembling. [5,10,40] IfcPropertySet R 
Disassembly cost Cost for disassembling. [5,9,10,40] IfcPropertySet R 

Disassembly revenue Profit for disassembling. [5,10,40] IfcPropertySet R 
Disassembly distance Distance moved in 

disassembling a component. 
[10] IfcPropertySet N 

Operation number Number of activities developed 
for the disassembly process. 

[10] IfcPropertySet N 

Disassembly energy 
consumption 

Energy consumption of 
machinery for disassembly. 

[10] IfcPropertySet R 

*Information type: existing (E), new (N), or retrievable (R) 
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elements. The new parameters must be defined by the 
user. Also, these parameters can be generated 
automatically with customized subroutines. The 
retrievable parameters are properties of the BIM 
elements that can be retrieved from external databases. 
The full description of the parameters can be found in 
[36]. 

 

3.3 Workflow to implement disassembly 
planning MVD 

Figure 3 shows the proposed workflow for the 
implementation of the disassembly planning MVD for 
BIM models. In the first step, a conceptual disassembly 
model design must be developed according to the 
building assembly under study. In the second step, the 
BIM disassembly model must be developed. In this step, 
the minimum IFC entities for disassembly models are 
defined as a template according to the MVD for 
disassembly planning. Also, in this second step, the BIM 
model must be semantically enriched according to the 
MVD. The semantic enrichment can be done manually 
(by the user) or through algorithms that retrieve 
geometrical and non-geometrical information from the 
BIM model. With a functional BIM disassembly model, 
in the next steps, it is possible to develop an appropriate 
analytical model, as well as a disassembly planning 
solution. 

3.4 Validation approach for disassembly 
planning MVD 

An MVD is the computational application of an 
information package that maps the data exchanges to a 
subset of the IFC schema and describes their needs in a 
computer-readable data model [34]. Figure 4 shows the 
workflow for the validation of the MVD for disassembly 
planning. The BIM-Q tool is proposed for MVD 
configuration and to generate the mvdXML file. The 
BIM-Q tool is a commercial software for supporting BIM 
use case requirements. The BIM-Q tool has useful MVD 
templates for the different IFC use cases (IFC models) 
such as structural analysis, building energy analysis, and 
cost estimation. Due to the specific characteristics of 
analysis and data structure for processing, a new IFC use 
case for disassembly planning implementation and 
standardization was necessary. The mvdXML format is a 
data schema used to specify the minimum exchange 
requirements and it is the currently recommended data 
schema for model validation [34]. The result of the MVD 
configuration is a description of the appropriate IFC 
information model and their exchange data requirements. 
In the final step, simplebim® software is proposed for 
validating the IFC file. This MVD validation approach 
has been used for other studies in the field of BIM data 

exchange [34,38,39]. 
The disassembly planning MVD was validated by 

compiling the information of the BIM-based disassembly 
model of a case study described in a previous research 
[36] and by verifying the resulting IFC files using the 
simplebim® tool. To test the MVD construct, the 
information depicting disassembly planning 
characteristics was included in the IFC files for the 

disassembly model prototype. The simplebim® tool was 
implemented to corroborate syntax, semantic structure, 
and content of the output IFC file. This validation process 
was necessary to refine the enrichment process by 
detecting errors of semantic structure (e.g., erroneous 
property set labels, mistaken entity relationships) and 
missing information (e.g., missing exchange 
requirements, information lost in the enrichment process). 
Figure 5 shows part of the results of the MVD for 
disassembly planning for buildings. 

4 Conclusions and future work 
This research explores the necessity for standardized 

information in disassembly models of buildings within 
the BIM framework. Efficient management of asset data 
is essential for informed decision-making throughout all 
stages of a building's life cycle, including its End-of-Life 
phase. This paper introduces a formal specification of a 
MVD for disassembly planning. This approach aims to 

MVD for 
disassembly 

External databases
Information 
requirements

Creating 
IFC 

Models

Exchange 
requirements

Data 
validation 

IFC Delivery

mvdXML <xml /> 

 
Figure 4. Disassembly planning MVD 
development and validation (*MVD-Model View 
Definition, BIM-Building Information Modeling, 
IFC-Industry Foundation Classes, mvdXML-
MVD data format, BIM-Q-commercial software 
for supporting Building Information Modeling use 
case requirements, simplebim- Open BIM IFC 
application for verifying data accuracy) 
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enhance the adoption of building disassembly by 
minimizing the effort associated with planning tasks. The 
framework outlined in this research has the potential to 
address the current technical obstacles that hinder the 
systematic and standardized implementation of 
disassembly planning in the construction industry.  

A future phase for this study involves creating an 
automated semantic enrichment engine for disassembly 
models based on BIM. This strategy aims to enhance the 
generation of accurate and thoroughly semantically 
enriched BIM disassembly models. One drawback of the 
suggested approach is the substantial volume of data that 
needs to be incorporated into a BIM model at a 
component level. The high Level of Detail (LoD) may 
pose computational challenges, especially for large 
building assemblies. Nevertheless, it might be feasible to 
apply this approach for subassemblies of buildings. 
Future advancements in computational technology could 
make high LoD assessments technically feasible for 
complete building assemblages. 

This study offers a contribution to the field due to key 
factors that distinguish it from alternative solutions. First, 
unlike some alternative solutions which may focus on 
specific aspects of disassembly planning, this paper 
presents a holistic approach leveraging BIM MVD. It 
considers various crucial factors such as material 
properties, structural integrity, spatial relationships, and 
environmental impact, offering a comprehensive 
framework for disassembly planning. Second, the BIM 
MVD proposed in the paper promotes data 
interoperability and standardization, which are essential 
for seamless communication and collaboration among 
stakeholders involved in disassembly projects. This 
ensures that relevant information is accurately exchanged 
and utilized throughout the lifecycle of the building, 

leading to more efficient planning and execution. Finally, 
the BIM MVD framework presented in the paper is 
designed to be scalable and adaptable to different types 
and scales of buildings, making it suitable for a wide 
range of applications. Whether dealing with small-scale 
structures or large-scale complexes, the approach can be 
tailored to meet specific project requirements and 
constraints. 
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Abstract  

Construction robotics, regarded as a key trigger to 
reshape the traditional construction industry, has 
continuously emerged. Although various construction 
robot prototypes have been developed, only some of 
them are widely adopted for on-site practices. To 
improve users’ acceptance of this novel technology, 
this research aims to investigate customers’ 
satisfaction levels utilizing construction robots to 
address construction constraint factors from a multi-
stakeholder perspective. Specifically, ten constraint 
factors were identified through a systematic literature 
review. The satisfaction level for each constraint 
factor was then scored using a 1-5 Likert scale 
through a questionnaire survey. Based on the 
satisfaction scores, six key stakeholder groups were 
first segmented using the k-means algorithm to target 
acceptance patterns. Mean score ranking of the scores 
marked by stakeholders unwilling to adopt 
construction robots was conducted to identify current 
concerns. Results indicate that acceptance is more 
probable among experienced stakeholders and those 
familiar with construction robots, signifying the 
market’s readiness for broader adoption. High costs 
and a lack of partnership cooperation emerged as 
primary constraint factors. Recommendations to 
solve these concerns are detailed. The results 
contribute to speeding up the development of 
construction robots by investigating and improving 
customer acceptance of this novel technology. 

 
Keywords – 

Construction robotics; Customer satisfaction; 
technology acceptance 

1 Introduction 
Construction robots, defined as intelligent machines 

equipped with sensors, actuators, and advanced control 
systems tailored for construction activities, have evolved 

significantly since the late 20th century [1]. This 
technological evolution has led to diverse applications, 
ranging from inspection and excavation to on-site 
construction and demolition.  

For example, [2] developed a robotic vehicle system 
for unmanned excavations (depicted in Figure 1 (a)). This 
unmanned excavation paradigm integrates a vehicle 
chassis and 6 degrees of freedom (DOF) manipulators, 
augmented by sensor suites comprising cameras, real-
time kinematic positioning (RTK), global positioning 
system (GPS), and inertial measurement unit (IMU) that 
are used for comprehensive position and attitude 
measurement. A 5G communication module was 
developed to facilitate the transmission of control signals. 
[3] advanced the field with a polyarticulated robot 
featuring an articulated arm affixed to an automatic 
guided vehicle (AGV) for precision-controlled 
automated concrete pouring tasks (Figure 1 (b)). 
Executing its operations based on trajectories derived 
from Building Information Modeling (BIM) geometry 
information, the system manipulates the articulated arm 
and AGV, facilitating precise concrete pouring at 
predetermined positions. [4] introduced a retractable 
robot for automated wall spraying (Figure 1(c)), 
demonstrating meticulous engineering to balance the 
imperatives of a compact robot and a large working area. 
Controlling algorithms, including a surface-to-surface 
parallel adjustment mechanism relying on laser ranging 
and a polar coordinate transformation method leveraging 
LiDAR data, confer the ability to maintain parallelism to 
the wall during spraying and autonomously identify 
working areas. Concurrently, [5] developed a robotic 
system tailored for the sorting of construction demolition 
waste (Figure 1(d)). This system, featuring a wheeled 
mobile chassis for precise navigation and a robot 
manipulator for waste handling, incorporates computer-
vision technology to recognize and locate waste.  

Rigorous validation through both laboratory testing 
and on-site validation substantiates the system’s capacity 
for the autonomous execution of envisioned high-
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efficient construction processes. However, despite the 
development of these pioneering prototypes, the on-site 
integration of construction robots remains gradual [6-7]. 
The examples mentioned are still in the initial design or 
field-testing stages and are yet to be accepted for 
practical uses. 

This study aims to enhance users’ acceptance of this 
novel technology by examining its customer satisfaction 
from a multi-stakeholder perspective. Here, customers 
refer to the one who may pay for the construction robots 
and then use or interact with them. The findings reveal an 
in-depth recognition of various customer requirements 
and expectations, which is an important foundation for 
the design and evolution of construction robots. These 
findings also provide insights into facilitating the 
strategic prioritization of features and functionalities that 
hold the utmost significance for users. 

 
Figure 1. Construction robot prototypes. (a) 
Unmanned excavator. (b) Polyarticulated 
concrete pouring robot. (c) Wall painting robot. (d) 
Demolish waste collection robot 

2 Literature review 
In accordance with the Technology Acceptance 

Model (TAM), customer satisfaction, regarded as an 
indicator of perceived usefulness and ease of use, is 
increasingly employed to measure the acceptance level of 
advanced technologies [8]. For instance, [9] conducted a 
study to identify influential factors that affect customer 
satisfaction with building information modeling (BIM). 
to evaluate the success of BIM implementation. To 
stimulate user’s acceptance of BIM, [10] employed the 
entropy method to establish a quantitative model for the 
measurement of BIM user satisfaction.  The significance 
of examining customer satisfaction to enhance 
technology acceptance has been underscored by existed 
research studies [11]. Therefore, this study intends to 
enhance users’ acceptance of construction robots by 

comprehensively understanding customer satisfaction, 
focusing on mitigating critical constraint factors within 
construction works. 

In particular, this study explores customer 
satisfaction from a multi-stakeholder perspective, aiming 
to consider diverse needs and expectations across roles in 
the construction industry. A proactive approach to 
addressing concerns and barriers from a broad 
perspective is also expected to explore potential 
collaboration patterns that promote the integration of 
robotic technology into the traditional construction 
industry.  

3 Methodology 
 An in-depth literature review was initially conducted 

to identify these constraint factors, such as time, cost, and 
quality [12]. Subsequently, a survey was conducted 
among six distinct stakeholder groups. The invited 
experts were asked to score their satisfaction with 
implementing construction robots for mitigating 
constraint factors using a 1–5 Likert scale.  The experts 
were selected using the Delphi method [13]. The 
reliability of questionnaire responses was verified using 
Cronbach’s α. During the data analysis phase, 
stakeholder groups were first clustered into segments 
based on similar scoring patterns using the k-means 
algorithm. This segmentation facilitated a focused and 
targeted finding by refining observations from individual 
stakeholder groups. Further, factor scores within 
stakeholder segments were ranked using the mean score 
ranking to elucidate primary concerns and interests. The 
detailed research methodology and findings are 
explained below. 

3.1 Identify constrain factors  
A systematic literature review was conducted in this 

section to search for constraint factors. The constraints 
are the factors that prevent construction process from 
progressing smoothly. Scopus was chosen for the 
following reasons: 1) Scopus has frequently been 
employed in construction-related review studies [14]. 2) 
Scopus covers a broader range of disciplines, including 
engineering, construction, and management, and has the 
potential to index construction constraint management 
papers [15]. 3) Scopus contains more recent citations and 
provides the most recent research findings, which is 
critical for staying current in rapidly evolving fields [16]. 
To narrow the search scope of construction constraints, 
the following search keywords were used: “construction,” 
“industry,” and “constraint.” The search string used was 
“article title, abstract, keywords.” A total of 1925 papers 
with constraint analysis were chosen to identify 
constraint factors. 

VOSviewer, a popular bibliometric analysis tool, was 
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employed to extract and classify constraint factors 
efficiently. The searched literature was specifically 
exported from Scopus into a “.csv” file, then imported 
into VOSviewer for keyword analysis. The VOSviewer’s 
keywords co-occurrence analysis section was used to 
extract and summarize keywords from the 1925 papers 
automatically. Figure 2 depicts the visualization of 
keyword occurrences. As can be seen, a comprehensive 
visualization of constraint words, such as “cost,” “time,” 
and “quality,” can be obtained. 

 
Figure 2. Keywords co-occurrence map 

From the keyword co-occurrence map, a total of ten 
constraint factors were identified. Table 1 lists and 
describes the identified factors. The factor “time” refers 
to time delays that affect the smooth construction process. 
The factor “cost” refers to budgetary constraints and cost 
overruns that affect project profitability. The factor 
“quality” refers to the issue of quality compromise, 
which causes safety concerns. The factor “environment” 
includes concerns for the environmental impact of 
construction activities. The factor “safety” is concerned 
with ensuring the well-being of construction workers in 
order to prevent accidents and injuries. The term “labour 
shortage” refers to the shortages of skilled workers. The 
factor “communication” involves difficulties in the 
insufficient exchange of information among project 
stakeholders, which is critical for coordinating activities. 
The factor “partnership” refers to concerns about 
collaboration and coordination among various entities 
caused by the fragmented and diverse nature of 
construction activities and a lack of trust in cooperation. 
The factor “production” refers to the problem of 
inefficient material and machinery production to meet 
project demands. The factor “logistics” refers to the 
problem of inefficient material, equipment, and 
personnel transportation, which is critical for the timely 
delivery of resources to the construction site and 
minimizing disruptions to the workflow.  

Table 1 Constraint factors and their description 

ID Factor Description 
F1 Time Schedule delay problem 

F2 Cost Budgetary limitation and 
cost overruns 

F3 Quality Quality compromise 
problem 

F4 Environment Concerns related to the 
ecological impacts 

F5 Safety Hazardous caused by 
accidents and injuries 

F6 Labour 
shortage 

Lacking availability of 
skilled workers 

F7 Communicat
ion 

Inadequate exchange of 
information  

F8 Partnership 
Hesitations on the 
collaboration and 
coordination 

F9 Production Inefficient production of 
materials and machinery 

F10 Logistics 
Lacking efficient 
movement and 
transportation  

3.2 Score satisfaction 
To investigate customer satisfaction with employing 

construction robots to alleviate the identified constraints, 
a questionnaire survey was conducted. In Hong Kong in 
2023, an electronic questionnaire was generated using 
Google Form and distributed to invited experts via e-mail 
and mobile messaging with a web link. Using a five-point 
Likert scale, the experts were asked to express their 
professional views on whether they satisfied with using 
construction robots to alleviate the ten constraint factors 
(1 = strongly agree; 2 = agree; 3 = neutral; 4 = disagree; 
5 = strongly disagree). The Likert scale method was 
chosen due to its ease of quantifying and rating the level 
of satisfaction with individual constrain factors based on 
the opinions of multiple stakeholders. 

56 effective respondents were collected. The 56 
responses can be considered sufficient because it has 
been proven that a median of 32.5 to 40 participants is 
acceptable in phenomenological studies [17]. The 
response rates of government departments, developers, 
consulting firms, main contractors, sub-contractors, and 
universities are 40%, 35%, 40%, 40%, 65%, and 60%, 
respectively. 

The invited experts involve six stakeholder groups: 
consulting firms, government departments, main 
contractors, real estate developers, subcontractors, and 
universities. The distributions of the six stakeholder 
groups are shown in Figure 3. All the stakeholder groups 
are regarded as the prominent participants in the 
construction industry [18]. Only those with experience in 
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construction technology and advanced construction 
technology, including construction robotics, were invited. 
The reliability and credibility of the research can be 
ensured because: 1) Most of them, especially the 
university professors, have both industry and academic 
experience. Survey participants with multiple 
backgrounds across organizations provide more valid 
responses [19]. 2) 82% of the experts held top positions 
in their organizations, such as senior or executive level 
(30%). 3) 82% of the experts have more than five years 
of working experience in the construction industry and 
grasp knowledge of construction robotics.

Figure 3. Distribution of investigated experts

3.3 Data analysis
3.3.1 Reliability testing

Cronbach’s alpha coefficient was first measured to 
test the reliability of the collected response. Cronbach’s 
alpha presents response reliability by measuring the 
internal consistency of the satisfaction scores on each 
constraint factor. Cronbach’s alpha measures the degree 
of consistency on a standardized scale ranging from 0 to 
1. A higher Cronbach’s alpha indicates higher reliability 
because a participant is likelier to provide similar scores 
for the assessment items [20].

The responses were first imported into the SPSS 
software to compute the Cronbach’s alpha index. A
Cronbach’s alpha value of 0.89 was obtained, indicating 
the acceptable reliability of the responses.

3.3.2 Stakeholder segmentation

Stakeholder groups with similar characteristics were 
segmented to investigate overall concerns and interests 
among different stakeholder groups, explore potential 
collaborative possibilities, and provide targeted solutions. 
K-means, a widely used unsupervised machine learning 
technique, was employed to do so. The k-means 
clustering algorithm divides a dataset into distinct and 
non-overlapping groups by assigning data points to 
clusters iteratively based on their proximity to each 
cluster's mean (centroid). The k-means algorithm has 
been widely used in customer segmentation due to its 

simplicity, versatility for clustering numerical data, and 
intuitive approach. For instance, [21] utilized a k-means 
algorithm to cluster customers to study how well a 
specific product performs in terms of marketing. The 
findings were proven more accurate by introducing the k-
means algorithm, an unsupervised learning-based 
processing method. Because of the scattered nature of the 
scoring data, this study employed the k-means algorithm 
to cluster the six stakeholder groups to find hidden 
satisfaction patterns.

Specifically, the initial cluster centroids were 
determined by randomly selecting several K points from 
the dataset. Second, each data point was assigned to the 
cluster centroid that was closest to it, and the distance 
between the data point and the assigned cluster centroid 
was calculated using Euclidean distance (see Equation 
(1)). Finally, the centroid points were updated, the data 
points were reassigned, and the distance was calculated 
again. Steps 2 and 3 were repeated until the sum of the 
distances (computed using Equation (2)) reached the 
minimum to determine the cluster centroid and the 
specific cluster of each point.

𝑑(𝑑𝑖, 𝑐𝑖) = √(𝑥𝑑𝑖 − 𝑥𝑐𝑖)
2 + (𝑦𝑑𝑖 − 𝑦𝑐𝑖)2 (1)

𝑑𝑗 = ∑ 𝑑(𝑑𝑖, 𝑐𝑖)

𝑘

𝑖=1

(2)

Here: 𝑑(𝑑𝑖, 𝑐𝑖) refers to the distance between the data 
and centroid points. 𝑑𝑖 and 𝑐𝑖 refer to the 𝑖 − 𝑡ℎ data 
point and centroid point, respectively. 𝑥𝑑𝑖 and 𝑥𝑐𝑖 refers 
to the 𝑖 − 𝑡ℎ 𝑥 coordinates of the data point and the 
centroid point. 𝑦𝑑𝑖 and 𝑦𝑑𝑖 refers to the 𝑖 − 𝑡ℎ 𝑦
coordinates of the data point and the centroid point. 𝑑𝑗
refers to the sum of the distance. 𝑘 means there are 𝑘 −
𝑡ℎ centroid points in total.

To determine the optimal number of clusters, the 
elbow method was employed. First, the within-cluster 
sum of squared errors (SSE) for various centroid point 
values was calculated. When the SSE value first begins 
to decrease, the optimal number of centroid points 
appears.

The algorithm was coded using the Python language. 
The KMeans package of the sklearn.cluster library was 
employed to execute the k-means algorithm.

3.3.3 Mean score ranking

The significance of factors was determined using a 
widely used data statistic approach, the mean score 
ranking method [22]. Using Equation (3), the 1-5 Likert 
scale scores, representing customers' satisfaction with 
using construction robots to mitigate constraints, are 
averaged across all score sets. The lower the mean score, 
the higher the satisfaction because the scoring was 
presented on a scale of 1 = strongly agree, 2 = agree, 3 = 
neutral, 4 = disagree, and 5 = strongly disagree.

grasp knowledge of construction robotics

14%

16%

11%
23%

14%

22% Consulting
Main Contractor
Developer
Sub Contractor
Government
University
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Here 𝑋𝐹   refers to the mean score for factor F. 𝑛
refers to the number of customers in a stakeholder 
segment. 𝑋𝑖𝐹 refers to the score for factor F of each 
stakeholder.

4 Results
Figure 4 depicts the computed SSE values, which 

indicate the optimal number of clustering centers. As can 
be seen, when the number of cluster centers reaches 3, 
the elbow point appears. Before that, the SSE value drops 
dramatically from 200 to 13.5. After that, the SSE value 
steadily decreases from 13.5 to 0.05 as the cluster center 
number increases from 3 to 6, after which the SSE value 
remains constant. As a result, the optimal cluster center 
number was determined to be 3, the SSE curve’s elbow 
point. 

Figure 4. Visualization of SSE result

Figure 5 depicts the results of segmentation for six 
different stakeholder groups. The initial number of 
cluster centers was set to three based on the SSE 
computation result. The six stakeholder groups are 
represented by the x-coordinate in the following order: 0-
consulting, 1-main contractor, 2-developer, 3-
subcontractor, 4-government, and 5-university. The 
mean scores of the ten constraint factors are represented 
by the y-coordinate. The mean values were used as a 
representation of all observations [23] and were fed into 
the k-means algorithm instead of the initial scores. The 
blue dots represent each stakeholder’s mean score, while 
the red triangle represents the cluster centers.

Figure 5. Stakeholder segmentation.

Based on their preferences, the six stakeholder groups 
were categorized into three groups. Segments 1, 2, and 3 
consist of government and university, developer and 
subcontractor, consulting and main contractors, 
with (0.53, 0), (2.68, 2) cluster centers, respectively. The 
majority of the stakeholders are confident of utilizing 
construction robots to alleviate constraint factors, as 
indicated by the distribution of their mean scores, which 
range from 1 to 3. To facilitate an in-depth discussion of 
customer satisfaction, the distribution of each 
stakeholder’s satisfaction score is detailed below.

5 Discussion

5.1 Satisfaction analysis among stakeholders
Figure 6 demonstrates stakeholders’ satisfaction 

scores for each constraint factor, reflecting how satisfied 
stakeholders are when employing construction robots to 
mitigate constraints. Overall, the majority of the 
stakeholders show a neutral or positive attitude. The 
areas with satisfaction scores of 2 overlap. the most, with 
nearly 48% of the stakeholders agreeing that using 
construction robots can help improve constraints to some 
degree. It is also worthwhile to be aware of any potential 
acceptance hesitations. The overlap area of scores of 3 
ranks second, with nearly 26% of stakeholders holding a 
neutral attitude toward the effect of construction robots. 
A general industry concern about embracing rapid 
technological changes when there is no apparent 
productivity or financial benefit may result in neutral 
attitudes [24]. A lack of familiarity and hands-on 
experience may also contribute to a cautious attitude [25]. 
While nearly 7% of stakeholders scored a 5, they strongly 
opposed the adoption of construction robots.

𝑋𝐹 =
1

𝑛
∑ 𝑋𝑖𝐹

𝑛

𝑖=1

(3)
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Figure 6. Satisfaction scores of stakeholder 
groups on constraint factors

It can be seen that stakeholder segment 2 (developer 
and subcontractor) is currently the most satisfied with 
construction robots. Almost all of them showed a 
satisfaction score of 2. It’s interesting that experienced 
experts are more likely to accept construction robots. All 
of the stakeholders in the second segment are 
experienced experts who hold senior or executive-level
positions in their organizations. Most of them have more 
than 20 years of experience in the construction industry. 
Senior-level stakeholders with extensive construction 
industry experience have most likely witnessed and 
adapted to various technological advancements. They 
may be more open to accepting and embracing 
construction robots because of a history of adapting to 
new technologies [26]. Senior and executive-level 
stakeholders are often critical in shaping the strategic 
direction. Their long-term perspective allows them to see 
construction robots’ potential transformative impact.

Another pattern is that stakeholders more familiar 
with construction robotics are more likely to accept it. 
Construction robots are well-known to nearly 84.2% of 
stakeholders in the second segment. Customers familiar 
with construction robots are likely to have firsthand 
knowledge of or exposure to the technology [27]. These 
customers may have received education or training on 
using and benefitting from construction robots. This 
hands-on experience allows them to comprehend the 
practical benefits, operational capabilities, and potential 
benefits that construction robots bring to projects.

The satisfaction of experienced and familiar 
customers may indicate that the market is ready for more 
widespread adoption of construction robots. Positive 
feedback from these customers validates the practical 
benefits and dependability of construction robots, 
indicating that it is an appropriate moment to invest in the 
product further. The finding is consistent with [28], 
which claims that familiar and experienced customers 
indicate product credibility. If the product, including all 
the forms of construction robot products, such as 
mechanical arm, elements, and the services, currently 

meets the needs of experienced and familiar users, it may 
be worth investigating possibilities to diversify its 
applications or functionalities. It is critical to continue 
collecting feedback to improve continuously [29]. 
Furthermore, the findings highlight the importance of 
educating potential users on the benefits and capabilities 
of construction robots. Increased awareness can lead to 
increased user satisfaction [30].

5.2 Satisfaction analysis of constraint factors
Although stakeholders in the second segment have a 

positive attitude, some experts, particularly in the third 
stakeholder segment, have expressed their unwillingness 
to accept construction robots. The satisfaction scores of 
4 and 5 appear 21 times, indicating that these 
stakeholders disagree or strongly disagree about the 
effectiveness of using construction robots to mitigate 
constraints. This section discusses the mean score 
ranking of satisfaction scores for each constraint factor 
provided by the stakeholders in segment 3 (government 
and university) to identify key concerns that impede the 
acceptance of construction robots and suggest 
improvement possibilities.

Figure 7. Mean score ranking of satisfaction 
scoring on each constraint factor

Figure 7 depicts the ranking of satisfaction scores on 
each constraint factor by mean score. It can be seen that 
the top two concerns are constraint factors F2 (cost) and 
F8 (partnership). The findings show that some customers 
believe there is no obvious benefit to using construction 
robots to reduce construction costs and increase 
partnership collaborations. While it may appear 
counterintuitive for government and universities to be 
concerned about the high overall cost of using 
construction robots because they do not directly lead 
construction projects. There are several reasons behind:
1) Government is subject to budget constraints. Concerns 
about high costs reflect a sense of responsibility to 
taxpayers as well as the need to demonstrate responsible 
use to prevent public resources from overspending [31].
2) Universities frequently collaborate on research 
projects with industry partners. If the cost of 
implementing construction robots is perceived to be high, 
it may influence industry partners’ willingness to engage 

improvement possibilities.
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in collaborative ventures, affecting research 
opportunities and industry-academic partnerships [32].  

Customers in government and universities are 
dissatisfied with the performance of construction robots 
in improving partnership collaborations, in addition to 
the high cost. Building strong social networks and 
enhancing collaboration is critical for universities to 
apply for research funding and conduct research [33]. As 
a result, they expect the construction robots to be able to 
improve collaboration among various stakeholders to 
ensure a smooth construction process. Governments are 
in charge of the regulatory frameworks that govern 
industries. If construction robots cannot improve 
partnership collaboration, it may impede the creation of 
an environment conducive to the successful integration 
of all participants [34]. 

Cost-cutting strategies such as flexible leasing and 
financing options are suggested to alleviate customer 
concerns about high costs. Offering alternatives to 
outright purchase can alleviate financial burdens and 
make construction robot adoption more accessible [35]. 
Designing construction robots in a modular manner to 
facilitate adaptability and scalability has the potential to 
increase customer acceptance. Customers may begin 
with a smaller investment and scale up as needed, 
matching the cost to the specific needs of their projects 
[36]. 

Focusing on the concept of human-robot teaming, in 
which construction robots supplement rather than replace 
human skills, may help address the partnership 
collaboration issue [37]. It is also suggested that features 
such as natural language processing, gesture recognition, 
and real-time communication interfaces be included to 
improve collaboration and provide advanced 
communication capabilities to construction robots. 
Developing construction robots that can adapt to the 
dynamic and fragmented nature of construction 
workflows is also recommended. Using machine learning 
algorithms and artificial intelligence (AI) to enable 
robots to understand and respond to changes in tasks, 
schedules, and team dynamics promotes better 
coordination.  

6 Conclusion  
Due to the limited adoption of various prototypes, a 

comprehensive investigation into customer satisfaction 
and acceptance of construction robots has been 
conducted. To do so, stakeholders’ satisfaction level on 
using construction robots to mitigate constraints, such as 
cost and time, were analyzed. Ten constraint factors were 
identified through a systematic literature review. Their 
satisfaction scores were given using a Likert scale via a 
questionnaire survey. To target satisfaction patterns 
among multi-stakeholders, six stakeholder groups with 

similar preference were divided into three segments 
using the k-means algorithm. The average score ranking 
of constraint factors revealed existing concerns and 
improvement possibilities. These findings contribute to 
our understanding of customer satisfaction and 
acceptance for the developed construction robot 
prototypes while also providing actionable detailed 
insights for further improving their functionality. 
However, the results are more specific to the 
development of construction robotics within Hong Kong. 
Although the construction industry in Hong Kong is 
representative on a global scale, further study intends to 
extend scopes by conducting investigations across 
various regions to achieve comprehensive insights. 

References 
[1] Walzer, Alexander N., et al. Beyond googly eyes: 

stakeholder perceptions of robots in construction. 
Construction Robotics, 6.3 (2022): 221-237. 

[2] Heikkilä, R., et al. Development of an earthmoving 
machinery autonomous excavator development 
platform. In Proceedings of the International 
Symposium on Automation and Robotics in 
Construction, pages 1005-1010, Alberta, Canada, 
2019. 

[3] Furet, B., et al. 3D printing for construction based 
on a complex wall of polymer-foam and concrete. 
Additive Manufacturing, 28: 58-64, 2019. 

[4] Wang, Y., et al. Intelligent spraying robot for 
building walls with mobility and perception. 
Automation in Construction, 139 :104270, 2022. 

[5] Chen, Xinxing, et al. Robot for automatic waste 
sorting on construction sites. Automation in 
Construction, 141: 104387, 2022. 

[6] Chang, S. et al. Evolution pathways of robotic 
technologies and applications in construction. 
Advanced Engineering Informatics, 51, 101529, 
2022.  

[7] Pan, W., Hu, R., Linner, T., & Bock, T. A 
methodological approach to implement on-site 
construction robotics and automation: a case of 
Hong Kong. Proceedings of 35th International 
Symposium on Automation and Robotics in 
Construction, 362–369, 2018. 

[8] Ramadhani, F., et al. Determinants of web-user 
satisfaction: using technology acceptance model. In 
MATEC Web of Conferences, pages 05009, West 
Sumatra, Indonesia, 2018.  

[9] Song, J., et al. Exploring the influence of system 
quality, information quality, and external service on 
BIM user satisfaction. Journal of Management in 
Engineering, 33(6), 04017036, 2017. 

[10] Zhang, H. M., Chong, H. Y., Zeng, Y., & Zhang, W. 
The effective mediating role of stakeholder 
management in the relationship between BIM 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1212



 
 

implementation and project performance. 
Engineering, Construction and Architectural 
Management, 30(6), 2503-2522, 2023. 

[11] Sun, Y., et al. What motivates people to pay for 
online sports streaming? An empirical evaluation of 
the revised technology acceptance model. Frontiers 
in Psychology, 12, 619314, 2021. 

[12] Tanko, B. L. et al. Stakeholders assessment of 
constraints to project delivery in the Nigerian 
construction industry. International Journal of Built 
Environment and Sustainability, 4(1). 2017. 

[13] Lund, S., et al. Applying stakeholder Delphi 
techniques for planning sustainable use of aquatic 
resources: experiences from upland China, India 
and Vietnam. Sustainability of Water Quality and 
Ecology, 3, 14-24, 2014. 

[14] Utama, W., et al. Review of research trend in 
international construction projects: a bibliometric 
analysis. Construction Economics and 
Building, 16(2), 71-82, 2016. 

[15] El-adaway, I. H., et al. Analytic overview of citation 
metrics in the civil engineering domain with focus 
on construction engineering and management 
specialty area and its subdisciplines. Journal of 
construction engineering and 
management, 145(10), 04019060, 2019. 

[16] Pranckutė, R. Web of Science (WoS) and Scopus: 
The titans of bibliographic information in today’s 
academic world. Publications, 9(1), 12, 2021. 

[17] Saunders, M. N., et al. (2016). Reporting and 
justifying the number of interview participants in 
organization and workplace research. British 
Journal of Management, 27(4), 836-852. 

[18] Law, K. et al. Factors influencing adoption of 
construction robotics in Hong Kong’s industry: A 
multistakeholder perspective. Journal of 
Management in Engineering, 38(2), 04021096, 
2022. 

[19] Mena, S. et al. Input and output legitimacy of multi-
stakeholder initiatives. Business Ethics Quarterly, 
22(3), 527-556, 2012. 

[20] Wang, X., et al. When public participation in 
administration leads to trust: An empirical 
assessment of managers’ perceptions. Public 
administration review, 67(2), 265-278, 2007. 

[21] Narayana, V. L., et al. Mall customer segmentation 
using machine learning. In 2022 International 
Conference on Electronics and Renewable Systems 
(ICEARS), pages 1280-1288, Tuticorin, India, 2022. 

[22] Whitehurst, D. G., et al. Systematic review and 
empirical comparison of contemporaneous EQ-5D 
and SF-6D group mean scores. Medical Decision 
Making, 31(6), E34-E44, 2011. 

[23] He, Q., et al. Machine condition monitoring using 
principal component representations. Mechanical 

Systems and Signal Processing, 23(2), 446-466, 
2009. 

[24] Uher, T.  et al. Risk management in the conceptual 
phase of a project. International journal of project 
management, 17(3), 161-169, 1999. 

[25] Hopcan, S. et al. Exploring the artificial intelligence 
anxiety and machine learning attitudes of teacher 
candidates. Education and Information 
Technologies, 1-21, 2023. 

[26] Turja, T., et al. Robot acceptance at work: a 
multilevel analysis based on 27 EU countries. 
International Journal of Social Robotics, 11(4), 
679-689, 2019. 

[27] Wu, Y. H., et al. Acceptance of an assistive robot in 
older adults: a mixed-method study of human–robot 
interaction over a 1-month period in the Living Lab 
setting. Clinical interventions in aging, 801-811, 
2014. 

[28] Kharouf, H., et al. A signaling theory approach to 
relationship recovery. European Journal of 
Marketing, 54(9), 2139-2170, 2020. 

[29] Luchs, M. G., et al. Perspective: A review of 
marketing research on product design with 
directions for future research. Journal of Product 
Innovation Management, 33(3), 320-341, 2016. 

[30] Eom, S. B., et al. The determinants of students' 
perceived learning outcomes and satisfaction in 
university online education: An empirical 
investigation. Decision Sciences Journal of 
Innovative Education, 4(2), 215-235, 2006. 

[31] Listokin, Y. et al. I like to pay taxes: Taxpayer 
support for government spending and the efficiency 
of the tax system. Tax L. Rev., 66, 179, 2012. 

[32] Freitas, I. et al. University–industry collaboration 
and innovation in emergent and mature industries in 
new industrialized countries. Research Policy, 
42(2), 443-453, 2013. 

[33] Huang, J. et al. Building Research Collaboration 
Networks--An Interpersonal Perspective for 
Research Capacity Building. Journal of Research 
Administration, 45(2), 89-112, 2014. 

[34] Haley, U. et al. Government policy and firm 
strategy in the solar photovoltaic industry. 
California Management Review, 54(1), 17-38, 2011. 

[35] Bertini, M., et al. The ends game: How smart 
companies stop selling products and start delivering 
value. MIT Press, 2020. 

[36] Shao, Y., et al. Mitigating investment risk using 
modular technologies. Computers & Chemical 
Engineering, 153, 107424, 2021. 

[37] Kim, Y., et al. Delegation or collaboration: 
Understanding different construction stakeholders’ 
perceptions of robotization. Journal of 
Management in Engineering, 38(1), 04021084, 
2022. 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1213



PESTEL Analysis of Factors Influencing the Demand and 
Supply of Modular Construction: Perspectives from Hong 

Kong 

Yidan Zhang1, Wei Pan1 and Mi Pan2 

1 Department of Civil Engineering, The University of Hong Kong, Hong Kong, China 
2 Department of Civil and Environmental Engineering, University of Macau, Macau, China  

ydzhang@connect.hku.hk, wpan@hku.hk, mipan@um.edu.mo 
 
Abstract –  

Modular construction (MC) shifts labour-
intensive site-based activities to an off-site controlled 
environment through prefabrication, and is deemed 
an innovative approach for industry transformation. 
To maximise the benefits of MC, there is a need to 
predict the demand volume and supply capacity to 
inform proactive and strategic supply chain planning 
and development. This study aims to provide a 
holistic exploration of the factors influencing the MC 
market, based on a literature review and a study of 
the case of modular integrated construction (MiC) in 
Hong Kong. A systematic framework was proposed 
with 15 demand-related factors and 10 supply-related 
factors to explain the complex influential mechanism 
from the political, economic, social, technological, 
environmental, and legal (PESTEL) perspectives, 
which contribute to the understanding of the dynamic 
evolution of the MiC market. The findings revealed 
that the influencing factors are manifold, with the 
political factors influencing the MiC demand the most 
and the economic factors determining the 
development pattern of the MiC supply. The 
presented study lays a foundation for the 
establishment of a practical MC demand-and-supply 
model for better market planning. Attention should 
be devoted to rationalising the quantification of 
qualitative factors in future research. 

 
Keywords – 

Modular Construction; Demand and Supply; 
Market Dynamics; Influencing Factors; PESTEL 
Analysis 

1 Introduction 
Housing shortage has plagued many metropolitan 

areas. To meet the growing demand for housing and 
satisfy citizens’ wishes towards better living standards, 
modular construction (MC) has gained increasing 

attention for its various benefits. Pan and Zhang [1] 
revealed that both concrete and steel modular systems 
outperform their conventional counterparts, reflected by 
heightened environmental sustainability (e.g. 46-87% 
reduction in waste disposal), improved social harmony 
(e.g. no records of accidents in modular works), and 
significantly improved economic efficiency (e.g. 32-50% 
increase in speed of superstructure construction). Owing 
to the enhanced sustainability of the modular approach, 
the governments of many countries and regions have 
actively advocated its adoption through various terms, 
such as modular integrated construction (MiC) in Hong 
Kong [2, 3], prefabricated prefinished volumetric 
construction (PPVC) in Singapore [4], and permanent 
modular construction (PMC) in the United States [5]. 

Nevertheless, due to the infancy nature of MC and its 
incomplete supply chain in many areas, the prospects of 
the MC market are full of uncertainties in the form of 
demand variability and supply capability [6]. The lack of 
anticipation of the MC market can be fatal to both the 
demand and supply sides. The imbalance of MC demand 
and supply can lead to the bankruptcy of factories due to 
insufficient orders, or unfulfilled MC demand and high 
prices due to the lack of supplier alternatives [7]. In 
reality, modular firms have witnessed some publicised 
failures, such as Urban Splash and Katerra [7, 8]. Despite 
the importance of MC market analysis, previous research 
solely focused on the demand side, such as exploring the 
drivers, constraints, and strategies for MC adoption [4, 9], 
while neglecting the upstream supply side. Few papers 
displayed a sense of supply chain management and 
provided a broad analysis of the evolving MC demand 
and supply. To optimise mass production, it is imperative 
to have a clear vision of the MC market to support the 
formulation of proactive government strategies and 
corporate plans for MC development. Therefore, there is 
an urgent need to understand the factors influencing MC 
market dynamics, which have not yet been fully explored. 

To address the research gap, this study aims to 
explore the factors influencing MC demand and supply 
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systematically through a literature review and a study of 
the case of MiC in Hong Kong. MiC encompasses all 
aspects of MC with the highest degree of integration of 
diverse construction activities [9]. Subsequently, Section 
2 introduces the research methodology. Then, the 
influencing factors of the MiC demand and supply are
structured into political, economic, social, technological, 
environmental and legal (PESTEL) aspects and 
delineated in Section 3. Section 4 discusses the findings 
of the study, followed by the conclusions in Section 5.

2 Methodology
The research was carried out in four main stages to 

analyse the factors influencing the MC demand and 
supply (see Figure 1). 

The first stage was factor identification through a
literature review. The reviewed literature covered
construction demand prediction, housing supply 
modelling, diffusion of innovation, and MC adoption-
related research. Factors were extracted through content 
analysis and those with similar meanings were merged.

The second stage was factor verification using a case 
study. As the relevant literature was limited and the 
influencing factors were context-sensitive, the case of 
MiC in Hong Kong and its supply chain in the Greater 
Bay Area (GBA) of China was used to supplement and 
adjust the factors [11]. The GBA is a mega-region that 
consists of nine major cities in Guangdong Province and 
two special administrative regions - Hong Kong and 

Macao. The case study was conducted using two 
interrelated methods: factory and site visits and 
interviews. Six group interviews were conducted during 
or after the visits with the managers and engineers in a 
semi-structured manner. All the respondents had over 
five years of working experience with MiC. Each 
interview lasted around 30 minutes to collect their basic 
and intuitive views on the topic. Table 1 presents the 
research activities conducted for the study. Data collected 
from the interviews were documented. Then, the factors 
were extracted from the records and synthesised.

Figure 1 Research stages and methods

Table 1 Details of the case study 

Factory visit Supplier 1 Supplier 2 Supplier 3

MiC supplier

Product type Concrete MiC Steel MiC Concrete and steel MiC
Location Guangzhou, Guangdong Foshan, Guangdong Zhuhai, Guangdong

Follow-up interview 3 suppliers 2 suppliers 3 suppliers
Site visit Project 1 (mockup) Project 2 (mockup) Project 3

Construction sites

Project type Public housing Private residential building Affordable housing
Location Hong Kong Hong Kong Shenzhen, Guangdong

Follow-up interview 1 client and 2 contractors 1 client and 1 contractor 1 contractor and 2 from the 
industry institution
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The third stage employed the PESTEL analysis. 
PESTEL stands for political, economic, social, 
technological, environmental, and legal, offering a 
holistic guiding tool for scrutinising a wide spectrum of 
‘climate’ elements for marketing planning [12]. Political 
factors refer to government intervention in the MiC 
market. Economic factors can significantly affect MiC 
market sentiment due to the cost-conscious culture in 
construction. Social factors mainly concern labour 
conditions, health consciousness and cultural aspects. 
Technological factors focus on MiC itself and the 
changes in the technological landscape. Environmental 
factors reflect the sustainable concerns and geographical 
constraints in practice. Legal factors focus on the 
regulatory environment for MiC, such as the approval 
process and design standards. The identified factors were 
divided into the demand and supply sides, and further 
grouped based on the PESTEL perspectives. 

The fourth stage proposed a PESTEL framework of 
the factors influencing the MiC demand and supply, 
generating valuable theoretical and practical implications 
for market forecasting and supply chain configuration. 

3 PESTEL analysis of factors influencing 
the demand and supply of MC 

The influencing factors identified from the 
construction engineering and management literature and 
the case study are summarised from the six PESTEL 
aspects in Table 2 and elaborated below. 

3.1 Political perspective 
Political factors refer to government intervention in 

the MiC market, taking the forms of tax policy, financial 
incentives, and mandatory requirements [13]. The current 
MiC demand in Hong Kong is primarily driven by 
government policies. Since 2017 when MiC was first 
included in the Chief Executive’s Policy Address 2017 
[2], a series of policies have been put in place to facilitate 
MiC development, reflecting a strong and pivotal push 
from the change agent. The most important political 
factor emphasised by the interviewees is the policy 
incentives for MiC implementation, such as the 10% 
gross floor area concession incentives and the 
Construction Innovation and Technology Fund (CITF) 
for MiC promotion. In addition to the financial incentives, 
the government has also formulated various policy 
initiatives to stimulate MiC adoption in the public sector. 
During the COVID-19 pandemic, MiC was promoted for 
the construction of modular quarantine camps due to its 
well-recognised advantages of fast delivery [14]. In 2020, 
the Development Bureau announced that government 
building projects with total construction floor area larger 
than 300m2 under the Capital Works Programme are 

mandated to adopt MiC [15]. The Policy Address 2022 
advocated for MiC adoption in public housing and set an 
ambitious adoption rate of no less than 50% from 
2028/29 to 2032/33 [16]. These policies have sparked 
investments in MiC in the public sector, evidenced by the 
increasing number of modular buildings commenced, 
while MiC adoption in the private sector is still trailing. 

