Publications / 2020 Proceedings of the 37th ISARC, Kitakyushu, Japan

Modeling and Control of 5-DoF Boom Crane

Michele Ambrosino, Marc Berneman, Gianluca Carbone, Rémi Crépin, Arnaud Dawans and Emanuele Garone
Pages 514-521 (2020 Proceedings of the 37th ISARC, Kitakyushu, Japan, ISBN 978-952-94-3634-7, ISSN 2413-5844)

Automation of cranes can have a direct impact on the productivity of construction projects. In this paper, we focus on the control of one of the most used cranes, the boom crane. Tower cranes and overhead cranes have been widely studied in the literature, whereas the control of boom cranes has been investigated only by a few works. Typically, these works make use of simple models making use of a large number of simplifying assumptions (e.g. fixed length cable, assuming certain dynamics are uncoupled, etc.) Afirst result of this paper is to present a fairly complete nonlinear dynamic model of a boom crane taking into account all coupling dynamics and where the only simplifying assumption is that the cable is considered as rigid. The boom crane involves pitching and rotational movements, which generate complicated centrifugal forces, and consequently, equations of motion highly nonlinear. On the basis of this model, a control law has been developed able to perform position control of the crane while actively damping the oscillations of the load. The effectiveness of the approach has been tested in simulation with realistic physical parameters and tested in the presence of wind disturbances.

Keywords: Boom cranes; Robotics; Motion control; Underactuated systems; Nonlinear control