Publications / 2020 Proceedings of the 37th ISARC, Kitakyushu, Japan

A Cable Driven Parallel Robot with a Modular End Effector for the Installation of Curtain Wall Modules

Kepa Iturralde, Malte Feucht, Rongbo Hu, Wen Pan, Marcel Schlandt, Thomas Linner, Thomas Bock, Jean-Baptiste Izard, Ibon Eskudero, Mariola Rodriguez, Jose Gorrotxategi, Julen Astudillo, Joao Cavalcanti, Marc Gouttefarde, Marc Fabritius, Christoph Martin, Tomas Henninge, Stein M. Nornes, Yngve Jacobsen, A. Pracucci, Jesús Cañada, José David Jimenez-Vicaria, Carlo Paulotto, Rubén Alonso and Lorenzo Elia
Pages 1472-1479 (2020 Proceedings of the 37th ISARC, Kitakyushu, Japan, ISBN 978-952-94-3634-7, ISSN 2413-5844)
Abstract:

The installation of curtain wall modules (CWMs) is a risky activity carried out in the heights and often under unfavorable weather conditions. CWMs are heavy prefabricated walls that are lifted normally with bindings and cranes. High stability is needed while positioning in order not to damage the fragile CWMs. Moreover, this activity requires high precision while positioning brackets, the modules, and for that reason, intensive survey and marking are necessary. In order to avoid such inconveniences, there were experiences to install façade modules in automatic mode using robotic devices. In the research project HEPHAESTUS, a novel system has been developed in order to install CWMs automatically. The system consists of two sub-systems: a cable driven parallel robot (CDPR) and a set of robotic tools named as Modular End Effector (MEE). The platform of the CDPR hosts the MEE. This MEE performs the necessary tasks of installing the curtain wall modules. There are two main tasks that the CDPR and MEE need to achieve: first is the fixation of the brackets onto the concrete slab, and second is the picking and placing of the CWMs onto the brackets. The first integration of the aforementioned system was carried out in a controlled environment that resembled a building structure. The results of this first test show that there are minor deviations when positioning the CDPR platform. In future steps, the deviations will be compensated by the tools of the MEE and the installation of the CWM will be carried out with the required accuracy automatically.

Keywords: Automation; On-site; Robotics; Façade