As for the MiC supply in the GBA, the national and 
local governments have issued relevant policy measures 
to augment the supply of prefabricated buildings, of 
which MiC is a kind of product with the highest degree 
of prefabrication and integration but not the mainstream 
one. In 2017, Shenzhen was included in the first batch of 
national prefabricated building demonstration cities, and 
in 2020, Foshan earned selection in the second batch [17, 
18]. As of 2022, 22 companies have been selected as the 
national prefabricated industrial bases and 83 companies 
(78 in the GBA and 5 in the other cities of Guangdong) 
have been selected as the provincial ones [17-19]. In 
addition, the government announced that prefabricated 
buildings would account for more than 50% of new 
buildings in Guangdong by 2030 [19]. Noticeably, the 
interviewee from the industry institution indicated that 
the boom in prefabricated buildings as well as the 
emergence of MiC in the GBA would increase factories’ 
supply capacity. This may be accompanied by a decrease 
in the proportion allocated to Hong Kong, but a high 
possibility for an increase in the absolute quantity of MiC 
supplied to Hong Kong. Overall, the government focused 
on leveraging the leading role of demonstration cities and 
industrial bases and the pull effects of the market demand 
to enhance the supply capability of prefabricated 
products including MiC, highlighting the whole supply 
chain synergy. 

3.2 Economic perspective 
Economic factors are the determining factors that 

affect the MiC market sentiment in the context of a cost-
conscious culture in construction [9]. From the demand 
side, the perceived relative advantages of MiC in the 
economic aspect (e.g. reduced construction time and cost, 
improved quality, and enhanced productivity) are one of 
the most important driving forces for adopting this 
innovative approach [6, 9]. Besides, according to the law 
of supply and demand, the MiC demand will increase 
along with the improvement of MiC manufacturers’ 
supply capability and its resulting cost-effectiveness. 
Another important factor is the construction demand in 
the various building sectors and the favourable economic 
environment for construction. As construction demand 
increases, there is a likelihood of a concurrent increase in 
the MiC demand. Factors may influence the construction 
demand include population and household, gross 
domestic products, interest rate, labour employment, and 
housing stock and price [20-23, 31].
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Table 2 PESTEL analysis of the key factors influencing MiC demand and supply  

Category Factors from the demand side Factors from the supply side 
Political 
perspective 

 Economic incentives for MiC promotion (e.g. provision 
of innovation fund) [9, 13, 23, 29, 30, 33, 36, E] 

 Policy initiatives for MiC promotion (e.g. setting targets 
for MiC adoption rate) [9, 13, 26, 33, E] 

 Policy support for MiC 
manufacturers [E] 

Economic 
perspective 

 Relative advantages in the economic aspect (e.g. time- 
and cost-efficiency, better quality performance) [6, 9, 
25-28, 33, 34] 

 Supply capability of MiC manufacturers [6, 9, 23, 24, 
28-30, 33, 36, E] 

 Construction demand [29, 32, E] 
 Economic environment (e.g. interest rate) [20-22, 31] 

 MiC market demand [9, 
22, E] 

 Profit earning [E] 
 Company strategic 

planning [E] 
 Market limitations (e.g. 

finance) [32] 
Social 
perspective 

 Relative advantages in the social aspect (e.g. improved 
health, safety, and welfare) [9, 25] 

 Labour conditions in Hong Kong (e.g. labour size, skill 
level) [9, 20-23, 29, 30, 31, 33, E] 

 End-user attitudes towards MiC [6, 9, 23, 26, 28, 30, E] 

 Labour conditions in the 
other GBA cities (e.g. 
labour size, skill level) 
[9, 20-23, 29, 31, 33] 

Technological 
perspective 

 Complexities of MiC implementation [4, 6, 9, 23-25, 28, 
30, 36] 

 Compatibility of MiC for different building sectors [25, 
28, E] 

 Successful MiC demonstration projects [9, E] 

 Adoption of innovative 
technologies in MiC [4, 
9, 23, E] 

 Sufficient eligible MiC 
suppliers [6, 9, 23, 24, 
28-30, 36, E] 

Environment 
perspective 

 Relative advantages in the environmental aspect (e.g. 
higher material utilisation) [9, 25, 27] 

 Geographical constraints on MiC implementation [4, 9, 
23, 24] 

 Achievement of 
sustainable goals [26] 

Legal 
perspective 

 Regulatory readiness for MiC implementation (e.g. 
improved approval procedures) [6, 9, 13, 23-26, 28-30, 
36, E] 

 Uniform standards and 
norms applicable to both 
Hong Kong and the 
other GBA cities [E] 

Note: E represents empirical evidence obtained from the case study. 
Hwang et al. [4], Feldmann et al. [6], Pan et al. [9], Jin et al. [13], Goh [20], Fan et al. [21], Jiang and Liu [22], Rahman [23], Choi 
et al. [24], Rogers [25], Jiang et al. [26], Choi et al. [27], Pan et al. [28], Mao et al.  [29], Wuni and Shen [30], Kim et al. [31], 
MacAskill et al. [32], Pan et al. [33], Shin et al. [34], Katebi et al. [35], Bello et al. [36], Pan et al. [37]  
 

The development pattern of the MiC supply is 
determined by economic considerations. The stable 
market demand for MiC and manufacturers’ capability of 
profit earning positively influence the strategic planning 
of the MiC suppliers [6]. Since MiC places special 
emphasis on ‘integration’, more high-value construction 
activities were shifted from sites to upstream factories [3], 
attracting great interest in increasing MiC supply 
capacity to grab more profits. Besides, the MiC supply is 
expected to expand in response to the growing demand 
for MiC after seeing the burgeoning MiC market in Hong 
Kong, exemplified by several major MiC suppliers (e.g. 
Suppliers 1 and 3) who have new factories in planning. 
In contrast, market limitations (e.g. availability of finance, 
regional space, planning and construction capacities) 
may constrain the expansion of MiC factories [32]. 

3.3 Social perspective 
Social factors mainly concern labour conditions, 

health consciousness and cultural aspects that affect the 
MiC market. With regard to the MiC demand, the severe 
labour ageing and shortage in Hong Kong have spurred 
the industry to find a way out, and MiC’s advantages in 
saving site labour have made the industry explore this 
innovative approach [9]. However, as MiC involves 
many challenging works (e.g. heavy crane operations), 
the lack of skilled workers with MiC experience may 
hinder the widespread of MiC [35]. In addition to the 
better economic performance of MiC, the perceived 
relative advantages in terms of the social aspect (e.g. 
improved health, safety and welfare for workers) are also 
one of the driving forces for MiC promotion. Besides, the 
interviewees emphasised the importance of end-user 
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attitudes towards MiC, because positive feedback from 
end-users can provide more confidence to developers and 
drive them to implement MiC in more projects. However, 
due to the current market preference for customized 
design, concrete structural systems, and conventional 
construction approaches, raising public awareness of 
MiC, such as through organising propagation campaigns, 
becomes a fundamental strategy for changing people’s 
perspectives and thus increasing the take-ups of MiC. 

Regarding the MiC supply, the major social barrier 
remains the labour issue. While the labour shortage in the 
other GBA cities may not be as acute as that in Hong 
Kong, the problem of ageing workers has become 
increasingly prominent [17]. Besides, the MiC suppliers 
argued that there is a shortage of mechanical, electrical 
and plumbing technicians with Hong Kong licenses to 
work in the factories in the Mainland, negatively 
influencing the supply capacity and production cycles. 
As such, the provision of regular training for the workers 
either in Hong Kong or in the other GBA cities is 
necessary for the rapid development of MiC. 

3.4 Technological perspective  
Technological factors focus on MiC itself and the 

impacts of changes in the technological landscape on the 
MiC market. As for the MiC demand, the complexity of 
MiC implementation (e.g. early design freeze, just-in-
time delivery, heavy-duty machine operations) is the 
prominent technological consideration, since it may 
amplify the stakeholders’ concerns about adopting MiC, 
thereby affecting the stakeholders’ top management and 
investment in MiC [4, 30, 34]. Compatibility refers to the 
degree to which MiC is perceived to be consistent with 
the values, experiences, and needs of the potential 
adopters [17]. Normally, experiences in prefabricated 
construction should help MiC diffusion as these 
knowledge and skills are transferable to the MiC field. 
Whereas, since prefabricated construction has been 
extensively used in public housing construction and has 
demonstrated acceptable time and cost performance, part 
of the stakeholders display reluctance to embrace change 
and to invest in new equipment and worker training [29]. 
Besides, the compatibility of MiC in different building 
sectors varies. For example, as MiC benefits can be 
maximised through standardisation, public housing, 
elderly homes and staff quarters with repeated design 
were regarded as most suitable for MiC [28]. In contrast, 
as indicated by one of the manufacturers in the interview, 
the ongoing private residential building project in the 
factory is highly customised with no repeated module 
designs on a typical floor. This feature poses a challenge 
to the compression of production cost due to the need for 
more module moulds, leading to market hesitance to use 
MiC in the private sector. In addition, successful MiC 
demonstration projects allow potential adopters to 

observe the MiC benefits and see the innovative approach 
being used by their peers [17]. 

Technological factors that influence the MiC supply 
were related to the integration of MiC and other 
innovative technologies (e.g. building information model, 
artificial intelligence, robotics), which has the potential 
to enhance operational efficiency and significantly 
elevate supply capacity. As observed in the factories, 
Suppliers 2 and 3 have introduced robotic arms to 
improve production. The other factor that influences the 
MiC supply is the availability of eligible MiC suppliers 
[6, 9, 23]. The respondent from the industry institution 
indicated that many manufacturers have extensive 
experience in prefabricated construction and are capable 
of, or intend to, shifting to producing MiC. However, the 
contractors are concerned about the availability of 
concrete MiC suppliers, because some markets such as 
housing prefer concrete MiC systems that are more 
technically demanding and can be manufactured by 
fewer suppliers [29]. 

3.5 Environmental perspective 
Environmental factors reflect the sustainable 

considerations and geographical constraints in MiC 
implementation. Regarding MiC demand, the perceived 
relative advantages in the environmental aspect (e.g. 
higher material utilisation, reduced impacts of noise, 
traffic and dust on the local community) can improve 
stakeholder and community satisfaction, thus increasing 
public acceptance of MiC adoption [1]. Whereas, the 
narrow streets and undulating terrain in Hong Kong 
impose restraints on module size, which may limit their 
utility and applicability across various scenarios and thus 
affect the widespread adoption of MiC. 

The environmental motivation for increasing MiC 
supply is from the need for sustainable development. As 
the construction industry is often characterised by high 
investments, elevated levels of waste and pollution, and 
diminished productivity, moving labour-intensive site 
works to a controlled manufacturing environment is 
regarded as a lean practice for achieving carbon 
neutrality. Under sustainable-driven urbanisation, the 
advantages of MiC may gain more policy support [26].  

3.6 Legal perspective 
Legal factors refer to the laws and regulations, but 

this study focuses on a suitable regulatory framework for 
MiC practice. From the MiC demand side, both the extant 
literature and the interviews revealed that the over-
stringent regulations and red tape in approval procedures 
pose a hindrance to the full realisation of MiC advantages, 
thereby impeding the formulation of market-driven MiC 
demand [9, 13]. According to an interviewee from a MiC 
manufacturer, the modules and connections are always 
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over-designed given the current strict regulations and the 
conservative review approach adopted by the 
governments, leading to cost escalation and waste of 
materials. In addition, the approval procedures of various 
government departments are time-consuming, bringing 
great uncertainties to process control [24].

Regarding MiC supply, the absence of 
comprehensive standards and codes for MiC
implementation leads to inefficient process operations 
and a lack of accountability structures [9]. Besides, due 
to the different regulations applied in Hong Kong and the 
other GBA cities (i.e. Hong Kong mainly follows the 
British standard system, but factories in Mainland China 
adopt the Chinese national standard), extra time and cost 
are spent on design, material sourcing and accreditation 
problems, hindering the efficient MiC supply.

4 Discussion
This study unveiled a variety of factors influencing 

MiC demand and supply from PESTEL perspectives, 
based on a comprehensive literature review and empirical 
evidence from Hong Kong. The identified influencing 
factors are manifold, which demonstrates the need for
systems thinking in addressing the complicated MiC 
market issues. Therefore, a systematic framework is
proposed for analysing the macro environment in terms 
of PESTEL aspects that influence MiC demand and 
supply in Hong Kong and the GBA of China (Figure 2). 

The framework deconstructs the MiC market into the
interacting demand and supply sides and elaborates on 
the PESTEL factors influencing these two sides. The 
demand-related factors mainly focus on the drivers that 
promote, and the constraints that inhibit, MiC adoption 

and the supply-related factors revolve around the supply 
capacity and the potential growth of MiC suppliers. The 
findings revealed the emphasis on political factors,
especially in the early stage of MiC adoption. This is 
aligned with the findings by Pan et al. [9] and Mao et al.
[29], which showed the current demand for MC as 
government-driven and the need for policy incentives to 
drive MC adoption. The rationale behind the emphasis on 
political factors is partly attributable to cost, as
stakeholders expect more economic incentives to offset
cost premiums [30]. The MiC supply evolves in tandem 
with the changes in MiC demand and is governed by 
technological and regulatory considerations. While 
Feldmann et al. [6] highlighted the significance of the 
availability of suitable suppliers, they did not regard 
regulation as a determinant of module supply in Germany. 
However, the pivotal role of regulatory factors has been 
recognized by many studies conducted within the
Chinese context, e.g. [29]. In addition, the characteristics 
of different building sectors should be embedded in the 
analysis of the influencing factors, given the suitability 
of MiC for different building sectors. However, this study 
refrains from conducting an in-depth analysis of different 
building sectors due to page limits of the paper.

The proposed framework enhances the knowledge 
base of MiC market planning and its supporting supply 
chain design. Although some of the influencing factors 
were based on the context of MiC demand in Hong Kong 
and the supply in the GBA of China, they should provide 
valuable insights for other regions that rely on a cross-
boundary supply chain. Furthermore, other regions could 
build upon the factors listed in Table 2 and incorporate 
region-specific considerations into the framework to 
enhance its applicability and effectiveness.

Figure 2 A systematic framework of factors influencing the demand and supply of MiC in Hong Kong and the 
GBA of China
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Nevertheless, the presented work is a fundamental 
step to establishing a simulation model to understand the 
evolution of the MiC market. Several improvements for 
future research have been identified. First, it is 
meaningful to analyse the interrelationships between the 
critical factors and the pathways through which the 
factors influence MiC demand and supply. Second, the 
analysis of the factors should further incorporate the 
characteristics of different building sectors for a more 
accurate vision of the sector-level MiC market. Third, a 
sophisticated model employing advanced simulation 
techniques should be developed to accurately forecast 
future market trends and dynamics in the short and long 
terms. As some influencing factors were challenging to 
quantify, this might make future efforts to develop a 
practical simulation model difficult. Coupled with 
detailed scenarios that fit the societal movement, tailored 
policy recommendations should be generated to guide the 
sustainable development of MiC. 

5 Conclusions  
MC has been experiencing a global revival recently 

due to its various benefits, but how this momentum will 
develop further remains unclear. Building on the results 
of the literature review and a study of the case of Hong 
Kong, a holistic framework was proposed with a total of 
15 demand-related factors and 10 supply-related factors 
to explain the complex influential mechanism from the 
PESTEL perspectives.  

The findings revealed that the influencing factors of 
the MiC market are multifaceted, with the political 
factors most influencing the MiC demand and the 
economic factors determining the development pattern of 
the MiC supply. Also, there remains ample room for 
mitigating the constraints imposed by technological and 
legal factors on the MiC supply, e.g. increasing the 
availability of concrete MiC suppliers, and improving the 
standards and codes for MiC design and implementation. 
Noticeably, other influencing factors are not secondary. 
For example, social factors play an increasingly 
important role in the move towards a people-centred 
Industry 5.0 era. In addition, attention must be paid to 
rationalising the quantification of the qualitative factors. 

The developed framework contributes to a better 
understanding of the dynamic evolution of the MiC 
market. The revealed factors help policymakers develop 
strategies to underpin the sustainable development of 
MiC and support corporates to proactively respond to 
market dynamics. 

Being aware that the presented study is yet far from 
delivering a practical model to simulate future MiC 
demand and supply, future research is needed to explore 
the critical influencing factors, demonstrate the 
interrelationships and the evolution of these influencing 

factors, simulate the dynamic evolution of the MiC 
market, and conduct detailed scenario analysis to help 
formulate appropriate strategies for improvement. 
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Abstract -
The United Nations has set the 2030 Agenda for Sustain-

able Development for the society, the environment and the
economy with the 17 Sustainable Development Goals (SDGs).
Countries act in collaborative partnership to take transfor-
mative steps to shift industries and society onto a sustain-
able and resilient path. Among all, digital transformation
is one key domain of transformation to achieve sustainabil-
ity. In the architecture, engineering, construction and oper-
ations (AECO) sector, the industry is slowly adopting digital
transformation to different extents such as the use of Build-
ing Information Modelling (BIM), Internet of Things (IoT),
computational tools, as well as automation in design and con-
struction. Despite the commonly known practices and ben-
efits of digital transformation such as productivity increase,
the impacts of such transformation on sustainability have not
yet been fully examined in research. The industry entails the
corresponding digital transformation practices and their re-
lationships with sustainability, so as to consider appropriate
strategies. This work first investigates how the current prac-
tice in AECO adopts digital transformation, with case stud-
ies of the Japanese industry as examples; this is followed by
the study of the relationships between digital transformation
practices and the SDGs based on existing literature. Hence,
the strategy propositions to assist the industry in current
practice are elaborated. The research contributes to science
by taking an initial step to examine the relationships between
digital transformation and sustainability and present ready-
to-adopt strategy propositions. Future research includes in-
depth validations of the strategies and comparisons of the
approaches in Japan with other countries.

Keywords -
Digital Transformation; Sustainability; SDGs; Construc-

tion 5.0

1 Introduction
1.1 Sustainability and Digital Transformation

The 2030 Agenda for Sustainable Development set by
the United Nations for the three dimensions of sustainable
development - society (people), the environment (planet)
and the economy (prosperity) - for all countries and stake-
holders to implement this plan and take transformative
steps in collaborative partnership. The goals are to trans-
form the industries and society and balance the three di-
mensions. In regards to the society, the concept of sustain-
ability comprises human well-being and a healthy environ-
ment; regarding the environment, sustainability is related
to sustainable consumption, production and management

in response to climate change and the needs of the present
and future generations; in regards to the economy, sustain-
ability supports the economic, social and technological
progress of the nature and ecosystems [1]. Furthermore,
in the context of sustainability in organizations, indus-
tries, and society, Elkington [2] presents the concept of
the Triple Bottom Line, which comprises the environmen-
tal bottom line, the economic bottom line and the social
bottom line.

The United Nations proposes the 17 Sustainable De-
velopment Goals (SDGs) for countries to achieve sustain-
ability in societies and industries, including the architec-
ture, engineering, construction and operations (AECO)
sector, and ensure the implementation of the 2030 Agenda.
United Nations [1] defines the 17 SDGs and actions by
2030 as follows: SDG 1 ensures the mobilization of re-
sources to end poverty in multiple ways; SGD 2 safeguards
food security and sustainable food production to increase
productivity and maintain ecosystems; SDG 3 strength-
ens healthiness and well-being with affordable access to
healthcare; SDG 4 ensures inclusive quality education
and access to technology for education; SDG 5 enhances
gender equality through policy adoption and technolo-
gies; SDG 6 reduces pollution and maintains water-related
ecosystems; SDG 7 ensures infrastructure for access to
clean energy research and technology; SDG 8 promotes
productive employment and a safe working environment;
SDG 9 enhances industrialization and fosters innovation
through technological capabilities; SDG 10 reduces in-
equality via regulation; SDG 11 ensures inclusive cities,
housing, transport systems and urbanization, as well as the
protection of cultural and natural heritage; SDG 12 ensures
sustainable consumption, production and management of
natural resources with innovation; SDG 13 strengthens re-
silience and adaptive capacity to climate-related hazards;
SDG 14 conserves oceans, seas and marine resources;
SDG 15 restores sustainable use of terrestrial and inland
ecosystems, manages forests and land degradation; SDG
16 promotes inclusive societies and participatory decision-
making; SDG 17 revitalizes the partnership in finance,
technology and capability-building.

The World in 2050 [3] consolidates six key domains
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of transformation for countries to provide pathways to
achieve the 17 SDGs in ways that can be managed, in
correspondence to appropriate infrastructure such as gov-
ernance, values and policy tools. They are human capac-
ity and demography, consumption and production, decar-
bonization and energy, food, biosphere and water, smart
cities and digital transformation. Digital transformation
can be defined as an ”inter-connected set of discoveries
and inventions” [3], as well as a form of business-model
innovation or operational advancement through digitally-
enabled provisions [4]. It involves emerging technolo-
gies such as robotics, artificial intelligence (AI), computer
vision and remote sensing smart systems. It reshapes
work, education and governance, as well as the production
processes in every sector of the economy including the
AECO sector. It can benefit productivity, accessibility,
cost-effectiveness and material consumption to different
extents. It could reduce lower-skilled jobs, incur inequal-
ity and bring challenges such as cybersecurity concerns,
threats to the privacy of identities, digitally stored informa-
tion, as well as social media manipulation etc. Moreover,
digital transformation practices comprise people, technol-
ogy and process to different extents [4, 5]. In general, it en-
tails comprehensive governance to ensure that its impacts
on our society can lead to sustainability for the next gen-
eration. Governance of technologies, AI and autonomous
technical systems should align with the directions of the
human-centered society so as to comprehend the potential
benefits, liabilities and risks of the practices while avoid-
ing the many potential downsides [3, 6]. Scholars such as
Sachs et al. [7] and Vinuesa et al. [8] conducted literature
reviews to study the relationships between digital transfor-
mation and each SDG and how the adoption of AI enables
and inhibits each SDG respectively.

1.2 Digital Transformation in AECO

(a) (b) (c) (d)

Figure 1. Robot-Oriented Design (ROD) first appli-
cations in Japan: ROD SMART Juroku Ginko in
Nagoya in (a) 1992 and (b) 1993; (c) ROD SMART
proto Shimizu Research Institute (SRI) in 1988;
(d) ROD SMAS Building Research Institute (BRI)
MOC in 1985-1988.

The AECO sector in the construction industry is one of
the world’s least digitized among others with fragmented
design and construction processes and supply chains. The
fragmentation provides little incentive to embrace sys-
temic innovation for developing new methods and digi-
tal tools and implementing new inventions. In AECO,
the success of a transformation can be influenced by how
technologies enable new ways of working, new products
and services, as well as operational models to different
extents [4]. State-of-the-art digitally-enabled provisions
on projects include the implementation of Building Infor-
mation Modelling (BIM), computational design, digital
fabrication technologies including robotics and additive
manufacturing such as 3D printing, as well as BIM-based
and computer vision construction site monitoring, con-
struction process digital twins and management etc [9].
Also, reality gaming technology realizes modular con-
struction and digital twins of robotic construction respec-
tively [10, 11]. BIM in design and construction enables
the exchange of project information at the right time to
make the right decision to facilitate environmental sus-
tainability considerations during a building design process
[12]. On the process level, digital transformation adopts
digitally-enabled industrialized construction methods such
as Robot-Oriented Design (ROD) [13]. The notion of ROD
enables immediate availability by rapid assembly, high
accuracy by robotic precision motion planning and posi-
tioning to adjust and fix the workpieces, adaptability by
robotic deconstruction, repair and upgrading, reconstruc-
tion, reassembly and reconfiguration. This thus achieves
closed-loop construction for the highest sustainability by
robotic reuse of any building, construction component or
processes. Figure 1 shows the first applications of ROD in
Japan. The Solid Material Assembly System (SMAS) ver-
ified this approach between 1984 and 1988 at the Building
Research Institute (BRI) in Tsukuba. In 1988 the ROD
concept was tested at the prototype set up of the SMART
system at the Shimizu Research Institute (SRI) in Etchu-
jima, Koto Ku and Tokyo. The research was first pub-
lished in Japanese in 1988 by the first author of [13] with
the analysis of the first 50 construction robots built by the
Japanese general contractors from 1978 to 1988. ROD has
been implemented at the first SMART site of the Juroku
Ginko in Nagoya for a 20-storied office building in 1992/
3 and various high-rise projects until 2019. Moreover, a
BIM-based process enables integrated processes and the
adoption of emerging technologies in organizations and
fosters innovation in technology [14]. In addition, digi-
tal transformation is emerging on the urban scale in the
built environment. Scholars such as Biljecki and Ito [15]
and Ruhlandt et al. [16] study computer vision applica-
tions for Geographic Information Systems (GIS) research
blockchain-enabled smart city governance respectively.
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1.3 Society 5.0 and Construction 5.0

In Japan, the government promotes the national vision -
Society 5.0 - to link science, technology and innovation ef-
forts to SDGs and revolutionize social problems to achieve
SDGs using AI and automation technologies. Society 5.0
comprises a “human-centered system that integrates cy-
berspace and physical spaces. [. . . ] It is envisioned as a
successor of transformations” [17]. It includes the trans-
disciplinary concepts of digitalization, integration and sus-
tainability [5]. The Society 5.0 initiative in Japan requires
interdisciplinary studies on multiple scales to comprehend
and analyse the policy and legal opportunities of adopting
AI and automation [6]. The overarching research can be
included in the context of Construction 5.0, which com-
prises digitalization, integration and sustainability based
on recent scholarship that studies new approaches of digi-
tal transformation in construction [18, 19].

1.4 Research Objectives and Research Methods

Despite the potential contributions of digital transfor-
mation to sustainability in the industry in AECO, it has not
yet been fully researched how it can be implemented to fos-
ter sustainability. In Japan, the industry has been adopting
digital technologies to different extents in AECO. Through
implementing the appropriate digital transformation prac-
tices, stakeholders can achieve sustainability for society,
environment and economy through processes, technolo-
gies and people to different extents. From an overarching
perspective, digital transformation practices can help the
industry to achieve the 17 SDGs and realize Construction
5.0. More in-depth research is needed to examine the
corresponding digital transformation practices and their
relationships with sustainability, as well as the potential
strategy proposition. This work aims to answer the re-
search question as follows: What digital transformation
practices are related to sustainability in AECO? To an-
swer the question, the following research objectives are
addressed: (RO1) to investigate how the current practice
in AECO adopts digital transformation; (RO2) to investi-
gate relationships between digital transformation practices
and the SDGs; (RO3) to elaborate on potential strategy
propositions to assist the industry in current practice, so
as to realize Construction 5.0.

To address RO1, this work identifies the appropriate
digital transformation practices with examples from case
studies in the Japanese AECO. The first author collected
the data of the case studies through reviews of author-
ity documents [20], firms’ documents, presentations and
websites, as well as semi-structured interviews with firms’
digital transformation teams. The data have been cross-
referenced, summarised and consolidated in this work. To
address RO2, this work maps the identified digital transfor-

mation practices with the corresponding 17 SDGs respec-
tively through a summary and review of existing literature
presented in Sachs et al. [7] and Vinuesa et al. [8]. The
results have been firstly presented in Ng [19]. Based on
the findings from case studies and existing literature, the
strategy propositions are presented in the discussion sec-
tion to address RO3. The research contributes to the body
of knowledge in the fields of automation in construction,
sustainability, design, construction and operation manage-
ment, as well as technology governance by taking an initial
step to examine the relationships between digital transfor-
mation and sustainability and elaborate on ready-to-adopt
strategy propositions.

This work is structured as follows. Section 1 presents
the backgrounds of the research as the points of departure,
the key research question, three research objectives and the
research methods. Section 2 includes the research findings
of the identified digital transformation practices in AECO
with examples from the Japanese industry, as well as the
relationship between digital transformation and sustain-
ability, namely SDGs respectively. Section 3 discusses
the strategy proposition as recommendations for stake-
holders to adopt digital transformation in current practice.
Section 4 concludes the work and proposes future research
directions.

2 Research Findings
2.1 Digital Transformation Practices in AECO

Based on a thorough summary of existing research re-
view from The World in 2050 [3], [20], [8] and [7], 27
digital transformation practices are identified as shown in
Table 1. Under the categories of people, technology and
process, how AECO can adopt these practices in current
practice through case studies of the Japanese industry is
further studied. The initial results can be found in the
report Ng [19].

DXP1 - Invest in digital technologies and infrastruc-
ture can impact the economy through technology. It can
influence microeconomics within a firm and/or macroe-
conomics for a country to invest in scientific institutions.
Many companies have been investing in state-of-the-art
technologies such as digital twin interactive platforms to
improve process and building performances during design,
construction and operations stages. For example, digital
twin platforms investment (DXP1) facilitates DXP7 dur-
ing the construction process, and DXP13 through infor-
mation integration. Also, BIM-based digital twins can
support DXP6 such as the use of blockchain and smart
contracts. DXP2 - Promote collaboration and joint task
development can improve society through people develop-
ment. This practice can involve collaboration among in-
stitutions, companies and public-private partnerships. On

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1224



Table 1. The identified 27 digital transformation
practices in AECO under the major categories of
people (Pe), technology (Te) and process (Pr), as
well as economy (Ec), society (So) and environment
(En). [19].

No. Digital Transformation Practice Category 1 Category 2
DXP1 Invest in digital technologies and infrastructure Te Ec
DXP2 Promote collaboration and joint task development Pe So
DXP3 Conduct predictions to make better plans of action Te Ec, En
DXP4 Optimize resources in design and planning Pr Ec, En
DXP5 Foster policy development for more efficient actions Pr Ec, So
DXP6 Support affordable and trusted documentation Te Ec, So
DXP7 Thorough waste management Te, Pr En
DXP8 Design for human health and social well-being Pe En
DXP9 Adopt digital analytical tools to improve performances Te Ec
DXP10 Enable cloud-based reality environment for training purposes Pe, Te So
DXP11 Optimize environmental and heritage values of local communities Pe Ec, So, En
DXP12 Automate decision-making Pr Ec
DXP13 Optimize resources in consumption through data monitoring Te En
DXP14 Extend accessibility and improve revenue Pr Ec
DXP15 Facilitate R&D to foster innovation and adoption of technology Te Ec
DXP16 Scale creativity and innovation Te Ec
DXP17 Increase the demand for jobs related to automation Pe Ec, So
DXP18 Enforce effective financial risk assessment Pr Ec
DXP19 Foster circularization and enable circular economy Pr Ec, En
DXP20 Optimize procurement process and supply-chain management Pe, Pr Ec, En
DXP21 Responsible sourcing of resources Pr En
DXP22 Improve financial transparency and simplify transaction process Pr Ec
DXP23 Enhance public and stakeholders engagements Pe So
DXP24 Develop specific digital tools to support sustainable practices Te En
DXP25 Optimize organizational structure Pe So
DXP26 Customize design tools and processes to optimize values Te, Pr En
DXP27 Provide cost-effective solutions Pr Ec

one hand, companies can collaborate with universities, in-
stitutions and organisations to jointly work on cutting-edge
research and development; on the other hand, universities
and educational institutes can collaborate with industry
partners to promote industry-oriented educational activi-
ties or curricula to help educate the next-generation AECO
professionals. DXP3 - Conduct predictions to make better
plans of action can benefit the economy and the environ-
ment through technological development. This practice
includes climate change forecasts using urban and geo-
graphic information such as urban building fabrics. In
Japan, BIM-based simulation platforms are used to create
virtual reality models to conduct predictions for assisting
stakeholders to make better plans in design and construc-
tion. Also, a steel contractor uses customized computa-
tional tools can help to simulate robotic welding processes
in 3D modelling and visualization for process prediction
and real-time monitoring. DXP4 - Optimize resources in
design and planning contributes to the economy and the
environment through process development. This practice
includes the optimization of design and resilience of in-
frastructure, buildings and construction, as well as the pro-
motion of resource efficiency and the use of renewable ma-
terials based on informed decision-making already in the
early design phase. In current practice, BIM-based digital
platforms facilitate data integration and multi-disciplinary
collaboration from the design phase to the building oper-
ation phase. When used correctly, BIM-based design pro-
cesses and management can foster other practices such as
DXP7 and DXP9, as well as DXP6, DXP12 and DXP13 to
assist management during the construction and operations
phases. DXP5 - Foster policy development for more effi-
cient actions can benefit the economy and society through
process improvement. For example, the Japanese gov-
ernment has been initiating the Society 5.0 framework

for efficient actions to achieve the 2030 Agenda and the
SDGs in industries and society [17]. Collaboration be-
tween academics, industry practitioners and policy-makers
(DXP2) can ensure appropriate policies and policy deploy-
ment that can deliver effective benefits to society. DXP6 -
Support affordable and trusted documentation can impact
the economy and society through technological develop-
ment. This practice can assist stakeholders in construc-
tion process management and establish a common data
environment with paperless recording to support trusted
documentation. Also, BIM-based platforms also facili-
tate affordable and trusted real-time documentation among
multi-parties on a project. DXP7 - Thorough waste man-
agement benefits the environment through technology and
process development. In AECO; companies adopt this
practice by assigning waste management specialists on
projects to conduct evaluations of site wastes and waste
disposal strategies. They monitor the proper collection of
by-products generated on construction sites for recycling.
Also, integrated BIM-based platforms can document ma-
terial information and foster DX19. Moreover, the current
practice has demonstrated that BIM-based design for man-
ufacture and assembly (DfMA) processes reduce wastes at
construction sites and save costs to different extents dur-
ing the design and construction processes. DXP8 - Design
for human health and social well-being supports the envi-
ronment through the development of people. Some com-
panies in Japan use digital systems, which are connected
to a company’s internal human resources systems, to de-
tect and record the body temperature of workers with their
masks and helmets on to enhance human health at con-
struction sites during the pandemic period. DXP9 - Adopt
digital analytical tools to improve performances improves
the economy through technological development. The use
of, for example, digital twin interactive systems help to im-
prove performances in building design and construction in
terms of efficiency and cost-effectiveness. This practice
can foster other practices such as DX7 and DX13.

DXP10 - Enable cloud-based reality environment for
training purposes can benefit society through people and
technological developments. This practice can impact
workforce development in society. In current practice,
state-of-the-art digital twin platforms enable a cloud-based
reality environment to help train complex fabrication pro-
cesses. This not only enhances workers’ capability, en-
courages the young generation to take part in the construc-
tion sector, but also assists pre-job site health and safety
training. DXP11 - Optimize environmental and heritage
values of local communities can impact the economy, so-
ciety and environment through development about people.
In Japan, contractors who specialize in cultural heritage
retrofits using traditional fabrication methods such as pre-
fabrication of carpentry work, state-of-the-art industrial-
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ized construction methods and computational design tools
to optimize the heritage values of the historic built environ-
ment. Built heritage, which possesses historical values and
cultural significance including but not limited to embod-
ied historical craftsmanship and construction knowledge,
enhances the cohesion of the local communities. DXP12 -
Automate decision-making supports the economy through
process development. In the current practice in Japan,
contractors and sub-contractors invent their bespoke cus-
tomized digital tools to facilitate simulations, building in-
formation analyses and visualization and other practices
such as DXP9 and DXP26. This can automate decision-
making to optimize design and construction processes.
DXP13 - Optimize resources in consumption through data
monitoring can benefit the environment through techno-
logical development. State-of-the-art digital twins plat-
forms enable consumption-aware processes through real-
time monitoring. This also facilitates DXP7 during con-
struction and operations. Data monitoring can be further
foster other practices such as DXP6 and DXP19. DXP14 -
Extend accessibility and improve revenue can impact the
economy through process development. It is commonly
acknowledged in the industry that digital transformation
can increase productivity and accessibility, and reduce
production costs and material consumption [3]. Recent
research such as Grüter et al. [21] shows how to scale up
the competitiveness of circular construction through the
use of digital building design optimization tools, reflecting
a link between DXP13, DXP14 and DXP19. Also, recent
scholarship studies the actor-network study of how digital
design and digital fabrication can be implemented to po-
tentially general profits in the current industry through a
systemic literature review [22]. Both DXP15 - Facilitate
research and development (R&D) to foster innovation and
adoption of technology and DXP16 - Scale creativity and
innovation can benefit the economy through the develop-
ment of technology. This practice can be implemented
with other practices such as DXP2 to promote collab-
oration and joint task development and spur innovation
among organizations in the industry. DXP17 - Increase
the demand for jobs related to automation facilitates the
development of the economy and society through develop-
ing people-related aspects and workforce. In Japan, trade
contractors have been adopting automated design tools and
digitized life-cycle management systems to automate value
chains from design and planning to fabrication phases.
They increase the job opportunities for high-skilled pro-
fessionals to facilitate automation processes. DXP18 -
Enforce effective financial risk assessment can impact the
economy through process development. In Japan, cus-
tomized electronic commerce services have been currently
used in practice for users to order, receive and make pay-
ments by scanning QR codes displayed on a terminal.

Digital services can help to improve financial transparency
simplify transaction processes and enforce effective finan-
cial risk assessment for procurement.

DXP19 - Foster circularization and enable circular
economy can impact on the economy and the environment
through process development. In AECO, this practice pro-
motes a circular economic model of reuse and recycling
of existing resources. In current practice, for example,
Japanese house-makers use BIM-based integrated systems
for pre-design planning, design, construction, operations
and maintenance and end-of-life management to manage
resources throughout the building life cycle and facilitate
material circularization. This practice not only saves ma-
terials and costs but also enables design to reduce the
amount of building components for ease of disassembly
and reassembly. DXP20 - Optimize procurement process
and supply-chain management can benefit the economy
and the environment through people and process develop-
ments. A Japanese house-maker has been transforming
their ”Scrap and Build” approach to a ”Stock-type Soci-
ety” approach by constructing houses with a longer lifes-
pan. With appropriate design approaches for manufacture
and assembly, as well as design approaches for disassem-
bly, BIM-based platforms can help to facilitate DfMA to
consider constructability during the early design phase
and optimize the procurement process and supply chain
management. DXP21 - Responsible sourcing of resources
supports the environment through process development.
In current practice, for example, a Japanese general con-
tractor uses locally sourced cedar timber materials to fab-
ricate cross-laminated timber (CLT) load-bearing walls
and floors with digital fabrication technology through in-
formation integration in BIM. DXP22 - Improve financial
transparency and simplify transaction process can benefit
the economy through process development. A Japanese
general contractor has been using a construction site co-
creation platform, which provides electronic commerce
services with financial transparency, This can simplify
the transaction process and reduce financial risk for pro-
curement to different extents. Also, a Japanese house-
maker uses blockchain technology to ensure the security
of trusted information exchange and financial transparency
and simplify the transaction process with an effective end-
to-end solution for services ranging from the real estate
lease agreement process to establishing insurance con-
tracts. DXP23 - Enhance public and stakeholders engage-
ments and DXP25 - Optimize organizational structure can
impact on the society through development about people.
State-of-the-art mixed reality technologies have been im-
plemented to assist design-to-construction processes for
off-site progress inspection remotely in an interactive and
immersive reality environment. This can enhance stake-
holders’ engagement for design review and discussion dur-
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ing the early design phase. The Japanese house-makers
optimize organizational structure with vertical integration
and advance training to promote responsible procurement
and co-creation for sustainable development through part-
nership and collaborative work. DXP24 - Develop specific
digital tools to support sustainable practices supports the
environment through technological development. On ex-
isting projects, building information analysis, simulation
and visualization using state-of-the-art analytical compu-
tational design tools to optimize building performance
such as energy consumption, daylight intake etc. dur-
ing the early design phase. DXP26 - Customize design
tools and processes to optimize values can impact the envi-
ronment through process and technological developments.
Customized tools can improve, for example, carbon emis-
sion during digital fabrication processes by precise calcu-
lation and design of structural and non-structural parts of
the building components. DXP27 - Provide cost-effective
solutions can benefit the economy through process devel-
opment. For example, a Japanese supplier uses commer-
cial BIM platforms for DfMA with QR-coded packaging
to assist logistics, fabrication and on-site assembly process
and reduce wastes on site (DXP7).

2.2 Digital Transformation Practices for 17 SDGs

Figure 2 shows the categorizations of the 27 digital
transformation practices and the mapping of the uni-
directional relationships from each of the 27 practices to
the 17 SDGs to different extents through a summary of the
literature review work mainly from [3], Sachs et al. [7],
Vinuesa et al. [8] and other industry reports. The diagram
and the work have been initially presented in Ng [19].

Among all, DXP3 and DXP4 can achieve ten SDGs.
DXP3 can achieve, for example, SDG 13.1 target -
Strengthen resilience and adaptive capacity to climate-
related hazards and natural disasters; DXP4 can address
several targets such as SDG 9.1 target - Develop quality,
reliable, sustainable and resilient infrastructure to sup-
port economic development and human well-being. Also,
the practice can achieve SDG 8.4 target - Improve pro-
gressively. This facilitates global resource efficiency in
consumption and production and endeavours to decouple
economic growth from environmental degradation. Also,
DXP13 can achieve eight SDGs; DXP1 and DXP7 are
found to achieve seven and six SDGs respectively. Be-
sides, it is identified that SDG 11 - Sustainable cities
and communities and SDG 12 - Responsible consump-
tion and production can be enabled by 11 practices. For
example, DXP15 can achieve SDG 11; SDG 12 can also
be enabled through DXP19; SDG 8 - Decent work and
economic growth and SDG 9 - Industry, innovation and
infrastructure can be enabled by eight practices. They can
be enabled by, for example, DXP11. Also, SDG 17 - Part-

nership for the Goals can be enabled by seven practices
including DXP23.

3 Discussion

This work presents an initial study of digital transfor-
mation and the corresponding impacts on sustainability
in AECO. In current practice, existing adoptions of dig-
italization in planning, design, construction, operations
and maintenance, as well as management, can foster sus-
tainable development to different extents on project scale,
building scale, urban scale, in the built environment and
beyond the AECO sector. Construction 5.0 includes dig-
italization, integration and sustainability. It leads to a
high-level concept of environmental, societal and eco-
nomic advancements in industries and society, such as
the Society 5.0 concept in Japan. Based on the research,
five potential strategy propositions in Construction 5.0 are
presented as follows. They can be implemented immedi-
ately by stakeholders on projects, organizational reforms
and in the built environment. Also, they can lead to poten-
tial future research directions, which include a systemic
literature review, in-depth investigations and case-based
validation of the digital transformation practices and the
relationships with SDGs.

• All-rounded solutions that integrate digital technolo-
gies development, organizational, information and
process integration, as well as sustainability, are
needed to shape Construction 5.0.

• Joint collaborations between research and practical
implementation can be conducted on projects in the
forms of, for example, integrated digital project de-
livery business models, early contractor involvement
in concurrent engineering, as well as rewards sharing
mechanisms.

• State-of-the-art BIM-based approaches for sustain-
ability, including resource circularization and circular
economy business models, process and cost predic-
tions for better estimations and optimizations in pro-
cesses and building performances can be promoted.

• Process-based transition management in the AECO
sector holds the potential for combined achievements
in the key areas of a resource-efficient and decar-
bonized built environment.

• Appropriate business models are required in practice
to invest and facilitate R&D, scale creativity and turn
inventions into innovations, enforce effective finan-
cial risk assessments, extend accessibility of tech-
nologies, as well as provide cost-effective solutions.
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People

Technology

Process

Economy

Society

Environment

Invest in digital technologies and infrastructure
Promote collaboration and joint task development
Conduct predictions to make better plans of action

Optimise resources in design and planning
Foster policy development for more efficient actions

Support affordable and trusted documentation
Thorough waste management

Design for human health and social wellbeing
Adopt digital analytical tools to improve performances

Enable cloud-based reality environment for training purposes
Optimise environmental and heritage values of local communities

Automate decision-making
Optimise resources in consumption through data monitoring

Extend accessibility and improve revenue
Facilitate R&D to foster innovation and adoption of technology

Scale creativity and innovation
Increase the demand for jobs related to automation

Enforce effective financial risk assessment
Foster circularisation and enable circular economy

Optimise procurement process and supply-chain management
Responsible sourcing of resources

Improve financial transparency and simplify transaction process
Enhance public and stakeholders engagements

Develop specific digital tools to support sustainable practices
Optimise organisational structure

Customise design, tools and processes to optimise values
Provide cost-effective solutions

DIGITAL TRANSFORMATION 
PRACTICES IN AEC

Figure 2. A tripartite diagram presenting the digital transformation practices in the AECO sector for achieving
the 17 SDGs under the holistic improvement framework of people, process and technology - and the three pillars
of sustainability - economy, society and environment [19]. Data are based on The World in 2050 [3] and Vinuesa
et al. [8]. SDG color courtesy of UN/SDG.

4 Conclusion
This work investigates digital transformation to achieve

sustainability and the 2030 Agenda for Sustainable De-
velopment for society, the environment and the economy.
To assist the industry in adopting digitalization in current
practice, 27 digital transformation practices are identi-
fied. They include DXP4 - Optimize resources in design
and planning and DXP19 - Foster circularization and en-
able circular economy that foster the economy and the
environment, DXP6 - Support affordable and trusted doc-
umentation and DXP17 - Increase the demand for jobs
related to automation that foster the economy and society,
DX23 - Enhance public and stakeholders engagements
that benefit the society, as well as DXP26 - Customize
design tools and processes to optimize values to improve
the environment. All practices are supported with the
case studies of the Japanese industry to show how the
current practice has been adopting digitalization to differ-
ent extents and demonstrate the feasibility. For example,
Japanese house-makers use BIM-based integrated systems
to manage resources throughout the building life cycle to
facilitate DXP19. Moreover, the relationships of how the
27 practices can foster the 17 SDGs respectively are in-
vestigated. The results show that DXP3 and DXP4 can

achieve ten SDGs including SDG 13.1 target - Strengthen
resilience and adaptive capacity to climate-related hazards
and natural disasters. Also, SDG 11 - Sustainable cities
and communities and SDG 12 - Responsible consumption
and production can be enabled by 11 practices such as
DX19 and DXP21 - Responsible sourcing of resources.
Moreover, five strategy propositions in Construction 5.0
as future research directions that can be further investi-
gated and validated are presented. They include process-
based transition management for combined achievements
to enable a resource-efficient and decarbonized built en-
vironment. This research presents an initial study of con-
necting tangible digital transformation practices that have
been adopted in Japan as examples and explores novel re-
search directions, which can be continued by scientists and
practitioners to establish comprehensive concepts of Con-
struction 5.0 for the coming ten years approaching 2030
and beyond. Also, the work aims to assist stakeholders
in taking action in correspondence to the 2030 Agenda,
achieving SDGs and realizing Society 5.0 through tech-
nological advancements to solve societal, environmental
and economic challenges through appropriate strategies
for process, technologiical and people.related develop-
ments. Future research includes in-depth quantitative and
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qualitative validations of the strategies and thorough com-
parative studies of Japan’s approaches with other countries
for broader insights.
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Abstract -
Artificial intelligence is set to transform the mining and

construction industries by providing greater insights that will
eventually create a safer, more productive, and more reliable
environment. However, integrating autonomous technology
and equipment in the field is still a complex task that ne-
cessitates a detailed safety study, analysis, identification, and
mitigation of hazards. Before any autonomous operation can
be realized, a safety plan needs to be executed by the tech-
nology provider and the site operator and/or subcontractors.
This plan must be regularly assessed during the development
and implementation phases of the technology on site. As the
industry evolves to incorporate more autonomous systems,
having a comprehensive and consistent safety framework to
assess this technology becomes more relevant for innovators
in the field. The industry can learn and adapt the analyses
developed for other automation uses such as aviation, au-
tomobile, nuclear, and defense systems to consider not only
the safety of technology, but also the interfaces with human
operators and the impact of process changes. The purpose
of this paper is to provide an introduction to a safety frame-
work and workflow developed and followed by SafeAI for
the application of its autonomous technology in construction
and mining. This framework is applied across our global
deployments. For example, we highlight its application for
our California proving grounds.

