Publications / 2021 Proceedings of the 38th ISARC, Dubai, UAE

Simulation-Based Optimization of High-Performance Wheel Loading

Koji Aoshima, Martin Servin and Eddie Wadbro
Pages 688-695 (2021 Proceedings of the 38th ISARC, Dubai, UAE, ISBN 978-952-69524-1-3, ISSN 2413-5844)

Having smart and autonomous earthmoving in mind, we explore high-performance wheel loading in a simulated environment. This paper introduces a wheel loader simulator that combines contacting 3D multibody dynamics with a hybrid continuum-particle terrain model, supporting realistic digging forces and soil displacements at real-time performance. A total of 270,000 simulations are run with different loading actions, pile slopes, and soil to analyze how they affect the loading performance. The results suggest that the preferred digging actions should preserve and exploit a steep pile slope. High digging speed favors high productivity, while energy-efficient loading requires a lower dig speed.

Keywords: Wheel loader; Autonomous; Simulation-Based Optimization; Multibody and soil dynamics