Keywords -
Autonomous Ground Vehicle; Safety; Construction; Min-

ing; Hazard Analysis; STPA.

1 Introduction
Increasing demand for safer, zero-entry worksites,

higher productivity, and reduced costs are driving the need
for innovative solutions across heavy industries, such as
mining and construction.

The vision for an autonomous site of the future to
achieve these goals involves a higher level of automation.
However, the existing Safety frameworks in the industry
do not apply the learnings on automation hazard analy-
ses deployed in other fields such as aviation, automobile,

nuclear, and defense systems. These industries consider
automation as a system, including the interfaces with hu-
mans, processes, and change management. As equipment
automation strategies evolve in construction and mining
applications, so should the approaches for evaluating the
hazards and safety of the technology.

SafeAI is a technology start-up based in Santa Clara,
California. SafeAI’s primary focus is to deliver safe, au-
tonomous vehicle technology and solutions to heavy in-
dustry operators through robust computer and perception-
based technologies, such as sensor fusion and deep learn-
ing, as well as cutting-edge modular and reconfigurable
robotics software behavior frameworks.

SafeAI’s autonomous solution retrofits existing con-
struction and mining ground vehicles. The manufacturer
and vehicle-agnostic solution utilizes a reusable hardware
package that can be easily integrated with a broad range
of vehicle types. The AI-powered autonomous software is
developed to manage and operate vehicles autonomously
in the toughest off-road environments (Figure 1).

2 Prior Work
Safety is integral to the development and deployment

of autonomous technology at construction and mine sites.
Hazard analysis techniques have been widely adopted by
transportation industries where safety is critical as the first
step to assess risk, i.e., investigating an incident before it
occurs [1].

Common hazard analysis techniques involve Fault Tree
Analysis (FTA), Event Tree Analysis (ETA), and Hazard
and Operability Analysis (HAZOP), as well as their vari-
ants. FTA [1] focuses on understanding the logic leading
to a top undesired event. It assists in designing a system or
as a diagnostics tool and was originally developed by the
aviation sector in the U.S [2]. Similarly, ETA condenses
the FTA to make it more manageable to study complex
designs such as nuclear power plants, chemical plants,
and spacecraft analysis [3]. HAZOP is often used as a
technique to identify operability hazards that can lead to
product, environment, or other hazards broken down per
module [4].
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Figure 1. SafeAI Proving grounds

Failure Modes and Effects Analysis (FMEA) is also used
as a bottom-up hazard analysis technique. This method is
useful to analyze hardware failures of components like
sensors, according to the information provided by their
corresponding supplier. The failure modes from each
component are associated with a severity scale based on
its failure effect, probability of occurrence, and detection
scale. However, this method is noted to have limited ap-
plicability for safety analysis at a Systems Level [5].

On the other hand, the System Theoretic Process Anal-
ysis (STPA) (Figure 2) is a relatively new hazard analysis
technique developed by MIT based on an extended model
of accident causation [6]. STPA [5] can be used at any
stage of the system life cycle and when STPA is performed,
it is assumed that the system design exists.

STPA [5] offers advantages over other conventional
bottom-up safety analysis techniques that have been ap-
plied to the safety analysis of partially- or fully automated
driving systems. STPA considers the unsafe interactions
of system components by human interaction, software,
etc. This allows an analysis of complex systems such as
those found in aviation, spacecraft, automobile, nuclear,
and defense systems.

STPA first identifies the potential for inadequate control

of the system that could lead to a hazardous state. A
hazardous state is defined as one that violates the norms,
rules, or constraints of the system. The method studies how
each Unsafe Control Action (UCA) could occur and plans
a safety requirement to mitigate or avoid the unsafe action.
As the product design evolves, the safety requirements
also get more detailed in an iterative process. Complete
traceability is established between the requirements and
the system deployment, which helps maintain the Quality
Assurance (QA) process.

3 Method

Given the fact that automation in construction and min-
ing entails a complex system review, SafeAI has integrated
a framework to address a “safety first” approach which be-
gins early in the design phase through to the deployment
phase. During the design phase, the flexibility to make
changes is at its highest while the cost is at its lowest
(Figure 3).

Our Safety Framework is comprised of three main com-
ponents, with the STPA method as the main foundation
for hazard analysis. As far as the authors are aware, STPA
has not been consistently applied to analyze Mining or
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Figure 2. Safety Analysis timeline and type of study

Figure 3. Flexibility to change design to incorporate
safety assessment

Construction automation strategies. Unlike the traditional
hazard analysis methods, this framework can be deployed
in early technology development to define safety require-
ments which can mitigate hazards that would only arise
during the operation phase. As the conceptual design
is refined and more detailed design decisions are made,
STPA maintains complete traceability of the system re-
quirements including the human-in-the-loop analysis.

In addition to STPA, SafeAI implements the bottom-
up approach established by FMEA (Figure 4) to study
component-level flaws and failures. Finally, it applies a
Layer of Protection Analysis (LOPA) focusing on spe-
cific mitigation strategies for the risks identified during
the Hazard Analysis phase.

This paper describes SafeAI Safety Framework for au-
tonomous mining and construction equipment and shows
its application in SafeAI’s proving grounds quarry site in
California.

4 SafeAI Safety Framework
This section addresses in more detail each step of

SafeAI’s Safety Framework:

1. STPA

Figure 4. SafeAI Safety Framework

2. FMEA
3. LOPA

4.1 STPA

The STPA risk assessment process follows the ISO
12100:2010 guidelines to:

(a) determine the limits of the machinery, which include
the intended use and any reasonably foreseeable misuse
thereof; (b) identify the hazards and associated hazardous
situations; (c) estimate the risk for each identified hazard
and hazardous situation; (d) estimate the risk for each
identified hazard and hazardous situation; (e) evaluate the
risk and take decisions about the need for risk reduction

The safety requirements generated from the STPA were
directed to a risk reduction process during the develop-
ment of the autonomous technology and software and are
intended to continually occur during the development, op-
eration, and improvement of the autonomous technology.

The risk reduction process according to ISO
12100:2010 aims to:

• determine the limits of the machinery, which include
the intended use and any reasonably foreseeable mis-
use thereof;

• eliminate the hazard or reduce the risk associated
with the hazard by means of protective measures.

Actions (a) to (d) are related to the risk assessment with
STPA, while (e) is related to risk reduction or mitigation
strategies addressed in the LOPA section.
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The key steps of STPA include:

1. Define the Use Case (e.g., Load-Haul-Dump cycles
with retrofitted vehicle)

2. Define the Operational Scenarios (i.e., the interac-
tions between the vehicle and other equipment)

3. Define the Operational Design Domain (ODD) in
which the AGV can operate

4. Assess potential System-Level Losses and Hazards
5. Identify Unsafe Control Actions that could lead the

system to a hazardous state
6. Document 1st Level Safety Requirements
7. Analyze the Causal factors for Unsafe Control Ac-

tions
8. Document 2nd Level of Safety Requirements
9. Implement the Safety Requirements in the Develop-

ment and Testing pipeline
10. Test and Validate Safety Requirements

As new functionality of the system is developed, this
process becomes iterative with new layers of Safety re-
quirements that feed into the development and the testing
pipeline.

4.1.1 Use Case Definition

The framework begins by defining the Use Case in-
tended for the Autonomous Ground Vehicle (AGV). The
description of the Use Case provides inputs for the next
steps which involve determining the Operational Scenarios
and ODD.

In our case study, the Use Case Definition is focused
on one Autonomous Haul Truck (AHT), also referred to
as Autonomous Ground Vehicle (AGV) used in Load-
Haul-Dump (LHD) cycles at SafeAI’s California proving
grounds. This site location includes a dedicated space
for our Quality Assurance teams to test and progress the
Autonomous development.

4.1.2 Operational Scenarios

Within the SafeAI framework, Operational Scenarios
include the scenarios in which the autonomous vehicle
interfaces with its environment. Adapted from Vehicle
Interaction Systems [7], the interactions are defined as in-
teractions between different kinds and types of equipment,
obstacles, infrastructure, and/or humans, etc. in the given
operational design domain of the AGV (Figure 5).

We identify the following AGV interaction scenarios
applicable to the California LHD Use Case:

1. Control of AGV
The AGV movement (forward-backward direction,

turns, maneuvers, and speeds) will be restricted to the
ODD as described for various steps of the autonomy de-
velopment.

2. AGV interacting with humans
The personnel involved in the site and task runs are

authorized operators to change the mode from manual to
autonomous, conduct any required scheduled or unsched-
uled maintenance and/or repair of the AGV, and act as
remote (out-of-AGV) operators while the AGV is perform-
ing a task. Duties and responsibilities of all site personnel
were detailed in the risk assessment according to the site
regulations.

3. AGV interacting with other equipment (staffed or
autonomous)

The AGV performs the loading tasks by interacting with
a staffed loader via SafeAIFlux (Staffed Vehicle System)
and ZENO (Fleet/Autonomous Management System) co-
ordination. Other equipment in or around the task zone
was detailed in the corresponding ODD. In this case, a
light vehicle is also allowed in the Autonomous Operating
Zone.

4. AGV interacting with the environment
The environment in which the AGV can interact within

the approved Autonomous Operating Zone (AOZ), includ-
ing ground conditions, weather, number and types of lanes,
lane edges, grade, and obstacles as detailed in the corre-
sponding ODD. Known obstacle types found in the envi-
ronment are documented and tested in the ODD.

Figure 5. Illustration of Autonomous Ground Vehi-
cle Operational Scenarios based on EMESRT[7]

4.1.3 Operational Design Domain

Operational Design Domain (ODD) specifies the
boundary in which the AGV can safely operate. There-
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fore, ODD provides the design constraints of the AGV. Per
SAE J3016 [8] ODD is defined as the ”operating condi-
tions under which a given driving automation system or
feature is specifically designed to function, including, but
not limited to, environmental, geographical, and time-of-
day restrictions, and/or the requisite presence or absence
of certain traffic or roadway characteristics.”

Defining an ODD early in the design process identifies
the functional scope of the AGV and what conditions it
should be able to handle safely. The ODD definition iden-
tifies where changes in system capabilities are required and
can aid in generating AGV test cases with varying levels
of complexity.

For our ground proving site in California, we designated
an initial ODD where the vehicle is allowed to operate.
This first ODD was defined as the tightest boundary or
radius in which the AGV has been designed and tested
to operate. By passing out a series of milestones, the
AGV can operate in increasingly complex scenarios or
areas of the site. ODD compliance is monitored during
the operations to ensure that the AGV is working within
the set boundaries.

In our example, the ODD includes:

• Private off-road, geo-fenced area with a Load Zone,
a Dump Zone, and hauling roads defined for au-
tonomous operation

• Operating hours between 8am to 5pm according to
site shift (running only one shift at the moment with
no night operations)

• Site maximum grades are less than 15 degrees
• Drivable area surface is loose gravel
• Drivable area features do not include icy, flooded or

muddy surfaces on this site
• Fixed road structures include site office, storage con-

tainer, and vegetation
• No low clearance areas in AOZ
• AGV can operate in rainfall as permitted by staffed

site operations
• Minimum and maximum temperature allowed for op-

erations are the same as for staffed operations
• Traffic rules according to USA and California driving

code. Mining rules apply including radio communi-
cation and left-hand driving

• Site speed limit 15mph
• No humans allowed in vehicle path while the vehicle

is in autonomous mode.
• Interacting road users are authorized mining and con-

struction vehicles

4.1.4 Assess Potential System-Level Losses and Haz-
ards

Defining System-Level Losses in the framework intro-
duces the concept of unacceptable losses to internal and

external stakeholders. These losses are documented for
the ODD in which the AGV tasks take place.

Losses include cases where the AGV causes an unsafe,
unplanned, or undesired scenario. For this use case, the
scenarios identified are the damage to the autonomous
vehicle, another entity, the environment, and humans or
coming dangerously close to causing damage to the au-
tonomous vehicle, another entity, the environment, and
humans.

A System-level Hazard is defined as a set of conditions
that together with a set of environmental conditions could
lead to an accident or loss as defined above. Hazards are
linked to each possible Loss to provide insights into the
conditions or circumstances that could lead to unaccept-
able scenarios.

4.1.5 Identify Unsafe Control Actions

The next step of the framework identifies potential Con-
trol Actions in the autonomous system that may lead to
the hazardous state(s) disclosed above, hence called Un-
safe Control Actions (UCA). Hazardous states could result
from such potential control actions because:

• A control action required for safety is not provided or
not followed;

• An unsafe control action is provided;
• A potential safe control action is provided too early

or too late, that is, at the wrong time or in the wrong
sequence;

• A control action required for safety is stopped too
soon or applied too long.

Table 1 illustrates the analysis of Unsafe Control Ac-
tions within the context of the autonomous hauling task
in our proving grounds in California. In this example, the
unacceptable loss is identified as AGV nearly colliding
with one or more obstacles, terrain, or infrastructure. The
hazardous circumstance that leads to the potential loss is
that the AGV does not stop for obstacles in the road during
the Load-Haul-Dump (LHD) cycle.

4.1.6 Safety Requirements (1st Level)

Completing the UCA analysis is useful to express a
list of safety requirements for the AGV following estab-
lished safety standards and prevention thresholds. Under
SafeAI’s framework, these requirements or Safety Condi-
tions (SC) were implemented during product and software
development workflow.

From the previous example, high-level safety require-
ments were elaborated as follows:

SC2.1: AGV shall maintain a minimum distance from
other equipment/vehicle of at least 20m in zones. SC2.2:
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Table 1. Unsafe Control Action (UCA) Analysis
Control Loop/Action CA not provided UCA Provided CA too late/early CA delivered incorrectly

Stop for Obstacle AGV does not stop AGV accelerates AGV stopped too late AGV engages
in haul road for obstacle with obstacle Min distance violation wrong brake to stop

AGV shall maintain a minimum distance from other ob-
stacles of at least 20m. SC2.3: AGV shall maintain a safe
distance from vulnerable road users according to the Use
Case and ODD. SC2.4: AGV shall obey and follow the
site rules.

4.1.7 Analyze Causal Factors

Each UCA is linked to one or more causal factors (CF).
This process of determining causal factors is further bro-
ken down from the system level to the functional block
level, until the algorithmic level.

For example, for our UCA ”AGV does not stop for an
obstacle in forward path”, we identified the CF involving
the software functional block of the Perception module as
follows:

CF1.1: Perception did not identify the obstacle. CF1.2:
Perception did not check for static objects in the path.
CF1.3: Perception did not check for dynamic objects en-
tering around/in the path. CF1.4: Perception did not iden-
tify dynamic objects entering around/in the path. CF1.5:
Perception did not register the position of the objects in
the path ahead.

4.1.8 Safety Requirements (2nd Level)

Based on the causes described in the previous subsec-
tion, a second level of safety requirements or constraints
was defined specific to the Perception functions.

See the following requirement definition:
REQ-1: AGV shall perform a normal stopping pro-

cedure (e.g., retarder activation) when AGV reaches a
minimum safe distance of 20m from an obstacle in a zone.
REQ-1.1: Perception shall identify static equipment in
the path within 80-40m limit. REQ-1.2: Perception shall
check for static objects in the path within 80-40m limit.
REQ-1.3: Perception shall check for dynamic entering
around/in path within 80-40m limit. REQ-1.4: Percep-
tion shall identify for dynamic entering around/in path
within 80-40m limit. REQ-1.5: Perception shall register
position of the objects in path ahead within 80-40m limit.

As observed in this section, SafeAI has integrated STPA
iterative approach in the Safety framework wherein we
continue to identify a deeper causal factors for each iden-
tified causal factor that could lead to a hazardous state.
Each new causal factor layer triggers the definition of new

levels of safety requirements which are incorporated into
the development pipeline.

4.2 FMEA

FMEA is deployed in the Safety Framework to assess
hardware performance such as sensors and Drive-by-Wire.
FMEA establishes Failure Mode Identifiers (FMI) for each
component of the Autonomous kit.

This standard analysis established a Severity Scale for
each component failure from very high/catastrophic to low
or insignificant, the Probability of Occurrence of the fail-
ure according to the number of failures per day, month, or
year, and finally the Detection Scale of the failure, i.e., the
likelihood of the defect being detected by process controls
or reported by the system.

FMEA guided the hazard analysis of individual compo-
nent failures on the AGV system and provided controls or
safety requirements to be implemented to prevent or detect
the failure. For example, if the compute unit loses power,
the potential effect of failure is loss of vehicle control, and
hence the safety requirement is: AGV shall detect compute
unit loss and stop immediately.

4.3 LOPA

As an outcome of the hazard analysis delineated in the
STPA and FMEA subsections, we determine additional
risk mitigation strategies to identify, plan, manage, reduce,
or eliminate potential risks associated with each identified
hazard.

The Layers of Protection Analysis (LOPA) [9] is a semi-
quantitative risk evaluation method that builds on a hier-
archy of controls (as shown in Figure 6). Several safety
systems or controls are arranged in a format from more ef-
fective and protective to less effective or reliant on human
behavior.

One of AGV’s key benefits for the Use Case involves
moving the equipment operators out of the vehicle and the
equipment operation zone. The risk to the driver is elimi-
nated, which is the highest level of protection identified by
the National Institute for Occupational Safety and Health
(NIOSH) [10]. However, other operators, such as loading
unit operators, ancillary unit operators, drilling operators,
and technical services staff may need to access or oper-
ate within the autonomous operating zone. Therefore, it
is recommended by the Department of Mines, Industry
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Figure 6. NIOSH [10] Hierarchy of Controls

Regulation and Safety (DMIRS) that additional primary
controls such as elimination and substitution be put in
place to reduce risks to these employees [11]. SafeAI
has integrated LOPA into the Safety framework to define
protective layers for identified system-level hazard scenar-
ios, and implement the protective layers as independent
safeguarding barriers.

The first step in risk mitigation for the Use Case is to
ensure that any form of risk or hazard is first prevented.
The prevention process involves complying with applica-
ble California and United States regulations, international
safety standards as applicable, and site procedures defined
by the site operation and management prior to the initia-
tion of work with autonomous equipment at the site. The
site requirements are periodically revised to ensure SafeAI
management is up to date with the site requirements.

The standard ISO 17757:2019 [12] was referred to and
studied for safety analysis and assessments for the deploy-
ment of the autonomous equipment at the site. This stan-
dard requires a risk assessment process for Autonomous
and Semi-Autonomous Machine System Safety (ASAMS),
which conforms to the principles of ISO 12100 [13]
wherein, all identified risks shall be mitigated to accept-
able risk levels. ISO 17757 also requires that safety-related
parts of control systems shall comply with the appropri-
ate functional safety performance level. Examples include
ISO 13849 [14], ISO 19014 [15], or IEC 62061 [16].

The following risk mitigation steps included:

• Identification of risks: Risks associated with poten-
tial hazards are identified as part of the STPA and
FMEA, and per risk, the process of prevention is
followed.

• Compliance checks: The system must comply with
international and local regulations (when applicable),
and safety standards relevant to the system as a whole
or to any system part.

• Planning: The system, its processes, and interactions
are planned to ensure the prevention of each identified
risk.

• Verification: The system is verified to ensure it
meets the safety requirements, safe fallback actions
and plans are in place, and it is prepared for ongoing
maintenance implications. Fallback options include
built-in redundancies to ensure that if one component
or process fails, there is at least one method to bring
the AGV to stop.

Each layer of protection integrated into the system
should be independent of each other for effective risk re-
duction.

SafeAI defines layers of protection for each Use Case
and Release from development to production (Figure 7).
These layers are related to operational procedures or pro-
tection measures, as detailed by the corresponding Job
Safety Analysis, handed to the Site Operator. Engineering
controls arranged as layers of protection as mentioned in
ISO 17757 and included in our Use Case in California are:

1) Site Procedures and Regulations
2) Remote Autonomous Stop (A-Stop)
3) Situational Awareness (AGV Perception)

Figure 7. Layers of Protection Analysis

4.4 Implement Safety Requirements

The last step of the Safety framework is to implement the
requirements in the system design and validate that the re-
quirements are passed. The requirements are documented
internally along with the expected pass/fail criteria. The
test results are linked to the requirements and any discrep-
ancies are highlighted as part of this process. A decision
on discrepancies might either be continued validation or
issue a change request. The following section further de-
tails the testing and validation of the requirements as part
of the SafeAI Safety Framework for the case study.

4.4.1 Verification and Validation

We have implemented rigorous verification and valida-
tion processes to ensure that our system meets the spec-
ifications outlined in our safety requirements. These ac-
tivities are vital in developing autonomous products that
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are verifiable and traceable at all levels of analysis. Our
SafeAI and testing site personnel are regularly trained in
the latest iteration of these procedures and informed of
their responsibilities concerning these activities.

Our verification and validation processes have incor-
porated the expectations outlined in relevant industry
and safety standards. We also consult the regional
safety regulations of our customers and recommendations
from industry-specific organizations such as Earth Mov-
ing Equipment Safety Round Table (EMESRT) and Mine
Safety and Health Administration (MSHA). As new guide-
lines are discussed and introduced, we reassess and realign
our existing procedures accordingly.

The requirements we established at the beginning of
the production lifecycle primarily inform our verification
and validation activities at the site. Our quality assurance
team then planned and coordinated the relevant tests for
the system, module, and unit levels. These tests analyzed
all levels of the component, from interfaces and boundary
values to operational use cases and dependent failures.

Our verification strategy followed a process similar to
that outlined by the “V-model” of development for func-
tional safety (Figure 8). Software requirements fed into
software specification, which detailed the system design,
module design, unit design, and overall implementation.

Figure 8. V Development Model

Developers documented their work through issue tick-
ets and merge requests. We utilized a number of meth-
ods to verify the code at all stages, such as: • An auto-
mated continuous integration and continuous development
(CI/CD) pipeline that checks all pushed commits for com-
pliance with Motor Industry Software Reliability Associ-
ation (MISRA) and AUTomotive Open System ARchitec-
ture (AUTOSAR) code guidelines and code styling rules;
• A manual review and approval process with developers
designated to have an appropriate degree of independence
from the code in question; • Unit-level tests such as in-
spection, fault injection, and extended functional testing;
• Branch coverage and multiple condition/decision cover-
age (MC/DC); and • Analyses of interfaces and resource
usage.

When possible, we have also implemented tools that
have been designated as safety certifiable to our desired

standards and frameworks.
If errors or non-compliant code was detected at any

stage, the request in question was blocked. All develop-
ment occurs on separate branches and cannot be merged
into production unless it has successfully passed the above
checks and received all required approvals. Once all veri-
fication checks have been completed, safety requirements
and goals were validated at the vehicle level to evaluate
any residual risk that could potentially trigger hazardous
behavior of the overall system. We performed validation
in two main stages: initial simulation and on-site vehicle
testing.

Simulation provided an opportunity to thoroughly test
entire systems and/or sub-systems for adequate perfor-
mance before deployment and testing on the real vehicle
at the site. Simulation also provided unique features that
would otherwise be extremely hard to achieve, such as edge
cases and future prediction. SafeAI utilized the topology
and map of the AGV actual working location in Califor-
nia to create the simulation environment. We then tested
various operational scenarios over thousands of hours to
ensure that the vehicle will encounter safety-critical sce-
narios multiple times under a variety of conditions.

5 Site Operation and Established Work Pro-
cedures

Safety in mining and construction operations is the top
priority of all personnel and support teams. This includes
all personnel directly or indirectly engaged in supporting
autonomous solutions. It is critical that the autonomous
solution deployment at construction and mining sites not
only addresses existing safety rules and regulations, but
also helps end-users increase safety performance with in-
built features, processes, and technology.

This section outlines safe work practices and procedures
for the California proving grounds. Any deviations from
the safe work procedures, required a job safety or haz-
ard analysis to capture the hazards of the task and ensure
that adequate controls or change management actions are
implemented and communicated.

Safe work practices included education and training, ac-
cess to the AOZ, mode change procedures, and emergency
response.

5.1 Education and Training

All supervisory and operating personnel were instructed
on the system functionality and specific tasks to be under-
taken, including the hazards and risks, the controls to be
applied, and the job steps necessary to complete the tasks
safely and correctly. Training (manuals, specifications,
and instructions) covered the different job skills required,
the operation’s policies, applicable legislation and stan-

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1237



dards, site requirements for monitoring machine perfor-
mance, and incident reporting.

All personnel successfully demonstrated evidence-
based assessment of competency before working without
supervision.

5.2 Access to the Autonomous Operating Zone (AOZ)

A clear visual indication of the AOZ was provided at
each designated entry and exit point. The AOZ access
control system was monitored, with appropriate actions in
case of failure, based on safety plans and controls. Anyone
entering the AOZ underwent a required AOZ induction
and/or was escorted according to the risk assessment.

5.3 Mode Change Procedures

Manual to Autonomous mode change was represented
and indicated to site personnel by clearly visible mode
lights. Transitioning to Autonomous mode requires a se-
ries of gateways and steps, both in the vehicle or remotely
(in close proximity) starting from the Manual mode to pre-
vent a single human error from transitioning the vehicle to
autonomous mode. The required steps were defined in the
operating procedure for the site.

5.4 Emergency Response

All personnel must be familiar with the emergency re-
sponse strategy, muster points, and emergency contacts
before entering any site. Emergency response planning
for autonomous operations was integrated into the com-
prehensive site emergency response planning.

In addition to the work procedures summarized above,
reporting and communication execution, inspections, traf-
fic management, and practices to monitor the environment
were developed by SafeAI together with the site manage-
ment to ensure a safe working environment for all.

6 Conclusions
Given the industry need to assess the impact of automa-

tion in construction and mining to increase safety and
productivity, this document outlined a Safety Framework
for comprehensive and systematic assessment of the safety
hazards in Construction and Mining operations with Au-
tonomous vehicles. The framework is mainly based on
STPA, taking into account the latest approach developed
for industries like automobile and aviation automation.
Additionally, FMEA, and LOPA are integrated into the
comprehensive safety approach. The requirements from
this assessment and relevant local and international norms
feed into SafeAI’s product development and testing pro-
cedures.

Application of the framework into our proving ground
site is provided as an example of the practices SafeAI
carries out at each new mine or construction site across
the world. The risk mitigation strategies addressed in this
document ensure a phased approach to a fully autonomous
site while taking care of the development, operations, and
QA teams on the field.

In sharing this framework, our goal is to advance the in-
dustry approach to evaluate the safety of new autonomous
equipment.
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Abstract –  

The construction industry is looking at 
automation and robotization to enhance productivity 
and reduce the safety risks of various tasks during the 
construction, operations and maintenance (O&M) 
phases. In that context, human-robot interaction 
(HRI) and human-robot collaboration (HRC) are 
highly relevant. Although those terms are different, 
there is some misconception, and, in some cases, they 
have been used interchangeably. To address that, this 
study clarifies the meanings of each. We collected the 
existing explanations, reviewed the keywords, and 
completed a literature review of HRI and HRC 
applications in construction and O&M, and included 
definitions for HRI and HRC in the context of 
construction and O&M needs. Based on the review, 
we summarized the key elements to differentiate HRI 
and HRC and promote the concept of human-robot 
partnership (HRP) as a potential solution to overcome 
the identified limitations seen from pure HRI and 
HRC literature, followed by the future directions of 
HRP applications proposed for construction and 
O&M activities and needs. 
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1 Introduction 
While accounting for 13% of the world’s gross 

domestic production (GDP), the construction industry 
suffers from low productivity, labor shortage, and high 
risks [1]. The case is similar for the O&M of buildings 
and infrastructures, which often costs more than the 
expenditure of initial construction and contains 
dangerous tasks (e.g., the maintenance of nuclear power 
plants and bridges) [2], [3]. As a potential solution for 
addressing these problems, robots are adopted in 
construction and O&M fields. However, even though 

robots for construction and O&M have progressed a lot 
due to the development of hardware, software, and 
artificial intelligence, it is still extremely challenging to 
meet the requirements of full autonomy or no human 
intervention [4]. The concepts of human-robot 
interaction (HRI) and human-robot collaboration (HRC) 
are introduced to make robotics applications in 
construction and O&M more adaptable to the 
unstructured and complex working environment [4]. 
Progress has been made in the intuitive interface for 
effective communication [5], task allocation to overcome 
constraints [6], and accurate detection of worker’s 
cognitive load [7]. However, if we go back to the terms 
HRI and HRC, few researchers defined them and 
explained why they want to use one or both of them, as 
the topic of their works. In many scenarios, they were 
even used interchangeably, which makes it crucial to 
differentiate the two terms to avoid misuse and confusion. 
Many applications contain both interaction and 
collaboration between humans and robots, such as the 
interaction with collaborative robots [8], [9], [10]. And it 
is quite difficult to classify many works into HRI or HRC 
according to existing definitions. For example, according 
to Liu et al. [11],  humans can request robotic assistance 
by remote control through the proposed brain-computer 
interface, which not only satisfies the information 
exchange between human and robot stated in ISO’s 
definition of HRI [12] but also meets the requirement that 
human and robot work together to achieve the shared 
goals in the definition of HRC suggested by [13]. This 
shows the necessity of proposing a term that is feasible 
for works that concern both HRI and HRC. 

To address this gap, in this study, we selected papers 
related to HRI and HRC applications in construction and 
O&M by keyword search, filter setting, manual screening, 
and representative selection, as described in Section 2. 
Combining the existing explanations, keywords analysis 
of all relevant publications, and selected papers in 
Section 2, we offer definitions for HRI and HRC in the 
scope of construction and O&M, with which the key 
elements in HRI and HRC applications are analyzed in 
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Section 3, and HRP is proposed as the combination of 
HRI and HRC and suggested to be used in future works 
that concern both HRI and HRP for standardization 
purposes. Section 4 offers potential future directions, 
followed by Section 5, which concludes the work with 
the highlights of our findings.

2 Materials Selection

2.1 Materials Selection
As displayed in Figure 1, we selected papers from the 

Scopus database with four keywords combinations: 
“human robot interaction construction”, “human robot 
interaction operation maintenance”, “human robot 
collaboration construction”, and “human robot 

collaboration operation maintenance” with an intention 
to cover all the HRI and HRC applications in 
construction and O&M. Then we narrowed down the 
review scope to journal and conference papers in the last 
decade. The Scopus database was chosen for being the 
largest database of peer-reviewed articles. Other indexed 
databases and books were not selected because they did 
not provide useful additions [5]. In addition, the subject 
was limited to engineering, papers published in the last 
10 years, and only publications in English were selected. 
After manual screening, 117 papers were included, of 
which 8 representative papers [1], [6], [7], [11], [14], [15], 
[16], [17] that involve the key elements in HRI and HRC 
applications in construction and O&M were used as the 
references of the focus review.

Figure 1. Selection process of relevant literature ([1], [6], [7], [11], [14], [15], [16], [17]) for this study
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3 Focus Review

3.1 Key Definitions
To get a definition for HRI and HRC in the scope of 

construction and O&M, we referred to the existing 
explanations of the two terms. According to ISO 
8373:2021 [12], HRI is the information and action 
exchange between humans and robots to perform a task 
by means of a user interface. HRC is described as the 
study of collaborative processes in human and robot 
agents working together to achieve shared goals in [13].
Based on that, we searched for HRI (without HRC) and 
HRC (without HRI) applications in the Scopus database 
with the keywords combinations “human robot 
interaction” AND NOT “collaboration” and “human 
robot collaboration” AND NOT “interaction”. A 
keyword analysis was conducted for the results of the two 
searches with the open-source software VOSviewer [14]. 
For both HRI and HRC results, keywords were extracted 
from the paper title and abstract. The top 20 keywords of 
HRI and HRC were selected from the items that occurred 
more than 1700 times for HRI and 250 times for HRC. A 
list of keywords was obtained after removing 
overlapping and non-relevant items (e.g., technology, 
research, and problem) (Table 1). From that, it can be 
seen that a social robot that interacts and communicates 
with humans is an important application of HRI. In 
general, people participate in the process as the user, and 

the robot functions as the service provider. HRC, 
however, is mostly used in the context of industrial robots, 
where the human plays the role of the worker to execute 
tasks with the robot peer together. Combining the 
existing explanations, keywords analysis, and literature 
on HRI and HRC in construction and O&M, we offer the 
following definitions for HRI and HRC in the scope of 
construction and O&M: 

• HRI is the process in which humans exchange 
information with robots through a user interface for 
control or communication, by which they indirectly 
participate in the tasks.

• HRC is the state in which human workers and 
robots work together to achieve a certain task. 

Based on the above work and definitions, we 
concluded the key elements of HRI and HRC and 
proposed human-robot partnership (HRP) as the 
combination of them in Figure 2, which will be discussed 
in the following sections in detail.  

Table 1. Keywords of HRI and HRC

Type Keywords

HRI
Social robot, User, 

Environment, 
Behaviour, Framework

HRC Cobot, Industry, Safety, 
Worker

Figure 2. Key elements of HRI and HRC in construction and O&M

3.2 Human
According to the above definitions, HRI and HRC 

can be distinguished by the role of humans in the process.
In HRI, humans are the users of service robots, they do 
not directly participate in the work, while they function 
as the workers together with robots in HRC. For both 
HRI and HRC, in the face of exposure to robots, the key 

element of humans is their well-being. Besides the 
potential physical risks like collisions, which can be 
addressed from the design perspective (e.g., using 
algorithms to predict workers’ movements [17]), human 
workers may also suffer from cognitive load derived 
from the lack of confidence and predictability in the robot 
peers. Towards this end, Liu et al. [7] proposed a 
brainwave-driven worker-centred framework equipped 
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with a wearable electroencephalograph (EEG) to 
measure workers’ task-related cognitive load, with which 
robots’ behavior can be adjusted accordingly. After a test 
with 14 subjects who worked with a terrestrial robot 
under different cognitive loads, the results showed that 
the robot could adjust its working space with 81.91% 
accuracy with the help of humans’ brain signals. 

3.3 Interaction 
To enable the information exchange in our definition 

of HRI, various types of interfaces are used as the 
interaction bridge between humans and robots. However, 
the applicable scenarios of many of these interfaces are 
limited. For example, position and force-based interfaces 
do not allow human workers to teleoperate the robots in 
a hands-free manner, which is inconvenient when their 
hands are occupied. Also, the required headsets of vision-
based interfaces (e.g., Virtual Reality, Augmented 
Reality) may reduce visibility at the actual sites and 
increase safety risks. Similarly, voice control interface is 
significantly affected by noise on construction sites. To 
expand the application scope of robots and better serve 
human workers, Liu et al. [11] proposed a brain-
computer interface (BCI) with hands-free and non-
muscular interaction between humans and robots can be 
achieved. The interface enables users to control robots by 
transforming users’ brain signals from a wearable EEG 
device into robotic commands with satisfactory accuracy. 

In our definition of HRI, humans do not participate in 
the work directly; instead, they provide task-related 
information to robots by instructing or communicating 
with them. Robots are service providers who take the 
responsibility of completing the tasks physically, 
following the information from humans and their 
interpretation of it. To effectively interact with humans, 
robots must be capable of recognizing the information 
from humans. To enable robots to capture and interpret 
the hand gestures of users (construction workers), Wang 
et al. [14] developed a vision-based framework 
consisting of three working components: (1) workers 
detection and tracking, (2) recognition queues 
formulation and (3) hand gesture recognition. The first 
component detected the user giving hand gestures and 
creating their bounding box. With the second component, 
the region of the user cropped from the original frame 
was firstly expanded horizontally by 25% to capture 
more information and avoid errors; then, the extracted 
frames were compiled to form the hand gesture detection 
and classification queues for the last component. A 
hierarchical convolutional neural network (CNN) 
architecture was applied in the last component to detect 
and classify the user’s hand gestures with 87.0% 
precision in the implementation. 

3.4 Collaboration 
To enable humans and robots to work together for a 

task as described in our definition of HRC, successful 
HRC applications in construction and O&M must be 
based on the reasonable task allocation between human 
workers and robots that takes the requirements of 
different subtasks and the constraints of both humans and 
robots into consideration. For example, humans have 
strong comprehensive analysis ability (lacked by robots), 
which makes them more suitable for decision-making 
work, while robots are more efficient in repetitive and 
labor-intensive work like material and component 
delivery. To enable the application of human-robot 
collaboration in building large erectable truss structures 
in a space station, Zhu et al. [6] decomposed the task 
process into a certain number of basic actions named 
therblig. Then, hierarchical task analysis was adopted to 
establish the task model, based on which task allocation 
was conducted according to the limitations and abilities 
of humans and robots. Finally, a virtual simulation was 
applied to verify the feasibility of the proposed method. 

For a certain task of construction or O&M, the robots 
to be adopted should be capable of doing the allocated 
tasks, which imposes a challenge for the design and 
programming of robots. For instance, robots should be 
equipped with enough force capability required by the 
assigned tasks, should be able to reach all the task 
locations, should be capable of recognizing the obstacles 
along the defined path, should be prepared with 
necessary hand tools, and should be capable of being 
stopped in an emergency situation. In the work of 
Gautam et al. [15], a test of a construction robot was 
conducted for the installation of gypsum board panels, 
which is identified to be injury-prone from the 
perspectives of construction professionals. 3D scanning, 
reverse engineering, and 3D printing are applied to 
fabricate toll adaptors that enable robots to use human 
tools and target markings are used to indicate the robots 
to work at the right location and distance. The results of 
the experiment in a wooden house construction site 
showed that gypsum board installation can be achieved 
by the collaboration of the robot and human worker, and 
workers can benefit from ergonomics enhanced by 
collaborative robots. 

3.5 Partnership 
Based on our definitions of HRI and HRC in the 

scope of construction and O&M, pure HRI cannot exist 
alone because the aim of enabling interaction between 
humans and robots is to offer better collaboration. In 
other words, information exchange (interaction) alone is 
just a process as described by the definition in Section 
3.1, and it is not meaningful until it realizes the aim of 
instructing robots to better deliver the task. In this 
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scenario, humans offer instructions, which are followed 
by robots to guide the physical work, resulting in them 
working together (collaboration). Without interaction, 
pure HRC is simply letting humans and robots take the 
assigned work from task allocation and thus lacks 
flexibility. In a dynamic and unstructured working 
environment (like construction sites), a minor change in 
the task may cause the robot to lose the capability to work, 
and humans have no access to manipulate or teach the 
robot to complete the task. Also, the human cannot 
modify the robot’s behavior when an error occurs.  

As shown in Figure 3, due to the above drawbacks, 
actual needs cannot always be fully satisfied (represented 
by the bland expression on the human’s face) by pure 
HRI or HRC. This representation also shows how the 
robot is able to interact with the human by asking a 
question in the HRI, but not in the HRC. A feasible 
solution to address the issue is combining HRI and HRC 
to form a novel and flexible relationship between humans 
and robots that is defined as HRP (represented by a 
content expression in the human, the interaction part in 
the robot, and the collaboration in the hands). Actually, 
many works fit the concept of HRP. For example, Zhou 
et al. [16] proposed a visual-haptic interface to provide 
high-fidelity task scenarios and enhance control feedback. 
Typical physical interactions like weight, texture and 
inertia are captured with this method. In this work, 
humans provided instructions by operating an interface 
and received tactile feedback from the robots performing 
the physical tasks. However, this form of partnership is 
relatively low-level as humans still needed to fully 
control every working process, and robots did not learn 
how to do the work. Wang et al. [1] improved this using 
a learning from demonstration (LfD) method that enables 
humans to flexibly teach robots how to deliver tasks by 
applying intuitive demonstration. In this method, robots 
are equipped with basic skill primitives that are required 
by different construction tasks, such as reaching and 
nailing. A VR interface is provided to enable human 
workers to be aware of the on-site status and demonstrate 
task delivery through the selection of the robot’s skill 
primitives. 
 

Figure 3. Human-robot interaction, collaboration 
and partnership 

4 Future Directions 

4.1 Multi-sensor Fusion of Physiological 
Signals 

With more and more focus imposed on human 
workers’ mental stress during the HRP process, the 
method for stress measurement has transformed from 
collecting questionnaires from participants to a more 
reliable electroencephalogram (EEG) method that 
captures human brain signals directly. While much work 
has been done with wearable EEG devices, the concern 
is that the devices used in the construction field with a 
small number of electrodes (14-32) may not be capable 
of collecting reliable EEG signals compared with the 64-
256 electrodes used in the clinical field. To address this 
issue, Liu et al. [15] applied a generative adversarial 
network to produce high-quality EEG signals. Another 
potential solution could be to leverage multi-sensor 
fusion. Besides EEG, there are already various kinds of 
methods for collecting human physiological signals, such 
as photoplethysmogram (PPG), electrocardiogram 
(ECG), and electrooculogram (EOG). By fusing signals 
from multiple sensors, the uncertainty of data will 
decrease, and more reliable information will be gained. 
Thus, we can have a deeper insight into the human 
worker’s mental load. 

4.2 Multi-source Data Fusion for HRP-based 
Predictive Maintenance 

For current practices of O&M of buildings and 
infrastructure assets, robotic applications are mainly 
devised using vision-based robots for automatic crack 
detection. However, not all maintenance requirements 
can be detected with robotic vision, such as the detection 
of internal cracks in pipes and operating anomalies in 
building facilities. To achieve early-stage maintenance 
for these deteriorations and prevent them from further 
developing into failures, many works have been done in 
predictive maintenance (PdM) with various sensors. 
Human expertise [20] can also be fused with sensor data 
to accommodate the drawbacks of each other, and robots 
should be capable of multi-source data fusion and 
anomaly detection to predict the facility’s health state in 
the future. In maintenance activities, given the amount 
and complexity of maintenance work in modern 
buildings, it is hard to enable robots to perform tasks by 
pre-programming them. A feasible solution could be the 
LfD [1] method mentioned before, which enables 
humans to teach robot task delivery by intuitive 
demonstration. In this way, instead of the low-level 
manual manipulation, humans can conduct high-level 
experience transferring in the process of HRP-based 
predictive maintenance, which better leverages the 
strengths of both humans and robots. 
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5 Conclusions 
This study provided clear definitions of HRI and 

HRC in the context of construction and O&M 
applications by reviewing existing definitions, keyword 
analysis, and a systematic literature review. HRI was 
defined as the process where humans exchange 
information with robots through a user interface for 
control or communication by which they indirectly 
participate in the tasks. Slightly different is the HRC 
concept, in which human workers and robots work 
together to deliver a certain task. The key elements for 
interaction and collaboration between human users and 
robots are the interface and task allocation, respectively. 
For robots, HRI concentrates on their recognition of 
information from humans, and HRC focuses on their task 
capability. The crucial point for humans in both 
processes is the well-being problem. Since HRI cannot 
exist alone because it serves HRC, and HRC will be rigid 
and inoperable without HRI, we proposed the 
relationship defined as HRP to integrate features of HRI 
and HRC for improved task performance in construction 
and O&M and suggested to use of HRP in works that 
concern both HRI and HRC features. Finally, data fusion 
could be the future direction to innovate HRP research. 
With multi-sensor fusion of physiological signals (e.g., 
EEG, PPG, ECG, EOG), more accurate detection of a 
worker’s mental load can be derived to better ensure the 
human’s well-being, a key element for HRP. With multi-
source data fusion, human expertise can be included as 
the guidance of robotic maintenance work, which better 
leverages human’s edge in intellectual work and the 
robot’s ability for physical work. 
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Abstract – 

Construction 3D printing (3DP) has the potential 
to be cost-effective compared to traditional 
construction, due to its shorter supply chain and 
higher level of automation. However, there is a lack of 
comprehensive studies comparing the costs of 
traditional construction and 3DP across various 
stages, from design to waste disposal. Therefore, this 
study investigates the overall cost of traditional and 
3DP construction, considering both off-site and on-
site 3DP techniques. Mathematical models are 
developed to analyse costs, including research and 
development (R&D), Architecture, Engineering, and 
Construction (AEC), transportation, warehousing, 
setup installation, printing and on-site assembling 
processes, waste disposal, and environmental costs. 
Real-time case studies have been investigated to 
validate the feasibility and practicality of the models. 
The comparative analysis revealed that the design 
stage cost of 3DP is 19 times higher than those of 
traditional construction due to significant 
investments in R&D. Off-site 3DP incurs higher 
logistics costs primarily due to holding costs. 
Nevertheless, it becomes a more viable option for 
small-scale projects (less than 35t for the considered 
cases), like printing architectural elements, as the 
expense of delivering printed components to the 
construction site is lower compared to transporting 
bulky 3DP equipment and raw materials. On-site 3DP 
presents a competitive alternative to traditional 
construction methods, both for individual projects 
and large-scale developments. The findings of this 
research provide valuable insights that can help the 
construction industry optimize cost-effectiveness and 
enhance efficiency in construction practices.  
 
Keywords – 

3D printing, logistics, economic assessment, 
additive manufacturing, case study 

1 Introduction 
The fourth industrial revolution, known as Industry 

4.0, is characterized by the digitization of complex 
industrial tasks. One of the key technological 
advancements driving this digital transformation is 3DP, 
also referred to as additive manufacturing or rapid 
manufacturing [1]. 3DP involves the layer-by-layer 
joining of materials to create objects based on three-
dimensional models [2]. The global 3DP market 
experienced significant growth in 2020, with a 
remarkable 21% increase compared to 2019, reaching an 
estimated value of $12.6 billion [3]. This growth 
highlights the potential of 3DP technology to drive 
various industries towards digitalization. In the 
construction industry, 3DP technology shows great 
promise in reducing labor costs, construction time, risky 
human operations, material usage, and waste [4, 5]. 
Additionally, it offers the advantage of architectural 
design flexibility and provides social and environmental 
benefits [6]. Consequently, significant efforts have been 
made by stakeholders to advance the construction 3DP 
industry. These efforts include the development of 3D 
printer robotic systems, suitable printed materials, and 
new applications. Various organizations worldwide have 
completed numerous single projects, ranging from small-
scale structures to entire low-rise buildings. However, 
3DP has yet to be thoroughly tested in mass-production 
scenarios [7, 8].  

Despite growing interest and knowledge in 3DP 
technologies, their adoption in the construction industry 
lags behind the manufacturing sector [9]. Challenges 
such as technological feasibility, cost and time benefits, 
user training, safety considerations, and compliance with 
contractual and standard requirements impede 
widespread adoption [10]. These concerns create doubts 
among potential adopters about the value of 
implementing 3DP technology [11]. 
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Several research studies have focused on the 
economic analysis of construction 3DP. Tobi, et al. [12] 
found that 3DP has the potential to reduce construction 
costs by 30% compared to conventional techniques. 
Yang, et al. [13] developed a cost calculation method 
considering various factors such as labor, material, 
machine, management, safety, and environmental costs 
for both off-site and on-site 3D printing. Aghimien, et al. 
[14] gathered insights from construction industry 
professionals and demonstrated that construction 3DP 
offers improved cost efficiency in housing projects and 
enhances productivity. Weng, et al. [15] conducted a 
comparative economic analysis of 3D concrete printing 
and precasting, observing a 34% reduction in overall 
costs for 3DP construction.  Allouzi, et al. [16] compared 
3DP with conventional construction techniques for a 
single-story building, finding a 65% reduction in material 
costs for 3DP. Markin, et al. [17] estimated the cost of 
foam concrete exterior walls produced through 3DP, with 
material costs contributing 70% to the total direct cost. 
Han, et al. [18] conducted a comparative analysis of 3DP 
and conventional construction methods for a hypothetical 
cylindrical silo, highlighting that material costs 
accounted for 83% of the overall cost in 3DP. Abdalla, et 
al. [19] compared the costs of formwork and raw 
materials between construction 3DP and conventional 
construction, reporting a 78% lower capital cost for 3DP 
due to the absence of formwork and concrete. The above-
mentioned studies discuss various cost components 
related to the construction phase, with some addressing 
environmental factors during the construction stage and 
resource utilization. Besklubova, et al. [20] conducted a 
detailed analysis of logistics costs for construction 3DP 
of low-story buildings, covering the entire process from 
suppliers to waste disposal.  

While various studies have focused on cost analysis 
in construction 3DP, they often consider specific stages 
such as construction or logistics individually. As a result, 
obtaining a comprehensive understanding of the cost 
structure for the entire 3DP project, from design to waste 
disposal, continues to be a challenge. To address this gap, 
the current study provides a comprehensive cost analysis 
throughout the entire process, including environmental 
factors. This study considers two different 3DP 
construction techniques including off-site and on-site 
3DP, to comprehensively assess their cost-effectiveness. 

2 Model development 
The research methodology consists of four key steps. 

Firstly, a comprehensive literature review was conducted. 
This literature review provided insights into the 
processes involved in each stage of construction projects 
and established a theoretical foundation for developing a 
cost estimation model to assess construction projects 

from the design to realization stage.  
Secondly, the development of the cost estimation 

model began by selecting parameters based on the 
involved processes. The parameter selection followed the 
Activity-Based Costing (ABC) approach, which aims to 
accurately allocate overhead costs and resources, such as 
labor, materials, and equipment costs, to processes based 
on their actual consumption of resources. In comparison 
to traditional cost analysis approaches (uses machine 
hours or man-hours consumed as the basis for estimating 
costs), ABC method provides more accurate cost 
information, which enables effective monitoring of 
supply chain and production strategies [21]. 
Subsequently, the model assumptions were defined, and 
the parameters were quantified and formulated. 

Thirdly, three comparable case studies were selected 
to ensure the feasibility and practicality of the proposed 
model. These case studies represented on-site 3DP, off-
site 3DP, and traditional construction. A three-step data 
collection approach was utilized to gather a 
comprehensive dataset, employing triangulation of 
evidence from three interrelated methods [22].  

Finally, a comprehensive cost breakdown analysis 
was carried out to evaluate and understand the individual 
cost components associated with both 3DP and 
traditional construction processes. Additionally, a 
sensitivity analysis was conducted for critical cost 
components, followed by data processing. Sensitivity 
analysis involves examining how uncertainty in model 
output, whether numerical or otherwise, can be attributed 
to various sources of uncertainty in the model input. 

2.1 Parameters selection 
The low-rise building project process involves 

different stages, including the design stage, logistics, and 
construction process (printing and assembly). The design 
stage includes R&D and AEC activities. In the traditional 
construction supply chain (CSC) flow, raw materials are 
obtained from suppliers and processed by manufacturers 
to create construction materials and elements. These 
materials and elements are then transported to the 
construction site, and any waste generated during the 
construction process is transported to disposal facilities 
(Figure1 (a)) [4, 23]. In the case of construction 3DP 
technology, there are two main supply chain 
configurations: on-site and off-site [4, 24]. On-site 
printing involves moving raw materials and 3DP 
equipment directly to the construction site (Figure1 (b)). 
Although 3DP is often touted as a zero-waste technology 
[25], waste disposal facilities are still a part of the supply 
chain at its current stage of development. This is because 
the technology, with its imperfections such as failed 
components and inaccurate material calculation, still 
generates waste during the printing process [4]. Off-site 
printing involves moving materials from suppliers to a 
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3DP manufactory facility, and then to the construction 
site for assembly (Figure 1(c)). Similar to the above, 
construction waste is transported to disposal facilities. 
The logistics cost components have been discussed in 
detail by Besklubova, et al. [20]. Construction process 
costs encompass materials, machinery, equipment, and 
environmental factors.

Figure 1. Construction supply chain configurations for 
small and medium scale projects: (a) traditional, (b) on-

site 3DP, and (c) off-site 3DP

2.2 Model assumptions
The model assumes a unidirectional flow, specifically 

from the supplier of raw materials to the off-site 
manufacturing facility, then from the manufacturing 
facility to the warehouse, and finally from the warehouse 
to the construction site and then to disposal facilities. In 
the case of off-site 3DP, there is no need to transport 
equipment because the 3DP equipment is owned by the 
off-site manufacturer. There is no limit to the total 
number of facilities at each node. To estimate the 
distances between the facilities, Google Maps is utilized
[26]. The labour wage rates used in the analysis are based 
on the latest standard rates obtained from reliable online 
sources. The printing process considers the times 
required for installation, printer setup, material 
preparation, and actual walls printing. The 3DP
equipment consists of a 3D printer, batching plant, 
concrete piston pump, and concrete silo. In the case of 
off-site 3DP, a crane is also utilized for the assembly of 
printed components. It should be noted that the 
development of the pricing policy did not consider 
weather conditions.

2.3 Quantification of parameters
This section explains how to quantify the total 

construction project cost and its related cost components. 
The activities involved in each construction stage were 
assessed using the ABC approach. The cost component 
parameters are summarized in Table 1 and expressed via 
equations 1-4 below.

Table 1. List of parameters

Parameters Description
nrd Manpower for R&D 
nds Manpower at design stage 
wrd Average salary for R&D 
wds Average architect’s salary 
trd/tds Project preparation period (R&D/ design)
HCi

mat Handling cost per unit of material at 
facility i

IHCi
mat

IHCi
comp

Inventory holding cost per unit of 
materials/printed components at facility i

DCi
waste Disposal cost per unit of waste 
TCij Transportation cost from i to j, i ≠ j

Qi
mat Quantities of materials at facility i
Qij
mat Quantities of materials transported from i

to j, i ≠ j
Vij
eq Volume of equipment transported from 

to , i ≠ j

SUti
eq Time required for each set up of the 3D 

printer at facility i
SUni

eq Number of the 3D printer set up times at
facility i

Eij Carbon emissions factor for diesel 
consumption for material/ equipment
transportation from to , i ≠ j

CECO2 Environmental cost of CO2 emissions 
disij

mat Distance from to for material supply, 
i ≠ j

disij
eq Distance from to for equipment 

supply, i ≠ j

ni
SU Number of workers for equipment set up 

at facility i
wi
SU Construction site worker wage rate for 

equipment set up at facility i
nij
truck Number of 18 tonnes-trucks for materials 

transportation from i to j, i ≠ j
nij
cont Number of 20-foot 3D printer transport 

containers from i to j, i ≠ j
thold
mat

thold
comp

Holding time of materials/printed 
components 

tc Time required for construction 
wc Average salary for construction workers 
nc Manpower at construction stage 
MC Cost of one tonne of material 
EqC𝑖 Equipment cost (3D printing equipment

and crane) i, i = 1… I
EC Unit energy cost 
ti
eq Time for the equipment operation i, i =

1… I during 3DP/assembly 

Traditional construction 
supply chain

Raw 
material 
supplier

Manufacturer Construction 
site

Waste 
disposal

On-site construction 
3DP supply chain

(a)

(b)

Off-site construction 
3DP supply chain

(c)
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PCi Power capacity (kW) of equipment i, i =
1… I 

ELi Useful life of equipment i, i = 1… I  
FC Unit fuel (diesel) cost per liter 

FConi Fuel consumption factor for diesel 
machinery (e.g., crane) per hour i , i =
1… I 

Ei
el Carbon emissions factor for electrical 

equipment i, i = 1… I  
Ei
dis Carbon emissions factor for diesel 

machinery i, i = 1… I  
 

TotalCost = Project preparation cost +
Logistics cost + Construction cost  

(1) 

Project preparation cost

= [
𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑛𝑑 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 +

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝐷𝑒𝑠𝑖𝑔𝑛
] =

= {
𝑛𝑟𝑑 × 𝑡𝑟𝑑 × 𝑤𝑟𝑑

+
𝑛𝑑𝑠 × 𝑡𝑑𝑠 × 𝑤𝑑𝑠

 

(2) 

Logistics cost =

[
 
 
 
 
 
HandlingCostmat +

HoldingCostmat +

DisposalCostwaste +

SetUpCosteq +
 TransportationCost +
EnvironmentalCost + ]

 
 
 
 
 

= 

=

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 ∑ HCi

mat × Qi
mat

I

i=1
+

[
 
 
 
 
 
∑IHCi

mat

I

i=1

× Qi
mat × thold

mat +

∑IHCi
𝑐𝑜𝑚𝑝

I

i=1

× Qi
mat × thold

comp

]
 
 
 
 
 

+

∑∑DCi
waste × Qij

mat

J

j=1

I

i=1

+

∑SUti
eq

I

i=1

× SUni
eq
× ni

SU ×wi
SU +

[
 
 
 
 ∑ ∑ TCij ×

J

j=1

I

i=1
nij
truck × disij

mat +

∑ ∑ TCij ×
J

j=1

I

i=1
nij
cont × disij

eq

]
 
 
 
 

+

[
 
 
 
 
 
 

(

 
 
 
 ∑∑Eij

J

j=1

I

i=1

× nij
truck × distij

mat +

∑∑Eij

J

j=1

I

i=1

× nij
cont × distij

eq

)

 
 
 
 

× CECO2

]
 
 
 
 
 
 

 

 

(3) 

Construction cost = 

=

[
 
 
 
 

𝐿𝑎𝑏𝑜𝑢𝑟 𝑐𝑜𝑠𝑡 +
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 +
𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 +

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 +

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 (𝑐𝑜𝑛𝑠𝑡𝑟)]
 
 
 
 

= 

=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝑡𝑐 × 𝑤𝑐 × 𝑛𝑐 +
MC × 𝑄𝑖

𝑚𝑎𝑡 +

∑
EqC𝑖
𝐸𝐿𝑖

× 𝑡𝑖
𝑒𝑞

𝐼

𝑖=1

+

[
 
 
 
 
 
∑𝐸𝐶

𝐼

𝑖=1

× 𝑡𝑖
𝑒𝑞
× 𝑃𝐶𝑖 +

∑𝐹𝐶 × 𝑡𝑖
𝑒𝑞
× 𝐹𝐶𝑜𝑛𝑖

𝐼

𝑖=1 ]
 
 
 
 
 

+

[
 
 
 
 
 

(

 
 
 
∑𝐸𝑖

𝑒𝑙

𝐼

𝑖=1

× 𝑡𝑖
𝑒𝑞
× 𝑃𝐶𝑖 +

∑𝐸𝑖
𝑑𝑖𝑠 × 𝑡𝑖

𝑒𝑞
× 𝐹𝐶𝑜𝑛𝑖

𝐼

𝑖=1 )

 
 
 
× 𝐶𝐸𝐶𝑂2

]
 
 
 
 
 

 

(4) 

3 Case study 
This section illustrates the implementation of the 

proposed model to evaluate the feasibility of 3D printed 
projects compared to traditional construction methods. 
Case studies of residential buildings in Berlin and 
Beckum (Germany) are selected. The on-site 3D printed 
project, a collaborative effort involving PERI, COBOD, 
etc., was chosen due to its non-standard shape and on-site 
construction, aligning with industry interests. The project 
holds a building permit from the office in Beckum, 
providing valuable insights. The data from this project is 
sufficient for the case of 3DP off-site. A traditionally 
constructed house in Berlin, which utilized sand-lime 
blocks and had a similar floor area, was chosen for the 
comparison. These projects meet the selection criteria for 
the case study [27] because they are real examples from 
the same country, with similar currency, and quantum of 
work, and provide comprehensive data on various aspects. 
Even though the projects were implemented in different-
sized cities (Berlin and Beckum), the cost calculations 
were based on average values for Germany. This includes 
factors such as material, equipment, and waste 
transportation, which often involve intercity logistics.  

3.1 Data collection 
To obtain a comprehensive set of data, a three-step 

data collection approach was employed [22]. The 
approach includes gathering data from open-source 
documents and articles, conducting surveys using a 
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survey form, and conducting open-question interviews. 
The 3DP cases in this study utilized the BOD2 concrete 
printer, which was purchased by PERI. This printer 
model consists of a gantry system with multiple modules, 
enabling its use for both on-site concrete projects and off-
site element production. The gathered data was then 
prepared for use in the model, which involved matching 
the obtained data with the parameters in the model. 

3.2 Data processing
The prepared data is utilized in the model to calculate 

the different cost components. The cost of the project 
design and preparation stage is determined using Eq. (2), 
logistics cost is calculated using Eq. (3), and the 
construction cost is derived from Eq. (4). The calculated 
costs are summarized in Table 2. A pie chart is drawn to 
visualize the percentage of each cost component within 
the total cost for each case (Figure 2). Three cost 
elements (holding, set up, and construction 
environmental costs) are not included in the pie chart 
legend as their contribution to the total cost is negligible, 
close to or equal to zero.

The total cost for traditional construction amounts to 
€93,480, while on-site 3DP reaches €418,489 and off-site 
3DP reaches €472,581. Upon conducting a comparative 
analysis, it becomes evident that approximately 80% and 
71% of the total costs are attributed to the project 
preparation stage, which involves R&D. During this 
stage of construction 3DP development, each project is 
treated as unique and requires extensive preparation from 
the initial phase. Additionally, the active development of 
3DP equipment necessitates significant investments in 
software and hardware updates for each project. However, 
as the technology matures and becomes more widely 
used, project designs can be applied to multiple housing 
projects using the same 3DP equipment, making the 
project preparation stage comparable to that of traditional 
construction. For example, establish a library of reusable 
designs from which the chosen project can be 
downloaded [28]. The logistic cost for off-site 3DP is 
higher due to the additional transportation of 
prefabricated components. On the other hand, on-site 
3DP has a higher cost compared to traditional 
construction due to the transportation of massive 3DP 
equipment. However, more compact 3D printing robotic 
solutions are available in the market for use [20].
Moreover, despite the lower amount of materials 
involved, the material transportation costs of on-site 3DP 
are higher compared to traditional construction. This
observation indicates that despite claims of traditional 
construction materials, such as cement, being suitable for 
3DP technology [7], companies often procure materials 
from specialized 3DP organizations (e.g., equipment 
vendors often serve as the suppliers of raw materials) 
instead of purchasing them from the nearest convenient 

company [29]. Previous studies have also highlighted the 
insufficiency of printing materials (e.g., Hossain, et al. 
[4], Zhang, et al. [30]). 

In terms of construction cost, it accounts for 
approximately 7%, 10%, and 70% of the total cost in the 
cases of on-site 3DP, off-site 3DP, and traditional 
construction, respectively. Specifically, the construction 
cost of traditionally built projects is approximately 2.5 
times higher than that of on-site 3DP construction due to 
its longer duration, which requires more manpower usage.

Figure 2. Cost profile for three scenarios

Table 2. Costs calculation

Cost 
components

3DP on-
site, €

3DP off-
site, €

Traditional 
construction,€

Project 
preparation 

335 000
(80%)

335 000
(71%)

17 866,7
(19%)

Handling cost 852.6 2305.2 2091.6
Holding cost 91.8 248.4 91.8
Disposal cost 2121.2 284.1 3787.9
Set up cost 576.0 0.0 0.0

Transport. cost 47998.9 74028.5 3329.1
Environmental 
cost(transport.)

5717.0 12596.2 568.1

Logistics cost 57357.4
(13%)

89462.5
(19%)

9868.5
(11%)

Labor cost 5280.0 7892.5 47025.0
Material cost 14976.0 15050.9 18720.0
Equipment 

cost
2400.0 18550.0 0.0

Energy 
consumption

3226.9 5917.3 0.0

Environmental 
cost (constr.)

249.0 708.1 0.0

Construction 
cost:

26131.9
(7%)

48118.8
(10%)

65745.0
(70%)

Total: 418489.4 472581.2 93480.1

Onsite 3DP
Offsite 3DP
Traditional 

construction
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3.3 Sensitivity analysis using alternative 
scenarios

Figure 3. Influence of the variation of raw material 
quantity on its logistics cost

Figure 4. Influence of the variation of raw material
quantity on its transportation cost

Figure 5. Influence of the distance variation on its
transportation cost 

The results presented in Table 2 indicate that, apart 
from the project preparation stage, logistics costs 
represent the largest proportion of the total cost in 3DP 
cases. The primary factor influencing logistics costs is 
the quantity of materials. Therefore, this variable was 
selected as the independent variable for sensitivity 
analysis. Recognizing the considerable range of distances 
between each pair of facilities in the three cases

(spanning from 11 to 525km), a decision was made to 
standardize the distance between each pair of facilities to 
100km.This was done to ensure that the calculations are 
not overly dependent on distance. Figure 3 illustrates the 
cost elements using clustered columns, while the total 
logistics costs are represented by lines. In terms of overall 
logistics cost, off-site 3DP exhibits significantly higher 
costs compared to the other two cases. It can be observed 
that the logistics cost for traditional and on-site 3DP is 
quite similar. Therefore, in this regard, 3DP technology 
can be considered very comparable despite the need for 
extensive equipment transportation. Regarding the cost 
components, transportation and holding costs contribute 
the most to logistics costs. In real case studies (Table 2), 
transportation costs tend to dominate due to the large 
distances between facilities. However, the sensitivity 
analysis reveals that the holding cost for off-site printed 
components is quite high. This is associated with the need 
to hold prefabricated components for 28 days to allow for 
sufficient strength gain before installation [21]. 
Implementing effective inventory management practices 
can help reduce holding costs. Additionally, the use of 
concrete additives can decrease the time required for 
strength gain, thus reducing holding costs. The charts 
indicate an intersection point when considering a small 
quantity of transported materials, where off-site 3DP 
demonstrates a more feasible result compared to on-site 
3DP, with transportation costs slightly outweighing 
holding costs.

Therefore, further sensitivity analysis was conducted, 
focusing solely on transportation costs, including total 
transportation costs and costs elements associated with 
material and equipment transportation. Similarly, Figure 
4 illustrates the cost elements of material and equipment 
transportation using clustered columns, while total 
transportation costs are represented by lines. The 
intersection between the lines representing on-site and 
off-site 3DP transportation costs indicates that off-site 
3DP techniques can be considered feasible for small 
object printing, specifically for objects weighing less 
than 35 tonnes. In general, off-site 3DP becomes more 
attractive when the cost of delivering printed elements to 
the construction site is lower than transporting the 
massive 3D printing equipment along with raw materials.

Another significant factor that impacts transportation 
costs is the distance traveled. To evaluate the influence 
of distance variation on the total transportation costs, the 
distance between any two facilities is designated as the 
independent variable.  Figure 5 presents the results, 
demonstrating the comparable feasibility of on-site 3DP 
and traditional construction methods. 

4 Conclusions
This study aims to assess the costs associated with 
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3DP projects compared to traditional construction for 
low-story buildings. The cost assessment encompasses 
the project design stage, logistics, construction process 
with resources used, and waste disposal. Moreover, this 
model accounts for environmental factors. At the present 
stage of construction 3DP technology development, the 
cost of the project preparation stage is 19 times higher 
than that of traditional construction. However, the 
construction cost is 2.5 times lower compared to 
traditional methods. Sensitivity analysis, when compared 
to comparative analysis (Table 2), provides valuable 
insights revealing that logistics costs for traditional 
construction and on-site 3DP are relatively similar. The 
higher logistics costs of on-site 3DP observed in the 
comparative analysis can be attributed to the significant 
distances between suppliers and construction sites. This 
highlights the need to expand the 3DP materials market 
to encompass a broader range of traditional construction 
materials readily available within specific regions. By 
doing so, transportation costs can be reduced by sourcing 
materials from local suppliers near the construction site. 
Furthermore, the sensitivity analysis emphasizes that 
transportation and holding costs contribute the most to 
overall logistics costs, highlighting their significance as 
cost components. The off-site 3DP exhibits higher 
logistics cost due to holding costs. However, off-site 3DP 
is more feasible for small-scale projects, such as 
architecture elements printing, as the cost of delivering 
printed elements to the construction site is lower 
compared to transporting the massive 3DP equipment 
and raw materials. On-site 3D printing can be a 
competitive alternative to traditional construction 
methods for individual projects as well as large-scale 
developments. It is important to note that the model used 
in this study does not account for breakdowns caused by 
environmental conditions, equipment failures, or other 
technical faults.  

This study benefits relevant stakeholders in the 
construction industry, as well as researchers, in the 
following ways: (1) it provides a comprehensive and 
structured approach for developing a cost estimation 
model; (2) the study develops a comprehensive model 
that plays a pivotal role in evaluating the feasibility of 
3DP projects, covering all stages from design to 
realization; (3) by comparing 3DP scenarios with 
traditional construction methods, the study highlights the 
practicality and potential advantages of 3DP projects. 

Future advancements in model development can 
incorporate specific project characteristics, such as 
geographical location, weather conditions, or remote 
accessibility, by including surcharge rates tailored to 
address these factors. To advance the integration of 3DP 
technology, the subsequent phase involves the 
technology sustainability assessment and creation of a 
strategic roadmap. This roadmap will incorporate 

scientific solutions and serve as a systematic guide, 
outlining the sequential utilization of the proposed 
mathematical models to evaluate their cost structure for 
technology evaluation.  
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Abstract –  

This paper presents the application of the 
information contained in exchange standards to 
predict indicators of design quality for concrete-in-
place reinforced concrete (CIP RC) structures early 
in the design process. A logistic regression model is 
applied to each node type of a frame structure: beam-
column, slab-column, beam-slab, and beam-beam. All 
model results present the significance of the variable 
chosen, as well as the classification table with very 
high values of prediction accuracy. The results show 
how well the obtained models fit the data, and 
therefore may be used to estimate potential 
construction issues early in the process, based on the 
parameters of the design intent standard exchanges.  
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1 Introduction 
While there have been multiple studies around the 

evaluation of design indicators, [1] performed a 
comprehensive research and categorization effort of most 
of those available. Using three categories: functionality, 
build quality and impact, they identified multiple 
performance indicators of what potentially constitutes a 
good design, including layout, lighting and ventilation, 
energy, structural elements, building stability, comfort, 
and many others. The category that relates the most to the 
structure of the building from a design and construction 
standpoint is “Build Quality”. However, these indicators 
were mostly developed to evaluate the performance of a 
design after it has been completed, and do not consider 
the valuable information available during design, 
particularly the one contained in intermediate model 
exchanges done during the design process. Regarding the 
category of build quality, research performed around the 
efforts of design professionals to purse enhanced 
effectiveness of their designs during construction, found 
that most design professionals consider that 

constructability is a key indicator of the quality of the 
finished product or building [2]. 

The concept of “Constructability” or “Buildability” 
refers to the application of construction knowledge 
during the planning and design phases to make the 
construction process more efficient, practical, or 
sometimes even realistic [3]. This concept has been 
around for several years, and while the focus has changed 
through time, a review on the previous, current and future 
research done around it found that its application today is 
as important as ever for reasons including increased 
project complexities, great amount of ambiguous 
information, new relationships between stakeholders, 
and increased use of powerful methods and software 
tools [4]. Constructability can be approached from 
several angles, and pursue different benefits, including 
costs, time, labor, efficiency, and others. [5] grouped in 
seven themes the Construction Industry Institute 
constructability principles, and conducted a survey to 
estimate the potential and realized value of each of these 
groups. The group considering principles about designs 
that facilitate construction efficiency was ranked 
amongst the three with the highest potential value, which 
shows how much industry professionals value the 
positive impact that informed design decisions may have 
on the efficiency of the construction process.    

Constructability is particularly important for Cast-in-
Place Reinforced Concrete (CIP RC) buildings, because 
as a process that is very labor-intensive, it can benefit 
greatly from considerations taken during design that lead 
to a more efficient construction process [6]. [7] 
developed a constructability adviser system based on an 
object-oriented enriched CAD tool (a predecessor of 
BIM tools), to provide constructability feedback for CIP 
RC structures using criteria such as layout, dimensioning 
and construction methods. The paper identified two 
levels of reasoning when performing constructability 
analyses: reasoning about attributes of objects, and 
reasoning about relationships between attributes of 
objects. Although the research focused mostly on 
elements’ dimensioning and forming methods due to 
their high impact on the costs, it identifies the most 
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important preliminary design variables that may be 
constrained or considered for constructability analyses: 
dimensions of elements, distance between elements, 
changes in dimensions and distances, concrete strength, 
quantity and type of reinforcement, and modularity. Out 
of these, the dimensions of elements and the quantity and 
type of reinforcement are applicable and relevant if the 
design intent and construction planning standards want to 
be used for analysis. 

Section 2 of this paper presents a literature review of 
design indicators and constructability. Section 3 
describes the research methodology used, including the 
data types, the development of the training database, and 
the development and results of the logistic regression 
model. Finally, section 4 presents the study conclusions. 

2 Literature Review 
Most of the research CIP-BIM oriented has focused 

on the reinforcement optimization of the elements using 
BIM models as noted in [8], on the assessment and 
recommendations of BIM capabilities to handle the 
concrete reinforcement supply chain [9], [10] and on 
defining the unique requirements CIP RC has regarding 
its modeling and processes on BIM [11]. In the 
assessments performed for the BIM capabilities of 
current tools, from the evaluated categories of design and 
modeling, editing, project management and 
interoperability, interoperability proved to be the weakest 
because of the lack of a standardized way to document 
and translate the information [9]. Nevertheless, these 
assessments were performed before the release of the 
latest ACI 131 documents which propose a standard way 
to exchange concrete reinforcement information [12]. 
Furthermore, although in reality CIP RC is monolithic, 
during the modeling it has to be broken down into 
members, which means that the delineation between such 
members is conceptual and not physical. There has also 
been research focused on reinforcement bars, particularly 
related to the impact of design on rebar productivity [13], 
and on optimizing cost by integrating rebar design and 
construction [14], [15]. 

Previous research [16], [17] shows that 
constructability of the design can be seen as a good 
quality indicator for CIP RC design and planning, 
particularly because it can use the information available 
during design intent and construction planning model 
exchanges, to contribute to efficiently achieve the intent 
during construction. Since the information about 
connectivity, dimensions and design intent reinforcement 
is something that is now available as part of the exchange 
models in a standard way, the congestion of the 
reinforcement, particularly in the areas between 
interacting elements, appears as an excellent alternative 
to measure the constructability of the design and planning, 

and to use as an indicator to develop predictions on 
potential future issues the design may encounter once it 
reaches more detailed stages. Current design tools allow 
the engineer to use the design intent to perform reasoning 
about attributes of objects as shown in blue in Figure 1 
(such as a column, or a beam), but do not typically 
perform reasoning about relationships between attributes 
of objects such as the ones shown in yellow and red 
(beam-column or beam-slab interactions for instance). 
These are types of analyses that could be performed now 
that the design intent is available as part of a BIM model 
that holds the information about objects’ connectivity 
and interacting volumes. 

Figure 1. Types of design intent constructability 
analysis 

 
Since the steel reinforcement ratio is typically a 

design decision based on code requirements and load 
demands, it is not a variable that can be modified for 
enhanced constructability. However, the way the steel 
ratio is achieved through the selection of diameter of bars, 
number of bars and bar separation is something more 
easily modifiable that has a direct impact on 
constructability; the use of fewer bars for a same ratio 
would derive in arrangements of larger diameters and 
spacings, thus reducing congestion and making the 
number of bars per volume of concrete a good estimator 
of congestion [18]. Therefore, the design indicator 
selected, “Constructability”, will be estimated in terms of 
congestion as done by [18]. To create an estimating 
method applicable to several types of occurrences 
(element interaction types) with varying concrete 
element dimensions and steel distribution, the number of 
bars alone is not enough. Consequently, a similar concept 
to the steel volumetric ratio is proposed as the 
independent variable but using the number of bars per 
volume of concrete, thus accounting for most of the 
parameters aforementioned. 
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3 Research Methodology
A logistic regression model is developed, allowing

the use of rich data contained within the exchange 
standards to estimate design indicators that inform the 
design and coordination processes of potential design 
issues during the exchanges. The focus of this application 
consists of identifying indicators that could be estimated 
from typical parameters available in the exchange files, 
create a database to train the model, and use it to inform 
the design process early on about issues that may arise 
during further phases of the project. 

The study considers the intersections of pairs of 
elements for framed structures, including beams, 
columns, and slabs. The specific interactions considered 
are beam-column, beam-slab, beam-beam, and column-
slab, and are shown in Table 1. 

Table 1. 3D Visualization of Intersection Cases

3D view Top View Side View

Beam – Slab Intersection

Beam – Beam Intersection

Column - Beam Intersection

Column - Slab Intersection

The beam-slab interaction considers all the beam 
longitudinal and transversal reinforcement, up to the 
thickness of the slab, plus the slab reinforcement that 
enters and anchors in the beam. The beam-beam 
interaction considers all the mean beam longitudinal and 

transversal reinforcement, up to the heigh of the 
secondary beam, plus the secondary beam longitudinal 
reinforcement that enters and anchors in the main beam. 
The column-beam interaction considers all the column 
reinforcement, plus the beam longitudinal reinforcement 
that continues through the column. The column-slab 
interaction considers all the reinforcement of both 
elements. The same method considered for slabs could be 
easily extrapolated to footings and pile caps, since the 
reinforcement distribution is not that different between 
these elements. The properties required to estimate the 
congestion of the intersection are the number of bars each 
element contributes, and the volume of the intersection 
itself. As shown in the simplified data structure on Figure 
2, the number of bars is derived from the design intent 
property set containing the design intent reinforcement 
information, and the volume intersection is derived from 
the geometric representation of the elements. 

Figure 2. Data structure of parameters req uired 
for indicator estimation

These properties could be easily extracted from an 
IFC file because of the way they have been standardized 
as proposed and aligned with ACI efforts. Different types 
of elements will have some of the properties listed that 
contribute to the number of bars (for example, slabs will
have top and bottom bars and rebar mesh, while beams 
will have longitudinal bars, stirrups and ties). The 
following sections provide the detail of what 
reinforcement and parameters are considered for each 
type of intersection to estimate the indicator.

3.1 Training Database 
The first step to generate the database was to define a
representative number of reinforcement distributions for 
each element. Three beam sections were considered:
small, medium, and large. For each of these sections, 
several options were generated varying the top and 
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bottom reinforcement ratio (in one and two lines), the 
stirrup spacing, and the number of vertical legs.
Combinations of these parameters were based on typical 
occurrences in practice, for example: stirrup spacings 
will typically be smaller where top reinforcement ratios 
are higher, which is near the supports. For each ratio, two
alternatives were proposed: more smaller bars, or fewer 
bigger bars. This is a concept directly related to 
constructability: several times it will be more 
constructible to use fewer bigger bars that allow more 
spacing and lead to less congestion. Table 2 shows the 
three slab thicknesses considered: small, medium, and 
large. For each of these sections, several options were 
generated varying the top and bottom reinforcement 
ratios (assumed equal in both directions). Combinations 
of these parameters were based on typical occurrences in 
practice. For each ratio, two alternatives were proposed: 
more smaller bars, or fewer bigger bars.

A similar approach was followed for beams, where 
three typical section sizes were considered, each with 
three top and three bottom reinforcement ratios 
(minimum, average, and maximum), each with three to 
four typical stirrup spacings for the section, and each with 
one to two number of legs, for a total of 64 combinations 
(beams). For columns, three typical section sizes were 
considered, each with three reinforcement ratios 
(minimum, average, and maximum), each with three 
typical stirrup spacings for the section, and each with one 
to three number of tie legs, for a total of 54 combinations 
(columns). See Table 2. The combinations of the 
parameters were based on typical occurrences in practice, 
for example higher number of legs for higher 
reinforcement ratios on columns, or smaller stirrup 
spacings for higher top reinforcement ratios on beams.

Table 2. Representative Slab Sections and 
Parameters for Database

Afterwards, logical occurrences of intersections of 
these elements were created. If, for example, the 8” x12”  
beam section was combined with the 12” x12”  column 
section, this generated 16 x 18 = 288 possible interactions. 
Some combinations were not considered because they 
would not normally occur in practice, such as a 24” x24”  
column with a 4” slab. Once the database was built, the 

value of congestion as defined previously (number of 
bars in the intersection divided by the concrete volume of 
the intersection) was calculated for each of the 
interactions, using the parameters and relationships 
illustrated in Figure 2. Since these points will constitute 
the base to build the model, it is necessary to identify 
whether or not each of them is considered to have or not 
constructability issues.

A value of 1 is assigned to those occurrences with 
constructability issues, while a value of 0 is assigned to 
those without constructability issues. Table 3 presents the 
total number of interactions evaluated, the number of 
interactions considered to have constructability issues per 
criteria, and number of interactions without issues. The 
next sections explain in detail the three criteria used to
determine whether each of these interactions was 
constructible or not. 

Table 3. Database interactions classification

3.1.1 Minimum Separation (Smin)

This criterion evaluated for each of the interactions 
that the reinforcement could physically and logically fit 
within the node, by ensuring minimum spacing was 
provided in critical cases. For the beam-column 
interaction, it was evaluated whether the longitudinal 
beam reinforcement could fit through the column 
reinforcement and ties, with a 1/8 ” tolerance. For the 
column-slab interaction, it was evaluated whether the 
slab reinforcement could fit through the column 
reinforcement and ties, with a 1/8 ” tolerance. For the 
beam-slab interaction it was evaluated whether the 
spacing between beam stirrups and anchoring slab 
reinforcement was at least 1 ” , to allow the concrete to be 
placed and the largest size of aggregate to pass. For the 
beam-beam interaction, it was evaluated if the secondary 
beam anchoring reinforcement would fit through the 
main beam reinforcement and stirrups, with a 1/8 ”
tolerance. Any interaction that did not satisfy these 
conditions, was assigned a value of 1, thus classifying it 
as an interaction with potential constructability issues.

3.1.2 Maximum Volumetric ratio (ρmin)

This criterion was based on the ACI maximum ratio 
for column reinforcement. The ACI sets a maximum 8% 
steel ratio reinforcement in columns for longitudinal 
rebars mainly because above this number they consider 
the element to be hardly constructible [19]. If this limit is 
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added to the maximum shear reinforcement caused by the
minimum allowed separation, a value between 16% to 20% 
is obtained. Therefore, any intersection with a volumetric 
steel ratio greater than 16%, was assigned a value of 1, 
thus dimming it as an intersection with potential
constructability issues.

3.1.3 Visual/Manual Inspection

Finally, the remaining intersections were visually 
inspected to determine whether the node or edge would 
present constructability issues based on the number of 
bars. It was found that intersections tend to present 
constructability issues at numbers greater than 60 bars 
per cubic feet. These intersections found to have potential
constructability issues were assigned a value of 1.

3.2 Design Indicator Estimating Model
The model selected was logistic regression, because 

it fits the goal of the study: to estimate whether there will 
be an issue or not with an indicator based on parameters
obtained from the standardized exchange models. More 
specifically, to estimate the probability that for a certain 
type of intersection, there will be a constructability issue 
based on the design intent. The procedure finds the best 
fitting curve by transforming the y-axis, odds of
congestion, to a transformed logarithm log(odds of 
congestion / (1 –  odds of congestion)). This new axis now 
goes from -infinity to +infinity, with all the data, 
previously lying at 1 or 0, now lying at +infinity and -
infinity. Then a line is fit to this data, and its coefficients
are determined based on a linear model using the 
transformed y-axis. To transform the line from the 
transformed y-axis to the initial y-axis, the 
transformation y= e^log(odds)/1+e^log(odds) is used. 
After this transformation, the line becomes an s-shaped 
curve. To find the best fitting line, the method uses the 
concept of maximum likelihood. The procedure projects 
the original data points (located at –  and + infinity) onto 
the candidate line, and is then transformed to the original 
axis. The likelihood of the line is the sum of the 
probabilities of the points after being projected onto the 
curve and transformed to the original axis. This line is 
rotated multiple times recording its likelihood, after 
which the best fitting line is obtained by selecting the 
model with the highest likelihood. Finally, since this is a 
classification problem (1 or 0), a threshold value, 
typically 0.5, is used to classify a new point as 1, 
congested, or 0, not congested. Based on this threshold 
value a weighted accuracy is calculated, which indicates 
the accuracy of the model to predict the points in the 
database as they were defined.

3.2.1 Beam-Slab Model

Figure 3 shows the logistic regression model for the 
beam-slab intersection. 

Figure 3. Logistic regression model for beam-slab 
intersection

The coefficients of the regression are shown in Table 
4, along with the standard error, the Wald number (a 
measurement of the precision of the estimate), and the p-
value.

Table 4. Regression Coefficients for Beam-Slab
Intersection Model

These values show that the variable chosen (number 
of bars per CF of concrete at the intersection) is
statistically significant for this model. Equation 1 
describes the model (best fitted curve), and can be used 
to calculate the probability of congestion, PC, based on 
the number of bars per cubic feet at the intersection, n. In 
other words, this model allows to estimate the probability 
that the intersection will present a constructability issue, 
which is the selected indicator.

()ࡼ = షૢ.)ࢋ శ .ૢૢ)

ାࢋ(షૢ. శ .ૢૢ) (1)

Table 5 shows the classification table for the model, 
based on a cutoff value of 0.5. This value is the threshold 
value, above which points are classified a success, or 
with constructability issues, and below which points are 
classified a failure, or without constructability issues. 
The values shown correspond to a typical cutoff value of 
0.5 or 50%. The weighted accuracy of the model at 
predicting success and failure is 88%, which is a good 
indicator of how well the model fits the behavior of the 
data.
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Table 5. Classification Table for Beam-Slab 
Intersection Model

3.2.2 Beam-Column Model

Figure 4 shows the logistic regression model for the 
beam-column intersection. 

Figure 4. Logistic regression model for beam-
column intersection

The coefficients of the regression are shown in Table 
6, along with the standard error, the Wald number, and 
the p-value. 

Table 6. Regression Coefficients for Beam-Column 
Intersection Model

These values show that the variable chosen (number 
of bars per CF of concrete at the intersection) is
statistically significant for this model. Equation 2 
describes the model (best fitted curve), and can be used 
to calculate the probability of congestion, PC, based on 
the number of bars per cubic feet at the intersection, n. In 
other words, this model allows to estimate the probability 
that the intersection will present a constructability issue, 
which is the selected indicator.

()ࡼ = షૡ.ࢋ శ .

ାࢋషૡ. శ .(2)   

Table 7 shows the classification table for the model, 
based on a cutoff value of 0.5. The weighted accuracy of 
the model at predicting success and failure is 94%, which 
is a good indicator of how well the model fits the 
behavior of the data.

Table 7. Classification Table for Beam-Column 
Intersection Model

3.2.3 Column-Slab Model

Figure 5 shows the logistic regression model for the 
column-slab intersection. 

Figure 5. Logistic regression model for column-
slab intersection 

The coefficients of the regression are shown in Table 
8, along with the standard error, the Wald number, and 
the p-value. 

Table 8. Regression Coefficients for Column-Slab 
Intersection Model

These values show that the variable chosen is again 
statistically significant for this model. Equation 3 
describes the model for this intersection type and can be 
used to calculate the probability that the intersection will 
present a constructability issue.

()ࡼ = ష.ૢࢋ శ .

ାࢋష.ૢ శ .(3)   

Table 9 shows the classification table for the model, 
based on a cutoff value of 0.5. The weighted accuracy of 
the model at predicting success and failure is 94%, which 
is a good indicator of how well the model fits the 
behavior of the data.

Obs 
Succ

Obs
Fail Total

Pred Succ 180 72 252
Pred Fail 108 1080 1188

Total 288 1152 1440
Accuracy 63% 94% 88%

Cutoff 0.5
AUC 0.944

Obs 
Succ

Obs
Fail Total

Pred Succ 252 84 336
Pred Fail 84 2316 2400

Total 336 2400 2736
Accuracy 75% 97% 94%

Cutoff 0.5
AUC 0.977
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Table 9. Classification Table for Column-Slab
Intersection Model

Obs 
Succ

Obs
Fail Total

Pred Succ 340 83 423
Pred Fail 74 637 711

Total 414 720 1134
Accuracy 82% 88% 86%

Cutoff 0.5
AUC 0.938

3.2.4 Beam-Beam Model

Figure 6 shows the logistic regression model for the 
beam-beam intersection. 

Figure 6. Logistic regression model for beam-
beam intersection 

The coefficients of the regression are shown in Table 
10, along with the standard error, the Wald number, and 
the p-value. 

Table 10 . Regression Coefficients for Beam-Beam 
Intersection Model

These values show that the variable chosen is again 
statistically significant for this model. Equation 4 
describes the model for this intersection type and can be 
used to calculate the probability that the intersection will 
present a constructability issue.

()ࡼ = ష.ૢࢋ శ .

ାࢋష.ૢ శ .(4)   

Table 11 shows the classification table for the model, 
based on a cutoff value of 0.5. The weighted accuracy of 
the model at predicting success and failure is 94%, which 
is a good indicator of how well the model fits the 
behavior of the data.

Table 11. Classification Table for Column-Slab
Intersection Model

Obs 
Succ

Obs
Fail Total

Pred Succ 230 42 272
Pred Fail 92 2388 2480

Total 322 2430 2752
Accuracy 71% 98% 95%

Cutoff 0.5
AUC 0.960

4 Conclusions
This paper presented the application of the 

information contained in the exchange standards to 
predict indicators of design quality for CIP RC structures 
early in the design process. 

The paper started with a review of applicable design 
indicators for CIP RC related to the design intent and 
construction planning communication. Based on the 
review, constructability was found to be a good indicator 
of design quality, given that it relates the design result to 
how efficient is it to achieve it during construction and 
ensure the good performance of the structure as specified 
by the design. 

To measure the constructability the parameter of 
congestion was proposed, given that more congested 
nodes tend to be harder to fabricate and place. Congestion 
is defined as the number of bars in the node per unit of
volume of the node. This parameter can be calculated 
based on the parameters and properties shared during the 
design intent and construction planning exchanges.
Afterwards, a database of representative beams, columns 
and slabs was generated to train the predictive algorithm. 
For each node in the database, geometric, volumetric, and
engineering criteria were used to define whether the node 
was likely to have issues with construction, which 
constitutes a binary classification model. 

Finally, a logistic regression model was applied to 
each node type of a frame structure: beam-column, slab-
column, beam-slab, and beam-beam. All model results 
presented the significance of the variable chosen, as well 
as the classification table with very high values of 
prediction accuracy. The results obtained show how well 
the obtained models fit the data, and therefore may be 
used to estimate potential construction issues early in the 
process, based on the parameters of the design intent 
standard exchanges.

Future work involves the development and inclusion 
of further exchange models used in other parts of the CIP 
RC supply chain. The methodology can also be applied 
to other projects and CIP RC structures in order to extend 
the reach of the findings and develop more 
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comprehensive implementation methods, and size-base 
estimations of the value of implementation. The methods 
are easily extensible to other tools and platforms, since 
they are developed with a generic approach and only the 
testing is done using specific tools. Furthermore, these 
methods may be adapted to other contexts, such as 
countries where BIM implementation has not been as 
advanced as it has in companies with heavy IT 
capabilities; or CIP RC bridges, where the development 
of standards poses other challenges and requirements. 
The model for prediction of constructability issues may 
be extended to include more CIP RC element interactions, 
and further refined as it is used in practice and more data 
becomes available.  
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Abstract – 

Amidst the increasing adoption of three-
dimensional printing (3DP) in the architecture, 
engineering, and construction (AEC) industry, there 
exists a notable research gap concerning the 
quantification of its environmental impact. More 
importantly, there is a lack of a generic framework 
that can be employed for different material types and 
methods. Therefore, this research aims to develop a 
generic 3DP life cycle assessment (LCA) framework 
pertaining to the AEC industry. To substantiate the 
viability of the proposed framework, a meticulous 
case study was conducted. Focused on the LCA of a 
concrete 3DP process employed in constructing a two-
story residential villa in the United Arab Emirates 
(UAE), the case study employed the contour crafting 
3DP technique. A detailed cradle-to-construction 
LCA was executed using a functional unit of 1m3. 
Data compilation involved synthesizing information 
from literature sources and utilizing DesignBuilder™ 
software. The embodied carbon analysis of the case 
study yielded insightful results, indicating that the 
contour crafting technique emitted approximately 
103,135 kg of carbon. Significantly, concrete emerged 
as the predominant construction material, 
contributing approximately 52% to the total 
equivalent over the various life cycle stages. Future 
work warrants further investigation into the 
mitigation measures to enhance the environmental 
performance of 3DP within the AEC industry. 
Additionally, the research encourages the exploration 
of alternative 3DP construction techniques and 
diverse project types, thereby broadening the 
applicability of the developed framework. This 
research provides a foundation for more sustainable 
practices and fosters further exploration of the 3DP 
implementation within the AEC industry. 
Keywords – 

3D printing; LCA; Construction industry; 
Embodied carbon 

1 Introduction 
The inherent nature of the architecture engineering 

and construction (AEC) industry makes it one of the 
significant contributors to resource utilization. Therefore, 
understandably, the environmental impact is 
considerably high when compared to other industries. 
According to the statistics, it accounts for about 40% of 
global energy consumption, 28% of global greenhouse 
gas (GHG) emissions, and a significant amount of waste 
is generated [1]. The core of the AEC industry is the use 
of cement-based and concrete materials. With the 
growing need for new structures, the utilization of these 
materials is increasing. The production and utilization of 
concrete materials in the AEC have been shown to result 
in detrimental environmental impacts. According to 
Andrew [2], during concrete production, a large amount 
of carbon dioxide (CO2) is released and represents 4% to 
5% of worldwide emissions of CO2. 

In recent years, there has been a rise in interest in 
three-dimensional printing (3DP) technology for 
automating concrete construction. 3DP is the process of 
slicing a three-dimensional (3D) computer-aided design 
(CAD) model into two-dimensional (2D) layers and 
sequentially printing the materials to construct the full 
product, layer upon layer. The 3DP process has been 
widely used in various disciplines and enterprises. 
However, studies have revealed that 3DP is not 
commonly employed in buildings, and its applications 
remain limited [3]. 3DP allows for faster structure 
development while also reducing building time, labor 
costs, and waste generation [4]. According to Tinoco et 
al., [3], it can reduce construction time by 50 to 70 %, 
labor costs by 50 to 80 %, and waste production by up to 
60%. All of these capabilities have raised interest in 3DP 
in the AEC industry. Despite the research and 
implementation of 3DP in the field and the 
documentation of its technological and economic 
advantages, there has been limited quantitative research 
on 3DP's environmental performance. Several existing 
review studies, such as [5], have attempted to examine 
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the applicability of life cycle assessment (LCA) for 3DP.  
To further emphasize the need and highlight the gap 

in the existing literature, this research first systematically 
and critically analyzed the extant literature on 3DP’s 
LCA, the summary of which was presented earlier. 
Quantifying this further, several recently published 
articles based on data from scientific databases such as 
Web of Science and Scopus were retrieved since 2011. It 
was observed that approximately 40 research articles 
were published on the topic of LCA in 3DP. The search 
strategy employed a comprehensive set of keywords to 
obtain relevant research articles. For example, the 
keyword search string criteria used are as follows: 
Keywords ("LCA" OR "life cycle" OR "life cycle 
analysis" OR "Environment*" AND "assess*") AND 
((3d OR 3-d OR 3d-) AND print*) OR ("Additive 
manufacturing") AND ("Construct*" OR "Build*") AND 
("Concrete" OR "cement-based" OR "cementitious" OR 
"geopolymer" OR "cement")]. The ‘OR’ and ‘AND’ are 
boolean operators used to combine or exclude specific 
terms to refine search results. Specifically, the usage of 
‘OR’ between two terms will return results that include 
either one of the terms or both. For example, “LCA” OR 
“life cycle” will return results containing either “LCA”, 
“life cycle” or both. On the other hand, the usage of 
“AND” between two terms will return results that include 
both terms. For example, "3d AND print" will return 
results that contain both "3d" and "print." To summarize, 
the usage of “OR” broadens the search whereas the usage 
“AND” narrows down the search. The overarching idea 
of the designed search string is to retrieve literature 
specifically focused on the LCA of the concrete 3DP 
process. It encompasses various terms related to life 
cycle analysis, environmental assessment, 3DP 
technologies (including alternative spellings), additive 
manufacturing, and specific materials like concrete, 
cement-based materials, and geopolymers. This 
comprehensive search strategy aims to identify the most 
relevant publications related to the environmental impact 
of 3DP in the context of concrete construction processes. 
However, the number of papers containing LCA results 
is less than 30, most of which were focused on specific 
material types. Therefore, this research concentrated on 
LCA for 3DP regardless of material type. 

Additionally, [3] a recently published review research 
focused on the LCA of cementitious materials for 
concrete 3DP. They found that there are still very few 
published papers with LCA results of concrete 3DP. The 
total number of papers from 2016 to 2021 is only 15 
papers, which are [1,6–19]. After reviewing these articles, 
it was observed that the majority of 3DP LCA 
investigations were conducted recently, beginning in 
2016. Europe, where 3DP research is in its mature phases, 
has made the largest contributions to the field. China is 
the second most important contributor to this sector. 

Other countries appear to be less prominent, and only two 
studies were conducted in the Middle East region. 

For the LCA details, most articles employed cradle-
to-gate system boundaries. There was, however, much 
diversity in the selection of the functional unit, making it 
difficult to compare based on this factor. Despite the 
minimal number of research articles, there was a wide 
variety of applications. However, the majority of the 
research used 3DP to print walls. The most researched 
material was concrete with cement, aggregate, additives, 
and water. The most popular database utilized in the 
studies for the life cycle inventory (LCI) is Eco Invent 
(https://ecoinvent.org/), which has different versions. 
Gabi database (https://sphera.com/product-
sustainability-gabi-data-search/) is the second most used 
one. In addition, some investigations utilized data from 
the literature as well. It is thus evident that the existing 
literature lacks a generic framework to conduct LCA for 
3DP in the AEC industry that is not specific to a material 
type, functional unit, and application. 

To address the gap in the literature, this research 
proposes a generic framework methodology to perform a 
Life Cycle Assessment (LCA) of the concrete 3DP 
process in the AEC industry to evaluate its environmental 
impacts. The evaluation will analyze one specific 
technique of 3DP used widely in the AEC industry. 
Therefore, the objectives of this research are to a) 
Develop a generic framework to conduct LCA of 
concrete 3DP pertaining to the AEC industry; b) 
Implement and validate the developed framework 
through a case study to investigate the CO2 emissions and 
identify the materials that contribute most significantly to 
CO2 emissions. 

2 Proposed 3DP LCA Framework 
Figure 1 shows the overview of the proposed research 

framework to achieve the above-mentioned objectives. 
Broadly categorized, the framework follows a three-stage 
procedure. The first stage is to define the purpose of the 
assessment, the system boundaries, and the functional 
unit for comparison. The second stage is to collect and 
quantify data regarding the inputs and outputs of the 
system. This includes raw material extraction, energy use, 
water use, emissions, and waste generation. The third and 
the final stage is to assess the potential environmental 
impacts. Each of the following tasks involved in these 
stages is discussed in detail in the sub sections below.  

2.1 Define Goal and Scope 
The goal and scope definition stage is the 

foundational stage of an LCA, where the parameters of 
the system are established. Literature reviews and in-
depth analyses of previous studies can be used as tools to 
identify the construction scenarios. In this stage, the goals 
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of the assessment are clearly stated, which includes 
defining the reasons for conducting the research and the 
intended application of the results as suggested in [8]. In 
addition, define the system boundaries, which may range 
from the materials production to the end-of-life disposal. 
This delineation is crucial as it sets the limits for the study 
and ensures the consistency of the data collected. The 
functional unit, which is the measure to which all inputs 
and outputs are related, is also defined during this stage, 
providing a reference to which the performance of the 
product system is compared.

Figure 1. Overview of the proposed 3DP LCA 
framework.

2.2 Life Cycle Inventory
Life cycle inventory (LCI) is a critical stage of the 

LCA process. The objective of this stage is to collect and 
gather all relevant data including inputs and outputs of a
system. In the context of this study, inputs may include 
building materials used and the energy consumed during 
the construction and operation of the construction project. 
Similarly, outputs can be referred to as the emissions 
from on-site construction processes and energy use 
during the operation and maintenance phase of a project. 
The aim is to create an inventory of every element and 
energy flow that goes into and out of the product's life 
cycle, from the extraction of raw materials through the 
production and use phases to end-of-life. Typically, this 
can be retrieved from the project documentation such as 
work breakdown structure (WBS) and bill of quantities
(BOQ). 

2.3 Life Cycle Impact Analysis (LCIA)
Life cycle impact analysis (LCIA) is the third and 

final stage in the LCA process, where the environmental 
impacts associated with the inputs and outputs identified 
during stage 2, namely LCI, are evaluated. The primary 
purpose of LCIA is to assess the magnitude and 
significance of potential environmental impacts using the 
data gathered in the LCI stage. This analysis involves 
several steps, including the selection of impact categories, 
classification, and characterization.

The impacts associated with a product or process 
throughout its entire life cycle on the environment are 
categorized into different impact categories, each 
representing a specific aspect of environmental concern. 
The choice of impact categories depends on the goals and 
scope of the LCA study. Common LCA impact 
categories include global warming potential, ozone 
depletion, and eutrophication. Classification refers to the 
assignment of inventory data to the identified impact 
categories. Characterization refers to quantification of 
impact magnitude often resulting in a single score per 
impact category.

For example, in a building project, LCIA could assess
the impacts of material extraction, energy use, waste 
generation, and emissions throughout the building's life 
span, from the construction phase to the demolition or 
end-of-life (EOL) phase. Moreover, it could investigate 
different construction methods and techniques. LCIA
stage translates inventory data into a form that can be 
more easily understood and acted upon. This helps 
decision-makers identify the most significant 
environmental issues and the life cycle stages where 
improvements can be made for more sustainable product 
systems.

3 3DP LCA Framework Validation
The objective of this section is to evaluate the proposed 
general 3DP LCA framework through its implementation 
in a case study and provide a comprehensive evaluation 
of the environmental impacts of 3D contour crafting in 
residential construction. To achieve this, each of the sub-
sections below follows a systematic approach, beginning 
with the selection of the 3D construction technique and 
moving through to the LCIA. This implementation 
ensures a thorough understanding of both environmental 
impacts and potential performance enhancements
associated with the construction of a two-story residential 
villa using the contour crafting technique. This approach 
aligns with the standards set by ISO14044 and ISO14045, 
focusing on cradle-to-construction analysis. More 
specifically, sections 3.1 and 3.2 delve into the 
construction method selection and elaboration on the 
selected case study. Sections 3.3 to 3.5 follow the 
implementation and hence the validation of the three-
stage generic 3DP LCA framework developed and 
discussed in section 2. 

3.1 Construction method selection
Based on the existing literature, contour crafting 

printing is one of the most widely adopted and 
demonstrated construction techniques [20]. Hence, the 
contour crafting technique is employed for this 
illustration. However, any 3DP technique can be selected 
to implement the specified steps within this framework, 
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as the framework is designed to adapt AEC to various 
printing techniques.

After choosing the technique, the following needs to 
be done a) define the goal and scope, b) obtain the life 
cycle inventory, and d) perform impact assessment. The 
different materials and processes were quantified using 
the LCA systematic framework. To standardize the 
method of evaluating the burden on the environment, 
ISO14044 and ISO14045 were created by the 
International Organization for Standardization (ISO), 
addressing the associated environmental impacts and 
identifying possible performance enhancements during 
the lifespan of a system [21,22].

Two strategies are commonly used to evaluate the 
AEC industry: cradle-to-grave and cradle-to-
construction. The first strategy evaluates all processes 
and materials comprehensively, whereas the second 
strategy concentrates on specific components of project 
elements, such as materials [16]. This research used the 
cradle-to-construction strategy, where DesignBuilder™
software [23–25] and OneClick® software [26–28] were 
used to perform the LCA analysis.

3.2 Description of Case Study
A two-story simulated residential villa was selected 

for the case study, as shown in Figure 2. Table 1 shows 
the different characteristics of the chosen villa. It was 
assumed that the villa was located in Sharjah, United 
Arab Emirates (UAE) following the typical dimensions 
and characteristics of the construction in the region. 
Based on the objective of this research, the selected 
structure was proposed to be built using the 3D contour 
crafting construction technique. The villa is mainly a 
concrete structure, with a plot area of 272 m2 and a total 
built-up area of 394 m2. For the 3D contour crafting, the 
dimensions of the elements were simply the length of the 
wall × the width of the wall, which was 30 cm for external 
walls and 20 cm for internal walls. The timeframe 
includes all building elements, such as heating, 
ventilation, and air conditioning (HVAC) systems, 
lighting, and finishes, to study their impacts.

Table 1 Characteristics of the case study villa

Division Description
Building Villa (G+1)

Site Sharjah, UAE
Lifespan (years) 40
Plot area (m2) 272

Total height (m) 8
Ground floor (m2) 197

First floor (m2) 197
Total (m2) 394

Figure 2. A 3D model of the selected case study 
villa developed in DesignBuilder™.

3.3 Goal and Scope
The first phase of any LCA is to specify the goal and 

scope of the proposed system. As discussed, the case 
study implementation evaluates the environmental 
impact of the concrete 3DP technique on a residential 2-
storey villa. The functional unit was chosen to be 1 m3 to 
study the environmental impact of the proposed system. 
It was normalized to allow for a fair and meaningful 
comparison between the different materials. A cradle-to-
construction LCA was performed in this research, 
including material extraction, material production and 
manufacturing, and building construction. Figure 3
shows the general boundaries of the evaluated system in 
this research. Whereas Figure 4 illustrates the system 
boundaries for contour crafting, where the system
includes different processes and materials such as 
material extraction, material production and 
manufacturing, and construction. 

Figure 3. The general system boundary
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3.4 Life Cycle Inventory 
The input data for the contour crafting technique 

mentioned in the following sections was gathered from 
the literature [16,29]. The data will include the material 
mix, amount of each material, transportation, energy 
consumption, and equipment utilized. Only the 
production and construction phase elements are 
presented on the technique flowchart (cradle-to-
construction). In the context of the 3D printing 
construction methods, the concrete mix composition 
differs from traditional concrete mixes used in 
conventional construction methods [30,31]. In this 
scenario, the structure will be built using 3DP technology 
called contour crafting. In this technology, the structural 
elements will be built on-site. The functional unit 
combines all the building elements. The final materials 
and concrete mix were extracted after reviewing existing 
literature within the region and by examining a similar 
project facing comparable environmental conditions 
[11,29]. Through an in-depth review of their material 
choices, quantities, and a focus on their consistent water-
cement ratio of 0.4 across both studies,  the concrete mix 
used in this scenario is high-performance concrete 
consisting of fly ash, micro-silica, plasticizer, perlite, 
microfiber, accelerator, and water. Detailed information 
on the amount of material obtained from 
DesignBuilder™ for one functional unit is presented in 
Table 2.  The concrete mix includes innovative materials 
that serve particular purposes in enhancing performance 
characteristics. For instance, perlite, which is a 
lightweight aggregate, was used to replace the sand in the 
mix.  In addition, no steel will be added in the scenario 
because the mixed used was selected to be a self-
reinforced mortar [24], includes components like 
microfiber and microsilica, which can significantly 
enhance the tensile strength and durability of the concrete. 
Moreover, the concrete mix was designed to be a 
lightweight mix by adding perlite. 

 

Table 2 Data Inventory of contour crafting for the 
studied villa per functional unit 

Material Quantity 

Fly ash (kg) 175 

Microsilica (kg) 88 
Plasticizer (kg) 9 

Perlite (kg) 68 
Microfiber (kg) 1 
Accelerator (kg) 9 

Cement (kg) 614 

Water (kg) 246 
Insulation (m) 0.08 

3.4.1 3DP system 

A large-scale 3D printed construction requires an 
extrusion process, in which the structure is constructed 
by adding layers of the prepared mortar through a nozzle. 
For 3DP, the Putzmeister MP25 machine was considered 
to mix and pump the concrete. The ABB robot (IRB6700) 
was used to control and automate the nozzle movement. 
Table 3 summarizes the electric consumption required to 
print the desired structure based on the machine's 
characteristics [32,33]. 

Table 3 Energy consumption of the 3DP system 

Equipment Power 
required (kW) 

Electricity 
consumption (kWh) 

Mixture and 
pump 7.38 1.55 

Robotic arm 3.4 0.71 
Total  2.26 

Figure 4. System boundaries of contour crafting for the case study villa 
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3.5 Life Cycle Impact Analysis (LCIA)
The environmental impacts of the proposed villa were 

evaluated using the integration between DesignBuilder™
and OneClick® (Figure 5). DesignBuilder™ was used to 
create the 3D model of the proposed villa, including all 
elements such as construction materials, structural 
systems, and energy systems. In addition, check the 
performance of the model, including energy, carbon, 
lighting, and comfort performance. The model extracted 
from DesignBuilder™ was exported to OneClick LCA®,
which is a comprehensive tool that easily integrates the 
DesignBuilderTM outputs to assess the environmental 
impacts. In this study and based on the location, the LCIA 
was based on the European Standard EN 15978 for 
conducting whole building LCA [34].

Figure 5. Input-Output diagram of software 
combinations

4 Results and Discussion 
This section represents the LCA results of embodied 

carbon for global warming over the life cycle stages. 
LCA of CO2 is performed in this research to assess the 
performance of the chosen villa. The goal of the LCA is 
to evaluate the embodied carbon in kilograms (kgs). The 
life cycle of CO2 emission phases can be described as 
"cradle-to-construction", measuring the emission during 
material extraction, material production and 
manufacturing, and building construction. 

The LCA results can be divided into different 
divisions: life cycle stages, contributing materials, annual 
impacts, elements classifications, and resource types. In 
this research, the concrete mix of contributing materials 
is analyzed. The estimated embodied carbon data shown 
below is based on bulk carbon data obtained from the 
Bath ICE and other data sources. These results do not 
cover the embodied carbon associated with building 
services such as lighting and HVAC equipment. Figure 6
shows the embodied carbon breakdown of contour 
crafting. The results show that the concrete mix
contributed the most, with around 51.73%. Figure 7
shows the LCA for global warming in kg concrete over 
the life-cycle phases of the villa. Moreover, the total 
embodied carbon is about 103,135 kg. 

Figure 6. Embodied carbon percentage
breakdown for materials

Figure 7. Embodied carbon breakdown in 
kilogram CO2 per unit area

The proposed model is designed to evaluate various 
villas' life cycle CO2 emissions. Moreover, selecting the 
most sustainable material and evaluating the buildings' 
commitment to the CO2 emission standards laid down in 
the UAE Green Building Certification Systems is helpful. 
Most of the data related to the life cycle phases of the 
DesignBuilder™ are provided by AEC industry
professionals working on projects in the UAE or relevant 
literature. Moreover, the DesignBuilder™ model can be 
used to obtain additional data related to construction cost 
and energy consumption. 

In order to validate the findings of our study, the total 
embodied carbon per unit function was compared to the 
existing literature within the same region constructing the 
same building type (Residential villa) and adopted the 
cradle-to-site system boundary, as demonstrated in Table 
4.

Our study, employing the contour crafting 3DP 
technique as the construction method, resulted in an 
embodied carbon value of 261.76 kg CO2 eq/Unit 
function. In contrast, Abdalla et al. (2021) reported 
values of 608.55 kg CO2 eq/Unit function for 3D printing
method and 1154.2 kg CO2 eq/Unit function for 
conventional construction method.
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Table 4 Comparison analysis 

Study 
Embodied carbon 
(kg CO2 eq/Unit 

function) 
3D printing [Current study] 261.76 

3D printing [11] 608.55 
Conventional method  [11] 1154.20 

The comparison highlights that contour crafting 
resulted significantly lower embodied carbon emissions 
in comparison to conventional method and even when 
compared to similar 3D printing method documented in 
the literature. 

5 Conclusion 
This study introduces an innovative generic 

framework methodology designed for the comprehensive 
life cycle assessment (LCA) of concrete three-
dimensional printing (3DP) processes within the 
architecture, engineering, and construction (AEC) 
industry, with a specific focus on evaluating their 
environmental impacts. A noteworthy departure from 
previous research, which often concentrated on specific 
life cycle phases, materials, or methods, this study fills a 
crucial gap by developing a generic framework on 3DP 
LCA pertaining to the AEC industry. The framework's 
effectiveness is demonstrated through a meticulously 
chosen case study involving a 2-storey residential villa 
with a plot area of 272 m2 in the emirate of Sharjah, 
United Arab Emirates (UAE), a locale synonymous with 
extensive concrete utilization. The contour crafting 3D 
printing method is employed in the case study, utilizing 
a cradle-to-construction strategy to assess the 
environmental impact exclusively up to the completion 
of the construction phase. 

Embarking on the case study, the analysis of 
embodied carbon emissions reveals that the contour 
crafting technique emits approximately 103,135 kg CO2. 
Notably, concrete mix emerges as the predominant 
contributor, accounting for 52% of the total equivalent 
concrete mix over the life cycle stages under 
consideration. This information provides a nuanced 
understanding of the specific environmental implications 
associated with the chosen 3D printing method, aiding in 
the broader comprehension of the technology's 
ecological footprint. 

While the research makes significant strides in 
addressing the environmental impact assessment of 3D 
printing in the AEC industry, it acknowledges a primary 
limitation, which is the scarcity of relevant literature and 
comparative studies. This scarcity poses a challenge to 
gathering the requisite data needed for a more 
comprehensive analysis. To address this, our future 
research agenda encompasses a commitment to 

expanding the framework's application to encompass 
various concrete 3DP technologies, such as D-shape, and 
diverse building types, including commercial structures. 
By broadening the scope, we aim to enhance the 
generalizability of our findings and contribute to a more 
nuanced understanding of the environmental impacts 
associated with different 3DP technologies and building 
typologies. 

In addition to addressing the data limitations, our 
future work emphasizes the exploration of mitigation 
measures to curtail the environmental footprint 
associated with 3D printing in the AEC industry. By 
identifying strategies to minimize adverse environmental 
impacts, we hope to provide actionable insights that can 
guide decision-makers in adopting more sustainable 
practices. This forward-looking approach aligns with our 
overarching goal of not only identifying environmental 
challenges but also actively contributing to solutions that 
promote sustainability within the AEC sector. 
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Abstract  

The European Parliament released the 2030 
Digital Compass, identifying the construction sector 
as one of the five key ecosystems in the digital 
transformation process. A Construction 4.0 maturity 
model (C4M) was created to lead companies through 
their digital transformation journey. This research 
aimed to justify the model categories of the developed 
C4M using a qualitative case study methodology. The 
case study highlighted the practical relevance of the 
model by identifying three areas within the C4M that 
were the main drivers of digital transformation: 
cloud-based systems, knowledge management and 
system integration to drive digitalisation further. It 
was revealed that the digital processes in the design, 
production, and construction phases are connected to 
each other through system integration. 
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1 Introduction 
In recent years, an emerging number of studies have 

been published on Construction 4.0 (C4) phenomena. In 
this paper C4 is defined as a new construction ecosystem 
that incorporates (1) integrated technologies and cyber-
physical systems [1,2], (2) methods and processes [3,4], 
and (3) human resource competencies [3]. These three 
pillars are supported by automation and data analytics. In 
this ecosystem achieving sustainability is a crucial 
objective for industry players which can be attained by 
improving the efficiency and productivity of construction 
processes. However, only a few research efforts have 
addressed the systematic integration of C4 into the 
construction organisations' life-cycle and the tools that 
can support companies in this endeavour [5]. 

The European Parliament has released the 2030 
Digital Compass, which identifies the construction sector 
as one of the five key ecosystems in the digital 
transformation process. The report emphasises that the 
Construction industry has had the lowest productivity of 

all major sectors in the last 20 years. Executives believe 
that new production technologies and digitalisation can 
be the drivers of change [6].  

The strategic implementation of C4 requires a shift in 
management mindset towards digitalisation [10] and to 
effectively use a toolset that supports digital 
transformation. One such tool is a maturity model, which 
helps assess a company's evolution stage-by-stage in a 
specific area [7]. Building Information Modelling (BIM) 
can also contribute to digitalization endeavours but 
researchers studied BIM Maturity Matrix from the 
perspective of designers rather than general contractors 
or subcontractors [8,9]. However, these matrixes often 
lack of important domains from the contractor's 
perspective such as technology management, business 
applications, innovation, or business processes. 
Contractors play a crucial role in the built environment 
as they are responsible for creating the physical product, 
such as buildings. Therefore, our research focuses on 
them. 

This paper presents our Construction 4.0 Maturity 
Model (C4M) and how the qualitative case study of a 
Hungarian façade contractor revealed the relevance of 
each category element, and the connections between 
them. The selected company places significant emphasis 
on digitalisation, in particular, data-driven artificial 
intelligence (AI) solutions and its development. This case 
study helped us to justify the C4M developed from the 
literature review with a real-world example.  

2 Research Methodology 
The research applied Design Science (DS) framework 

to prepare the C4M. DS methodology provides steps to 
design artifacts such as algorithms, applications, 
information systems and so on. In DS research the design 
“focuses on the use of scientific principles, technical 
information and imagination in the definition of a 
structure”[10]. It illustrates the relevance underpinned 
by the business need arising from the environment and 
the rigour in the form of applicable and new knowledge. 

In our research, problem space defines the 
environment which encompasses the construction firm’s 
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existing and planned technological infrastructure that 
enhances its productivity. Businesses are inclined to lead 
this transformation process seamlessly. This induces the 
need for developing a C4M and justifying it. The 
knowledge base foundation includes the steps for 
developing the model (scope-design-populate-test-
deploy-maintain) [11]. The DS process steps are 
introduced in the following paragraphs.  

2.1 Problem identification 
C4 presents numerous challenges at the 

organizational level [12]. The maturity model can be a 
useful tool in addressing these challenges and facilitating 
companies' digital transformation.  A solution is required 
that considers companies' technological perspectives 
rather than solely focusing on the digital maturity of a 
construction project. 

2.2 Objective and Solutions 
The objective of the C4M is to conceptualise and 

quantify C4 in construction business activities and make 
them measurable over time. Our long-term purpose is to 
develop a rules-based information system. It will 
measure how ready a company is to adopt a particular 
technology. This C4M model serves as its basis, extended 
with a fuzzy inference engine built on an ontology[13]. 
DS recommends developing an artifact iteratively using 
a lot of feedback. This paper presents only one iteration. 
The case study will determine if the model accurately 
represents the company's digital maturity aspects and if it 
is practical to use from a market professional's 
perspective. 

2.3 Development 
During the model development phase, we aimed to 

identify distinct categories (level 1) underlying families 
(level 2), and elements (level 3). The developed model is 
based on the BIM Maturity matrix [9], which plays a 
central role in the digitalisation of the construction 
industry. In the second phase of model development, the 
main elements of the BIM Maturity Matrix model have 
been examined and expanded to include areas that can be 
important for the digitalisation of an organisation using 
Industry 4.0 and other construction-specific maturity 
models.  

A literature review was conducted during the 
development process using the following keywords to 
identify relevant literature: Industry 4.0 maturity model, 
Industry 4.0 readiness, Construction maturity model, 
Construction 4.0 readiness, and Construction business 
model. The literature review identified 22 relevant 
articles in the field of Industry 4.0 and only 3 in the 
construction industry. A matrix was created during the 

review to establish the main pillars of the C4M. These 
pillars supported the next phase of development where 
further literature was identified using the following 
keywords: pillar name + maturity model/readiness model, 
pillar name + construction + maturity model/readiness 
model. The maturity models identified in the literature 
were pruned and the model elements were categorised 
using ontology development methodology. Ontology is a 
"formal and explicit specification of a shared (shared) 
conceptualization"[14]. The steps of this methodology 
are described in detail in [13]. These steps led to the 
creation of the C4M families and elements. 

2.4 Justification 
To justify the integrity and applicability of the model 

to the environment, a qualitative case study was 
conducted in four steps: (1) designing the case study 
protocol, (2) conducting the case study, (3) analysing the 
evidence, and (4) developing the conclusion [15]. The 
data was collected through interviews. During the case 
study protocol phase, we developed a sampling strategy, 
to select a business that covers all areas of our model 
including planning and design, construction and 
production. We prioritised selecting a company that 
demonstrated a high level of maturity in terms of 
digitalisation compared to other market players.  

During the second phase of the case study, two 
interviews were conducted. Firstly, the CEO of the 
company explained the main steps taken in their digital 
transformation journey. Secondly, the C4M elements 
were discussed in detail to assess the importance of each 
model element on a scale of 0 to 5. In the subsequent 
round of the case study, the Chief Technology Officer 
(CTO) was interviewed. During the analysis phase, we 
prepared the interview transcripts and created a matrix in 
Microsoft Excel to justify the model. The matrix had 
rows representing categories, families and elements 
(C4M elements) and the two columns (CEO and CTO) 
were filled with the data collected from the transcripts. 
During this phase, our main objective was to identify 
correlations between different processes and determine 
the drivers of digital transformation. Thus we created the 
process map of the case study and analysed the steps in 
detail. Based on the results, we drew conclusions, and 
considerations for future research. 

3 Maturity Model 
C4M has six main pillars: Technology Management 

and Business Applications [7,16], Culture and People 
Management [7,16–20], Collaboration and 
Communication [17], Technology for Automation 
[17,18], Innovation [17] and Change Management and 
Processes [7,16–18]. Technology for Automation 
category encompasses the use of industry-specific 
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robotics [21–23], Building Information Modelling (BIM) 
and Digital Twin, Internet of Things (IoT) and sensing 
systems [21–23], and data-driven technologies [21,23] to 
enhance construction projects and production efficiency. 
The model is presented in more detail by [13]. Figure 1 
illustrates the C4M and the Technology for Automation 
category in detail.

Figure 1 C4M Technology for Automation’s 
families

4 Case study 
The company operates with a team of 30 employees 

at its headquarter, with an additional 40 employees 
working in production and construction. The core team 
comprises individuals from various fields, including 
finance, logistics and procurement, sales, design, project 
management, CEO, ESG Manager (Innovation Manager), 
marketing, and software development. The company 
follows a matrix organizational structure. It is important 
to note that nearly one-third of the headquarters’ 
employees work in software development.

Figure 2 The digital transformation process map

The strategic goal of the digital transformation 
journey was threefold: (1) automatic façade design, (2) 
production plan automation, and (3) predictive decision-
making based on project data. The interviews revealed 
four development phases. Phase 1 involves developing a 
general IT infrastructure, Phase 2 includes creating a 
knowledge base which was used to educate employees 
about internal processes, Phase 3 focuses on system 
integration, and Phase 4 involves system scale-up and AI 
development based on data. The purpose of the case 
study was to test the relevance and existence of each 
category of the C4M, based on the company's digital 
transformation journey.

A process map in the context of C4M elaborated from 
the case study outlines the key steps involved in the 
digital transformation represented in Figure 2. This 
process map is introduced in the following paragraphs.

4.1 Technology Management and Business 
Applications

This category refers to the systematic coordination 
and application of technology to achieve its strategic 
goals and objectives [13]. This category examines how 
effectively integrated digital technologies can support the 
company's digital processes.

The journey towards digital transformation begins 
with defining a data-driven business strategy. During the 
system development process, the focus was on creating 
an IT framework, including both software and hardware, 
that enables data-driven operations. Specifically, the goal 
was to convert Excel sheets to an SQL database 
management system. The requirements for this can be 
defined by the IT governance policy, which also guides 
predictive data-driven decision-making. Cybersecurity 
should be included in this policy as it is becoming an 
increasingly important concern in the construction 
industry, particularly as core processes are digitised [24]. 
However, the case study did not reveal any particular 
focus on this area. Therefore, we did not include it in the 
process map.

“The biggest challenge was to build the system from the 
ground up to be able to apply data science “(CEO)

The importance of facilitating data-driven operations 
is underscored by the development of a cloud-based 
workflow management system that is compatible with 
existing software. These cloud-based workflows were 
later extended from core operational processes to project-
related design and construction processes.

System integration and interoperability are 
significant challenges in digitisation, which require to 
rationalize the IT portfolio for efficiency. System 
integration refers to the process of combining individual 
component subsystems into a unified system to achieve 
its desired functionality effectively [25]. Defining system 
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integration requirements is essential for the effective 
deployment of integrated systems. This task involves 
evaluating the compatibility and capacity of the hardware 
infrastructure, establishing testing criteria, selecting 
appropriate software, and validating integration to ensure 
system reliability. It is essential that functional 
requirements are clearly specified and that a cost-benefit 
analysis is carried out to assess the financial implications. 
Additionally, scrutinising the software data structure is 
necessary to enable seamless data flow. This systematic 
approach establishes clear integration requirements for 
successful operation.  

During this process, nearly 100 construction-specific 
software programs were tested.  Although individual 
software solutions have their advantages, the company 
decided to develop its own system called Dijkstra due to 
the lack of a comprehensive solution.  

4.2 Culture and People Management 
This category refers to maintaining a positive and 

productive work environment to drive organizational 
performance, with a focus on performance management, 
training and development, and employee engagement 
[13]. This category assesses the effectiveness of 
knowledge management within an organisation. It 
includes whether employees have the confidence and 
knowledge to use digital technologies effectively in the 
corporate environment. 

The process map presents a thorough method for 
improving organisational capabilities through a 
systematic approach. It starts by establishing system 
integration requirements as guidelines for the knowledge 
base. Then, a knowledge base is developed, which 
includes technological instructions and case studies, to 
lay the foundation for digital expertise. Defining digital 
expertise fields and developing IT skills further 
empowers employees to navigate the digital landscape. 
Internal education initiatives, such as training sessions 
and onboarding programs, help ensure alignment with 
company processes and technologies. 

The integration of operational processes streamlines 
workflow and enhances organizational efficiency. This 
integration aims to consolidate various activities within 
the organization, promoting cohesion and synergy. 
Subsequently, the implementation of a Key Performance 
Indicator (KPI) system enables the continuous 
measurement of employee efficiency. This system 
captures designers' hourly tasks, providing valuable 
insights for controlling and project pricing. The 
generated data facilitates pricing negotiations and 
automates invoicing processes, contributing to improved 
decision-making and resource allocation within the 
organization. A Business Intelligence (BI) system 
leverages this data for visualizing financial reports and 
project progress. Challenges were raised in defining KPIs 

for construction field workers, particularly in measuring 
their soft skills. 

4.3 Technology for Automation 
The Technology for Automation category assesses 

the use of several technologies, including data-driven 
technologies, robotics, BIM and Digital Twin, and IoT 
and sensing systems. The process flow diagram shows 
the close relationship between automation technologies 
and system integration requirements, which are defined 
in parallel.  

4.3.1 BIM and Digital Twin 
The design of the automation strategy is heavily 

influenced by the BIM environment, and the creation of 
an appropriate enterprise BIM environment is based on 
the system integration requirements. Special emphasis 
should be placed on ensuring interoperability among 
software. For instance, contractors often need to extract 
quantitative data from customer-provided IFC format and 
transfer it to Excel. To process the data, supplementary 
software is required, such as Revit, ArchiCAD, or even 
Inventor for certain manufacturers, which enables direct 
transmission of the data to production. Speckle's 
approach offers a viable way to address these data 
communication issues. Furthermore, the BIM ecosystem 
necessitates ongoing development of relevant IT 
expertise and internal training on software processes. If 
the data flow within the established ecosystem is 
continuous, it can provide real-time input data for data 
analytics. This data enables the company to track and 
measure project information. 

The company utilises software such as Revit, 
ArchiCAD, Grasshopper, and Speckle to create project 
plans at Level of Development (LoD) 500, which 
represents the As-Built Stage of Modelling. This includes 
model elements with precise size, shape, location, 
quantity, and orientation for fabrication and assembly 
processes at the shop drawing level, with technical data 
connected to the modelled elements. Constant training 
and development have resulted in a high level of software 
usage, which has significantly improved its quality. The 
interviews identified barriers within the BIM and Digital 
Twin domain that are hindering the company's progress 
and the demonstration of BIM's added value. Firstly, 
Clients are increasingly requesting more extensive 
documentation from contractors, while not having the 
same expectations for their as-built BIM models. This is 
due to the contractors' far more advanced level of 
expertise in BIM compared to theirs. Secondly, there are 
data interchangeability issues due to challenges in 
software interoperability, especially between Revit and 
ArchiCAD. Finally, contractors may face additional 
challenges due to the large amount of data generated by 
designers.  
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These challenges resulted in the decision to integrate 
the Industry Foundation Class (IFC) model into the self-
developed Dijkstra platform using Speckle's solution. 
Figure 3 shows how this viewer enables the team to 
update and track the project through the model, 
visualising the state of each façade component.  

 
Figure 3 Dijkstra platform and project tracking 

4.3.2 Data-driven technologies 

The development of a data-driven technology 
ecosystem is a sequential process. First, the data structure 
for analytical purposes must be designed, taking into 
account system integration requirements and guidelines 
from IT governance policies. It is crucial to consistently 
gather data by monitoring both project and organizational 
operations to preserve effectiveness. 

To meet the requirements of data-driven technologies, 
the company focused on building the appropriate data 
structure. This structure would enable the system to be 
used for data analysis and BI reporting in the future. To 
achieve this, the company linked an SQL database to the 
SharePoint system and then to the Dijkstra interface.  

The company is now developing an AI chatbot called 
Mici, which will integrate existing databases through the 
Dijkstra interface and extract information from 
background databases through human communication. 

Recent research has identified three potential 
directions for data mining: data mining for intelligence, 
digitalization, and automation [26]. The company has 
identified two of these directions; and has developed 
three goals from an AI perspective: 

• The purpose of this project is to use data mining 
techniques to access internal company SQL data 
and provide Project Managers with relevant 
information and knowledge.   

• Additionally, the project includes the development 
of an AI chatbot to aid designers in documenting 
their design process and translating it into 
ArchiCAD.  

• The project also involves developing a system for 
generating data to facilitate communication with the 
platform, recording data via mobile phone, and 

managing the platform. 

The study of how employees view these technologies 
highlighted the need for thorough training programs. If 
employees do not receive adequate feedback from AI, 
there is a possibility that they may return to using 
traditional job methods. The CEO highlighted that the 
internal IT staff has substantial concerns about future job 
loss due to AI.  

4.3.3 Human-machine interfaces and Wearable 
devices 

Cloud-based workflows and communication culture 
support the usage of human-machine interfaces. 
However, complete enterprise integration requires 
continuous monitoring of technology usage to track and 
record project data.  

In the early stages of digital transformation, the 
company focused on prioritising mobile devices to 
ensure data availability across various workspaces and 
construction sites. Their mobile application was then 
updated to allow for microphone-based data entry, which 
was found to be more efficient than on-site typing. 
Furthermore, the company developed VR and AR areas 
to facilitate model visualisation. Continuous education is 
necessary to support the use of these devices for constant 
monitoring. Management control also influences the 
level of usage. 

4.3.4 IoT and Sensing System 

The integration of Internet of Things (IoT) and sensor 
systems is another key aspect that can facilitate real-time 
data collection in automated processes. This integration 
is a key aspect as it defines the ability of the robotic 
environment and its software to integrate with pre-
existing systems.  

4.3.5 Robotics 

Establishing a robotic manufacturing environment 
requires several preparatory stages. It is crucial to align 
the automation strategy, including the development of 
robotics, with the system integration requirements. The 
ongoing evolution of existing automated processes 
facilitates the development of a robotic environment. 

In the field of robotics, the company prioritised the 
development and automation of production processes. 
They emphasized that the effectiveness of robotics 
depends on the user's expertise, thus the need for 
continuous training for welders operating Computerised 
Numerical Control (CNC) machines. These machines are 
used in computerized manufacturing, where pre-
programmed software and code control the movement of 
production equipment. The CEO highlighted the growing 
importance of sustainability in automation and robotics. 
This includes the development of machines capable of 
managing waste produced within factories and on 
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projects. 

4.4 Change Management and Processes 
This category refers to the degree of alignment 

between organizational and digital processes that enable 
the company to promptly and efficiently address 
customer requirements, as well as to integrate or 
introduce new processes [13]. 

Defining system integration requirements precedes 
the integration of corporate processes, enabling the 
extension of efficiently functioning operational processes 
to project-specific workflows. The development of 
automated processes emerges as a key element on the 
process map, and is driven by the automation strategy. 
IoT and sensor data contribute to seamless automated 
processes and continuous data flow. Additionally, 
support for development efforts across multiple domains 
is required, including internal training initiatives and 
continuous improvement of IT skills.  

4.5 Collaboration and communication 
Collaboration and communication cover how the 

organisation works, interacts, and cooperates within its 
physical, and digital environment and throughout its 
supply chain [13]. This category measures the 
effectiveness of workers in sharing information within 
and across organizations through digital technologies. 
Both the digital system and the staff are responsible for 
tracking project and operational information. Project-
specific digital processes should be properly integrated to 
support automated processes and the automatic flow of 
data. The cloud-based collaboration culture supports the 
use of a human-machine interface, allowing workers to 
capture the necessary data via mobile phones. Cloud 
collaboration also facilitates collaboration in the supply 
chain, which can contribute to the tracking of project 
information. 

Internal communication was improved by eliminating 
WhatsApp and Viber-based communication, which has 
enhanced efficiency in cloud-based communication and 
allowed for better tracking of project information and 
changes. Supply chain collaboration aims to improve 
efficiency. The company implemented a supplier 
database to monitor pricing and effectiveness, enabling 
the Procurement and Project Manager teams to handle 70% 
of their work during offer preparation.  

4.6 Innovation 
This category assesses the corporate culture, 

leadership approach, and feasibility of innovation to 
promote the development and execution of new ideas, 
services, technologies, or procedures [13]. The 
Innovation Manager facilitates the ongoing 

implementation and maintenance of innovation. This is 
achieved through the triangle of knowledge base, 
technology, and process automation, which ensures a 
culture of innovation. 

The Innovation Manager is responsible for 
maintaining a sustainable and innovative environment 
and ensuring ongoing reporting. With a comprehensive 
understanding of both manufacturing and IT processes, 
she is able to support the launch and implementation of 
innovation projects to keep employees motivated to 
innovate.  

5 Findings 
During the interview, the initial model element 

relevance importance was rated on a scale from 0 to 5 by 
the CEO. The mean value of the element’s importance 
under the six main categories is shown in Figure 4.  

 
Figure 4 The importance of the C4M categories  

The results indicate that, among the items assumed in our 
model, several elements in the Collaboration and 
Communication category were not considered significant 
by the CEO. It is important to note that the company did 
not prioritize soft skills, as presented in the case study.  

We aimed to use the case study to explore which 
processes and areas were more prominent within each 
category. Figure 5 constructed based on the process map 
presented in Chapter 4, shows the number of 
predecessors and successors for each process element, 
with the size of the bubbles representing the number of 
categories a process is linked to. The term 'predecessor' 
refers to the previous process step as defined in the 
process map. For example, the process element 'Measure 
efficiency by KPI' has one predecessor (Integrate 
Operational processes in Change Management and 
Processes category) and two successors (Track Project 
and Operational Information in Collaboration and 
Communication category, and BI System in Technology 
Management and Business Application category). The 
number of connected categories summarises the 
categories of the predecessors and successors, therefore 
it is three. The figure leads to the following conclusions: 
(1) the development of the automation process was 
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related to all categories, (2) Systems Integration, 
Knowledge Management, and Cloud-based Systems 
were related to four categories. From the location of these 
four processes on the grid, it can be concluded that (3) 
System integration was the most important initial 
element in the digital transformation, as most of the 
successors were related to it. (4) Knowledge management 
and cloud collaboration were both preceded and followed 
by a similar number of processes, indicating their 
importance in establishing and sustaining progress. (5) 
The development of automation processes had the 
majority of the preceding processes. Consequently, 
several preventive steps need to be taken before process 
automation can take place. 

 
Figure 5 Visualisation of the process map results 

6 Summary and conclusion 
The purpose of this case study was to provide a 

justification for the developed C4M in terms of model 
categories with a qualitative case study. The company 
perspective demonstrated that all six categories of the 
model are equally important. However, our results 
indicate that the innovation category is the least 
important compared to the other five categories. This 
conclusion was drawn from the process map, which 
showed that innovation can be identified as the 
integration of industry-specific technology. The case 
study identified three main drivers of digital 
transformation for this company: cloud-based systems, 
knowledge management, and system integration leading 
to automated processes.  

The objective of the C4M was to conceptualise and 
quantify C4 in construction business activities and make 
them measurable over time. The case study revealed that 
the model accurately represents the company's digital 
maturity aspects however further development is needed 
to measure these aspects over time. Our research will 
continue to verify the underlying elements of each 
category and to develop for each category indicator level.  

In summary, this research has presented a detailed 
case study of the C4M that will significantly contribute 

to guiding researchers and developing businesses. The 
results indicate that digital transformation was primarily 
driven by cloud-based systems, knowledge management, 
and system integration to drive further the digital 
processes (achieve higher level of automation) that are 
connected between design, production and construction 
phases through system integration with human resource 
capabilities. 
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Abstract – 

The exponential growth in both three-dimensional 
printing (3DP) and cybersecurity (CS) poses a 
significant challenge for the change-resistant 
architecture engineering and construction (AEC) 
industry. Despite growing research related to any of 
these fields combined, there is a research gap 
associated with their combination, particularly with 
themes and topics in conjunction with AEC and 3DP. 
To address this and the larger knowledge gap of a 
methodology for multi-theme review, this research a) 
develops a generic multi-theme bibliometric analysis 
and b) validates the developed methodology with the 
help of three themes mainly CS, AEC, and 3DP. To 
achieve this, data was collected from Scopus and 
analyzed using Biblioshiny. The results emphasize the 
need for further imminent research in combinations 
of CS and AEC and more particularly in CS, AEC, 
and 3DP, where the growth rate is null despite 
growing research in individual domains mentioned. It 
is also noted from the findings that interdisciplinary 
research within these domains call for increased 
collaboration. This should not only motivate 
researchers in these aspects but assist stakeholders in 
identifying the need, work towards addressing this 
and more importantly, enhancing collaborative 
efforts.  

 
Keywords – 

Cybersecurity; 3D Printing; Construction 
Industry; Text-mining; Biblioshiny; Threat Modeling 

1 Introduction 
Architecture, engineering, and construction (AEC) 

industry significantly contributes to the global economy 
accounting to 13% of the global GDP [1]. The resources 
required have also been exceptionally high at about 50% 
of the gross global resource usage [1]. Its adversity to 

change, innovation, and lack of productivity [1] is the 
motivation for its growing connection with three-
dimensional (3D) printing (also referred to as 3DP), 
along with the reduction in labor [1][2], waste [2] and 
pollution [1], time [1][2] and costs [1], increased 
worksite safety and the opportunity to explore complex 
geometries [1][2] as they do not require formwork [3]. 

Furthermore, the United Arab Emirates (UAE) has 
initiated the “Dubai 3D Printing Strategy”, aiming to 
have 25% 3D printed buildings in Dubai by 2030 [4]. 
Large-scale applications of 3DP are not novel, beginning 
from 1997 with contour crafting, freeform and additive 
manufacturing, rapidly progressing to whole residential 
buildings and bridges, making this target much more 
feasible [5]. Some of the existing structures constructed 
using 3DP, many of which were designed for a service 
life of 50 years or greater are as follows [2]: 1) Non-load 
bearing walls of a single-storey student house in 
Denmark in 2021; 2) A two-storey office building in 
UAE built in 2019; 3) A double-storey residence in 
Germany in 2021 constructed; 4) An army barracks hut 
in USA in 2019; 5) A one-storey residence in the 
Netherlands in 2021; 6) The Striatus footbridge in Italy 
in 2021. 

Although research in these two fields namely AEC 
and 3DP has gained significant interest over the years, 
the cybersecurity (CS) aspect in either of them is still not 
given as much importance [6] owing to the limited 
studies conducted during the construction process and 
much of the focus taken up by the design stage and the 
post-construction stage [7]. This knowledge gap is what 
makes it crucial to understand how these three fields are 
connected and explore the future possibilities due to their 
assimilation.  

2 Literature Review 
AEC Industry has struggled to identify and protect 

against cyber-attacks. Studies suggest that among the 
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common targets of cyber-attacks, AEC industry is the 
third in the list [8]. Research also shows that only 25% of 
the construction firms have prioritized cyber-security 
issue [8]. The theft of Interserve construction firm’s 
employees’ personal information has cost around £11m 
due to a cyber-attack [9]. Moreover, according to an 
annual report by an insurance giant Hiscox, almost half 
of United Kingdom (UK) construction firms have 
suffered from cyber-attacks, ranking it as the fifth most 
vulnerable industry for the second consecutive year [10]. 
A more specific example of this in 3DP would be the 
attempt of hackers to steal data on Hadrian X, a one-
armed robotic bricklayer in Australia [11]. [12] also 
cautions of increased risk of cyberattacks due to the 
exponential increase in the adoption of machine learning 
and robotics in the AEC industry. It is thus evident that 
more studies should focus on increasing the awareness, 
perception, implementation, framework, standard, threat 
modeling, attack maps, countermeasure of the cyber 
security related aspects to protection data, reputation, 
operations, and business at large.  

3DP technology is still in its infancy in the AEC 
industry along with the investigation of CS aspects within 
the domain. The CS research within AEC and its 
susceptibility to cyberattacks can be studied with the help 
of existing standards, tools, frameworks, and case studies 
from other domains since the process is similar. The slow 
adoption of digitization and CS in AEC is arguably due 
to lack of awareness, reputation, and competition of the 
AEC industry, among many other reasons. Some specific 
reasons particularly for 3DP within AEC industry include 
requirement of special material for printing, lack of 
standards and regulations, limitations of 3D printers on-
site, and operation and management of 3D printers 
[13][14]. Many characteristics of the AEC industry itself 
also contributes to this slow pace, such as its project-
based, uniqueness, conservative, change-resistant and 
fragmented nature, with various stakeholders’ 
involvement at different phases of its life cycle 
[14][15][16]. Thus, it must be noted that these cannot be 
directly adopted given the inherent characteristic 
limitations as mentioned above.   

As an example, one of the methods of cyberattack 
during the 3DP process is acoustic side-channel attacks 
by using smartphones, which makes use of the Internet of 
Things (IoT) to steal confidential Intellectual Property 
(IP) information during 3DP. Using laboratory testing 
methods, some researchers were able to affirm IP leakage 
through the side channels of the 3DP process by using 
commercial off-the-shelf smartphones [17]. Sabotage 
attacks originating from the cyber domain can affect the 
physical domain and compromise systems’ structural 
integrity potentially resulting in severe safety risks. 
Subtle variations in the sub-process can cause changes in 
the 3DP's parameters [18]. Other vulnerabilities include 

man-in-the-middle attacks to maliciously alter the “.STL” 
or the G-code file [19], which can compromise the 
quality of the product since the “.STL” file contains the 
design data, which is then sliced by a slicer software into 
layers as a G code to feed into the 3D printer [20]. [21] 
carried out a case study of cyberattack on the .STL file, 
wherein they altered the design to add a void, which 
impacted the specimen’s strength. Other attributes that 
can be a target of such attacks are printing speed, the 
thickness of the layer, infill of the printing path [22]. 
Direct parallels can be drawn within the AEC industry 
and there can be several learnings for the same. Similarly, 
rapid digitalization incorporates several technologies 
such as the internet of things (IoT), building information 
modeling (BIM), machine learning (ML), robotics, and 
artificial intelligence (AI), which are also susceptible to 
cyberattacks. Examples of such attacks on HVAC 
(heating, ventilation, and air conditioning) and BMS 
(Building Management System) systems, unauthorized 
access, stealing construction plans, and breaching of 
sensitive and personal data are detailed in [7]. These can 
be seen mainly in OSC (Offsite Construction) and 
prefabrication [23], however, these are not separately 
detailed to consider AEC as the broad theme. 

Table 1: Previous Studies Focus & Limitations 

Study Focus  Limitations 

3DP/AM & AEC 
[24][25] 

Focused on systematic mapping, 
cannot be directly adapted for 

bibliographic analysis. 
3DP/AM & AEC 

[26] 
Focused on systematic literature 

review to identify gaps only. 

CS & AEC [7] 
Restricted to two themes and does 
not identify multiple permutations 
and additional themes of interest. 

AEC & Industry 
4.0 [27] 

Focused on systematic mapping, 
cannot be directly adapted for 

bibliographic analysis. 
IoT & Smart 

Health Research 
[28] 

Lack of clear framework in the 
methodology to conduct multi-

theme analysis. 
Servitization & 
manufacturing 

[29] 

Focused on systematic literature 
review to identify gaps only. 

To overcome such gaps and obtain learnings and a 
way forward for the future of the industry and research 
community, researchers resorted to summarizing and 
synthesizing existing literature on the respective subject. 
For example, the text mining method is utilized, and 
relevant bibliometric data is analysed. Table 1 lists some 
of the multi-theme reviews conducted both in the fields 
of interest, and others. Given their review, it is evident 
that no such analysis has been carried out for all three 
fields namely CS, AEC, and 3DP, which is the goal of 
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this paper. Furthermore, there is no clear framework that 
can be directly adapted to our study, as eident in Table 1. 
Thus, the proposed methodology contributes to the 
existing body of knowledge by providing a general, 
systematic, easy to use multi-themed bibliometric 
analysis framework that can be applied for more than 2 
themes irrespective of context and applications. The 
objectives of this study therefore are to a) develop a 
general research methodology for multi-theme 
bibliometric review, and b) validate the developed 
methodology with the help of three specific themes of 
interest in the current context namely CS, AEC, and 3DP. 

3 Methodology 
Figure 1 shows all the steps in the proposed 

methodology. Broadly categorized, the methodology 
employs a bibliometric approach to address the research 
objective of this study. Each of these steps is detailed in 
the sub-sections below.  

 
Figure 1: Overview of Proposed Methodology  

3.1 Identify Different Themes 
The objective of this step is to identify different themes 
of interest pertaining to the context, application, and need. 
In the current context, three themes namely CS, AEC, 
and 3DP were chosen. Each of these terms is described 

briefly below. 3DP, also known as additive 
manufacturing or digital fabrication technology, is an 
emerging technology that creates physical objects from a 
geometrical representation through successive addition 
of materials. There is a mass increase of 3DP technology 
in the production of open-source design in agriculture, 
automotive and locative industries, aviation industries, 
including the construction industry. [30][31]. AEC, 
widely known as construction, refers to the creation of 
physical infrastructures as well as the maintenance and 
repair of the existing structures [32]. CS is a significant 
concern of every infrastructure and organization. It 
includes practical measures to protect information, data, 
and networks against any internal and external threats.  

With the rise of 3DP technology in the AEC industry, 
CS has become a critical factor [33]. It has to be noted 
that the primary concern within CS is threat modelling 
(TM) and countermeasures. Although these are sub-
topics within the main theme of CS, in the latter stages of 
analyses in Section 4, it is also considered a theme of 
interest for further investigation and exploration. These 
themes will act as the foundation for further analyses and 
potentially pave the way for future research. 

3.2 Outline Search Characteristics  
Once the themes are identified, the immediate next 

step is to outline the search characteristics along with the 
selection of databases to conduct the search. In this study, 
Scopus was used as it is a vast database of abstracts and 
citations created by Elsevier, indexing more than 90% of 
journals and 70% more sources than WoS [34][35]. Since 
papers in combined fields are limited, Scopus is a better 
choice as it has 20% more coverage than WoS, including 
more journals despite their low impact [36].  

Advanced search was done in Scopus to define the 
search characteristics due to the complexities of the 
search. Table 2 outlines the summary of the search 
characteristics and is described briefly below along with 
the rationale. The initial searches showed a significant of 
the papers published were in English, so the language 
was set to English, which also helps to verify the 
relevancy of the results. Since books and book chapters 
were both selected, the book sources from the first page 
results of the combination of 3DP and AEC, limited once 
only to books, and then only to book chapters, were used 
to compare them. Since there were no repeating sources, 
both document types were included. Mainly, the year 
range of 1950 to 2022 was chosen, as at this timeline, 
technology, and automation became of interest due to the 
third industrial revolution [37], and to keep the results 
consistent, the current year is excluded. The Boolean OR 
is used to group the words within the same domain, AND 
for combinations, AND NOT for excluding irrelevant 
words. It aims to find papers with at least one word from 
each domain. Wildcard is a tool in Scopus used to include 
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all similar words with different endings, for example, 
“3D print*” was used to include 3D printer, 3D printing, 
3D printed, etc. All searches were carried out for selected 
keywords within the title, abstract or keywords of papers. 

Table 2: Summary of Scopus Search Characteristics 

Criteria Option 
Search type Advanced search  
Languages English 

Document type 
articles, conference papers, 

reviews, book chapters, 
conference reviews and book 

Timespan 1950 – 2022 
Booleans used AND, OR, AND NOT 

Advanced 
search tool used Wildcard (*) 

Searches within TITLE-ABS-KEY (Article title, 
abstract and keywords) 

3.3 Determine Keywords and Combinations  
In this step, relevant keywords and combinations 

need to be determined for the different themes identified 
in section 3.1. In addition, a list of exclusion words must 
be determined for irrelevant words that were found while 
manually checking for the search results. Different 
combinations of the chosen themes and topics can be 
determined subject to their relevance and applicability.  

Table 3 outlines the summary of the keywords for the 
three main themes (CS, AEC, 3DP) along with the 
additional topic (TM) that was chosen for this study 
given its significance as discussed earlier. For example, 
regarding the exclusion words, the words hackneyed and 
hacksaw were taken from previously published papers 
and checked within these strings. Since they did bring up 
irrelevant papers, they were also added to the exclusion 
list. Section 3.4 discusses this further. Table 4 represents 
the 11 different combinations that were carried out. 
Although more were possible or done, due to the same 
results for those combinations, or irrelevancy, it was 
limited to only those shown in the table. 

3.4 Define Different Search Strings  
The objective of this step is to define the search string 

based on the identified based on the above steps (sections 
3.1, 3.2, and 3.3. For example, the search for each 
combination from Table 4 was conducted using 
keywords from Table 3, the results of which were 
exported as a CSV file. The results from Scopus were last 
updated on 11th December 2023. 

3.5 Update Keywords and Combinations  
The immediate next step after conducting the search 

using the strings defined in Section 3.4 is to update the 

keywords and combinations based on the results. The 
purpose of this step is to refine the keywords, exclusions, 
and combinations and improve the search results. The 
following sub-sections discuss significant results of the 
same.  

Table 3: Keywords & Exclusions for Each Theme 

3.5.1 3DP and AEC 

Initially, more words under AEC, such as 4IR or 
Fourth Industrial Revolution, and under 3DP, such as 
automat, freeform were used, which resulted in papers 
under nursing, veterinary, and neuroscience. For example, 
“A study to determine the effects of industry 4.0 
technology components on organizational performance” 
and “Freeform 3D printing of vascularized tissues: 
Challenges and strategies”. Even the word construction, 
paired with 3D printing, resulted in several irrelevant 
papers, due to its usage as a verb. All these words were 
removed, and construction was replaced with words like 
construction industry and construction sector. The 
acronym AEC also brought up a few unwanted papers, 
but since they were fewer in number, those were added 
to the exclusion list.  

 Keywords Exclusions 

3D
P 

3D print, 3DP, additive 
manufacturing, additive fabrication, 

contour craft, extrusion-based 
printing, extrusion-based technology, 
rapid prototyping technology, rapid 

manufacturing, solid freeform 
fabrication, automated printing, three 

dimensional print 

 

A
E

C
 

(architecture, engineering, and 
construction), AEC, aecfm, 
(architecture, engineering, 
construction, and facility 

management), aeco, (architecture, 
engineering, construction, and 

operations), construction industry, 
construction sector 

automatic 
exposure 
control, 

advanced 
eye center, 
array eddy 

current 

C
S 

Cyberattack, Cyberbreach, 
Cybercrime, Cyberresilience, 

Cyberthreats, Cybervulnerability, 
Cyberspace, Cyberphysical, 

Cybersecurity, Sabotage attack, hack 

Hackneyed
, hacksaw, 
hackling 

T
M

 

Threat Models, digital model, Risk 
propagation, Vulnerability 

assessment, Counterattacks, 
Countermeasure analysis, Safety 

measures, Anti-hacking, Smart grid, 
Network security, Intrusion detection, 

Blockchain, Cloud-BIM 
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Table 4: Combinations & Results

No 3DP AEC CS TM Results
1 107,664
2 71,635
3 632
4 54,306
5 13,110
6 186
7 2
8 34
9 1
10 55
11 15

3.5.2 3DP and CS

In this combination, papers like “A new technology 
to machine bimetal band saw” due to the use of Hack* 
could not be removed, so the keywords hacksaw, 
hackneyed, and hackling were excluded using AND NOT.

3.5.3 3DP and AEC and CS

This combination yielded 4 results, two of which are 
repeated and are simply the conference rather than an 
article within the conference. So, they were removed 
manually after exporting from Scopus.

3.5.4 3DP and CS and TM

Initially, TM was split into two domains, one for TM, 
and another for countermeasures. Due to the lack of 
papers, since the same results were obtained for both, the 
keywords in both groups were merged into one group, 
currently named TM. The threat model VAST was also a 
keyword, along with other types of threat models. 
However, since VAST also brought up results where it is 
used as an adjective, it was removed. The others were 
also removed since their presence made no difference in 
the results.

3.5.5 Other Combinations

The remaining combinations used the updated list 
from the previous searches, so no more modifications 
were done to them. Nonetheless, they were also checked 
for further improvement if required.

3.6 Conduct Bibliometric Analysis
Once the keywords and combinations are finalized, 

meaning no further refinement in search strings is 
required, updated results are extracted as per Section 3.4 
and finally, bibliometric analysis of these results need to 
be conducted. In the current context, after all the searches 
were completed, the csv files exported from Scopus were
used in Biblioshiny to analyse them. Significant 
parameters such as annual publication, annual growth 

rate, authorship, average citation per year, and frequent 
words from Biblioshiny were analysed and discussed.

4 Results and Discussion
This section discusses the results obtained from 

Scopus using the keywords and combinations as 
discussed in Section 3.3. It also discusses the results 
obtained from the analysis of Biblioshiny for specific 
themes and combinations as mentioned in Section 3.6. 

4.1 Scopus Search Result
The Table 4 in Section 3.4 shows the number of total 

publications within the study timeframe for each 
combination. As can be observed, the publications within 
CS theme are approximately half of that in both the 3DP
and AEC (i.e., construction) domains, with even fewer 
papers understandably when focused on the TM. A 
significant decrease was observed for combinations of 
these themes, with the least two-theme combination for 
3DP and Construction, and only one when combining all 
domains. The one paper that comes up when all domains 
are combined is “Threat Modeling in Construction: An 
Example of a 3D Concrete Printing System”, which 
discusses the use of a threat model in 3DCP. 

4.2 Annual Scientific Production and Growth 
Rate

The total number of publications for each year is 
discussed in this section. Due to the large difference in 
the number of publications, they were divided into two 
parts, one for the main themes and another for the 
combinations. Although TM is a topic within CS, due to 
the high volume of papers and it being the primary focus 
within CS, it was also considered for further analysis and 
discussion.

Figure 2: Annual Production for Main Themes

Figure 2 shows the annual production for the main 
themes. A noteworthy observation is that production for 
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all of them began to pick up after the year 2000, with 3DP
growing the fastest and TM the slowest. Both AEC and 
CS have a steady growth of approximately 10%, as seen 
in Figure 4. This suggests the growing prominence and 
relevance of 3DP further corroborating the theme 
selection for this study.

Since the numbers were smaller for combinations 
relative to the main themes, particularly in the earlier 
years and due to the exponential growth, logarithm (log)
of the cumulative annual production for each was 
considered to better view and is shown in Figure 3. 
Additionally, the years that had only 1 publication 
cumulatively were removed as log (1) is equal to 0. It can 
be observed that all the graphs have a general increasing 
trend. Although the combinations of 3DP and CS with 
Construction (no 5 and 10) began in 2002, other 
combinations begin much later, especially those 
combinations that involve three domains namely no. 7, 8 
and 11. This further emphasizes the motivation of this 
study.

Figure 3: Annual Production for Combinations

Figure 4 shows the annual growth rate (AGR) in 
percentage. As discussed, for no. 7 and 9, the number of 
publications were 2 and 1 respectively, hence the null 
growth rate. The AGR for the combinations is high 
despite the low number of publications because of the 
rapid growth of publications over the recent years. This 
shows that current research is largely focused on either 
3DP and AEC or 3DP and CS and does not consider all 
three domains together. 

4.3 Authorship
For each combination, the number of documents with 

single authors, multiple authors, and authors’ 
collaboration internationally per article were analysed in
this section and shown in Figure 5. The number of single-
authored publications were huge for Construction and CS 
with 14,134 and 13,858 respectively, while for the 
combinations, it was between 0 and 43. It was in the mid-
range for 3DP and TM, at 4,949 and 1,368 respectively. 
The co-authored publications for all were in the range of 

1 and 4.8. Since both single and co-author values use the 
number (left) axis, it was difficult to properly observe the 
co-author result in the same plot. Thus, the log of single-
authored publications was used instead. The international 
co-authorship is in percentage and uses the secondary 
(right) axis. 

        
Figure 4: Annual Growth Rate (AGR)

Publications with single authors are relatively high 
for the main domains, but 0 for combinations of 3 
domains. This may be due to the limited number of 
papers within these areas. As opposed to this, co-
authored documents are published for all 11 areas of 
study. The international co-authorship, which refers to 
the authors of a co-authored publication being from 
different countries, is also 0 for two of the combinations, 
no (7) and (9). This is expected since there are only 1-2 
papers from them. However, a positive trend is observed 
where combinations of domains encourage researchers’ 
collaboration across these disciplines.

Figure 5: Single, Co-, & International Authorship

4.4 Average Citation per Year
The citations were also divided into two parts, one for 

the main themes in Figure 6 and another for the 
combinations in Figure 7. Figure 6 shows a steady 
increase for all of the themes, with the highest in 3DP. 
Similar to the annual production, the 3DP graph has a 
higher increase than the rest. TM, although beginning in
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year 1994, increased rapidly and caught up with 
Construction and CS, both of which had a steadier rise 
since. The peaks at various years may be due to 
inconsistent research or lack of collaboration and interest 
[38]. These peaks have reduced in recent years as more 
research is conducted consistently every year. 

Figure 6: Annual Citation for Main Themes

Figure 7: Annual Citation for Combinations

Figure 7 shows the citations for the combinations. 
Since there are not many papers for them, the citation 
graphs look randomized, with the exception of 
combination 6 which appears to have a more consistent 
increase than the others.

4.5 Most Frequent Words
A list of frequent words for each search were taken

from Biblioshiny and displayed in the form of a Venn 
diagram in Figure 8. Although the combinations had a 
smaller result, any repeating keywords were placed in the 
intersections, according to the characteristics of a Venn 
diagram. These keywords not only highlight the current 
trends but will also help identify future research topics.
As can be seen in Figure 8, a lot of the keywords that 
combine all three themes have to do with CS, such as risk 
assessment, security and unauthorized access. The extent 

of involvement desired from each domain is still missing, 
which requires combining the intersections of any two 
domains with others so more of those appear at the centre.

Figure 8: Frequent Words

5 Conclusions
This study developed and validated a multi-theme 

bibliometric analysis methodology addressing the critical
knowledge gap in literature. Specifically, the three most 
significant and crucial themes of CS, AEC, and 3DP were 
investigated and analyzed. Results from the extensive, 
comprehensive and thorough bibliometric analysis
suggest that a) CS-related topics such as security, privacy, 
and risk assessment are gaining momentum in the recent 
past but research within in AEC industry still lacks 
sufficient studies, b) combination themes have more co-
authored papers than single-authored papers suggesting 
for collaborative approach on multi-disciplinary research 
endeavors. c) annual growth rate (AGR) was higher for 
combinations excluding AEC than otherwise, and zero 
for the 3DP-CS-AEC combination, emphasizing the need 
for further CS research within the AEC research 
community and more significantly for those including
3DP and AEC. A general roadmap for future research is 
discussed in Table 5 based on the observed recently 
published studies (now), ongoing research efforts (next), 
and what AEC community can aim at (future). The future 
roadmap in particular was derived from the summarized 
literature from the CS community.

One of the limitations of this study was that a) due to 
the large number of results for the original themes, it was 
practically not feasible to check for duplicates and 
remove them all b) due to the capacity of Biblioshiny, 
some of the papers were omitted during the analysis. 
Future research can be aimed at addressing these 
limitations and further comprehensively exploring all the 
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parameters of the Biblioshiny and also other software and 
databases to compare the results. 

Table 5: Roadmap to Future Research 

Now Next Future 

Currently, 
much of the 
focus in 3DP 
is within the 

manufacturin
g industry, in 
terms of CS 

[17][18]. 

Although 
parallels can be 

drawn from 
manufacturing 
to AEC, it is 

required to have 
real case studies 

in the AEC to 
study its impact 
directly, due to 
the uniqueness 
of each project 
within AEC. 

It is very likely 
that once focus is 
shifted to CS in 
AEC and 3DP 

jointly, with tested 
case studies, new 

issues of 
implementing 3DP 

into AEC will 
arise, which will 

require innovative 
solutions to be 

tackled. 

3DP is 
generally 

vulnerable to 
hacking and 
tampering 
due to its 

digital 
reliance 

[19][20][22]. 

These 
vulnerabilities 

need to be tested 
in settings 

similar to the 
projects in AEC 
and holistically, 

rather than 
targeting only 

one aspect of it 
at a time. 

Large-scale 
application of 3DP 

in AEC will 
require new 

research 
methodology and 
countermeasures 

to overcome. 

Digitization 
of the AEC 
industry at 

present, such 
as adopting 
BIM, IoT, 
and ML 
already 

expose it to 
numerous 
threats of 

cyberattacks 
[7]. 

Evolution of 
cyberattack 
threats in 

digitized AEC 
that also 

integrated 3DP 
technology. 

Countermeasures 
and threat models 
to combat these 
threats, which is 
only done in one 
paper (Garcia de 
Soto and Shibly, 
2020). It is also 

the only paper that 
falls under 3DP-
CS-AEC as seen 

from the results in 
Section 4. 
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Abstract 

This paper is inspired by the concept of 
Analogizing. It explores the analogies between a 
concept from the Construction industry (Automated 
Project Performance Control – APPC) and a concept 
in Education (Organizational Learning Analytics – 
OLA). The APPC model deals with automating data 
collection and conversion from on-site construction 
projects in real-time to improve control and 
performance, while the OLA model expands the 
current application of learning analytics to 
managerial and strategic level decisions taken in 
higher education institutions (HEIs). By drawing 
connections between these two conceptual models, the 
paper demonstrates the innovative potential of 
Analogizing to identify novel solutions in one 
discipline using well established methods from an 
analogous, yet highly distinct, second discipline. 
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Analytics; Automation; Construction Project 
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1 Introduction 
Inspired by the concept of Analogizing, this paper 

presents a comparative case study of two conceptual 
models, one from Social Science and the second from 
Engineering. 

 
The first model, known as Automated Project 

Performance Control (APPC), was developed to facilitate 
construction projects on-line control by automating the 
collection and conversion of field data from ongoing 
projects. The second model, currently under development, 
deals with learning analytics (LA). It aims to expand the 
application of LA beyond the classroom-level, which is 
its current focus. Thus, stakeholders outside the 
classroom-level will be able to make their decisions in 
alignment with HEI's overall organizational T&L. This 

model will be related to henceforth as organizational 
learning analytics (OLA). 

 
The intention of this paper is to demonstrate how the 

concept of Analogizing can be used in a cross-
disciplinary research, especially when researching new 
subjects. The authors use their experience in the 
development of the APPC and OLA models in a case 
study, which shows that the two, seemingly, distinct 
disciplines (the APPC and OLA models) share more 
commonalities than initially apparent. The concept of 
Analogizing, as well as the APPC and OLA models will 
be detailed in the following Sections. 

2 Analogizing 
Comparing dissimilar events, activities, or phenomena 
despite their differences characterizes analogical 
thinking, also known as Analogizing. This mental 
process is specifically designed to emphasize formal 
parallels across disparate contexts [1].  Zerubavel [1] 
illustrates this by pointing out that a female and an Afro-
American professional in 1940s America are in parallel 
situations; both belong to low-status socio-ethnic groups 
while occupying high-status professional positions. He 
offers another cross-contextual example, highlighting the 
equivalence between gay individuals and those with 
disabilities, as both groups face societal "stigmatization." 
Sceptics often dismiss the possibility of finding 
equivalence among seemingly non-comparable items, 
asserting that it is like "comparing apples to oranges." 
However, Zerubavel [1] counters this argument by 
pointing out that even seemingly disparate entities, like 
apples and oranges, share commonalities, such as being 
fruits. 
 

The Case Study will employ the Analogizing 
approach to underscore the shared characteristics 
between the OLA, utilized in the educational realm, and 
APPC in construction operations. 
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3 Automated Project Performance 
Control

This Section relates to the first of the two conceptual 
models – Automated Project Performance Control 
(APPC) from the construction industry.

Construction projects are complex and dynamic 
environments that prove challenging to monitor in real-
time conditions [2]. Project Performance Control (PPC) 
broadly refers to the activities taken by the project 
management to ensure that the project's performance 
aligns as closely as possible with the initial plan. 
Performance is measured in terms of Project 
Performance Indicators (PPIs) such as cost, schedule, 
labor productivity, materials consumption, etc. [2], [3].

The reliance on manual data collection in traditional 
construction control methods inevitably leads to slow, 
inaccurate, and error-prone data collection processes [3], 
[4]. This, in turn, likely explains the prevalence of 
generic and infrequent control practices among 
construction managers. To achieve more timely and 
accurate control, project managers would need to 
dedicate an excessive amount of time to data collection, 
diverting their attention away from their primary 
responsibility of project management and supervision.

Automated Data Collection (ADC) technologies that 
can potentially measure performance indicators in real-
time on construction sites are rapidly emerging with 
declining costs. However, the construction industry lags 
in adopting these technologies to measure performance 
indicators [2], [5], [6]. A key reason for this is that ADC 
technologies are unable to directly measure the required 
PPIs, they can only capture indirect metrics, raw data 
(RD) from the site [7], [8].

A conceptual model for APPC was developed to 
enable automated measurement of the indirect RD, which 
after conversion to PPIs, are used for controlling 
construction projects [9]. As illustrated in Figure 1, this 
model outlines how a typical control cycle begins by 
measuring RD, which will later be converted to the PPIs 
like cost, progress, and resource consumption (resources 
such as materials, manpower, etc.) as of the data-
collection date. These values are compared against 
planned, or updated plans, performance levels. If 
deviations are found, an analysis is conducted to 
understand the factors causing them. Corrective actions,
like adding resources, adding workers, or authorizing 
overtime work are then decided upon based on this 
analysis. The final phase of the control cycle involves 
implementing these corrective measures.

Figure 1.  The Control cycle 

The Achilles' heel of the automated construction 
control cycle lies in the real-time measurement of PPIs. 
The current absence of sensors capable of directly and 
automatically measuring PPIs creates a significant gap 
between the technologically capturable data on-site – RD
– and the PPIs essential for real-time automated control. 
While automated data collection (ADC) technologies can 
measure various RD, project managers require, on the 
other hand, direct PPIs values to make informed 
decisions. This fundamental lack of direct PPI 
measurement sensors presents a major obstacle to 
achieving real-time automated control in construction 
projects.

To bridge the gap between RD collected from on-site 
construction projects in real-time and the necessary PPIs, 
Technion has developed conceptual conversion models. 
This approach aims to measure real-time values of 
indirect parameters (the RD) that can be captured on-site 
using existing technology. By converting these indirect 
parameters into the required PPIs, construction managers 
have actionable information to work with. The most 
important PPIs – cost and schedule, known as Key 
Performance Indicators (KPIs) – can now be compared in 
terms of actual performance against planned objectives. 
This enables timely course correction and improves 
project outcomes.

The specific indirect parameters likely differ across 
various types of activities (in building construction: 
skeleton activities, finishing activities, like flooring, in 
road construction: compacting, paving etc.). However, 
Technion models are often based on the fact that a 
“construction agent” – worker, earthmoving equipment 
or other – must be proximate to a building element, or the 
road section, to construct it. Thus, capturing the 
construction agent's location over time, combined with 
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data from the Building Project Model (BPM), enables 
determining what activity the agent is performing. 

 
By collecting location data at regular intervals, the 

construction-activity-specific algorithms developed in 
Technion can determine what the construction agent is 
doing at any given time. The model links measured 
locations to activities (e.g. flooring, painting, paving etc.) 
based on proximity of the construction agent to building 
elements – this is the novelty of the concept. 

 
This conceptual model was implemented in proof-of-

concept case studies and tested on-site with ADC, in 
various construction areas: manpower control [10], road 
construction [11], materials management [12], safety 
control [13], progress [14] and more. Subsequent efforts 
delved into enabling technologies and opportunities, 
reviewed the field's state-of-the-art, and proposed 
dashboards and concepts [2], [4]–[6], [15]–[18]. 

 
Like the OLA model that will be explored next 

Section, the APPC model demonstrates a data-driven 
approach to gaining insights for performance 
improvements. 

4 Learning Analytics 
Learning analytics (LA) is the measurement, 

collection, analysis and reporting of data about learners 
and their contexts, for purposes of understanding and 
optimizing learning and the environments in which it 
occurs [19]. The data available in the HEI's repository are 
students' participating in online courses, submitting 
assignments, engaging with learning resources, accessing 
the university websites and databases, activities in the 
libraries, number of students enrolled in each course and 
over time, number of students per class, distribution of 
grades across courses and departments, courses where 
students need additional support, faculty-to-student 
ratios, and more.  

 
LA is instrumental in identifying students who may 

be at-risk of dropping out or failing a course and allows 
for the implementation of targeted interventions to help 
these students succeed [20]–[22]. When combined with 
machine learning methods, LA serves as a tool for early 
identification of students who may not submit their 
upcoming assignments or face potential failure [23], [24]. 

 
Currently, LA primarily focuses on informing 

professors about their students for teaching and learning 
(T&L) improvement [22], [25]. However, this approach 
only utilizes a fraction of the valuable data available 
within HEIs' repositories. The activities and decisions of 
other stakeholders, including department heads, 

administrative staff, presidents or provosts, and vice 
presidents, etc., all have a significant impact on the 
academic conduct and the quality of T&L. These 
stakeholders often focus on performance metrics specific 
to their individual roles, such as marketing, budgeting 
and finances, faculty recruitment, student enrolment, 
fundraising, etc. rather than metrics aligned with the 
institution's broader goals. 

 
This demonstrates the gap between LA's potential and 

actual usage [26], [27]. In order to narrow this gap, The 
Open University of Israel is currently conducting a 
research study to develop a conceptual model which will 
empower a broader range of stakeholders, both within 
and outside HEIs, to effectively utilize LA to improve 
T&L – as mentioned in the Introduction, this conceptual 
model is called organizational learning analytics (OLA). 
The conceptual model adapts principles from 
management science models, demonstrating the 
Analogizing concept. An initial conceptual model was 
presented last year [28]. 

 
Ethical considerations still challenge LA researchers 

[22], [29], [30]. Expanding LA applications to more 
stakeholders could raise additional ethical issues. 
Therefore, the new OLA conceptual model will need to 
carefully account for ethical implications during its 
development. 

 
As highlighted in the previous APPC model Section, 

the OLA approach also relies heavily on data analytics to 
derive decisions and outcomes. 

 
Having outlined the key concepts within the APPC 

and OLA models, this paper now turns to analyze the 
disparities and commonalities between them. 

5 Case Study 
Construction project performance measurement and 

organizational learning analytics (OLA) operate in 
distinct contextual circumstances with unrelated 
objectives. Educational institutions function within 
structured environments defined by clear plans, such as 
curricula, and typically adhere closely to these plans. 
Conversely, construction projects, conducted in external 
environments, are subject to harsh weather conditions 
and other dynamic factors, making it challenging to 
adhere rigidly to initial plans. 

 
In educational institutions, the key stakeholders – the 

students – exhibit stability by adhering to the curriculum, 
usually thorough the whole year or the entire program 
duration measured in terms of years. In contrast, 
construction workers rarely stay on a single project for an 
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extended period, spanning only days, weeks, or 
occasionally, months. The differences between these 
contexts are significant, and in Zerubavel's [1] terms, 
attempting to find cross-contextual equivalence between 
OLA and APPC would be like to comparing apples to 
oranges. 

 
As in the case of apples and oranges, despite these 

apparent disparities, a more profound comparative 
analysis uncovers noteworthy commonalities between 
OLA and APPC. Both models rely on data to derive 
actionable insights. They both measure indirect, proxy, 
raw data interpreted by powerful algorithmic processes 
to generate Key Performance Indicators (KPIs). 

 
OLA leverages raw data such as grades, student 

course participation, assignment submissions, 
engagement with learning resources, etc. These data are 
not direct indicators of the quality of teaching and 
learning (T&L). Direct KPIs might include, for example, 
the number of students successfully completing a course 
or graduating. Similarly, the APPC model tracks the 
locations of "construction agents" at regular intervals, 
associating them with building, or other construction 
elements based on schedule data and Building 
Information Model (BIM). However, the resulting 
information, such as the construction agent's activity, 
does not directly represent KPIs like cost and schedule. 

 
Both OLA and APPC share a common limitation: the 

outputs of their algorithmic processes may not accurately 
reflect the actual activities they are intended to represent. 
In OLA, student participation metrics may not 
necessarily correlate with genuine engagement in the 
learning process. Similarly, in APPC, a worker's 
presence near a specific building element may not always 
indicate that work is being performed on that element. 
Conversely, a worker's absence from a particular area 
(despite having been there shortly before and returning 
shortly after) should not be interpreted as a lack of work 
on that element. The worker may still be engaged in tasks 
contributing to actual work being performed on that 
element, such as fetching materials or preparing tools, 
despite not being physically proximate to it. 

 
Another cross-contextual commonality is the 

involvement of diverse stakeholders in both construction 
and HEIs, including internal and external parties. Project 
management stakeholders range from project managers, 
clients, owner/entrepreneurs, architects, engineers, main- 
and sub-contractors, and materials suppliers, to local 
authorities and regulators. This stakeholder network 
expands at the company level, emphasizing the 
complexity of project management. In HEIs, 
stakeholders span from students, professors, department 

heads, administrative staff, presidents, vice presidents 
etc., to external authorities like local/national authority 
and regulators.  

 
While additional commonalities, such as the 

competitive environments in which both domains operate, 
exist, this paper focuses on the highlighted examples to 
underscore the strength of the Analogizing concept in this 
case study. 

 
Having examined the concepts of the APPC and 

OLA models, along with their distinct features and 
their commonalities, this paper now transitions to its 
concluding remarks. 

6 Concluding Remarks 
This paper underscores the significance of cross-

disciplinary analogies in the face of researching new 
subjects. Through the APPC and OLA case study, it 
becomes evident that these seemingly distinct disciplines 
share more commonalities than initially apparent. The 
case study effectively highlights these cross-contextual 
connections. 

 
The Concept of Analogizing emphasizes the 

recognition of shared patterns despite variations in 
domains. Examining the case study reveals several 
common principles between OLA and APPC models. 
Both models rely on collecting data to derive insights for 
informed decision-making. They utilize indirect, raw 
data that requires sophisticated analysis methodologies. 
Additionally, both operate within complex stakeholder 
environments. 

 
These shared elements highlight the potential of 

analogical thinking to support concept-driven 
developments. Even without directly implementing ideas 
from other contexts, this approach can facilitate 
brainstorming, promote the exchange of ideas, and 
enable the reuse of methodologies, building blocks, and 
approaches across disciplines. 

 
The use of the concept of Analogizing in construction, 

as well as in education research, is novel. The benefits of 
using such an approach for future construction research 
are unmistakable, especially when dealing with advanced 
technologies, such as automation and robotics (A&R). 
The construction industry lags in adopting A&R 
technologies, although these technologies have been 
discussed in the construction realm for the last four 
decades and even longer. The idea of using Analogizing 
in these circumstances may help break through this 
deadlock. 
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This paper advocates for the proactive extraction of 
lessons from broader contexts during the 
conceptualization phase. Further exploration of cross-
disciplinary analogies holds promise for continual 
advancement. 
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Abstract -

In the field of building renovation with prefabricated mod-
ules, accurately locating and identifying connectors’ posi-
tions and orientations is an essential technological challenge.
For building renovation with prefabricated modules, tradi-
tional methods like total stations are not only time-consuming
but also highly dependent on experienced technicians. How-
ever, previous research has proven that ApriTtag tags can be
effectively used in building measurements. This paper pro-
poses a refined AprilTag detection pipeline that integrates
machine learning techniques, significantly improving detec-
tion accuracy. Moreover, this process can be easily used
by non-experts making it more accessible and less time-
consuming.

Keywords -
AprilTag; Machine Learning; Neural Network; Building

Measurement

1 Introduction

Existing building stock renovation is a critical aspect of
construction automation. For instance, accurately deter-
mining the position of connectors is essential for the instal-
lation of prefabricated panels on building exteriors. How-
ever, traditional measurement methods, such as the use of
total stations(see [1]), have several limitations, including
being time-consuming, requiring skilled technicians, etc.
To address these challenges and leverage the advantages of
automation, the integration of computer vision techniques
with a visual fiducial system is suggested as a viable so-
lution. In this paper, we propose a refined Apriltag(see
[2]) detection pipeline integrated with machine learning to
tackle the above problem. Figure 1 shows its architecture.
We will first discuss the research gaps in the accuracy of
AprilTag localization. Then we will introduce the compo-
nents of the pipeline in detail. The experiments in section
4 show that our refined pipeline has very good accuracy.
This research is part of the ENSNARE project[3].

2 Research gaps
The AprilTag is widely applied across various domains,

including robot navigation & localization, industry au-
tomation, and augmented reality. However, existing re-
search puts limited focus on localization accuracy when
employing AprilTags. López-Cerón et al.[4] conducted
an analysis of AprilTag’s accuracy, but their study was
limited to camera-to-target distances of no more than 6
meters. Kallwies et al.[5] extended their testing range to
18 meters, yet their focus was on pixel-level errors, rather
than millimeters. Similarly, Olson et al.[6] investigated
distances up to 80 meters, but their error tolerance is in
meters. Additionally, research on the large-scale layout of
AprilTags is very scarce. Kallwies et al.[5] constructed a
simulated 7 x 22 grid with 152 AprilTags, each 13 cm in
size. Beyond this study, there is a lack of research explor-
ing the potential and challenges of large-scale AprilTag
layouts. To sum up, there is a notable gap in research
and applications concerning the combination of high ac-
curacy and the large-scale layout of AprilTags. But in
our context, we mostly applied AprilTags in large-scale
outdoor environments and want to achieve accuracy that
is comparable to or even beyond traditional methods like
total-station measurement. Therefore, this paper aims to
bridge this gap.

Figure 1. A flowchart outlining the pipeline
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3 AprilTag detection pipeline
As in previous experiences with OpenCV and AprilT-

ags, we calibrated a camera, in our case a Sony A7R4
[7] with different lenses using a checkerboard in ambient
lighting conditions. For each focal length, we took pic-
tures in different camera positions and orientations while
making sure that the checkerboard eventually covered the
entire image frame. Finally, we loaded all the pictures
to the MATLAB R2023b Camera Calibration toolbox and
only left around 15 pictures that had the smallest pixel
errors as our final calibration candidates.

Before using the AptilTag detector, we first Preprocess
the images with the following steps:

1. Removing outliers: We filter out the pictures that
have undetected tags (false negative) and non-existent
tags (false positive).

2. Minimizing image distortion: cv2.undistort func-
tion is applied to undistort images using the camera
calibration and distortion matrix from the calibration
step. This step can increase the detection rate.

3. Grayscale conversion: We convert the images to
the acceptable format of AprilTag Detector, which is
grayscale.

4. De-noising: A Gaussian filter with kernel size 5 x 5
is applied to reduce the sensor noise of the camera.

5. Sharpening: We subtract the smoothed image of the
last step from the original image

For the AprilTag detection algorithm, we used the
AprilTag3(see [8]) library of Python. The motivation is
that the Python bindings allow efficient development with
powerful libraries, such as NumPy. We mostly use the
default parameters of the AprilTag3 binder.

Using a Coordinate transformation one can express
the pose of tags in the coordinate frame built up at
the center of the bottom left tag. To do so, we first
obtain the rotation matrix and translation vector for
each tag from the tag frame to the camera frame using
cv2.SOLVEPNP IPPE SQUARE function. With the bot-
tom left tag as tag 1 and the other as tag 2, tag 2’s position
and orientation(in the new coordinate system) can be ex-
pressed using the formulas below:

𝑃𝑡𝑎𝑔2 = 𝑅𝑇
1 ∗ (𝑡2 − 𝑡1) (1)

𝑅2 |1 = 𝑅𝑇
1 ∗ 𝑅2 (2)

where 𝑅1 is the rotation matrix of tag 1. 𝑡2 and 𝑡1 are the
translation vector of tag 2 and tag 1 respectively. 𝑅2 |1 is
the rotation matrix of tag 2 w.r.t tag 1. The Euler angles
of tag 2 can be further computed from 𝑅2 |1.

A Postprocessing was necessary because, we took 10
to 200 pictures of the tags, which means we have lots of
measurements. In the end, we only need one final and

accurate measurement. Therefore, the postprocessing is a
crucial step of the whole pipeline. We took two strategies
for postprocessing:

1. Mean values: The mean value is used when there
are not many measurements or DBSCAN can’t find a
valid dense area of the measured point cloud.

2. DBSCAN clustering: By visualizing the positions of
detected tags’ center, there are usually some outliers
and also a dense area of point cloud (See Figure 2).
To filter out the outliers, we use DBSCAN(see [9]) to
find the core measurements.

Figure 2. Point cloud visualization

We also implemented two other strategies based on the
ranking of pose err and blur scores.

1. Pose err ranking: pose err represents the object-
space error of the estimation. The idea is to only
select the tag measurements that have lower pose err.

2. Blur score ranking: Blurry images can contribute to
poor detection accuracy. To avoid blurry images, we
first mask the pictures and only keep AprilTags be-
cause those squares are our ROIs(Region of Interest).
Then we compute the total variance of the laplacian
of ROIs using cv2.Laplacian as the blur score for the
image. Eventually, we only compute the mean of less
blurry pictures.

The performance comparison of the above 4 strategies
will be introduced later.

3.1 Machine learning correction

The AprilTag detection pipeline is highly susceptible to
lighting conditions which can influence its performance
and these ”noises” are hard to determine and control. We
have devised a neural network trained on a dataset of hun-
dreds of images, such as the one shown in Figure 4c,
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taken in different lighting conditions and positions. Es-
sentially, it is trained to predict the correct ground truth
values based on the experimental observations. The idea
is that the neural network can then improve on the values
predicted by the AprilTag detection pipeline. The dataset
consists of ground truth values of different AprilTags in
different images such as their 3d coordinates as well as
camera information. Our approach is inspired by [10].

The neural network is implemented in Python version
3.10.10 using Tensorflow(See [11]). We have used a stan-
dard fully connected feed-forward network with 2 hidden
layers as shown in Figure 3.

Figure 3. Network Architecture

The dataset is first randomly shuffled to increase the
uniformity of the dataset. We split the dataset randomly
into a training set and a testing set. The size of the train-
ing set is 95% of the original dataset. We then initialize
the neural network with the following parameters: we use
Adamax for the optimization process along with l2 regu-
larization with regularisation constant 0.01234. We use
mean absolute error for the loss function and finally, we
set the batch size to 40 and train the model for 200 epochs.

4 Experiments and results

The proposed pipeline was tested in simulation, indoor
and outdoor environments respectively.

(a) simulation

(b) indoor (c) outdoor

Figure 4. Example pictures of real-world and simu-
lation experiments

4.1 Simulation testing

For simulation, we use Blender(See [12]) to generate
synthetic images (See Figure 4a). The first part of Table
1 shows that using mean values or DBSCAN outperforms
the rest two postprocessing methods. In addition, without
the influence of environmental noise, our pipeline reached
millimeter-level accuracy.

Table 1. The results of proposed pipeline
Simulation result

Mean DBSCAN Pose err Blur score
Δx/mm 0.40 0.40 0.40 0.40
Δy/mm -0.45 -0.36 -0.45 -0.45
Δz/mm -0.10 0.10 -0.10 -0.10
Δxy/mm 0.60 0.54 0.60 0.60
Δxyz/mm 0.61 0.55 0.61 0.61
Δ�/ ◦ 0.04 0.07 0.04 0.04
Δ�/ ◦ 0.03 0.05 0.03 0.03
Δ�/ ◦ 0.00 0.00 0.00 0.00

Indoor experiment
Mean DBSCAN Pose err Blur score Total station

Δx/mm 0.82 -0.43 1.50 1.71 0.60
Δy/mm 2.23 1.31 2.97 1.49 -0.20
Δz/mm -5.59 -5.37 0.01 -8.29 -1.29
Δxy/mm 2.38 1.38 3.33 2.27 0.63
Δxyz/mm 6.07 5.54 3.33 8.59 1.44
Δ�/ ◦ -0.71 -0.38 -0.30 -1.07 -
Δ�/ ◦ -0.84 -1.07 -1.03 -1.14 -
Δ�/ ◦ 0.01 0.02 0.04 0.03 -

Outdoor experiment
Mean DBSCAN Pose err Blur score Total station

Δx/mm 4.42 1.87 3.24 7.22 1.15
Δy/mm -4.27 -4.20 -2.60 -11.72 1.00
Δz/mm 19.83 11.84 16.74 22.11 -1.29
Δxy/mm 6.15 4.60 4.15 13.77 1.52
Δxyz/mm 20.76 12.70 17.25 26.04 2.00
Δ�/ ◦ 0.73 1.65 0.07 1.43 -
Δ�/ ◦ 1.08 0.49 0.82 2.96 -
Δ�/ ◦ 0.10 -0.06 0.10 0.20 -

Neural network correction
Indoor coorection Outdoor correction
Mean DBSCAN Mean DBSCAN

Δx/mm 0.76 -0.42 4.00 -0.25
Δy/mm -3.08 -2.37 -7.33 -8.22
Δz/mm 2.56 1.94 5.50 4.44
Δxy/mm 3.17 2.41 8.35 8.22
Δxyz/mm 4.08 3.09 10.00 9.35
Δ�/ ◦ 0.37 0.48 1.52 -0.29
Δ�/ ◦ -2.85 -2.35 -5.24 -1.93
Δ�/ ◦ 3.73 3.05 5.38 2.96

4.2 Real-world testing

Building a large-scale testing environment is not only
challenging, but it is also impractical to test the entire
building’s exteriors with exact ground truth. To mitigate
this, we used a 2000 x 2000 millimeters calibrated wooden
board as a substitution for placing our AprilTags. Each tag
is 15 cm in length and is augmented with four reflective
tapes at its corners, for measurements with a total station.
The AprilTags were accurately placed with rulers.

Regarding the total station measurements, we used the
Leica TC702. For better accuracy of the total station
results, each layout was measured from 2 to 3 different
positions in two phases.

The indoor experiments were carried out in a lab with
shooting distances ranging from 4 to 15 meters. Figure
4b shows an example of the indoor picture.
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The second part of Table 1 shows the accuracy of a rep-
resentative indoor example layout. Bold numbers are the
best results among 4 postprocessing methods.DBSCAN
still performs the best in general, but pose err also shows
good results. Our proposed pipeline reaches the total-
station-level accuracy.

The outdoor experiments are carried out on the cam-
pus with shooting distances ranging from 5 to 18 meters.
The third part of Table 1 shows the accuracy of a represen-
tative outdoor example layout. One major reason that de-
creased the accuracy could be the poor illumination of the
experiment environment. Among all the postprocessing
methods, DBSCAN also achieved the best performance.

The neural network was tested on the test dataset
and performed quite well with a mean absolute loss of
3.5547mm and an accuracy of 0.7551. The last part of
the Table 1 shows a sample correction result. We can see
there’s an improvement in the depth measurement.

Further, we tracked the consumed time for our pipeline
in the experiments. Table 2 shows that our method is much
more efficient than the total station while achieving similar
accuracy.

Table 2. Spent time comparison
AprilTag detection total station

setting up/min 3 13
measuring/min 15 28

5 Conclusion
The research described in this paper has successfully

demonstrated a collection of techniques that allow for an
accurate and faster process of building measurements, es-
pecially compared to conventional methods. Future re-
search will include:

1. Improving the machine learning algorithm. We are
currently exploring the possibility of using 3D ren-
dering software to generate synthetic images through
which we can generate more datasets.

2. Integrate and test the proposed pipeline with UAVs.
We will work closely with another team on this
project that is currently developing a UAV for sticking
the AprilTags.

In the next steps of the research, the idea is to use this
technique in real buildings.
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Abstract – 

This paper introduces a methodology utilizing 
image generation AI to create 3D floor plan images 
for Korean-style apartments. The growing interest in 
spatial dynamics, driven by changes in residential 
preferences, has elevated the importance of 
widespread comprehension and the demand for floor 
plans. Specifically, apartment floor plans, crucial for 
commercial purposes, require visually compelling 
representations that are both diverse and detailed yet 
easily comprehensible. Traditional 2D floor plans face 
limitations in public understanding due to the use of 
architectural terminology and specialized symbols. 
As an alternative, 3D floor plan images offer a 
comprehensive understanding of three-dimensional 
structures and arrangements, with potential 
applications across various commercial sectors. The 
recent emergence of image generation AI presents 
opportunities for the automated creation and 
alteration of architectural images. Fine-tuning the 
generated results can be achieved through detailed 
prompt settings and additional training techniques. 
The methodology for constructing a 3D floor plan 
image generation model for Korean-style apartments 
involves: 1. Creating a 3D Building Information 
Modeling (BIM) model based on Korean-style 
apartment floor plans and extracting 3D floor plan 
images based on different areas. 2. Training the floor 
plan image generation AI model by combining the 
extracted images with text and utilizing the trained 
model to automatically generate 3D floor plan images. 
The resulting images can find applications not only in 
architecture but also in real estate, design, advertising, 
and other diverse commercial fields. This approach 
suggests the potential development of a versatile 
model applicable across various domains, especially 
when integrated with generative models. 

 
 

Keywords – 
Architectural Visualization, 3D Floor Plan, Image 

Generation AI  

1 Introduction 
This paper proposes a methodology for automatically 

generating 3D floor plan images of residential spaces. 
Due to the rapid changes in housing types and the 
increase in single-person households [1], there is a 
growing interest in the form and spatial usage of 
residential spaces [2]. In response to these changes, floor 
plans play a crucial role in satisfying the demands of 
residents. Among architectural drawings, floor plans, 
especially in 3D, are essential sources of information in 
the architectural and design processes, clearly depicting 
aspects such as spatial dimensions, gaps, and 
arrangements. Unlike traditional 2D floor plans, 3D floor 
plans convey the three-dimensional form and visual 
information of a space more vividly. 3D floor plans 
facilitate an intuitive understanding among users, 
enabling them to assess the layouts and specific details of 
the floor plans [3]. For example, in cases of selecting 
apartment blueprints, clients achieve a deeper 
understanding and expedite their decision-making 
process through 3D representations as opposed to 2D 
drawings [4]. Recent advancements in image generation 
AI models have significantly improved the representation 
of such visual information [5, 6, 7, 8]. These models can 
be utilized to create high-quality 3D floor plan images. 

2 Background 

2.1 Evolution of 3D Floor Plan Visualization 
Architectural visualization is a crucial process in 

expressing architectural design and concepts visually. It 
is utilized from the early stages of design in architectural 
projects to effectively convey ideas and concepts to 
designers, stakeholders, and even construction personnel. 
Utilizing various forms and tools such as drawings, 
blueprints, photos, and 3D models architectural 
visualization is particularly exemplified by the use of 
floor plans, which accurately capture detailed spatial 
information, serving as a key element in conveying initial 
design requirements [9].  
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Among these, floor plans encompass essential spatial 
information, including precise dimensions, material 
specifications, and the arrangement of architectural 
elements, making them indispensable documents 
throughout the architectural process. Traditional 2D floor 
plans have the advantage of simplicity and clarity in 
conveying basic information. However, their 
representation of space in 2D has limitations in 
realistically visualizing both external and internal designs, 
especially posing challenges for non-professionals or the 
general public to comprehend [10]. On the other hand, 
3D floor plans emphasize visual effects, providing a clear 
depiction of 3D information. For example, according to 
Kashlev(2008), 3D building models not only appear to be 
more aesthetic to ordinary people than architectural 
drawings, but also can benefit architects in detecting any 
inconsistencies in their designs [11]. Additionally, 
according to V Stojanovic et al.(2019), 3D floor plans 
can enhance stakeholder engagement by improving 3D 
visualizations or providing an initial assessment of the 
building's state [12].  

They enable a detailed understanding of spatial form 
and layout, contributing to seamless collaboration and 
communication among architectural stakeholders [13, 
14]. These advantages highlight the selective utilization 
of 2D and 3D floor plans based on various stages and 
purposes within architectural projects. 

2.2 Floor plan and Generative AI 
The evolution of image generation AI [15, 16, 17, 18] 

has progressed over time through continuous 
technological innovation. In the early stages, 
predominantly noise-based methods were employed 
using simple algorithms for image generation. 
Subsequently, with the advancement of deep learning 
technology and extensive research on generative models, 
the field of image generation has undergone 
revolutionary changes. Notably, the introduction of deep 
learning models such as Generative Adversarial 
Networks (GAN) has significantly enhanced the quality 
and diversity of image generation [19]. For example, 
there exists research on generating images by design style 
utilizing image generation AI model and large language 
model (LLM), employing these advanced technologies to 
foster innovation in the field of image generation [20, 21]. 

In the realm of image generation, two primary 
approaches are recognized: text-to-image (txt2img) and 
image-to-image (img2img). Txt2img involves generating 
images based on given text descriptions, utilizing 
semantic information extracted from the text [22]. On the 
other hand, Img2img is a technique that generates new 
images based on given input images. The image 
generation AI model understands the features and 
structure of the image from the input and produces an 
output image. Training image generation AI models for 

specific scenarios or types according to their intended 
purposes enhances the effectiveness of obtaining results. 
Such image generation AI finds applications in diverse 
fields, including education, architecture, art, virtual 
reality, and is anticipated to expand into even more varied 
domains in the future [23].  

3 Model Fine-tuning for 3D Floor plan 

3.1 Overall process 
This paper employed the Stable Diffusion (SD) 

among various image generation AI models to fine-tune 
a model for 3D floor plan. SD maintains stable pixel 
values during the image generation process by utilizing 
the diffusion algorithm [1]. Consequently, it can generate 
high-quality, stable, and consistent images while 
minimizing noise. To train the base model, we utilize the 
Low-rank Adaptation (LoRA) method, which updates 
only a select few parameters for efficient model fine-
tuning with minimal data. This approach allows for quick 
adaptation to new tasks by leveraging the knowledge 
from the base model without extensive retraining. High-
quality, consistent training data, composed of image-text 
pairs, is crucial, as detailed and specific text descriptions 
enable the model to generate more accurate and 
expressive images [24]. Successful few-shot learning 
with LoRA necessitates high-quality training data with 
consistent representation [25]. 

3.2 Data Preparation 
 For high-quality dataset, we collected floor plans of 

Korean apartments from ‘X’ apartment and ‘R’ 
apartment which are reputational brands in Korea. The 
datasets are consisted of approximately 1,000 floor plans. 
We focused on the 2Bay and 3Bay structures 
characteristic of Korean apartments, generating for each 
floor plan, a single 3D Building Information Modeling 
(BIM) model. From these BIM models, 3D floor plans 
are extracted and used as training data. The 3D BIM 
models are created using 'R' software, and the 3D floor 
plans are rendered from them using 'E' software. 
Additionally, we resized the floor plans to the 500 pixels 
in width and height and prepared the text descriptions of 
the 3D floor plans for the LoRA training. We acquired 
the text datasets by observing and describing the 3D floor 
plans personally for raising the quality of training 
datasets, which are directly connected with the 
performance of the model. We produced the pairing 
datasets, matching the pairs of image and text data one 
on one. And we paired 100 pairing datasets in total. The 
example of the dataset for LoRA training is shown in 
figure 1.  

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

1300



 
Figure 1. The example of the dataset for 3D Floor plan 

3.3 Training and Test 
Based on the training datasets, we trained the base 

model with LoRA. The training was required about 30 
minutes per one training session with RTX 3060 GPU. 
As a result, we build a 3D floor plan model with the 
extension “.safetensors" and a size of 144 megabytes. 
Inserting the 3D floor plan model file into the SD Web-
UI's Model Management folder allows for the application 
of the model via text description. Consequently, this 
facilitates the generation of images based on the text data 
used for training when such data is inputted [24]. We 
proceeded performance test for evaluating the 3D floor 
plan model and comparing the base model and the trained 
model. The result of the floor plans generated with base 
model is on the left, and the other generated with trained 
model is on the middle and right. The result of 
comparison is presented in Table 1. The 3D floor plans 
of base models are not discriminated as bay structures 
unlike the plans of trained model. 

 
Table 1. The result of comparison 

model Type Output 

Base 
model 

2 & 3Bay 
apartment 

 

Trained 
model 
(3D 
floor 
plan 

model) 

2bay 
apartment 

 

3Bay 
apartment 

 
 

The results from the base model were observed to be 
of low quality and resembled floor plans with errors. In 
contrast, the trained model applied to the LoRA model 
produced high-quality floor plans that are easy to 

understand. Furthermore, the trained model with LoRA 
created more accurate and well-discriminated floor plans 
compared to the base model. This performance test 
suggests that the importance of the LoRA trained model. 

4 Demonstration 
Table 2. The result of image generation from 3D floor 
plan model 

 We found that the results of 3D floor plan are high-
quality and improved in performance. The layout of the 
floor plan is obvious and the factors such as doors are 
distinct. In addition, the furniture in the space is detailed. 
It is shown in table 2. 

5 Conclusion 
This paper proposes a process that leverages an image 

generation AI model for generating 3D floor plans. The 
research focuses on architectural visualization, with a 
particular emphasis on 3D floor plans that vividly 
represent spatial dimensions. We validated the potential 
effectiveness of utilizing image generation AI, 
specifically for Korean-style apartment spatial structures, 
to efficiently generate 3D floor plans. We discovered that 
this process can be utilized not only for the Korean-style 
apartment, but also for the layouts, such as those for other 
styles of apartments, houses, and offices. Moreover, we 
found that this model could be beneficial for architects in 
the field as well as for the public who struggle to 
understand traditional floor plans offering them intuitive 
understanding. We expect that this model to be useful not 
just for interior design but also for building construction, 
designing ships, and other architecture work. 
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Abstract –
Facing a labor shortage, the civil construction 

industry is increasingly focused on automating 
machinery. The Public Works Research Institute in 
Japan has introduced 'OPERA,' an open 
development platform, to encourage stakeholder 
participation in areas like IT, robotics, and AI. Key to 
OPERA is its open-source software for model-based 
autonomous construction. Currently, it offers two 
physical simulators with distinct physics engines, 
enabling user-specific applications. This paper covers 
their technical differences, and current states.
Keywords –

Autonomous Construction; Dynamics Simulator;
OPERA;

1 Introduction
To support technical research and development, the 

Public Works Research Institute is developing OPERA 
(Open Platform for Earthwork with Robotics and 
Autonomy), for autonomous construction development 
[1]. One key component of OPERA is its dynamics 
simulator, as shown in Figure 1, available on GitHub [2].
This simulator in the development of 
automation software in construction machinery by
integrating models of both machinery and terrain. It 
visually demonstrates how terrain reacts to machinery 
operations and generates numerical data 

both machinery and terrain. This paper 
elaborates on the dynamics simulator's technical aspects 
and discusses the two versions of simulators, each 
utilizing a different physics engine.

2 Overviews of the Simulator
This chapter introduces the dynamics simulator for 

research and development of autonomous construction 
technology provided by OPERA. First, the essential
requirements for this simulator are described. In addition, 
the reasons for selecting the two types of dynamics-
engine-based simulator platforms developed to meet 
these requirements are summarized. 

Figure 1. Scope of the open platform OPERA 

2.1 Simulator Requirements
The dynamics simulator is designed for developing 

software that automates construction machinery, aiming 
to replace real machines and environments with a virtual 
setup. Its primary objective is to be Open Source 
Software (OSS) to encourage widespread usage without 
mandating users to disclose their source code. 
Additionally, the simulator should be cost-effective and
user-friendly[1]. To ensure these, it utilizes existing 
platforms with robust ecosystems instead of proprietary 
systems:

The simulator's technical specifications include:
1. Compatibility with ROS [3] and other middleware.
2. 3D rendering to display calculation results.
3. Physical-based behavior simulation of construction 

machinery.
4. Capability to handle terrain deformation due to 

interaction with construction machinery.
5. Real-time or faster calculation and rendering speeds.

Concerning these specifications, it's crucial that the 
simulator is compatible with ROS (Robot Operating 
System) or ROS2,

. The 

Common 
Control

Messages
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function to interact with other middleware is also 
important. For terrain interaction, the simulator is 
required to realistically mimic the way construction 
machinery alters the ground, as observed in earthwork 
operations, thereby accurately reflecting the physical 
transformations. 

2.2 Selection for Simulator Platform 
As a 3D physical simulator compatible with ROS 

middleware adopted by OPERA, Gazebo [4] is a widely 
recognized and freely accessible tool. Given its 
popularity among ROS users and the established 
ecosystem it offers, Gazebo is a general choice in this 
domain. 

However, since Gazebo is designed for integration 
with ROS, it lacks compatibility with other middleware 
such as OROCOS [5], OpenRTM [6], etc. As previously 
mentioned, the policy for OPERA's simulator is to make 
it usable with middleware other than ROS, thus platforms 
other than Gazebo were also considered. 

In recent years, there has been a trend to adopt game 
engines as platforms for physical simulators for software 
development to automate cars and robots. Compared to 
traditional dedicated simulators, they have the following 
characteristics and advantages, which are the main 
reasons for their increasing use: 
 Availability of abundant 3D rendering functions 

and physical engines. 
 Well-developed community and support. 
 High versatility and extensibility. 
 Potential for reduced development costs. 

The major game engines adoptable for the simulator 
platform are Unity [7] and Unreal Engine [8]. Among 
these two, OPERA adopted Unity, which had a larger 
developer community and more abundant assets as of 
March 2021 when the selection was made. This decision 
was based on the aforementioned policy of making it 
easy for users to handle the simulator to increase the 
number of users as much as possible. Table 1 summarizes 
the results of the study on simulator selection. The 
criteria for each rating were determined by relative 
evaluation based on the results of our own preliminary 
research on each simulator. In conclusion, we decided to 
prepare two types of simulators with different physics 
engines, and let users choose which one to use depending 
on the cost-effectiveness they seek. This paper describes 
about these two types of simulators in following sections.  

3. PhysX Version of the Simulator 
This chapter describes the PhysX [11] version of the 

simulator, focusing on the technical content related to the 
construction machinery model, the soil ground model, 
and the interaction between construction machinery and 
soil ground. 

Table 1. Results of platform selection for simulator. 
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3.1  Construction Machinery Model 
The simulation model of construction machinery 

was crafted for realistic representation and user 
customization without infringing manufacturers' 
intellectual property. The process, shown in Figure 2, 
included: 
1. Capturing the machine's (that is our property) exterior 

as a 3D point cloud using LiDAR. 
2. Disassembling each machine into links to create a 3D 

mesh model from the point cloud. Joint connections, 
relative positions, and kinematic parameters were 
extracted, using both manufacturer catalogs and 
preliminary surveys. 

3. Describing the machine in URDF (Unified Robot 
Description Format), including weight and other 
inertia parameters based on measurements, despite 
some errors. 

4. The URDF file was imported into Unity, attaching 
components for operation as a game object. In the 
PhysX version, the ArticulationBody component 
was applied to all links, setting joint types, motion 
ranges, and dynamics. The tracks  were  modelled 
as a six-wheel skid steer utilizing WheelCollider 
Component, rather than precise tracks. 

 
Figure 2. Making procedure for machinery model. 

3.2  Soil Ground Model 
In OPERA's simulator, the standard Unity Terrain 

object is enhanced to simulate terrain deformation due to 
construction machinery. To model moist soil's viscous 
behavior efficiently in real-time, a simplified method 
based on the Discrete Element Method (DEM), inspired 
by Daniel Holtz et al. [13], is implemented. This model 
treats soil as particles of radius R, where a cohesion force 
F acts between particles closer than a distance D. When 
particles are farther apart, no force acts between them 
(Figure 3). These parameters can be changed via GUI. 

 

Figure 3. Adhesive force model for soil particles. 

3.3  Physical Interaction 
At December 2023, the PhysX version doesn't 

calculate the interaction force between construction 
machinery and soil ground during collapse or 
deformation. When parts of the machinery, excluding the 
hydraulic shovel's bucket, contact the ground, they are 
treated as rigid bodies in simulation. However, two 
distinct interference shapes are set for the bucket part: 
1. Bucket-Terrain interference detection shape. 

This is an interference shape that only detects 
interference and disables the reaction forces generation 
with other objects. Particles to represent soil behavior are 
generated when the bucket contacts the ground. 
2. Particle retention interference shape. 

This interference shape in the bucket prevents 
interaction with the ground (Terrain) while effectively 
managing particles and other objects. 

When the bucket overlaps with the Terrain, an 
equivalent volume is removed, generating particles in 
the bucket. These interact as rigid bodies and are 
removed upon contact with the Terrain, increasing its 
height equivalent to their volume. 

This method, a simplified representation of the 
construction machinery-soil-ground interaction, 
calculates only the force between particles and the 
bucket's retention shape. The force at particle generation 
is impulsive and unstable. Additionally, the feature for 
simulating terrain deformation through particle creation 
can be toggled on and off via the GUI. 

4. AGX Dynamics Version of the Simulator 
This chapter outlines the AGX [12] version of the 

simulator, highlighting the technical aspects of the 
construction machinery model, soil ground model, and 
their interaction. Due to space constraints, it primarily 
details the differences from PhysX version. 
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4.1  Construction Machinery Model 
In the construction machinery creation process 

outlined in Section 3.1, the key distinction between the 
PhysX and AGX versions is in step 4. The AGX version, 
utilizing the AGXUnity [14] plugin for Unity by AGX 
Dynamics, attaches various components and sets 
parameters differently. Unlike the PhysX version, which 
uses Unity's standard ArticulationBody, the AGX version 
employs AGXUnity's RigidBody component to define 
physical properties, joint types, constraints, and 
dynamics model parameters. The tracks is simulated 
utilizing AGXUnity's TrackWheel and Track 
components, with sprockets and idlers modeled by 
TrackWheel and the track itself by the Track component. 
The AGX version's track comprises 44 evenly spaced flat 
plates revolving around the track's outer orbit, though 
further details are not included here. 

4.2  Soil Ground Model 
The Unity standard object Terrain has the 

DeformableTerrain component provided by AGXUnity 
attached. This synchronizes the shape of AGXTerrain 
with that of Terrain, and physical property parameters of 
the soil can be set using this GUI. In addition, some 
improvements have been made to AGXUnity's 
DeformableTerrainParticleRenderer to accommodate an 
increasing number of particles in the visible model. The 
physical parameters of soil that can be set in the 
TerrainMaterial within the DeformableTerrain 
component are diverse. AGXUnity provides three preset 
types. The AGX version simulator selects the dirt_1 
parameter preset by default. It is recommended for 
simulating typical viscous mud [15] like our test site.  

4.3  Physical Interaction 
 In the AGX version, it is possible to calculate the 
interaction force between construction machinery and 
soil ground when the ground is collapsing or deforming, 
which was not implemented in the PhysX version. This 
is achieved through a two-step process involving the 
DeformableTerrainShovel from AGXUnity. First, this 
componet is attached to the bucket link. Then, several 
key parameters are set: the Top Edge, Cutting Edge, 
and Cutting Direction. Finally, the bucket link is 
registered in the Shovels list within the 
DeformableTerrain component, as previous section. 

5. Conclusion 
This paper introduced two types of dynamic 

simulators provided by the open platform for 
Autonomous Construction OPERA. The OPERA 
platform offers two simulators: one based on the 
PhysX engine, available at no cost except for the Unity 

license, and the other using the AGX engine. While the 
PhysX version is freely accessible, it exhibits 
comparatively less refined soil deformation behavior 
in interactions with construction machinery than the 
AGX version. Conversely, the AGX version requires a 
paid license for its dynamics engine. Both versions are 
published on GitHub, making them accessible for any 
users. We highly welcome user feedback as it is 
instrumental in our ongoing process to enhance 
OPERA's future convenience and functionality.  
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Abstract –  

Despite construction robots being developed in 
the construction discipline, they are not widely 
deployed in the industry and field yet. One reason is 
the complex robot control interfaces and 
programming methods, which pose challenges for 
construction workers to learn and use. A robot 
simulator, RoBIM, has been designed to address this 
challenge by using a straightforward and user-
friendly interface to simplify the robot control and 
programming process. This paper focuses on the 
development of an educational package tailored to 
train construction students and workers in utilizing 
the RoBIM simulator effectively. The package 
consists of three modules: column building, brick 
wall laying, and frame assembling. Through 
examples within the educational package, this paper 
illustrates its practical implementation and 
significance in overcoming the learning curve 
associated with construction robots, which promotes 
the integration of the RoBIM simulator within the 
construction industry. 

 
Keywords – 

Robot Simulator; Educational Package; Robot 
Arm; Tutorials 

1 Introduction 
The construction industry is at the nexus of 

technological innovation, with construction robots 
targeted to redefine the traditional construction process. 
These automated systems boast the potential to 
significantly enhance efficiency, precision, and overall 
project outcomes [1]. Although construction robots have 
potential in terms of efficiency and precision, their wide 
integration into construction workflows is still ongoing. 
This is mainly due to the complicated control interfaces 
and programming methods that present a formidable 
learning curve for construction workers [2]. 

To address this challenge, we developed a 

transformative solution– the RoBIM robot simulator [3]. 
This simulator can directly import the BIM model, 
create the assembly procedure, plan the robot path, and 
generate the robot control program. The intuitive and 
straightforward user interface is the primary feature of 
this software, assisting construction students and 
workers in simplifying the construction robot assembly 
planning and controlling process. Figure 1 shows the 
interface of the RoBIM simulator. 

 
Figure 1. RoBIM simulator interface 

 This paper focuses on developing a comprehensive 
educational package for the RoBIM simulator and 
showcasing its practical application. This educational 
package aims to provide a hands-on, accessible, and 
immersive training experience with the RoBIM 
simulator, which facilitates the seamless integration of 
construction robots into field practices. Robot simulator 
training plays a critical role in preparing workers for the 
complexities of robot control across industries. Existing 
literature emphasizes the significance of user-friendly 
interfaces to reduce the learning curve [4] or using 
emerging technologies, such as AR/VR [5, 6], in the 
training procedure. Therefore, it is important to develop 
an educational package to facilitate the RoBIM 
simulator training and smooth the learning process. 
ROS-based (Robot Operating System) or VR-based are 
two examples of robot training systems, but they are too 
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difficult for workers without programming knowledge 
or not targeting construction robot programming [6-8]. 

2 Educational Package 
The RoBIM simulator educational package includes 

three modules: column building module, brick wall 
laying module, and frame assembling module. Each 
module has several step-by-step tutorials to guide 
students to complete some tasks and a challenge task in 
the end to demonstrate the learning results. In the 
following subsections, we will introduce each module 
and some examples. To simplify the tutorial, we select 
Universal Robots UR5e as the industrial robot arm. 
Note that the UR5e robot arm in the tutorial can be 
replaced with any type of industrial robot arm to fulfill 
the project requirements and budget. 

2.1 Column Building Module 
The objective of the first module is to let students 

familiarize themselves with the robot hardware. 
Particularly, we design a tutorial to introduce the 
hardware interface of UR5e and demonstrate how to use 
their built-in functions to control the robot. Three tasks 
in this module are picking and placing bricks, building a 
column, and using the camera sensor. 

In the pick and place bricks task, the students will 
write a short program to control the robot to pick up a 
small brick and place it at the target location. Figure 2 
shows the pick and place task in the simulator. Next, the 
students will program the robot to repeat the pick and 
place task and build a column using the loop function. 
The location of each brick needs to be calculated in 
order to determine the robot placing location. In 
addition, each brick has to be placed in a different 
orientation, and thus, students have to consider different 
scenarios in the program. 

 
Figure 2. Pick and place a brick using the robot 
arm and the simulator. 

The final tutorial task in this module is to use the 
camera sensor to detect the position of the brick. The 
students will follow the procedure to calibrate the 
camera and set up the target object in the image. With 
the camera sensor, the robot can recognize the brick in 
the scene and pick it up directly. 

The challenge task of this module is to build a brick 
column using the skills learned in the previous three 
tasks. Figure 3 illustrates the design of the brick column. 
The column has six layers with four bricks in each layer 
and different rotations. The camera sensor is required to 
automatically detect the position of the brick, as well as 
the loop function to avoid the redundant code. 

 
Figure 3. The designed brick column. 

2.2 Brick Wall Laying Module 
The second module is to use the RoBIM simulator to 

lay a brick wall in both virtual and physical 
environments. This module starts with the introduction 
of the RoBIM simulator, including the background, the 
overall RoBIM simulator, and the user interface. 
Students will follow the steps to create a robot 
simulation scene that mimics the physical robot 
environment. Then, they will utilize the RoBIM 
programming function to generate the robot work plan 
for building a brick wall. Figure 4 demonstrates the 
planning procedure for the robot bricklaying. 

  
Figure 4. The robot bricklaying planning. 
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Each brick’s location has to be determined in the 
simulator, in particular, their transformation. With such 
information, the RoBIM simulator can automatically 
determine the robot motion by forward kinematics and 
inverse kinematics. Figure 5 shows the process of 
automatic generation of robot motions to pick and place 
the brick. The students only need to select the desired 
brick (Figure 5 up) and click the “pick and place button.” 
The RoBIM simulator will then generate a series of 
robot motions in order to pick and place the desired 
brick (Figure 5 down). Finally, the robot control script 
can be generated directly from the RoBIM simulator 
and imported to the physical UR robot, as shown in 
Figure 6. With this control script, the UR robot can 
complete the task without the worker’s intervention. 

 

 
Figure 5. The automatic robot motion generation. 

 
Figure 6. The robot control script generation. 

The challenge task of this module is to lay a double-
curved brick wall (Figure 7). Students will design the 
brick layout that meets the design requirement and 
program the robot motions to complete the laying task. 
The outcome of this challenge is a scaled brick wall 
built by the physical robot. 

 
Figure 7. The double-curved brick wall. 

2.3 Frame Assembling Module 
The third module is the frame assembling module. 

The objective is to program the robot to assemble a 
predesigned frame. Students can first design a model 
and then import it to the RoBIM simulator. For example, 
a timber or a brick wall layout can be designed using 
different software and imported to the simulator as a 
model. Figure 8 shows the imported brick wall model. 

  
Figure 8. Import a brick wall layout model to the 
simulator. 

Moreover, this module also introduces two 
additional sensors in the simulator: photoelectric sensors 
and force sensors. The photoelectric sensor can be used 
to detect the material to be picked up, similar to the 
camera sensor. The force sensor is used to measure the 
contact force. In this module, we want to use the force 
sensor to let the robot arm push the picked material to 
the corner before releasing the gripper. 

Finally, to ensure the robot can safely complete the 
task, a collision avoidance algorithm is necessary [9]. 
Figure 9 demonstrates an example of the collision 
between the picked frame and the brick wall. Students 
will use the built-in collision avoidance function to 
generate a collision-free robot motion automatically. 
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Figure 9. Collision between the picked frame and 
the brick wall. 

The final challenge of this module is to assemble a 
wood frame. Different types of studs are provided, and 
students need to design a wall frame. The photoelectric 
sensor and force sensors are required in the challenge to 
detect the stud and push it to the corner of the assembly 
table. A brick wall is built between the material and the 
target position as an obstacle such that the collision 
avoidance function in the RoBIM simulator is necessary 
to create collision-free paths for the challenge. 

3 Discussion 
The RoBIM simulator educational package 

represents a significant advancement in the field of 
construction robot training. The modular design of the 
package ensures a progressive learning experience, 
consisting of column building, brick laying, and frame 
assembling. The step-by-step tutorials and challenge 
tasks offer a comprehensive understanding of 
construction robot control and programming. With such 
an education package and robot simulator, students and 
workers do not require strong programming skills and 
expertise to control the construction robot. Future 
development directions include designing a variety of 
tutorials and challenge tasks, implementing different 
industrial robot arms such as ABB and KUKA robot 
arms, and conducting a user study to verify the 
effectiveness of the educational package. 

4 Conclusion 
In conclusion, this paper presents an educational 

package development for a construction robot simulator 
RoBIM. The target audience is construction students 
and workers who do not have strong background 
knowledge in robots and programming. Three modules 
in the package cover the basic workflow to design and 
program the robot motion in the simulator and to control 
the physical robot to follow the motion and complete 
the task. By completing the educational package, 
students will be able to design a wood frame or brick 

wall and program an industrial robot arm to assemble it. 
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Abstract 

The Construction RX Consortium was established to 
promote increased productivity and attractiveness of the 
Japanese construction industry as a whole. The 
Construction RX Consortium has established 12 
subcommittees and stimulates various technology 
developments for mutual utilization. The automatic 
material delivery system subcommittee developed an 
automated transport system. The project is currently in 
the trial stage.  
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1 Introduction 
In the construction industry in Japan, given the social 

background of the decreasing working population due to 
the aging of workers, securing future workers and 
realizing work style reforms have become urgent issues 
[1]. Under such circumstances, general contractors have 
promoted the development of construction support and 
construction management tools utilizing construction 
robots and IoT. However, it is inefficient for each 
company to conduct them individually because of the 
often-generated excessive development costs. 
Furthermore, the increased number of robot types and 
IoT tools is a factor that hinders the productivity 
improvement of cooperating companies who are actually 
utilizing the technology. The purpose of this research is 
to introduce overseas the outline of the joint development 
and mutual utilization efforts of the “Construction RX 
Consortium (hereafter RX Consortium)” established 
under this background, and to provide an overview of the 
development of an automatic material transport system. 

2 Research method 
This research adopted the case study research method. 

The target is an automatic material transportation system, 

which is one of the subcommittees of the Construction 
RX Consortium. The analysis method is to conduct trials 
at the five actual sites shown below. 

 

Table 1. Trial list 

No. Building use Trial year 
1 Warehouse 2023 
2 Hospital 2022 
3 Office 2022 
4 Office 2022 
5 Office 2022 

3 Overview of The Construction RX 
Consortium 

The RX Consortium is a voluntary organization 
comprising general contractors and various companies 
supporting the construction industry. It was established 
with 16 companies in September 2021, and as of 
December 2023, the number of member companies is 
242, of which 29 are regular members [2]. 

3.1 Aims and Objectives of the Construction 
RX Consortium 

The RX Consortium aims to reduce the cost of 
technology development of construction robots and IoT 
tools, shorten the development period, accelerate their 
popularization by cost range reduction, and promote their 
introduction by cooperating companies. In addition, the 
goal is to improve the construction industry’s 
productivity comprehensively and improve the work-life 
balance and workers’ treatment. It is worth noting that the 
RX Consortium clearly distinguishes the areas of 
cooperation and competition so as not to hinder healthy 
competition. In other words, the members collaborate in 
the development of construction tools that everyone can 
mutually utilize. Nonetheless, they position which kind 
of construction can be made by employing them as a 
competition area. 
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3.2 The Construction RX Consortium 
Organization and Activities

The RX Consortium encompasses regular members 
(general contractors above a determined size with their 
own R&D organization) and cooperating members. As 
shown in Figure 1, the organization of the RX 
Consortium consists of a general meeting, a board of 
directors, a steering committee to promote and support 
daily activities, and subcommittees for actual joint 
development and mutual use. The themes addressed in 
the subcommittees are discussed internally and decided 
by the executive committee. In principle, each member 
may enter the subcommittee if a member wishes to 
participate based on the member’s own free will. 
However, the subcommittee discusses the division of 
roles and the burden of costs, establishing a contract to 
conduct the R&D activities. The main role of the RX 
Consortium is the establishment of the subcommittee. 
The concrete activities are in charge of the participating 
members of the subcommittee. In the subcommittee, 
besides the members who carry out the technology 
developments at their expense, the members who 
contribute without bearing the development costs by 
feeding back the results of the field trials are also allowed 
to participate. The mechanism that enables participation 
in the subcommittee is relatively simple, in line with the 
purpose of the RX Consortium to contribute widely to the 
construction industry [3].

Figure 1. Organization

4 Subcommittee Activities
The RX Consortium currently has 12 subcommittees 

as listed in Table 2. The initiatives of one subcommittee 
in the table are reported in the next section.

Table 2. Subcommittee list

5 Subcommittee on Automatic Material 
Delivery Systems

5.1 Overview of the Subcommittee
In construction work, the delivery of various

materials in the required time at the needed place without 
delay is very important to process control. The delivery 
of materials within a construction site is an ancillary task 
for construction workers, and by automating it, they can 
spend more time working on core tasks that require 
higher skills. Therefore, the RX Consortium has set up a 
subcommittee on “Automatic Material Delivery System”
and is working on developing such a system.

As of March 2023, 18 construction companies and 14
cooperating companies have participated in the 
subcommittee. Each general contractor has started 
activities to realize the practical application of the 
automatic material delivery system by flexibly linking 
systems, robots, and delivery equipment developed so far, 
enabling robots to be used at any construction site of any 
construction company through repeated development, 
trial, and feedback among members.

5.2 Overview of the system
Figure 2 shows an overview of the Automatic

Material Delivery System, which is positioned as the core 
system of this subcommittee. This system consists of an
“Automatic delivery management system (JHS App)”,
which handles material delivery reservations and 
adjustments, delivery instructions, and collection of 
results, and a “Construction robot platform (RPF)”,
which receives instructions from the system and 
generates delivery routes for various robots in 
conjunction with BIM to perform operation control and 
condition management.

It works in conjunction with the construction elevator
and elevator shutter to realize a series of automatic 
deliveries by sequentially instructing robot groups and

cooperating companies have participated in the 

subcommittee

activities to realize the practical application of the 

automatic 

systems, robots, and delivery equipment developed so far, 

enabling robots to be used at any construction site of any 

construction company through repeated development, 

trial, and feedback among 

5.2

Material Delivery

system of this subcommittee. 

“

which 

adjustment
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construction elevators based on a planned delivery list.
From partial to full automation, various systems and 
delivery robots can be flexibly combined depending on 
the purposes and needs. At the construction site, the 
material unloaded from the truck is horizontally 
transported to the construction elevator and loaded. Then,
the construction elevator vertically transports them to the 
work floor. On the work floor, another robot unloads the 
materials from the elevator and distributes them to the 
workplace.

Figure 2. Automatic Material Delivery System.

5.2.1 Automatic delivery management system 
(JHS application)

The JHS App inputs delivery reservation information 
(i.e., material name, packing form, delivery destination 
floor yard, scheduled start and end dates, delivery means 
on a delivery route, etc.) for each material to be delivered. 
As shown in the left screen of Figure 3, the input 
information is listed and can be viewed for each 
day/delivery means, and the reservation can be adjusted. 
The JHS App links the construction autonomous driving 
elevator and the RPF described later by API. By sending 
the delivery reservation information from the JHS App, 
the work order is given to the construction elevator and 
the delivery robot, and the vehicle is automatically 
delivered. In addition, as shown in the right screen of

Figure 3. Example of the JHS App screen

Figure 3, the instructions to the worker are also possible 
through the smart device. When the delivery is completed, 
the actual information is automatically collected, and the 
status of the material can be checked on the screen in real-
time.

5.2.2 Construction Robot Platform (RPF)

Traditionally, in the operation of construction robots 
in buildings under construction, it has been a problem 
that it is necessary to specify the range of operation by 
teaching in advance in the field, magnetic tape, two-
dimensional code, etc., requiring many man-hours for 
maintenance and operation management due to the 
increased number of robots in operation and the 
advancement of functions [4]. To solve this problem, we 
developed RPF. An overview of RPF is shown in Figure 
4. As shown in Figure 5, RPF uses BIM data as map 
information to set the movement and operating range of 
the robot on the cloud, enabling the robot to run 
autonomously. In addition, it is also possible to remotely 
monitor the condition of the construction robot, such as 
the battery and abnormality, on the cloud. It is also 
possible to manage a wide variety of robots, such as 
marking robots, cleaning robots, and delivery robots.

Figure 4. Construction Robot Platform

Figure 5. Robot Right-of-Way in BIM

In the automatic delivery system, the route from the 
delivery source to the delivery destination is set 
beforehand, and it is simulated using BIM data for all 
materials to be delivered automatically. In the automatic 
delivery execution, the delivery route information is 
transmitted to the robot based on the conveyance 
reservation information from the JHS App to instruct 

workplace.
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execution. The RPF monitors the operation status of the 
delivery robot in real-time. The delivery performance 
information, such as the completion of delivery, can be 
fed back to the JHS App in real-time.

5.2.3 Delivery robot (Automatic hand pallet)

The specifications of the developed automatic hand 
pallet are shown in Table 1. The appearance is shown in 
Figure 6. A 2D LiDAR and stereo camera are added to 
the upper part of the rear housing of the main body. The 
2D LiDAR detects objects in the rear range of 180 
degrees and serves to grasp their position. The stereo 
camera is used to detect the position of the pallet. A PC 
for hand pallet control and a pocket WiFi are stored inside 
the housing and communicate with the RPF on the cloud.

The automatic hand pallet autonomously drives the 
route set by matching the self-driving map generated 
from the BIM with the point cloud data acquired by the 
2D LiDAR and performing self-position estimation. 
When loading the pallet, it moves forward while grasping 
the shape of the pallet using a stereo camera, and drawl 
into the lower part of the pallet. When there is an obstacle 
that was not in the map acquired in advance, the 2D 
LiDAR detects it, detours around it, and runs
autonomously to the destination [5].

Table 3. Specification of Automatic hand palettes
Dimensions 1,420mm×750mm×450mm

Self-weight 170kg

Carrying capacity 1,000kg

Running speed Min42m/min, Max60m/min

Operating time 6h (battery)

Filling lifting dimensions 105-175mm

Figure 6. Automatic hand pallet

5.3 Trial at construction site
The developed system was tested at several 

construction sites. We confirmed that it is possible to 
automatically deliver materials to designated locations 
based on delivery instructions from the JHS App. In the 
future, we will conduct repeated trials at the general 
contractors participating in the subcommittee and assess 
the effects. We will also develop an operational system 

and aim to put it into practical use.

Figure 7. Trial at construction site

6 Conclusion
In addition to the subcommittee activities, the RX 

Consortium carries out various initiatives to promote 
information sharing and mutual technology utilization
among members, such as holding exhibitions and 
introducing technologies and services by member 
companies. The number of members has also increased 
faster than initially expected, and a wide range of 
industries, such as insurance companies, trading 
companies, and consulting companies, are participating. 
The environment for incorporating technologies and 
services useful for the construction industry is becoming 
better. Through these activities, we hope to improve the 
productivity and attractiveness of the construction 
industry.
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Abstract -
UAVs have immense potential in construction applications.

This paper gives a overview of a project that aims to expand
the frontier of applications of UAVs from non-contact mea-
surements to physically interact with buildings by sticking
targets on the building. The goal of the project is to apply
positioning tags onto a facade of an existing building with
UAV. This paper looks into hardware, software and simu-
lation aspects of the UAV and elaborates on advantages of
the chosen solutions. Moreover, the UAV has been tested in
laboratory environment.

Keywords -
UAV; Automation; ROS; Simulation; built environment

1 Introduction
Unmanned Aerial Vehicles (UAVs) are becoming pop-

ular as a solution to automation of a wide variety of tasks
in different fields. For construction application, [1] uti-
lized UAV to facilitate contact test for bridge inspection
with a 1-DOF manipulator. [2] applied UAV for sensor
installation and retrievement. [3] gives a thorough review
on UAV with active multiple DOF manipulator and its
development throughout the years.

The goal of this project is to apply AprilTags, a type
of visual tag that provides localization with high accuracy
and low overhead, onto facades of buildings with an auto-
mated UAV. These accurate positioning tags can later be
used as reference for installation of insulated prefabricated
modules with solar energy systems. UAVs are lightweight
and low-cost, therefore it can be deployed fast and with
multiple units simultaneously.

A quadcopter with an end effector was developed. The
quadcopter will approach the target position with AprilT-
ags loaded on the end effector. On the back side of the tags
is adhesive applied. Once the tags have made contact with
the target surface, the quadcopter will apply pressure on
the tags to ensure a firm binding. The process is indicated
in Fig. 1.

Compared to [1] and [2], our end effector does not
require its own DOF. AprilTags are released mechanically.
The contact position, force, angle is manipulated through

Figure 1. Sticking Process, check the video

controlling the vehicle directly. This reduced complexity
and lighten its weight.

2 Design
As an experimental platform, the controllability, pay-

load capacity and adjustability of dimension are the three
priorities. Adjustability enables the UAV to operate with a
wide variety of propellers for different payloads. X-shape
quadcopter is chosen because of its symmetric maneuver-
ability and controllability on X-Y plane.

Although multicopters with more motors have higher
payload capacity than a quadcopter, the end effector would
not have enough space between evenly spread motors.
Stacking two motors vertically was also examined. How-
ever, in light of the efficiency loss of the second propeller
[4], the additional thrust gain cannot compensate for the
excessive complexity.

The size of the quadcopter, the diagonal shaft-to shaft
distance between motors, is designed to be adjustable from
238 to 650 mm to be compatible with propellers up to
15 inches. This assures the quadcopter to be compatible
with a heavy end effector. Compared to [5], the battery
is moved from bottom to top. This brings 2 advantages.
First, the battery is located closer to the Center of Mass
(COM). As one of the heaviest parts on an UAV, moving the
battery closer to the COM results in a smaller moment of
inertia, which enhances the quadcopter’s agility. Second,
the battery on the top is more accessible for operators.
Operators can install a battery much easier. It is also more
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feasible to develop an automated battery exchange process
with a battery on the top in the future.

The flight controller is located between upper and lower
plate of the quadcopter. This change minimized the dis-
tance from COM to onboard Inertial Measurement Unit
(IMU) to 23 mm, which can minimize the extra cen-
tripetal acceleration an IMU experienced when turning
around COM and hence increase its accuracy.

3 Hardware

Hardware choices were made with max compatibility
in mind. Within the budget limits, the power system is
designed for a drone weighing 2.5kg.

Table 1. Hardware Overview
Motor T-Motor F100

2820 1100KV
Propeller HQ8037-3
Battery 6s 2200mAh

Flight controller Raspberry pi 4B
w/ Emild Navio 2

Electronic speed controller T-Motor F55A PRO II
(ESC)

RC receiver FrSky X8R
Laser range finder GY-53

IMU LSM9DS1

Figure 2. Hardware Position

Although propellers with higher pitch can generate more
thrust, these propellers are also prone to being caught into
Vortex Ring State (VRS), which results in lose of lift and
control [6]. The adopted 8037 propellers have smaller
pitch than the manufacturer’s recommendation.

Although high kV motors on the old model [5] can gen-
erate more thrust with the same size, more current is drawn
from batteries and more waste heat is generated. This re-
sults in less overall efficiency, which leads to a shorter
flight time. By contrast, a low kV motor with high voltage
has less side effects while having same output. Therefore,

compared to previously 2550kV, the new motors’ kV value
is selected as 1100kV.

Low kV motors require higher voltage to operate. Thus,
a 6-cell battery (rated at 22.2V) is used.

4 Material and Manufacture Process
For manufacturing, CNC machined Carbon Fiber Rein-

forced Polymers (CFRP) and Fused Deposition Modeling
(FDM) with Polylactic Acid Plastic (PLA) are widely used.

CFRP is widely used in the aerospace industry because
of its strength and stiffness with low density. In the case
of this project, CFRP is used in critical parts such as arms
which are cantilever beams with motors on the open end.
The stiffness of beams can suppress vibration induced by
motors and propellers. The main piece of the frame is
also consists of CFRP, where this stiff material acts as a
high pass filter against vibration, which is crucial to the
precision of the vibration-sensitive onboard IMU.

FDM can shorten the time of manufacturing. Also,
it can create sophisticated infill pattern inside work piece,
which can be optimized and achieve high specific strength.
Parts such as landing gears and brackets for sensors and
controllers, which do not experience high shear stress, are
made out of PLA with FDM.

5 End Effector
AprilTags is fixed in a square frame. After the end ef-

fector makes contact with the surface, the square frame
will be pushed back by the surface and releases the April-
Tag. At the end of the sticking process, the quadcopter is
given the command to move forward to apply pressure on
the AprilTag for a firm binding. In order to move forward,
a quadcopter pitches downward. To compensate the pitch
angle, a ball joint is added as shown in Fig. 3.

Figure 3. Cutaway View of End Effector

The ball joint can also absorb some misalignment of
the quadcopter w.r.t. the target surface. To allow soft
contact with surfaces, the end effector can slide along the
rods stemming from the main frame. Springs and dampers
between two parts can reduce the reaction force from the
surface pushing the quadcopter away.
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6 Simulation
To affix the tag to the wall, the drone must make con-

tact, subjecting it to external forces that can introduce
disturbances and nonlinear dynamics. Addressing this
challenge involves measuring and integrating these forces
into the system. This integration enables the controller to
compensate for the forces, ensuring stability during flight
and minimizing the impact of disturbances. One method
to measure these forces is by incorporating force sensors
on the drone. These sensors can gauge the forces during
interaction, providing feedback to the controller. By as-
sessing changes in the drone’s attitude, the controller can
adjust propeller speeds to maintain flight stability and en-
sure sufficient force is applied to affix the AprilTags to the
wall. However, it’s worth noting that this approach may be
costly due to the price of force sensors and the additional
weight they introduce, potentially impacting the drone’s
motors and battery requirements. Due to this drawback
of using sensors, these forces can be measured in simu-
lation. Hence the task of the drone can be tested in the
simulation to assure a stable flight during the interaction
and evaluate the performance of the controller. With the
simulation, the drone would have certainly lower cost and
probable crashes could be prevented. However, in the
robotic industry majority of the simulations are imple-
mented in well-known simulations like Gazebo or other
ones which will not provide force measurements. Unity
[7], a popular game engine, facilitates the simulation of
drones by employing a physics engine to model dynamic
behavior and measure applied forces. Objects, including
the asymmetric drone, are treated as rigid bodies within
Unity. To ensure accurate simulation, Solidworks models
of the drone are utilized. Unity’s robust rendering capa-
bilities extend to testing computer vision algorithms, such
as detecting a drone equipped with an AprilTag. The high
rendering ability of Unity is crucial for accurate position
estimation by the ground camera in detecting the drone
and other tags on the building.

Figure 4. Simulation Diagram

On the other side what makes unity a perfect tool for us is
that it can be easily integrated with ROS. Robot Operating
System (ROS) [8] is an open-source robotics middle ware

suite. ROS optimizes communication in robotics through
hardware abstraction, low-level device control, common
functionality implementation, and inter-process message
passing for diverse computer clusters. Unity’s simulation
can seamlessly integrate with the controller and other com-
ponents of the software stack via ROS, enabling effective
communication between them. In the ROS network illus-
trated in Fig. 4, the ground camera within Unity detects
tags and transmits desired waypoints. This information
guides the trajectory generator to produce and publish de-
sired states for the controller.

6.1 Controller Design

The controller node is a key part of the software stack,
utilizing a geometric controller inspired by [9]. It pro-
cesses desired states, computes errors in the drone’s state
space, and works to mitigate these errors for enhanced
control. The control of the transnational dynamics of a
UAV involves the management of the total thrust, denoted
as − � ��3. The magnitude of the total thrust, represented
by � , is under direct control, while the direction of the total
thrust, denoted as −��3, aligns along the third body-fixed
axis �3.

Figure 5. Controller Structure

The UAV’s interaction with the wall provides feedback
for the controller to make informed decisions on velocity,
ensuring stability and precise tag placement. The contact
force applied on the drone will be in two direction, The
contact force applied on the drone will be in two directions,
one is tangential, and the other one is perpendicular to the
moving direction. The drone needs to adjust its velocity
and orientation in order to assure an approach normal to
the wall. Thus the forces applied on the drone from the
interaction would be minimized.

7 Results
The aerial system, controlled via a remote controller,

combines autonomous algorithms to achieve precise and
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dynamic maneuvers. The inclusion of sensors such as an
Inertial Measurement Unit (IMU) ensures stable flight by
providing real-time data on the drone’s orientation. The
integration of a laser range finder enhances the manipu-
lator’s spatial awareness, allowing it to accurately gauge
distances from the walls. The drone was initially tested in a
simulation environment to evaluate the controller’s perfor-
mance and accuracy. Subsequent testing on the physical
drone assessed the controller’s performance on hardware.
The following section delves into the obtained results and
overall performance.

7.1 Simulation

In simulation tests, the drone controller’s performance
was assessed based on its stability during wall interactions
and accuracy in placing the target. Key metrics included
contact force, drone velocity, stability, and target place-
ment, measured by considering the collision area and the
number of contact points. Results are summarized in the
table below:

Table 2. Simulation Results
Case Contact Force Velocity Accuracy

(N) (m/s) (m)
1 2.9 1 0.01
2 7.7 2.4 0.05
3 12 4.8 0.11

7.2 Experimental Setup

In the experiments, the Ardupilot flight controller and
geometric controller played key roles in drone opera-
tions based on RC commands and real-time sensor data.
The Ardupilot ensured the drone’s stable flight, while
the geometric controller significantly improved maneuver-
ing precision. To address differences between simulation
and real-world experiments, the Extended Kalman Filter
(EKF) was employed for state estimation, effectively man-
aging uncertainties, especially in state determination using
data from the IMU and laser range finder. Despite argu-
ments surrounding certain factors, the comparison strug-
gled to precisely evaluate the controllers’ adaptability in
real-world scenarios. However, the drone successfully
completed its tasks, showcasing practical functionality
despite the inherent difficulties in accurately comparing
simulations with real experiments.

8 Conclusion
In conclusion, the project successfully demonstrated the

quadrotor’s ability to interact with and attach a target to
a wall in both simulation and real-world tests, showcas-
ing practical applications like surveillance and object ma-
nipulation. The integration of robust control mechanisms

showed promise, and insights gained from improved simu-
lation contact force modeling suggest potential for refining
the system. Future developments could benefit from a bet-
ter controller design, informed by insights gained through
enhanced simulation, to further optimize the performance
and adaptability of versatile quadrotor systems.
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Abstract  

In order to easily estimate the strength of 
concrete members such as piers and building walls at 
actual sites, we have developed a small-diameter 
abrasive drill and proposed a method to estimate the 
strength of concrete from changes in drilling speed. In 
drilling with a 5 mm diameter drill, the drilling speed 
changes due to the influence of coarse aggregate 
mixed in the concrete. Therefore, the drilling speed 
due to coarse aggregate was determined from the 
analysis of drilling speed, and the relationship 
between the average drilling speed excluding the 
effect of coarse aggregate and concrete strength was 
obtained. Next, a mobile inspection robot equipped 
with an abrasive drill mechanism was developed to 
apply this inspection method to actual sites.  

 
Keywords 

Small-diameter drill; Concrete strength estimation; 
Inspection robot; Roller drive; Duct fan thrust 

1 Introduction 

A large number of civil engineering infrastructures 
(bridges, tunnels, highways, etc.) constructed mainly in 
urban areas during the high-growth era of the 1970s have 
begun to reach the end of their useful lives and need 
large-scale repair, renewal, or reconstruction. Concrete 
structures, in particular, have deteriorated over time, and 
in some cases, their strength has been significantly 
reduced due to salt damage and neutralization, forcing 
immediate action. 

In recent years, with the development of robotics and 
information technology, there have been reports of 
automatic inspections of the deteriorated condition of 
concrete structures using wall-moving robots and drones. 
The main tasks are imaging of the wall surface and 
simple sounding inspection [1-3]. If the reaction force of 

the robot is large enough, it is possible to estimate the 
strength of the concrete by mounting the grinding drill 
developed above. On the other hand, if the reaction force 
of the inspection drill can be kept small, it can be 
mounted on the current inspection system [4]. 

In this study, the previously developed abrasive drill 
was modified to estimate concrete strength by drilling a 
small-diameter 5 mm hole. The small diameter of the drill 
also reduces the reaction force due to drilling. In the 
experiment, strength estimation by drilling was 
conducted using specimens of different strength. 
However, when the drill bore size was smaller, the coarse 
aggregate inside the concrete was drilled directly, and the 
results were different from the original strength 
estimation by drilling (relationship between average 
drilling speed and concrete strength). Therefore, we 
focused on the local perforation rate of drilling and 
devised a strength estimation method that removes the 
influence of coarse aggregate as much as possible. 

On the other hand, it is necessary to check the 
deterioration and strength of concrete structures at the 
actual site to ensure the integrity of the structure and 
efforts to repair and maintain the structure. In this study, 
an inspection robot equipped with a drill system for 
strength estimation and capable of inspecting at actual 
sites was developed. The inspection robot is equipped 
with a high-power duct fan and can easily press the drill. 
The robot is roller-driven, can move up and down, and is 
lightweight, thus gaining potential for practical use. 

2 Development of Small Diameter 
Abrasive Drills and Drilling Tests 

2.1 Outline of Experimental Equipment 

Fig.1 shows an overview of the abrasive drill used in 
the experiment. The system consists of (1) a small-
diameter drill, (2) a slide block (feeder), (3) a water 
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circulation device, (4) a vacuum pump, and (5) an air 
compressor. The small-diameter abrasive drill is an 
abrasive drill with a diamond bit attached to its tip, which 
rotates at high speed to grind the mortar surface while 
drilling. During drilling, a water circulation device is 
used to cool and lubricate the bit and discharge the drilled 
noro water. The body of the polishing drill can be moved 
up and down by air pressure from an air compressor 
through a pressure reducing valve, which provides a 
(constant) pressing force for the drill during drilling. The 
tip of the drill consists of a diamond bit, and the drilling 
method is to drill while polishing the concrete. 
Experiments using an abrasive bit with a relatively large 
bit diameter have shown that the drilling depth is almost 
proportional to the drilling time, and the drilling speed is 
almost constant under the same conditions such as drill 
pushing force and rotation speed. In the experiments, five 
kinds of concrete specimens of different strength were 
prepared in order to understand the performance of the 
developed drilling system. 

2.2 Changes in Drilling Gradient and Internal 
Observation of Drilling 

When drilling with a small-diameter (5 mm) drill, 
the drilling speed is not always constant because the drill 
may directly drill through the coarse aggregate scattered 
inside the concrete. Figure 3 shows the relationship of 
drilling depth to drilling time when drilling a concrete 
specimen. In addition, images of the perforation taken 
continuously by an endoscope are also shown. 

 Observation of the state of the drilling depth shows 
that the area near the starting point of drilling (above: 
Fig.2) is white due to the finishing layer of concrete. 
From the start of drilling to around 60 seconds, the 
change is relatively linear, and the layer is a mixture of 
white (Fig.2) and black (coarse aggregate) (below: Photo 
2). Around Fig.2, the proportion of mortar increases and 
the gradient of perforation is slightly higher. 

 In the range of 130 to 190 seconds of drilling time, 
the drilling depth is almost constant and the black coarse 
aggregate is drilled (Fig.2 (4)). It takes a considerable 
amount of time to drill through the coarse aggregate. 
After passing through the coarse aggregate, a layer of 
coarse aggregate and mortar is formed again, and the 
perforation gradient increases (Fig.2 ⑤) and then reaches 
the longest part of the perforation (Fig.2 ⑥). Thus, it can 
be seen that the 5 mm hole drilled through a mixed layer 
of coarse aggregate and mortar, and that the drilling 
gradient (drilling speed) changes constantly. 

2.3 Coarse Aggregate Condition and Change 
Distribution of Drilling Speed 

Since the drilling gradient varies with the internal 
condition of the concrete, the drilling speed per second 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (mm/s) was calculated. Figure-3 (bottom) shows the 
relationship of drilling speed for each drilling time. It can 
be clearly seen that the drilling speed changes in response 
to the gradient of the drilling depth. It can be seen that the 

Fig.1 Overview of the drilling device and measurement 
system used in the concrete 

Strength experiment 

Fig.2 Relationship of depth and drilling speed to time for 
concrete specimens containing coarse aggregate 

Fig.3 Time distribution for each drilling speed range 
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drilling speed is smaller than 1.0 mm/s in the area 
affected by the coarse aggregate. Figure 4 shows the 
distribution of the number of hours for each range of 
drilling speed. It can be seen that the number of hours is 
concentrated in the range where the drilling speed is 
smaller than 1.0 mm/s. This area is affected by the coarse 
aggregate. From this result, the average drilling speed 
vmean,i excluding the effect of coarse aggregate is obtained 
by excluding the area of small drilling speed and dividing 
the remaining total number of hours by the total drilling 
depth (the drilling depth is subtracted because drilling 
progresses according to the number of hours even if the 
drilling speed is small), using the Eq. (1). where LTotal is 
the total drilling depth (155 mm in this experiment), TTotal

is the total drilling time, i is the number of the speed range 
in which the effect of the stone layer is removed, v_(c,i) is 
the lower limit of the i-th speed range, and t_i is the number 
of hours for the i-th speed range. 

2.4 Strength Estimation Considering Effect of 
Coarse Aggregate  

Drilling tests were conducted on five types of 
concrete specimens with high coarse aggregate content. 
Figure-6 shows the relationship between average drilling 
speed and compressive strength. In the range where the 
drilling speed v is small (v_(c,i) ~ 0.5), the plots are 
scattered in different places, and it is difficult to see a 
relationship between the average drilling speed and the 
specimen strength. However, for v_(c,i) = 0.75 to 1.0, each 
blot is aggregated and the average drilling speed and 
specimen strength line up linearly (red dashed lines in the 
figure). Using this relationship, it may be possible to 
estimate the concrete strength from the average speed of 
drilling. On the other hand, for v_(c,i) = 1.25, the values of 
the plots are again scattered and the relationship becomes 
less relevant. This may be due to the fact that even the 
drilling speed for normal drilling (when there is no 
influence of coarse aggregate) is excluded. 

Thus, when drilling with a 5mm abrasive drill, if vc = 
0.75, the concrete strength σ can be estimated from the 
slope of the straight line obtained in Fig 6 using Eq. (2). 

However, Equation (2) is a relational equation for the 
specimens used in this study, and may not necessarily be 
applicable to specimens with different coarse aggregate 
and other materials. By introducing the relationship of 
average drilling speed without the effect of coarse 
aggregate, it was found that concrete strength can be 
adequately estimated even in drilling tests using small-
diameter drills. The results of this study are as follows. 

2.5 Outline of Inspection Robot 

An inspection robot equipped with a drill system for 
strength estimation was developed for on-site inspection. 
As shown in Fig. 5, the inspection robot is equipped with 
an automatic vertical moving mechanism and various 
sensors to enable various inspections of vertical wall 
surfaces. 

2.5.1 Vertical Moving Mechanism 

When robots are used for inspection and repair of wall 
surfaces, the types of devices used for vertical movement 
are generally of the drone flying type or the rope winding 
type with the device suspended from above. However, 
conventional methods have disadvantages such as being 
affected by wind, difficulty in approaching walls, and 
limited lifting weight of the inspection device. In this 
study, the tether and roller drive principle were used for 
vertical movement, which is a simple mechanism, has 
good positional accuracy, and has excellent stopping 
performance. During inspection, the device can be fixed 
to the wall surface via casters, and lanes to be inspected 
are set up and inspected in sequence. 

The climber can be raised and lowered under 
autonomous control, and by turning on the start switch, it 
can stop at each section according to a pre-set program. 
The system can be switched between wired and remote 
control, and can be checked visually or with a live camera 
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mounted on the inspection equipment. After completing 
the inspection to the top under autonomous control, it can 
be lowered by sensor detection. The power supply is 
powered by a battery, but for longer inspections, a wired 
connection is used to supply power. Safety ropes and 
mechanical brakes are installed to prevent falling. 

2.5.2 Horizontal Push against Wall 

Multiple casters are mounted on the wall side of the 
inspection system to push to maintain the verticality of 
the small-diameter drill and the wall surface. A high-
power duct fan is located in the same line across the drill 
to press the main unit and the drill against the wall. As 
shown in Fig.6, when measuring the strength of the wall 
surface, the small-diameter drill can be moved via a slider, 
enabling drilling with a constant force of pressing. The 
maximum force to press the entire inspection system by 
two duct fans against the wall surface is about 30 N, 
which is sufficient for the pressing force (15 N) for the 
strength estimation experiment described in Chapter 2. 

2.6 Operation of the Small Diameter Drill for 
Wall Surface Inspection 

The drill is moved to a predetermined height using a 
climber and pressed against the wall surface using a 
ducted fan. After setting it in the position to be inspected, 
the small-diameter drill for wall surface inspection is 
operated. The drilling procedure is as follows (1) to (3). 
(1) The compressor is used to bring the tip of the drill into 
contact with the wall surface. 
(2) A water circulation system is activated to eliminate 
concrete dust generated during drilling. 
(3) Operate the motor connected to the drill to drill. 

After 5~10 cm of drilling is completed, the motor is 
stopped and the drill body is pulled up by a compressor. 
This series of operations is performed by remote control. 
The mobile inspection robot and strength estimation 
system have already been completed and will be tested at 
actual sites for practical use. 

3 Conclusion 

In order to simply estimate the strength of concrete 
members for vertical walls such as bridge piers and 
buildings at actual sites, we developed a small-diameter 
abrasive drill and proposed a method to estimate the 
strength of concrete from the change in its drilling speed. 
In drilling with a 5 mm-diameter drill, the drilling speed 
changes due to the influence of coarse aggregate mixed 
in the concrete. Therefore, the drilling speed due to 
coarse aggregate was found from the analysis of the 
drilling speed, and the relationship between the average 
drilling speed excluding the effect of coarse aggregate 
and concrete strength was found.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, a mobile inspection robot equipped with a drill 
mechanism was developed to simplify this inspection 
method. In the future, we would like to use these in actual 
sites to add the necessary systems and the possibility of 
calibrating them for each site. 
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Fig.5 Overview of the inspection robot equipped with 
the drill system for strength estimation 
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Abstract  

The transition towards openBIM solutions has 
been receiving an increasing amount of attention in 
the built asset industry. This shift is principally driven 
by the adoption of open standards and services, 
aiming to promote a more collaborative, 
interoperable, and transparent digital workflow. This 
paper highlights openBIM adoption across various 
jurisdictions, with a focus on government 
involvement, standardization, technological 
innovation, environmental integration, national 
implementation, and knowledge resources. Drawing 
from international best practices, the paper presents 
a comprehensive analysis of openBIM opportunities 
and interoperability challenges, offering key 
takeaways and guidance for other nations such as 
Canadian construction industry to adopt and 
implement openBIM solutions efficiently. 
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1 Introduction 
The past decade has seen a notable shift in the built 

asset industry regarding how projects are planned, 
designed, constructed, and operated. The traditional 
siloed approach to project delivery has given way to a 
more collaborative and integrated methodology, and at 
the forefront of this change is the concept of openBIM. 
According to buildingSMART International (bSI) [1], 
openBIM refers to: a universal approach to the 
collaborative design, realization and operation of 
buildings based on open standards and workflows. 
openBIM is an initiative of buildingSMART and several 
leading software vendors using the open 
buildingSMART Data Model. With the collaboration of 
international industry experts and stakeholders, bSI has 
developed specific standards and services to accelerate 
the implementation and adoption of openBIM. These 
open international standards and services – such as 
Industry Foundation Class (IFC) [2], BIM Collaboration 

Format (BCF) [3], building Smart Data Dictionaries 
(bSDD) [4], etc. – are based on various types of Building 
Information Modeling (BIM) processes and information 
capabilities. 

By utilizing open standards and services, openBIM 
enables the exchange of information across different 
software platforms and disciplines, facilitating a more 
efficient and transparent digital workflow [5]. At present, 
several leading jurisdictions have leveraged openBIM 
requirements into their building regulations and 
procurement processes, mandating its use in public 
projects. Professional organizations and industry 
alliances are actively promoting openBIM, developing 
guidelines, providing training, and advocating for its 
widespread adoption. 

While the state of openBIM in the world today is 
promising, challenges still exist. Standardization efforts 
need to be strengthened further to ensure interoperable 
data exchange between different software platforms [6]. 
Education and training initiatives must be expanded to 
enhance the digital skills of professionals across the 
construction industry. Additionally, cultural barriers and 
resistance to change present ongoing obstacles that 
require continuous awareness campaigns and stakeholder 
engagement.  

This paper aims to highlight the current state of 
openBIM at international level, with the primary goal of 
identifying and assessing the key trends, challenges, and 
potentials of openBIM within built asset industry. To do 
so, several leading jurisdictions, including the United 
Kingdom (UK), the United States (US), Norway, Finland, 
Denmark, France, Australia, Singapore, and Japan, were 
selected and analyzed. The selection of these primary 
countries was based on a diverse range of geographical 
locations, cultural contexts, and their contributions to 
advancing BIM workflow and processes. The key 
findings of reviewed international jurisdictions are 
outlined in the following sections.   

2 Dimensions for Analysis  
The adoption of openBIM across various jurisdictions 

is not a uniform process, owing to diverse regulatory 
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environments, technological capabilities, and strategic 
priorities. To critically evaluate the international state of 
openBIM, it is imperative to consider a multi-
dimensional framework that reflects the complex 
interplay of factors influencing its adoption and 
implementation. To identify potential dimensions for this 
evaluation, the approach involved the deployment of 
surveys and direct engagements with international bSC 
chapters. These engagements were aimed at 
understanding the specific conditions and practices of 
openBIM implementation in their respective countries. 
The feedback received revealed commonalities in 
challenges and strategies across the board, enabling the 
research team to conduct a thorough analysis. The six 
dimensions identified for this analysis are as follows: 

• Governmental role: the extent of 
governmental engagement in openBIM 
initiatives, examining how public policy, 
funding, and legislative frameworks shape 
the adoption landscape.  

• Standardization: The adoption of universal 
standards is the cornerstone of openBIM's 
ethos. By evaluating the degree of 
standardization, this dimension pinpoints 
the efforts towards harmonizing procedures, 
data formats, and workflows, and the impact 
of these standards on cross-border and cross-
industry collaborations. 

• Technological innovation:  the current state 
and evolution of technological 
advancements, spotlighting pioneering tools 
and platforms that enhance interoperability 
and facilitate openBIM implementation. 

• Environmental integration: the integration 
of environmental considerations into 
openBIM reflects a commitment to 
sustainability. This analysis dimension 
gauges how openBIM interfaces with green 
building standards and eco-friendly 
practices, reinforcing its role in driving 
sustainable development within the built 
asset industry. 

• Implementations at national level: the 
practical application of openBIM within 
national projects provides tangible evidence 
of its value and adaptability. This dimension 
scrutinizes the scope and scale at which 
openBIM is embedded into the public 
infrastructure, serving as a measure of its 
penetration and effectiveness in delivering 
complex projects. 

• Knowledge resources: the generation and 
dissemination of openBIM knowledge 
through educational resources and training 
platforms are pivotal for its adoption. This 

dimension evaluates the avenues through 
which expertise is improved and shared, 
reflecting the industry's capacity to nurture a 
proficient workforce well-versed in 
openBIM principles. 

Figure 1 summarizes the analytical findings pertinent 
to the identified dimensions, emphasizing the most recent 
advancements in the adoption and implementation of 
openBIM across prominent jurisdictions. This depiction 
is current as of the date of this publication, 
acknowledging that these details may evolve over time.  

3 openBIM implications and 
opportunities  
Review of the selected jurisdictions through 

identified dimensions demonstrated potential 
implications and opportunities for other countries 
worldwide. The following sub-sections describe such 
findings.   

3.1 Advocacy for open standards 
Standardization serves as the foundation for the 

efficient and interoperable practice of digital construction 
[7]. The reviewed jurisdictions are currently advocating 
for openBIM standardization, recognizing the 
importance of standardized procedures in harnessing the 
true collaborative potential of the construction industry. 
In the UK, NIMA has been a front-runner in its support 
for openBIM through initiatives like the UK BIM 
Framework. Statsbygg, as a governmental body in 
Norway, has actively promoted openBIM, ensuring that 
projects adhere to these standards from the onset, 
ensuring quality and cost-efficiency. Singapore, a 
bustling hub of modern construction, is yet another 
shining example. Building Construction Authority (BCA) 
in Singapore has published different versions of BIM 
Guides, which provide detailed insights into the adoption 
of open standards and services in the city-state.  

Moreover, advocating the standards is just one aspect; 
the true essence lies in ensuring their implementation and 
providing the community with access to guidelines and 
case studies, fostering an ecosystem where openBIM 
becomes ingrained in the industry's DNA. By prioritizing 
the generation and dissemination of openBIM knowledge 
through educational resources and training platforms, 
jurisdictions can effectively equip their workforce with 
the necessary skills and understanding to implement and 
adhere to these standards, thereby amplifying the impact 
of standardization efforts and fostering a more 
collaborative and efficient construction ecosystem. 
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3.2 Government-led initiatives and 
collaboration 

The active involvement of a country's government 
can be an important force in the widespread adoption and 
success of openBIM. Governments possess the 
regulatory and financial clout to incentivize, mandate, 
and guide the direction of industry practices [8]. 
Considering the government role as one of the key 
dimensions of this study, Nordic countries and Singapore 
stand out in this regard due to the foresight of their 
government entities. Their push for openBIM isn't just 
about ticking a box; it's a larger vision for standardizing 

practices, ensuring sustainability across projects, and 
ultimately uplifting the nation's entire construction 
ecosystem. Singapore’s National BIM program is 
anchored in openBIM principles, and represent the 
nation's vision for disaster resilience, integration of 
openGIS and openBIM, and reduction of carbon footprint. 
This government-led integration of openBIM into 
broader developmental goals showcases how Singapore 
can use it as a tool to address larger challenges, ranging 
from urbanization to environmental conservation.

Collaboration at both national and international levels 
has proven beneficial. The US and Nordic countries, for 
instance, have initiated joint ventures to bolster 
openBIM's potential. Such collaborations not only pool 
resources but also bring together diverse expertise, 

Figure 1. Summary of openBIM adoption and implementation across the globe
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leading to refined solutions and strategies. Moreover, 
challenges faced in one region can be addressed by 
solutions tried and tested in another. This reciprocal 
sharing of experiences and resolutions fast-tracks 
problem-solving and fosters an environment of 
continuous improvement. The results are refined 
strategies, enhanced openBIM standards, and improved 
tools and methodologies that are the by-products of 
shared expertise.  

3.3 Standardized terminology and semantic 
consistency   

In a fragmented and complex domain like the built 
asset industry, the use of common semantics, definitions, 
and terminologies allow for effective implementation and 
collaboration across various stakeholders. Drawing 
inspiration from countries that have successfully 
implemented openBIM workflows, establishing common 
semantics and terminologies are the initial steps towards 
the effective exchange of digital assets across lifecycle 
stages.  Denmark provides a stellar example in this regard, 
through the development of the LeksiCON, Molio has 
focused on achieving consistency in the way 
construction-related information is shared and 
understood. The primary goal is to reduce 
misinterpretations, which could lead to costly errors. By 
making LeksiCON available openly, they ensure that 
every participant in the construction process is on the 
same page, figuratively and literally. In France, 
buildingSMART France is promoting Semantic4BIM to 
ensure that when a project transitions from one phase to 
another, or one discipline to another, the terminology 
remains consistent, avoiding potential misunderstandings 
or errors. Such a resource wouldn't just be a repository 
but a reflection of the country's commitment to ushering 
its construction sector into a new digital age while 
maintaining clarity, consistency, and cohesion. 

3.4 openBIM and sustainability  
Beyond the immediate benefits of open standards in 

the built asset industry, openBIM offers avenues to 
address larger sustainability challenges. The move 
towards sustainable and smart cities necessitates a 
departure from siloed decision-making. Urban planners, 
environmentalists, transportation experts, and 
technologists must collectively envision urban spaces. 
openBIM can serve as the unifying ecosystem where 
diverse stakeholders converge to share insights, analyze 
data, and measure sustainability of asset and products. 
This collective approach can lead to more informed 
decisions, ensuring that urban infrastructures are 
functional, sustainable, adaptable, and in tune with the 
environmental condition, as well as needs and aspirations 
of their residents. Having a centralized and open 

ecosystem provides numerous opportunities to integrate 
openBIM and openGIS digital assets. This enhances the 
integration of environmental data with as-built assets and 
enables users to trace the circularity of information across 
multiple resources. It also increases the longevity and 
efficiency of the materials, systems, and strategies 
implemented. 

4 Conclusion  
The research presented openBIM's transformative 

impact on the built asset industry, marking a shift toward 
collaborative, efficient, and sustainable practices. 
Despite momentum in adoption propelled by government 
initiatives and technological advancements, challenges 
persist demanding greater standardization, enhanced 
digital competency, and the navigation of cultural 
resistance. Notably, openBIM's role in fostering 
sustainability and its integration into smarter, sustainable 
cities is gaining recognition. Canada stands on the cusp 
of a transformative era, leveraging global best practices 
and openBIM as a blueprint for a sustainable digital 
future. Embracing open standards fosters collaboration 
and consistency across projects, while proactive 
governmental roles, as seen in Norway, Japan, UK, and 
Singapore, illustrate the impact of regulatory mandates. 
The potential for openBIM in enhancing sustainability is 
pivotal, offering opportunities for circular information 
flow and efficiency in materials and systems. A 
comprehensive roadmap, blending technology, 
collaboration, and sustainability, positions Canada for a 
promising future in the built environment. Collaboration, 
both domestically and internationally, can accelerate 
Canada's digital journey, promoting shared expertise and 
mutual growth. Aligning with a global data dictionary 
enables harmonization of classifications, definitions, and 
terminologies, fostering enhanced collaboration and 
understanding among diverse professionals. Initiatives to 
enhance awareness, conduct cost benefit analyses, and 
ensure access to standardized documentation are vital for 
owners and government bodies. Implementation should 
be guided by a culture of accountability and a recognition 
that BIM's utility extends well beyond the design and 
construction phases. 
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Abstract –  
With the rapid advancement of digitization, a 
multitude of tools for as-built modeling has emerged, 
posing a challenge in choosing the most suitable 
product. This article presents an evaluation system 
for identifying and selecting a site scanning method to 
create a digital twin of existing buildings. The 
evaluation criteria developed for this purpose were 
integrated into an evaluation scheme that forms the 
basis for a quantitative assessment. A case study was 
conducted to validate the developed evaluation 
system. Two Operating Systems (OS) applications, a 
Faro laser scanner, and a handheld LumoScanner 
were selected to generate a 3D model for a floor with 
a 500 m2 area. The presented method supports 
construction and design companies in their decision-
making process when selecting scanning methods for 
practical building applications. 
 
Keywords – 

Evaluation System, Laser Scanner, OS Scanning 
Application, As-built Modeling  

1 Introduction 
This work is part of the research project NaiS 

(Nachhaltige intelligente Sanierungsmaßnahmen). It 
focuses on digitizing information that is hard to reach and 
on optimizing it through human collaboration. One of the 
goals of NaiS is to employ advanced technologies in the 
field of site scanning to generate the digital twin.  

The AEC sector is embracing an increasing 
availability of site scanning technologies [1], 
revolutionizing construction processes. However, 
adopting these technologies faces technical, economic 
and awareness-related difficulties. Previous studies [2], 
have explored the challenges associated with adapting 
laser scanners. Our paper addresses these challenges by 
employing an assessment system, allowing a quantitative 
comparison of site scanning technologies. This approach 
contributes to overcoming barriers and promoting the 
effective integration of site scanning technologies in the 
AEC sector. Therefore, the primary aim of this work is to 
develop a concept for objectively evaluating site 

scanning technologies and hence supporting decision 
making. 

For the development of the conceptual framework, 
qualitative criteria were defined based on existing 
literature. This decision resulted from the realization in 
[3] & [4], that the exclusive use of quantitative measures 
is not sufficient for a comprehensive assessment of the 
multiple dimensions that characterize the performance of 
technologies. As qualitative criteria cannot be measured 
directly, a new instrument is needed to evaluate them. A 
utility value analysis is proposed, as recommended in [5] 
& [6]. This is particularly suitable for complex decision-
making problems, as it offers the possibility of 
quantifying all evaluation criteria and therefore 
subjecting them to a final assessment. Consequently, this 
approach enables the objectification of qualitative criteria.  

2 Methodology 
This paper presents a comprehensive assessment 

framework designed for the evaluation of building 
scanners. The framework covers all essential aspects and 
enables a thorough analysis. It aims to make the 
framework to be both accessible and practical for users. 
This framework is divided into three components: 
evaluation criteria, evaluation scheme, and utility 
analysis. Each component will be discussed in the 
following discussion. 

2.1 Evaluation Criteria 
Kühnapfel [6] addresses essential details to consider 

in selecting criteria. To ensure the practicability, 
particular emphasis was placed on formulating the 
criteria in a manner that makes them applicable to a broad 
spectrum of building scanning methods. Similar criteria 
were avoided to prevent collinearity, which could result 
in disproportionate weight of certain categories. 
Furthermore, attention was given to selecting criteria that 
are relevant to the decision-making problem. 

Table 1 presents the content of the evaluation criteria 
which have been selected based on existing literature. 
The weights are determined based on a subjective 
weighting method known as point allocation. Decision 
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makers assign 100 points to the criteria, with a criterion’s 
importance increasing with the number of points it 
receives. The total weighting for all main criteria must 
equal 100, and the sum of all sub-criteria within each 
main criterion must also equal 100 [7]. The weighting of 
the criteria in the study presented in this paper were 
assigned based on the author’s expertise. 

Now, the criteria need to be made quantifiable and 
comparable. To achieve this, an evaluation scale must be 
defined, ensuring a shared understanding among 
decision-makers. Therefore, we developed an evaluation 
scheme, which is described in the following chapter. 

Table 1: Evaluation Criteria for building scanner 

2.2 Evaluation scheme 
In the presented Assessment System, the 5-point scale 

was selected to meet the requirements described below, 
including the practicability of the assignment to a scale 
value, the representation of the number of scaling levels, 
the uniformity of the scale, and the directional equality of 
the value development, as discussed in [6]. 

To guarantee the uniformity of the assessment system, 
a rating scale is created, where each sub-criterion is rated 
from 1 (very negative performance) to 5 (very positive 
performance). Therefore, all criteria can be evaluated on 
a common basis. The assessment of the criteria depends 
mainly on the hands-on experiences and knowledge of 
the evaluator. 

A common understanding of the scale concerning 
criteria among all assessors is crucial to achieving 
comparable and reliable results. Therefore, a scoring 
guideline is provided in an evaluation scheme. Positive 

and negative characteristics are compared. More positive 
characteristics result in a higher score, while a higher 
degree of negative impact leads to a lower score. Table 2 
illustrates an example of the evaluation scheme. 

Table 2: Evaluation Scheme for building scanner 
Sub-

criteria 
Target Value 

Positive Impact Negative Impact 

Compa-
tibility 

There are various interfaces 
to other software programs. 

There are no interfaces to other 
software programs. 

Various data formats can be 
generated for export 

Only one data format can be 
generated for export. 

2.3 Utility Analysis 
Zangemeister [15] declines utility analysis as an 

evaluation method designed to support rational decision-
making. In this paper, it is used both to evaluate a 
building scanner and to compare multiple options. The 
evaluation criteria created above are integrated into the 
utility analysis. By applying weighted evaluation criteria, 
different options can be compared to determine an 
optimal result from a holistic perspective. Each sub-
criterion weighted according to its relevance is added 
together to give the total value. According to [6], the 
criteria weights are determined individually. During the 
evaluation process, the target values can be determined 
by using the evaluation scheme and incorporated into the 
utility analysis. A maximum of 5 points can be achieved. 
The higher the score, the more capable the potential 
building scanner is. 

Table 3 illustrates an example of the mathematical 
expression of the utility analysis. 

Table 3: Example of an Evaluation 
Main 

Criteria 
Weighting 

(%) 
Sub-

Criteria 
Weighting 

(%) 
Unweighted 
evaluation 

(Points 1-5) 

Weighted 
evaluation 

Sum of 
Main 

Criteria 
Security 3% Data 

security 
100% 4 4 

(=1x4) 
0.12 

(=0.03x4) 

3 Case Study and Results 

3.1 Description 
 To validate the assessment system presented above, 

two mobile-phone-based Light Detecting and Ranging 
(LiDAR) OS applications (MagicPlan and PolyCam), a 
photogrammetry-based scanning device (LumoScanner), 
and a laser scanner (Faro Focus S Plus 150) were tested. 
The OS applications have been chosen as they fulfill the 
requirements for our case study. For example, the user 
license is free during a trial period, the acquisition 
settings can be customized, and a 3D model is generated 
as an Industry Foundation Class (IFC)-Model. The test 
occurred on an approximately 500 m2 floor in an office 
building (Figure 1), located in Karlsruhe, Germany.  

Main Criteria Weighting 
(%) 

Sub-Criteria Weighting 
(%) 

Functionality 36 ·Technology [8] 8 
 ·Data acquisition [9] 9 
 ·Data analysis [10] 25 
 ·Result [8] 25 
 ·Costs [8] 25 
 ·Internet connection [11] 8 

Maintainability 
and 
Sustainability 

8 ·Community [12] 34 
·Maintenance readiness [12] 33 
·Evolvability [12] 33 

Performance 10 ·Duration [9], [10] 80 
 ·Performance [11] 20 

Compatibility 4 ·Compatibility [12] 100 
Usability 28 ·Comprehensibility [12] 15 

 ·Documentation [12] 11 
 ·Installability [12] 11 
 ·Learnability [12] 11 
 ·Self-descriptiveness [13] 15 
 ·Controllability [13] 15 
 ·Findability [14] 11 
 ·Support [12] 11 

Reliability 3 ·Fault tolerance [13] 100 
Security 3 ·Data security [11] 100 
Portability 8 ·Operating System [12] 50 

 ·Mobility [9] 50 
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Figure 1: Floorplan of the study object 

To guarantee the comparability of the recorded scans, 
all scans were performed, under consistent lighting 
conditions. The detailed procedure in the case study is 
presented below. 

Two OS applications are separately installed on two 
iPad Pro 11-inch (3rd generation), both equipped with a 
LiDAR sensor with a detection range of up to 5 meters. 
PolyCam offers four scanning modes (e.g. LiDAR, Room, 
Foto, and 360). LiDAR and Room modes were chosen to 
generate point clouds along with 3D models. The results 
can be exported as point clouds or 3D models in various 
formats. In LiDAR mode, each room is scanned 
separately, creating individual point clouds (exportable 
as .las files). In CloudCompare, those point clouds 
emerged to create a complete point cloud. The emerged 
point cloud was processed in ReCap and Revit for as-
built modeling.  

MagicPlan captures the spatial data and supports 
various export file formats. It allows users to edit the 
layout and add various elements such as windows and 
doors. A Bluetooth-enabled laser range finder can be 
lined for increased accuracy within a five-meter range. 
Besides, an internet connection is not required during 
recording.  

LumoScanner creates 2D point clouds from images. 
Each scan takes around 2 seconds and requires 1 to 2 
scans per room. This highly depends on the room size and 
layout. Due to its 2-dimensional nature, a handheld laser 
rangefinder supplements the LumoScanner for more 
detailed measurements, such as the position and size of 
windows or doors. The floor plan was created in advance 
and saved in the LumoApp. The final 3D modeling 
process is conducted in Revit. 

The Faro laser scanner offers up to 150 meters of 
scanning range and rapid data capture. In the case study, 
its settings were adjusted for a high scanning speed and a 
suitable quality, including a 10 m indoor range, a 
resolution of 1/32, and no color. One scan took 
approximately 40 seconds. The recorded point clouds 
were saved on an SD card, merged in CloudCompare, 
and used for 3D modeling in Revit.  

3.2 Results 
The case study was conducted in two separate days. 

On day one, MagicPlan and PolyCam were tested to scan 
15 rooms and three staircases. Due to highly complex 
circumstances in room 15, the scanning result was not 

used in the as-built modeling. 

(a) (b) 

(c) (d) 

Figure 2: (a) 3D model in MagicPlan; (b) 3D point 
cloud model from PolyCam; (c) 3D point cloud 
model from Faro scanner; (d) 2D point cloud 
model from LumoScanner (illustration) 

The data acquired with MagicPlan can be exported 
as an IFC model directly (Figure 2a), comparatively, the 
data from PolyCam was first exported as a set of 3D point 
clouds, each one of them represents a room or staircase 
(Figure 2b). On day two, the Faro laser scanner and 
LumoScanner were utilized to capture 14 rooms and 
three staircases. A set of 3D point clouds was exported 
from the Faro laser scanner (Figure 2c). The Data from 
LumoScanner were uploaded to Lumo Cloud, and a set 
of 2D point clouds was generated in the platform (Figure 
2d) just for illustration, not original data).  

Table 4 presents the data processing speed of the 
four scanning methods. Due to high integration of 
MagicPlan, it reaches the highest speed of 9.02 m²/min. 

Table 4: The processing speed of the four methods 
MagicPlan PolyCam Faro Lumoview 

Area/Time 
[m²/min] 9.02 1.27 1.05 1.42 

Table 5 presents the final evaluation results derived 
from the assessment system. The results and detailed 
explanations for the assigned ratings are recorded in a 
separate table. However, not all sub-criteria are 
qualitative, such as the sub-criterion duration. Therefore, 
the duration for each processing step is recorded also in 
a table. The approach streamlines the assessment process 
and provides a transparent documentation review and 
analysis. MagicPlan is evaluated as the best method with 
a score of 4.26. The scores of the remaining three 
methods range between 3.50 and 3.60 points. 
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Table 5: The final evaluation results 

 

3.3 Discussion 
MagicPlan results as the most efficient method, 

particularly in functionality, performance, and usability: 
(1) low cost (99.99€/year subscription); (2) high 
processing speed (9.02m2/min); (3) user-friendly 
interface (editable room layout). It is noticeable that 
almost all the tested objects are at a similar level. It can 
therefore be assumed that mobile laser scanners can be 
used just as effectively as terrestrial laser scanners. This 
finding is also supported in studies [1] and [16]. The high 
ratings of MagicPlan in the Google Play Store and the 
frequency of downloads further validate our findings [17]. 

4 Conclusion 
This work developed a comprehensive evaluation 

system for site-scanning methods to enhance decision-
making for users. A case study was conducted to verify 
the evaluation system and assess the performance of 
various scanning methods. The results highlight that the 
system can deliver a reliable evaluation with limited 
accessible information in practice. It should be noted that 
its application is not limited to the field of site-scanning. 
Additionally, the weighting rate for each criterion can be 
adjusted based on the users’ need and a particular use 
case. However, a wider range of scanning methods 
should be tested in a more diverse building environment 
to verify this system. In conclusion, the paper lays a solid 
foundation for developing an evaluation system for the 
applications in BIM and offers a practical tool for users. 
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Weigh-
ting (%) 

Magic-
Plan 

PolyCam Lumo-
view 

Faro  

Functionality  36 1.44 1.23 1.37 1.22 
Maintainability 
& Sustainability 8 0.29 0.29 0.27 0.28 

Performance 10 0.48 0.37 0.21 0.45 
Compatibility 4 0.16 0.2 0.20 0.13 
Usability 28 1.31 1.15 1.01 1.09 
Reliability 3 0.06 0.06 0.06 0.03 
Security 3 0.12 0.12 0.09 0.09 
Portability 8 0.4 0.16 0.32 0.24 
Total 100 4.26 3.58 3.53 3.53 
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